JP2004269350A - Yttrium oxide (y2o3) sintered compact and method of manufacturing the same - Google Patents

Yttrium oxide (y2o3) sintered compact and method of manufacturing the same Download PDF

Info

Publication number
JP2004269350A
JP2004269350A JP2004036986A JP2004036986A JP2004269350A JP 2004269350 A JP2004269350 A JP 2004269350A JP 2004036986 A JP2004036986 A JP 2004036986A JP 2004036986 A JP2004036986 A JP 2004036986A JP 2004269350 A JP2004269350 A JP 2004269350A
Authority
JP
Japan
Prior art keywords
sintered body
raw material
sintered compact
manufacturing
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004036986A
Other languages
Japanese (ja)
Other versions
JP2004269350A5 (en
Inventor
Keiichiro Isomura
敬一郎 磯村
Takayuki Ikeda
隆之 池田
Masataka Murata
征隆 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004036986A priority Critical patent/JP2004269350A/en
Publication of JP2004269350A publication Critical patent/JP2004269350A/en
Publication of JP2004269350A5 publication Critical patent/JP2004269350A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dense translucent Y<SB>2</SB>O<SB>3</SB>sintered compact with a simple operation without necessitating a specific sintering vessel or a Y<SB>2</SB>O<SB>3</SB>packing powder. <P>SOLUTION: The Y<SB>2</SB>O<SB>3</SB>sintered compact is manufactured by a process for forming a Y<SB>2</SB>O<SB>3</SB>raw material having ≥99 wt.% purity and ≤2 μm average particle diameter and a process for sintering the resultant formed body at 1,710-1,850°C under a hydrogen atmosphere to form Y<SB>2</SB>O<SB>3</SB>crystal having 10-800 μm average crystal grain diameter. In this manner, the high purity, dense and excellent mechanical strength sintered compact suitable for a semiconductor treatment apparatus, particularly a treatment apparatus using plasma is provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、耐プラズマ部材用Y焼結体及びその製造方法に関する。 The present invention relates to a Y 2 O 3 sintered body for a plasma-resistant member and a method for producing the same.

はその優れた耐プラズマ性から半導体装置用部材への適用が期待されている。
従来Y焼結体は大気中において焼成するいわゆる大気焼成によって製造されている。しかしながら、この大気焼成においては、Y成形体を大気に直接暴露して焼成すると、黄色に着色してしまうため、無着色の焼結体を製造するためには、焼成時に高純度アルミナやY焼結体などY成形体を汚染しない焼結体容器で成形体を密封し、かつYの詰め粉を充填する必要がある。従って、焼成スペースにとって焼結体容器の寸法が制約となって、製造設備の容積効率が低い上に、量産化にとって不都合であった。
Y 2 O 3 is expected to be applied to semiconductor device members because of its excellent plasma resistance.
Conventionally, a Y 2 O 3 sintered body has been manufactured by so-called atmospheric firing, which is fired in the atmosphere. However, in this air firing, if the Y 2 O 3 molded body is directly exposed to the air and fired, it is colored yellow. Therefore, in order to produce an uncolored sintered body, high-purity alumina is required at the time of firing. and Y 2 O 3 sintered body including Y 2 O 3 the molded body was sealed with a sintered body container does not contaminate the molded body, and it is necessary to fill the packed powder Y 2 O 3. Therefore, the size of the sintered body container is limited in the firing space, which results in low volumetric efficiency of the manufacturing equipment and is inconvenient for mass production.

また、Y成形体の大気焼成では、Y焼結体を製造するのに適した耐火物の耐熱性の制約から、焼成温度が最大1700℃であり、この焼成温度範囲では、得られるY焼結体の平均結晶粒径は5〜20μmの範囲のものしか得られなかった。また、焼結体の色調も白色で、透光性は有していないものであった。このようなY焼結体は、材料自体は耐プラズマ性に優れているものの、プラズマ処理装置において用いられる部材として、透光性を必要とする要求には応じられない状況であった。
また、Y成形体を各種雰囲気下で焼成することによってY焼結体を製造することが知られている(特許文献1参照)。しかしながら、この技術では、緻密な焼結体を得ることは困難であり、かつ透光性に優れた焼結体を実現することはできなかった。
Further, in the air firing of the Y 2 O 3 molded body, the firing temperature is 1700 ° C. at the maximum due to the restriction of the heat resistance of the refractory suitable for producing the Y 2 O 3 sintered body. The average crystal grain size of the obtained Y 2 O 3 sintered body was only in the range of 5 to 20 μm. Further, the color tone of the sintered body was white, and did not have translucency. Although such a Y 2 O 3 sintered body has excellent plasma resistance as a material itself, it has not been able to meet the demand for light transmissivity as a member used in a plasma processing apparatus. .
It is also known that a Y 2 O 3 sintered body is manufactured by firing a Y 2 O 3 molded body under various atmospheres (see Patent Document 1). However, with this technique, it is difficult to obtain a dense sintered body, and a sintered body excellent in light transmission cannot be realized.

