JP2004269645A - Resin molded article and method for producing the same - Google Patents

Resin molded article and method for producing the same Download PDF

Info

Publication number
JP2004269645A
JP2004269645A JP2003061006A JP2003061006A JP2004269645A JP 2004269645 A JP2004269645 A JP 2004269645A JP 2003061006 A JP2003061006 A JP 2003061006A JP 2003061006 A JP2003061006 A JP 2003061006A JP 2004269645 A JP2004269645 A JP 2004269645A
Authority
JP
Japan
Prior art keywords
resin molded
mold
molded product
minutes
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003061006A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koyama
利之 小山
Katsumi Tsuchiya
勝己 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003061006A priority Critical patent/JP2004269645A/en
Publication of JP2004269645A publication Critical patent/JP2004269645A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick resin molded article which uses an epoxy resin, has a transparent appearance similar to that of an inorganic glass material and excellent surface smoothness, and can be used instead of a transparent inorganic glass material having a high grade appearance and used for household appliances and building materials, and to provide a method for producing the resin molded article in good productivity. <P>SOLUTION: This resin molded article is obtained by casting a base material consisting mainly of the epoxy resin and an acid anhydride curing agent and then thermally curing the cast product, does not contain an inorganic filler, and has a thickness of ≥15 mm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は15mm以上の厚みを要する、例えば住宅機器や建材などに用いられるテーブル、洗面カウンター、洗面ボウル等の透明樹脂成形品とその製法に関する。
【0002】
【従来の技術】
従来から住宅機器や建材において、透明素材は高級なイメージを付加させるとして重宝されている。
一般的には無機ガラス材が多く用いられるが、高級なイメージを発揮するためには厚みが厚い方が良く、15mm以上のものが望まれている。しかし無機ガラス材は、成形性に自由度がなく、一体成形や15mm以上の板材成形が困難であり、切断及び開孔等の成形後の加工性が困難であるため、高価な材質である。
【0003】
そのため、無機ガラス材よりも加工が容易で、透光性を有する安価な樹脂成形品も幅広く使用されている。
樹脂成形品としては、アクリルやポリカーボネートといった熱可塑性樹脂が広く知られている。
熱可塑樹脂は、透明な意匠表現を成し得ているが、その特性上耐熱性や耐薬品性が劣り、収縮率が大きく熱可塑であるがゆえに脱型時に軟化が生じ、狙いの成形体を良好な状態で得るのが困難である。また収縮を抑える為に型内で数時間の低温予備重合と高温重合させて重合率を高める必要があることと脱型後もアニールに長時間を要することから成形サイクルが非常に長く生産性が悪い。特に15mm以上の厚みの成型物を得るには製造コストがかかる。
【0004】
また、他の樹脂成形品である熱硬化樹脂においては、不飽和ポリエステル樹脂やビニルエステル樹脂が知られているが、その特性上収縮率が高く靭性が低いので、無機充填材を混入する必要があり、隠ぺい効果を付与してしまうため光が透過しにくくなり透明な意匠表現は成し得えていない。
同じく熱硬化樹脂であるエポキシ樹脂としては、酸無水物硬化剤及び無機充填材からなる混合物を用いて成形したものが提案されているが、他の熱硬化樹脂同様、無機充填材含有しているため、厚みのあるものでは透明な意匠表現は成し得えていない(例えば、特許文献1及び2参照のこと。)。
【0005】
透明な熱硬化樹脂の例として、光学用途のコーティング剤、半導体封止剤や発光ダイオードのボッティングもしくはフィルム用途の厚みが薄いものが透明エポキシ材料として公知である(例えば、特許文献3及び特許文献4参照のこと。)。
しかし、着色や変色、発泡といった不具合を生じやすく無色透明の達成が困難であり収縮が大きいことや離型性が悪いことから表面平滑性が悪い傾向にある。また長時間の硬化時間を要するので成形サイクルが延びて生産性が悪い。
【0006】
【特許文献1】
特開平2−6359号公報
【特許文献2】
特開平3−247544号公報
【特許文献3】
特開平4−209624号公報
【特許文献4】
特開昭62−30117号公報
【0007】
【発明が解決しようとする課題】
上記のように無機ガラス材に代わる材料として樹脂成形物を、広面積で肉厚が15mm以上と厚くかつ透明な住宅機器や建材として使用する場合、様々な問題を有している。
すなわち、アクリルに代表される熱可塑樹脂では、透明な意匠表現は成し得ているが、その特性上生産性が悪く耐熱性や耐薬品性に劣るという欠点がある。
【0008】
また、耐熱性や耐薬品性の有する熱硬化樹脂でしかも最も収縮率が低く強靭な特性を有するエポキシ樹脂では、厚みが薄いものでは透明な意匠表現は成し得ているが、表面平滑性や生産性に問題がある。
【0009】
本発明は上記課題を解決するためになされたものであり、エポキシ樹脂を用いて無機ガラス材と同様の透明な外観を持ち表面平滑性に優れた厚みのある樹脂成形物、及びその生産性の良い製造方法を提供することを目的とする。
【0010】
【発明が解決するための手段】
上記目的を達成する為になされた請求項1記載の発明は、エポキシ樹脂と酸無水物硬化剤とを主とする基材を注型し加熱硬化することにより得られるもので、無機充填材を含まない15mm以上の厚みを有することを特徴とする樹脂成形物とした。
【0011】
前記エポキシ樹脂としては、凡用のビスフェノールAジグリシジルエーテルの他、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、環状脂肪族エポキシ樹脂等の透明性を有する樹脂が挙げられるが、硬化物の着色性、硬化性及びコストパフォーマンスを考慮するとビスフェノールAジグリシジルエーテルが好ましい。
またノボラック型エポキシ樹脂、ポリオレフィン型エポキシ樹脂等の樹脂成分、比較的低粘度のモノエポキサイドやポリエポキサイド等の反応性希釈剤等のエポキシ化合物を本発明の所定の効果に影響を及ぼさない範囲内で適宜調合することができる。
【0012】
前記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水メチルハイミック酸、無水マレイン等が考えられるが、着色性や耐候性を考慮すると2重結合がないヘキサヒドロ無水フタル酸またはメチルヘキサヒドロ無水フタル酸が好ましい。ヘキサヒドロ無水フタル酸は常温で固形であるためメチルヘキサヒドロ無水フタル酸の方がエポキシ樹脂に混合しやすい。なお、両者を併用することも可能である。
【0013】
これにより、無機充填材を含まないので透明な意匠表現が可能となるとともに、厚みのある高級なイメージを発揮できる樹脂成形物を提供できる。
【0014】
また請求項2記載の発明は、前記樹脂成形物において、前記基材は硬化促進剤として第4級ホスホニウム塩または二環式アミジン化合物の有機酸塩もしくはこれらの混合物、及び着色防止剤としてホスファイトを基本骨格に持つものもしくは前記ホスファイトの混合物が添加されることを特徴とする樹脂成形物とした。
【0015】
前記硬化促進剤としては、3級アミン、ベンジルジメチルアミン、オクチル酸スズ、二環式アミジン化合物(DBU)、第4級ホスホニウム塩や第4級アンモニウム塩等を用いることが可能だが、低収縮率かつ硬化に際して着色が少なく透明性を損なわないためには第4級ホスホニウム塩またはDBUの有機酸塩もしくはこれらの混合物が好ましい。
【0016】
前記着色防止剤としては、ホスファイト系、フェノール系やチオエーテル系のものが考えられるが、樹脂成形品への着色防止効果、相溶性及び耐久性からホスファイトを基本骨格に持つものもしくは前記ホスファイトの混合物が好ましい。
【0017】
これにより、無機充填材を含まないので透明な意匠表現が可能となるとともに、厚みのある高級なイメージを発揮できる樹脂成形物を提供できる。
【0018】
また請求項3記載の発明は、エポキシ樹脂と酸無水物硬化剤とを主とした基材とする請求項1または請求項2記載の樹脂成形物の製法において、前記基材を40℃〜90℃の範囲で加熱し予熱することで該当材料の粘度を低下させ、離型剤を塗布し40℃〜100℃の範囲で加熱し予熱した型に注入して、60℃〜100℃で30分以上130分以内の範囲で加熱硬化を行い、成形物の脱型後に90〜160℃で50分以上70分以内の範囲でアフターキュアを施すことを特徴とする樹脂成形物の製法とした。
【0019】
これにより、加熱予熱することにより脱泡性を向上させることができ、かつ型内での硬化時間を短縮することが可能となり、平滑性に優れた厚みのある樹脂成形物が生産性良く安価に製造することができる。
【0020】
また請求項4および請求項5記載の発明は、前記型は強化ガラス製または金属製のいずれかであることを特徴とする請求項3に記載の樹脂成形物の製法とした。
【0021】
強化ガラス製の型では、無機ガラス特有の鏡面をそのまま成形体に転写することができ、光沢や表面平滑性に優れたものが可能である。
金属製の型では、畜熱性に優れたものを熱伝導の良い金属で覆うことにより熱分散の効率化が向上され、硬化の均一化をはかることが可能となり、広面積での成形も可能となる。製品転写面にブラスト処理やエッヂング処理をすることにより様々な表面意匠付加も可能である。
【0022】
また請求項6記載の発明は、請求項3に記載の樹脂成形物の型内に塗布する離型剤はシリコーン系離型剤もしくは前記シリコーン系離型剤の混合物であることを特徴とする請求項3から請求項5のいずれかに記載の樹脂成形物の製法した。
【0023】
前記離型剤としては脂肪酸系、フッ素系のものを用いることが可能だが、離型効果が強力過ぎると成形体表面に凹凸が生じ易く弱すぎると成形体が型に吸着し破損する可能性があるため、適度に良好な脱型効果を得るシリコン系離型剤が敵している。
【0024】
これにより、表面平滑性に優れた厚みのある樹脂成形物が生産性良く安価に製造することができる。
【0025】
また紫外線吸収剤や脱泡剤についても必要に応じ本発明の所定の効果に影響を及ぼさない範囲内で適宜調合するが可能である。
【0026】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
成形にあたっては、50℃の予備加熱工程で粘度を低下させた後、真空攪拌をした状態のエポキシ樹脂組成物を離型剤で型処理を施した型内に注入し、95℃で100分キュアリングした後に脱型し、この後140℃で60分アフターキュアリングを行う。
【0027】
尚、前記注型成形の温度、時間等は一例を示したもので、本発明に係る方法は、上記の条件に限定されるものではない。
【0028】
本発明で開示した条件である加熱硬化条件60℃〜100℃で30分以上130分以内およびアフターキュア条件90℃〜160℃で50分以上70分以内の範囲より外れると成形できない。
加熱硬化するキュアリング条件を外れるて、加熱温度が60℃未満の場合や加熱時間が30分未満の場合は硬化しせず、逆に100℃より高い場合や130分より長くなると変色や割れなどの不具合が発生する。
脱型後のアフターキュア条件を外れるて、加熱温度が90℃未満の場合や加熱時間が50分未満の場合は強度や硬度の物性が低下し、逆に160℃より高い場合や70分より長いくなると変色や割れなどの不具合が発生する。
【0029】
実施例1