特開2002−68838号公報JP-A-2002-68838

本発明はY焼結体における従来の上記問題を解消するためになされたものであり、緻密でかつ透光性のあるY焼結体を実現することを目的とするものである。また、本発明の製造方法は、特別な焼成容器やY詰め粉を必要とせず、簡便な操作で緻密で透光性のあるY焼結体を製造する方法を実現するものである。 The present invention has been made to solve the above-mentioned conventional problem in Y 2 O 3 sintered body, which aims to achieve a dense and light-transparent Y 2 O 3 sintered body It is. Further, the production method of the present invention does not require a special firing container or Y 2 O 3 filling powder, and realizes a method of producing a dense and translucent Y 2 O 3 sintered body by a simple operation. Things.

本発明者らは、特別な焼成容器やY詰め粉を必要とせず、大気焼成よりも高温焼成することで結晶粒径を肥大化させ、透光性を発現させることができることを見いだして、本発明に至ったものである。 The present inventors have found that the sintering at a higher temperature than the sintering in the air does not require a special sintering container or a Y 2 O 3 filling powder, so that the crystal grain size can be enlarged and the translucency can be exhibited. Thus, the present invention has been accomplished.

第1の本発明は、純度が99重量%以上で平均粒径2μm以下のY原料を用いた成形物を水素雰囲気中で1710〜1850℃で焼成し、平均結晶粒径が10〜800μmのY結晶を形成させたことを特徴とするY焼結体である。 According to the first aspect of the present invention, a molded product using a Y 2 O 3 raw material having a purity of 99% by weight or more and an average particle size of 2 μm or less is fired in a hydrogen atmosphere at 1710 to 1850 ° C. a Y 2 O 3 sintered body, characterized in that to form a Y 2 O 3 crystals of 800 [mu] m.

前記第1の本発明において、前記Y焼結体の平均結晶粒径が50〜500μmであることが好ましい。このような焼結体とすることにより、従来実現が困難であった透光性を有するY焼結体を実現することができた。 In the first aspect of the present invention, the Y 2 O 3 sintered body preferably has an average crystal grain size of 50 to 500 μm. By using such a sintered body, a Y 2 O 3 sintered body having a light-transmitting property, which was difficult to realize conventionally, could be realized.

第2の本発明は、純度が99重量%以上で平均粒径が2μm以下のY原料を成形する工程と、
得られた成形体を、水素雰囲気中で1710〜1850℃で焼成し、平均結晶粒径が10〜800μmのY結晶を形成させる工程を少なくとも備えたことを特徴とするY焼結体の製造方法である。
このような本発明の製造方法によって透光性を有し、緻密なY結晶を有する焼結体を実現することができた。
The second present invention comprises a step of forming a Y 2 O 3 raw material having a purity of 99% by weight or more and an average particle size of 2 μm or less;
The obtained compact was fired at 1,710-1,850 ° C. in a hydrogen atmosphere, the average crystal grain size is characterized in that it comprises at least the step of forming the Y 2 O 3 crystals of 10 to 800 m Y 2 O 3 This is a method for manufacturing a sintered body.
By such a manufacturing method of the present invention, a sintered body having translucency and having dense Y 2 O 3 crystals could be realized.

また、前記第2の本発明において、Y原料を用いた成形方法として、鋳込み成形を採用することが好ましい。これによってより、密度の高い焼結体を得ることができる。 In the second aspect of the present invention, it is preferable to adopt a casting method as a forming method using a Y 2 O 3 raw material. Thereby, a sintered body having a higher density can be obtained.

本発明のY焼結体の発明によれば、緻密で、透光性があり、プラズマ処理装置の窓枠のような半導体処理装置の部材に適した焼結体を実現することができる。
また、本発明のY焼結体の製造方法の発明によれば、簡便な装置及び工程で、緻密で透光性のあるY焼結体を製造することができる。
ADVANTAGE OF THE INVENTION According to the invention of the Y 2 O 3 sintered body of the present invention, it is possible to realize a sintered body which is dense, has a light transmitting property and is suitable for a member of a semiconductor processing apparatus such as a window frame of a plasma processing apparatus. it can.
Further, according to the invention of the method for producing a Y 2 O 3 sintered body of the present invention, a dense and translucent Y 2 O 3 sintered body can be produced with a simple apparatus and process.