ビスフェノールAジグリシジルエーテル型エポキシ樹脂(エポキシ当量190)100重量部、酸無水物硬化剤としてメチルヘキサヒドロ無水フタル酸材料(酸無水物当量160)93重量部、硬化促進剤として第4級ホスホニウムブロマイド1重量部、着色防止剤としてホスファイト系酸化防止剤5重量部を原料として充分混合し真空脱泡を行った。
【0030】
型においての選択は耐久命数及びその得うる形状、表面光沢等の意匠により決定する必要があるが、ここではシリコーン系離型剤で離型処理を施した強化ガラス板(2200mm×1000mm)を用いた。
2枚のガラス板間にスペーサー20mmを挟み込んだものを成形型とし使用し、ビスフェノールAジグリシジルエーテル型エポキシ樹脂(エポキシ当量190)100重量部、酸無水物硬化剤としてメチルヘキサヒドロ無水フタル酸材料(酸無水物当量160)93重量部、硬化促進剤として第4級ホスホニウムブロマイド1重量部、着色防止剤としてホスファイト系酸化防止剤5重量部を原料として充分混合し真空脱泡を行ったものを注型した。注型した成形型を95℃±5℃に制御された乾燥炉中100分間放置し硬化させ、成形型より成形体を摘出し140℃60分間のアフターキュアを行い、常温雰囲気中にて除冷をし、約20mm厚でかつ約2200mm×約1000mmの広面積の成形体を得た。
【0031】
この成形体は両面ともに強化ガラスの鏡面をそのまま転写されており光沢、表面平滑性に優れたものであった。図1に示したように無機ガラスと同等の透明性を有する成形体であった。
【0032】
さらに、本発明のエポキシ樹脂成形体と従来の無機ガラス、アクリル及びポリカーボネートとを全光線透過率とその時の厚みで比較した結果を表1に示す。
【0033】
【表1】

Figure 2004269645
【0034】
本発明のエポキシ樹脂成形体は、厚みが20mmでありながら、10mmの無機ガラスと同等の全光線透過率を有しており、アクリルやポリカーボネートにいたっては5mmの厚みでしか同等の全光線透過率を有していない。
また耐熱水性能(JIS K6911に準拠)も極めて良好であった。
【0035】
実施例2
実施例1同様の配合で使用する型を6mm厚のアルミ合金板(JISH4000 A5052P−H112 2200mm×1000mm)とし実施例1同様の方法で平板を成形した。
この平板は強化ガラス板に比べアルミ合金板の表面を転写しているため光沢性はやや劣るものの他の特性は表2に示すように実施例1と同様の結果であった。
【0036】
【表2】
Figure 2004269645
【0037】
材料配合において実施例1以外の配合部数で混練し、実施例1同様の方法で平板を成形し硬化時間の確認(生産性)を行ない、目視にて曇や着色の程度(透明性)、表面平滑性や均一さ(表面状態)、気泡の発生状況(発泡性)の観察を行い、○×△で定性的に評価した。その結果を表3に示した。なお、○は良好,△はやや不良,×は不良の基準により評価した。
【0038】
【表3】
Figure 2004269645
【0039】
比較例1
酸無水物硬化剤は80重量部以下では荷重たわみ温度(HDT)や曲げ強度等の物性が低下した。エポキシ樹脂の反応残留分子が発生するため着色しやすくなり透明性に劣る結果となった。
110部以上では硬化剤の反応残留分子が発生するため発泡し、発泡性が劣る結果となった。このため脱型時のクラック等の要因となり破損した。このことからも生産性が低下するものと思われる。
【0040】
比較例2
硬化促進剤は0.5重量部以下では硬化時間が約4時間以上と長く生産性が悪かった。且つ反応遅延を引起こし硬化剤の揮発によりエポキシ樹脂残留分子が多いために着色しやすく透明性を低下させた。
また4.0重量部以上では重合反応性が過多となり不均一な発熱が生じ硬化剤の突沸が生じてしまい、発泡性が劣る結果となった。このため脱型時のクラックの要因となり破損した。このことからも生産性が低下するものと思われる。
【0041】
比較例3
着色防止剤は1.0重量部以下では酸化防止効果が発揮できず着色しやすくなり透明性を低下させた。
8.0重量部以上では着色防止剤がエポキシ樹脂と結びつき過ぎて調度促進剤がエポキシ樹脂よりも少ない状態となり硬化剤が気化し発泡が生じて、発泡性が劣る結果となった。このため脱型時のクラックの要因となり生産性が悪かった。
【0042】
表2に、成形時使用する型の材質の影響を比較例4として示した。評価は○×△で定性的に行った。なお、○は良好,△はやや不良,×は不良の基準により評価した。
FRP積層板用いた場合は型に無数のクラックが入り、フロートガラスを用いた場合は破損した。このことから熱衝撃に耐え得る強化ガラス製または金属製の型でないと好ましくない。
【0043】
【発明の効果】
本発明では上記構成から明らかなように、エポキシ樹脂を用いて無機ガラス材と同様の透明な外観を持ち表面平滑性に優れた厚みのある樹脂成形物、及びその生産性の良い製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明のエポキシ樹脂成形物の透明度を示した図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent resin molded product requiring a thickness of 15 mm or more, such as a table, a wash counter, a wash bowl, and the like, which are used for, for example, home appliances and building materials, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Transparent materials have been used in home appliances and building materials to add a high-grade image.
Generally, an inorganic glass material is often used, but in order to exhibit a high-quality image, a thicker film is better, and a material having a thickness of 15 mm or more is desired. However, the inorganic glass material is an expensive material because there is no flexibility in its formability, it is difficult to integrally mold or form a plate material of 15 mm or more, and it is difficult to work after forming such as cutting and opening.
[0003]
Therefore, inexpensive resin molded products that are easier to process than inorganic glass materials and have translucency are widely used.
Thermoplastic resins such as acrylic and polycarbonate are widely known as resin molded products.
Thermoplastic resin can achieve a transparent design expression, but its heat resistance and chemical resistance are inferior due to its characteristics, and because of its large shrinkage ratio, it is softened at the time of demolding due to its thermoplasticity. Is difficult to obtain in good condition. Also, in order to suppress shrinkage, it is necessary to increase the polymerization rate by performing low-temperature prepolymerization and high-temperature polymerization in the mold for several hours, and it takes a long time for annealing after demolding, so the molding cycle is extremely long and productivity is high. bad. In particular, manufacturing costs are required to obtain a molded product having a thickness of 15 mm or more.
[0004]
In addition, unsaturated polyester resins and vinyl ester resins are known as thermosetting resins, which are other resin molded products. However, due to their properties, shrinkage is high and toughness is low, so it is necessary to mix an inorganic filler. There is a hiding effect, so that it is difficult for light to pass through, and a transparent design expression cannot be achieved.
Similarly, as an epoxy resin which is a thermosetting resin, a resin molded using a mixture of an acid anhydride curing agent and an inorganic filler has been proposed, but contains an inorganic filler like other thermosetting resins. For this reason, a transparent design expression cannot be achieved with a thick one (for example, see Patent Documents 1 and 2).
[0005]
As an example of a transparent thermosetting resin, a coating agent for optical use, a semiconductor encapsulant, a thin resin for bottling of light emitting diodes or a thin film for film use are known as transparent epoxy materials (for example, Patent Document 3 and Patent Document 3). 4).
However, problems such as coloring, discoloration, and foaming are likely to occur, and it is difficult to achieve colorless and transparent, and the surface smoothness tends to be poor because of large shrinkage and poor releasability. Further, since a long curing time is required, the molding cycle is extended, and the productivity is poor.
[0006]
[Patent Document 1]
JP-A-2-6359 [Patent Document 2]
JP-A-3-247544 [Patent Document 3]
JP-A-4-209624 [Patent Document 4]
JP-A-62-30117
[Problems to be solved by the invention]
As described above, when a resin molded product is used as a material that replaces the inorganic glass material and is used as a transparent and wide-area housing device or building material having a large area and a thickness of 15 mm or more, there are various problems.
That is, in the case of a thermoplastic resin represented by acrylic, a transparent design expression can be achieved, but there is a drawback that the productivity is poor due to its characteristics and the heat resistance and the chemical resistance are poor.
[0008]
In addition, in the case of an epoxy resin which is a thermosetting resin having heat resistance and chemical resistance and has the lowest shrinkage ratio and toughness, a transparent design expression can be achieved with a thin thickness, but the surface smoothness and There is a problem with productivity.
[0009]
The present invention has been made in order to solve the above problems, a resin molded article having a transparent appearance similar to that of an inorganic glass material using an epoxy resin and having excellent surface smoothness, and its productivity. The purpose is to provide a good manufacturing method.
[0010]
Means for Solving the Invention
The invention according to claim 1 made in order to achieve the above object is obtained by casting and heating and curing a base material mainly composed of an epoxy resin and an acid anhydride curing agent. A resin molded product characterized by having a thickness of not less than 15 mm.
[0011]
Examples of the epoxy resin include, in addition to ordinary bisphenol A diglycidyl ether, resins having transparency such as hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and cycloaliphatic epoxy resin. In consideration of the coloring property, curability and cost performance of the compound, bisphenol A diglycidyl ether is preferred.
In addition, novolak type epoxy resin, resin components such as polyolefin type epoxy resin, epoxy compounds such as reactive diluents such as relatively low viscosity monoepoxide and polyepoxide within a range that does not affect the predetermined effect of the present invention. It can be appropriately compounded.
[0012]
Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, methylhymic anhydride, and maleic anhydride. However, considering coloring properties and weather resistance, hexahydrophthalic anhydride or methylhexahydrophthalic anhydride having no double bond is preferred. Since hexahydrophthalic anhydride is solid at room temperature, methylhexahydrophthalic anhydride is easier to mix with an epoxy resin. In addition, both can be used together.
[0013]
This makes it possible to provide a transparent molded product that does not contain an inorganic filler, and to provide a resin molded product that can exhibit a thick, high-quality image.
[0014]
The invention according to claim 2 is characterized in that, in the resin molded article, the base material is a quaternary phosphonium salt or an organic acid salt of a bicyclic amidine compound or a mixture thereof as a curing accelerator, and a phosphite as a coloring inhibitor. Or a mixture of the above-mentioned phosphites.
[0015]
As the curing accelerator, a tertiary amine, benzyldimethylamine, tin octylate, a bicyclic amidine compound (DBU), a quaternary phosphonium salt, a quaternary ammonium salt, or the like can be used. In addition, a quaternary phosphonium salt, an organic acid salt of DBU, or a mixture thereof is preferred in order to hardly discolor and impair transparency upon curing.
[0016]
The phosphite-based, phenol-based or thioether-based ones are conceivable as the color-preventing agent, and those having phosphite as a basic skeleton or the phosphite-based phosphite from the viewpoint of the color-preventing effect on resin molded products, compatibility and durability. Are preferred.
[0017]
This makes it possible to provide a transparent molded product that does not contain an inorganic filler, and to provide a resin molded product that can exhibit a thick, high-quality image.
[0018]
According to a third aspect of the present invention, in the method for producing a resin molded product according to the first or second aspect, the base is mainly made of an epoxy resin and an acid anhydride curing agent. By heating and preheating in the range of ℃ to reduce the viscosity of the corresponding material, applying a release agent, heating in the range of 40 ℃ ~ 100 ℃, poured into the preheated mold, 30 minutes at 60 ℃ ~ 100 ℃ A method for producing a resin molded article characterized by performing heat curing within a range of 130 minutes or less and performing after-curing at 90 to 160 ° C. for 50 minutes to 70 minutes after demolding of the molded article.
[0019]
As a result, the defoaming property can be improved by heating and preheating, and the curing time in the mold can be shortened. Can be manufactured.
[0020]
The invention according to claims 4 and 5 is the method according to claim 3, wherein the mold is made of either tempered glass or metal.
[0021]
In a mold made of tempered glass, a mirror surface peculiar to inorganic glass can be directly transferred to a molded body, and a mold excellent in gloss and surface smoothness can be obtained.
In metal molds, covering materials with excellent heat storage properties with a metal with good thermal conductivity improves the efficiency of heat dispersion, makes it possible to achieve uniform curing, and enables molding over a large area. Become. Various surface designs can be added by blasting or edging the product transfer surface.
[0022]
The invention according to claim 6 is characterized in that the release agent applied to the mold of the resin molded product according to claim 3 is a silicone-based release agent or a mixture of the silicone-based release agents. The method for producing a resin molded product according to any one of Items 3 to 5 was performed.
[0023]
As the release agent, a fatty acid-based or fluorine-based release agent can be used, but if the release effect is too strong, irregularities are likely to be formed on the surface of the molded product, and if the release effect is too weak, the molded product may be adsorbed on the mold and damaged. For this reason, silicon-based mold release agents that provide a moderately good demolding effect are suitable.
[0024]
As a result, a thick resin molded product having excellent surface smoothness can be manufactured with good productivity and at low cost.
[0025]
In addition, an ultraviolet absorber and a defoaming agent can be appropriately compounded as needed within a range that does not affect the predetermined effect of the present invention.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
In molding, after the viscosity is reduced in a preheating step of 50 ° C., the epoxy resin composition in a state of vacuum stirring is poured into a mold subjected to a mold treatment with a release agent, and cured at 95 ° C. for 100 minutes. After the ring, the mold is removed, and after-curing is performed at 140 ° C. for 60 minutes.
[0027]
The temperature, time, and the like of the casting are merely examples, and the method according to the present invention is not limited to the above conditions.
[0028]
Molding cannot be performed if the heating and curing conditions, which are the conditions disclosed in the present invention, are out of the range of 30 to 130 minutes at 60 ° C to 100 ° C and 50 to 70 minutes at 90 to 160 ° C of after-curing conditions.
Curing conditions that deviate from the curing by heating will not be achieved if the heating temperature is less than 60 ° C or the heating time is less than 30 minutes. On the contrary, if the heating temperature is higher than 100 ° C or longer than 130 minutes, discoloration or cracking will occur. Malfunctions occur.
If the heating temperature is less than 90 ° C or the heating time is less than 50 minutes, the physical properties such as strength and hardness are reduced when the after-curing conditions after the demolding are removed, and conversely, the temperature is higher than 160 ° C or longer than 70 minutes. When it gets worse, problems such as discoloration and cracks occur.
[0029]
Example 1
100 parts by weight of bisphenol A diglycidyl ether type epoxy resin (epoxy equivalent 190), 93 parts by weight of methylhexahydrophthalic anhydride material (acid anhydride equivalent 160) as an acid anhydride curing agent, and quaternary phosphonium bromide as a curing accelerator One part by weight and 5 parts by weight of a phosphite-based antioxidant as a coloring inhibitor were sufficiently mixed as raw materials, and vacuum defoaming was performed.
[0030]
It is necessary to determine the choice of the mold according to the design such as the life expectancy, the shape that can be obtained, and the surface gloss, but here, a tempered glass plate (2200 mm x 1000 mm) that has been subjected to a release treatment with a silicone release agent is used. Was.
A mold having a spacer of 20 mm sandwiched between two glass plates is used as a molding die, 100 parts by weight of a bisphenol A diglycidyl ether type epoxy resin (epoxy equivalent: 190), and a methyl hexahydrophthalic anhydride material as an acid anhydride curing agent. (Acid anhydride equivalent: 160) 93 parts by weight, 1 part by weight of a quaternary phosphonium bromide as a curing accelerator, and 5 parts by weight of a phosphite-based antioxidant as a coloring inhibitor were thoroughly mixed and subjected to vacuum defoaming. Was cast. The cast mold was left to cure in a drying oven controlled at 95 ° C ± 5 ° C for 100 minutes, and the molded body was taken out from the mold and subjected to after-curing at 140 ° C for 60 minutes, and then cooled in a normal temperature atmosphere. To obtain a molded body having a thickness of about 20 mm and a wide area of about 2200 mm × about 1000 mm.
[0031]
This molded product was transferred to the mirror surface of the tempered glass as it was on both sides, and was excellent in gloss and surface smoothness. As shown in FIG. 1, the molded article had the same transparency as the inorganic glass.
[0032]
Further, Table 1 shows the results of comparing the epoxy resin molded product of the present invention with conventional inorganic glass, acrylic and polycarbonate in terms of total light transmittance and thickness at that time.
[0033]
[Table 1]
Figure 2004269645
[0034]
The epoxy resin molded article of the present invention has a total light transmittance equivalent to that of a 10 mm inorganic glass while having a thickness of 20 mm, and the same total light transmittance of acrylic and polycarbonate only at a thickness of 5 mm. Have no rate.
The hot water performance (based on JIS K6911) was also very good.
[0035]
Example 2
A mold used in the same composition as in Example 1 was used as a 6 mm-thick aluminum alloy plate (JIS H4000 A5052P-H112 2200 mm × 1000 mm), and a flat plate was formed in the same manner as in Example 1.
This flat plate transfers the surface of the aluminum alloy plate as compared with the tempered glass plate, so that the gloss was slightly inferior, but other characteristics were the same as those of Example 1 as shown in Table 2.
[0036]
[Table 2]
Figure 2004269645
[0037]
In the material blending, kneading was carried out in a blending number other than that of Example 1, a flat plate was formed in the same manner as in Example 1, the curing time was confirmed (productivity), and the degree of cloudiness and coloring (transparency) was visually observed. Observation of smoothness, uniformity (surface state), and generation state of bubbles (foaming property) were performed, and qualitatively evaluated as △ × △. Table 3 shows the results. In addition, ○ was evaluated based on the criteria of good, Δ was slightly defective, and x was evaluated based on the criteria of defective.
[0038]
[Table 3]
Figure 2004269645
[0039]
Comparative Example 1
When the amount of the acid anhydride curing agent is less than 80 parts by weight, physical properties such as deflection temperature under load (HDT) and bending strength are deteriorated. Since the reaction residual molecules of the epoxy resin are generated, the resin is easily colored and the result is inferior in transparency.
When the amount is more than 110 parts, a reaction residual molecule of the curing agent is generated, so that foaming is caused, resulting in poor foamability. For this reason, it was caused by cracks and the like at the time of demolding, and was broken. This also suggests that the productivity will decrease.
[0040]
Comparative Example 2
When the amount of the curing accelerator was 0.5 parts by weight or less, the curing time was as long as about 4 hours or more, and the productivity was poor. In addition, the reaction was delayed and the curing agent was volatilized, so that many epoxy resin residual molecules were present.
If the amount is more than 4.0 parts by weight, the polymerization reactivity becomes excessive, non-uniform heat generation occurs, and bumping of the curing agent occurs, resulting in poor foamability. For this reason, it was a cause of cracks at the time of demolding and was damaged. This also suggests that the productivity will decrease.
[0041]
Comparative Example 3
If the coloring inhibitor is less than 1.0 part by weight, the antioxidant effect cannot be exerted, and the coloring agent is easily colored and the transparency is lowered.
If the amount is 8.0 parts by weight or more, the coloring inhibitor is excessively linked to the epoxy resin, and the amount of the preparation accelerator is smaller than that of the epoxy resin. For this reason, cracks were caused at the time of demolding, and productivity was poor.
[0042]
Table 2 shows the influence of the material of the mold used during molding as Comparative Example 4. The evaluation was performed qualitatively by ○ × △. In addition, ○ was evaluated based on the criteria of good, Δ was slightly defective, and x was evaluated based on the criteria of defective.
When the FRP laminate was used, the mold had numerous cracks, and when the float glass was used, the mold was broken. For this reason, it is not preferable to use a tempered glass or metal mold that can withstand thermal shock.
[0043]
【The invention's effect】
As is apparent from the above configuration, the present invention provides a resin molded product having a transparent appearance similar to that of an inorganic glass material and excellent in surface smoothness using an epoxy resin, and a production method with good productivity. can do.
[Brief description of the drawings]
FIG. 1 is a diagram showing the transparency of an epoxy resin molded product of the present invention.

Claims (6)

エポキシ樹脂と酸無水物硬化剤とを主とする基材を注型し加熱硬化することにより得られるもので、無機充填材を含まない15mm以上の厚みを有することを特徴とする樹脂成形物。A resin molded product obtained by casting and heating and curing a base material mainly composed of an epoxy resin and an acid anhydride curing agent, and having a thickness of 15 mm or more without an inorganic filler. 前記樹脂成形物において、前記基材は硬化促進剤として第4級ホスホニウム塩または二環式アミジン化合物の有機酸塩もしくはこれらの混合物、及び着色防止剤としてホスファイトを基本骨格に持つものもしくは前記ホスファイトの混合物が添加されることを特徴とする樹脂成形物。In the resin molded product, the base material has a quaternary phosphonium salt or an organic acid salt of a bicyclic amidine compound or a mixture thereof as a curing accelerator, and a base material having phosphite as a coloring inhibitor or the phosphite as a coloring inhibitor. A resin molded product to which a mixture of phytes is added. エポキシ樹脂と酸無水物硬化剤とを主とした基材とする請求項1または請求項2記載の樹脂成形物の製法において、前記基材を40℃〜90℃の範囲で加熱し予熱することで該当材料の粘度を低下させ、離型剤を塗布し40℃〜100℃の範囲で加熱し予熱した型に注入して、60℃〜100℃で30分以上130分以内の範囲で加熱硬化を行い、成形物の脱型後に90℃〜160℃で50分以上70分以内の範囲でアフターキュアを施すことを特徴とする樹脂成形物の製法。The method for producing a resin molded product according to claim 1 or 2, wherein the substrate is mainly composed of an epoxy resin and an acid anhydride curing agent, wherein the substrate is preheated by heating in a range of 40 ° C to 90 ° C. Reduce the viscosity of the corresponding material, apply a mold release agent, heat it in the range of 40 ° C to 100 ° C, pour it into the preheated mold, and heat cure at 60 ° C to 100 ° C for 30 minutes to 130 minutes. And performing after-cure at 90 ° C. to 160 ° C. for 50 minutes to 70 minutes after demolding of the molded article. 前記型は強化ガラス製であることを特徴とする請求項3に記載の樹脂成形物の製法。The method according to claim 3, wherein the mold is made of tempered glass. 前記型は金属製であることを特徴とする請求項3に記載の樹脂成形物の製法。The method according to claim 3, wherein the mold is made of metal. 請求項3に記載の樹脂成形物の型内に塗布する離型剤はシリコーン系離型剤もしくは前記シリコーン系離型剤の混合物であることを特徴とする請求項3から請求項5のいずれかに記載の樹脂成形物の製法。The mold release agent applied to the mold of the resin molded product according to claim 3 is a silicone-based release agent or a mixture of the silicone-based release agents. 3. The method for producing a resin molded product according to item 1.
JP2003061006A 2003-03-07 2003-03-07 Resin molded article and method for producing the same Pending JP2004269645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061006A JP2004269645A (en) 2003-03-07 2003-03-07 Resin molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061006A JP2004269645A (en) 2003-03-07 2003-03-07 Resin molded article and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004269645A true JP2004269645A (en) 2004-09-30

Family

ID=33123334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061006A Pending JP2004269645A (en) 2003-03-07 2003-03-07 Resin molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004269645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256454A (en) * 2004-03-12 2005-09-22 Shin Dick Kako Kk Resin-made sink
WO2008069239A1 (en) * 2006-12-05 2008-06-12 Toto Ltd. Resin molded product with high level of surface design and article having the resin molded product on its surface
JP2008207403A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Manufacturing method of thermosetting resin molding
JP2012153768A (en) * 2011-01-24 2012-08-16 Panasonic Corp Method for manufacturing thermosetting resin molded product
WO2015072216A1 (en) * 2013-11-18 2015-05-21 東レ株式会社 Thermoplastic polyester resin composition and molded article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256454A (en) * 2004-03-12 2005-09-22 Shin Dick Kako Kk Resin-made sink
WO2008069239A1 (en) * 2006-12-05 2008-06-12 Toto Ltd. Resin molded product with high level of surface design and article having the resin molded product on its surface
JP2008207403A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Manufacturing method of thermosetting resin molding
JP2012153768A (en) * 2011-01-24 2012-08-16 Panasonic Corp Method for manufacturing thermosetting resin molded product
WO2015072216A1 (en) * 2013-11-18 2015-05-21 東レ株式会社 Thermoplastic polyester resin composition and molded article
CN105793354A (en) * 2013-11-18 2016-07-20 东丽株式会社 Thermoplastic polyester resin composition and molded article
CN105793354B (en) * 2013-11-18 2018-05-29 东丽株式会社 Thermoplastic polyester resin composition and molded product
US11319436B2 (en) 2013-11-18 2022-05-03 Toray Industries, Inc. Thermoplastic polyester resin composition and molded article

Similar Documents

Publication Publication Date Title
CN103709608B (en) A kind of Electric-insulation epoxy resin castable for outdoor mutual inductor
CN1234745C (en) Unsaturated polyester resin composition
CN101970220B (en) Method for producing molded body or wafer lens
JP5077894B2 (en) Epoxy / silicone hybrid resin composition for optical semiconductor element sealing and transfer molding tablet comprising the same
KR102170818B1 (en) Sisesquioxane which can be molded by hot melt-extrusion, highly transparent and highly heat resistant plastic transparent substrate, and method for manufacturing thereof
CN102159372A (en) Method for manufacturing wafer lens
CN101970198B (en) Method for producing wafer lens
TWI644981B (en) Curable resin composition and cured product thereof, and semiconductor device using the same
JPH06337408A (en) Transparent resin substrate for liquid crystal display element
CN106496938A (en) A kind of product is repaired and uses casting type composition epoxy resin
TW200911925A (en) Thermosetting resin composition and optical member using cured product of the thermosetting resin composition
JP2004269645A (en) Resin molded article and method for producing the same
CN108239258B (en) Modified epoxy resin, preparation method thereof and LED lamp bead packaging material
JP2006206862A (en) Epoxy resin composition for molding, molded cured product and manufacturing method of molded cured product
JP2018111750A (en) Thermosetting epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor deice using the same
JP5640319B2 (en) Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device
KR101736165B1 (en) Coating composition having excellent chemical resistance comprising organosilicon compounds and epoxy resin and method for producing the same
JP2000204137A (en) Resin molded product, resin molded article and their production
CN109096956A (en) Addition-type silicon rubber single-coating-type Heat vulcanization adhesive
JP2003266434A (en) Manufacturing method for resin molded body and manufacturing method for bulk mold compound for preparing resin molded body
KR20100050698A (en) An artificial marble chip with high transparency and high specific gravity and a method of the same
TW201707925A (en) Coating product and hard coating method having high hardness
JPH10279780A (en) Molded resin article and its production
KR0163946B1 (en) Process for preparing unsaturated polyester resin for high transparent onyx marble and onyx bmc
JP4161534B2 (en) Organic-inorganic composite transparent homogeneous material and its production method