[焼結体]
本発明の焼結体は、純度が99重量%以上で平均粒径2μm以下のY原料を用いた成形物を水素雰囲気中で1710〜1850℃で焼成し、Y焼結体中に平均結晶粒径が10〜800μmのY結晶を形成させたものである。この焼結体は、高純度で、緻密であり、かつ曲げ強度も高いので、半導体処理装置、特にプラズマ処理を行うための装置の部材として優れている。
[Sintered body]
Sintered body of the present invention, the purity is calcined at 1,710 to 1,850 ° C. The molded product with an average particle size 2μm or less of Y 2 O 3 raw material in 99 wt% or more in a hydrogen atmosphere, Y 2 O 3 sintered the average grain size in the body is obtained by forming the Y 2 O 3 crystals of 10 to 800 m. Since this sintered body is high-purity, dense, and has high bending strength, it is excellent as a member of a semiconductor processing apparatus, particularly an apparatus for performing plasma processing.

また、このY焼結体において、平均結晶粒径が50〜500μmの範囲にあるものはさらに緻密で透光性に優れている。従って、このような材料は、前述のプラズマ処理装置において、従来実現が困難であった耐プラズマ性を有しながら、透明な材料を実現することができるので、例えば、プラズマ処理装置の窓材に適している。 Further, in this Y 2 O 3 sintered body, those having an average crystal grain size in the range of 50 to 500 μm are more dense and excellent in light transmission. Therefore, such a material can realize a transparent material in the above-described plasma processing apparatus while having plasma resistance, which has been difficult to realize conventionally. Are suitable.

[製造方法]
本発明の製造方法は、原料粉末を準備する原料調製工程、ついで原料粉末を成形する成形工程、さらにこれを水素雰囲気中で焼結する焼成工程を少なくとも有するものである。以下本実施の形態の製造方法を詳細に説明する。
[Production method]
The production method of the present invention includes at least a raw material preparation step of preparing a raw material powder, a molding step of molding the raw material powder, and a firing step of sintering the raw material powder in a hydrogen atmosphere. Hereinafter, the manufacturing method of the present embodiment will be described in detail.

本実施の形態の第1の工程である原料調製工程について説明する。
まず、原料を準備する。原料となるYは、99%以上の純度を有するものが好ましい。この純度が99%を下回ると、この原料を使用した部材を半導体装置に用いた場合に、不純物成分が半導体ウェハ表面に異物として付着してしまったり、半導体ウェハに金属などの不純物汚染を引き起こすおそれがあり、好ましくない。
また、このY原料粉末の粒度は、2μm以下であることが好ましい。Y原料粉末の粒度が、2μmを超えると、曲げ強度が50MPa未満となるため好ましくない。一方、原料粉末は、過度に微細化すると取り扱いが困難になるが、焼結体密度が向上し好ましい。
The raw material preparation step, which is the first step of the present embodiment, will be described.
First, prepare the raw materials. Y 2 O 3 as a raw material preferably has a purity of 99% or more. If the purity is lower than 99%, when a member using the raw material is used in a semiconductor device, an impurity component may adhere to the surface of the semiconductor wafer as a foreign substance, or may cause impurity contamination such as metal on the semiconductor wafer. Is not preferred.
The particle size of the Y 2 O 3 raw material powder is preferably 2 μm or less. If the particle size of the Y 2 O 3 raw material powder exceeds 2 μm, the bending strength is less than 50 MPa, which is not preferable. On the other hand, when the raw material powder is excessively fine, it becomes difficult to handle the raw material powder.

次に、第2の工程である成形工程について説明する。この工程では、前行程で準備された原料となるYの粉末を、乾式もしくは湿式によって所望の形状に成形する工程である。 Next, the molding step, which is the second step, will be described. In this step, the Y 2 O 3 powder as a raw material prepared in the previous step is formed into a desired shape by a dry or wet method.

乾式成形工程としては、乾式加圧成形として、従来公知の一軸加圧成型あるいは静水圧成型などの方法を採用することができる。
乾式成形は、例えば次にようにして行うことができる。まず、原料となるYの粉末に、PVAのようなバインダー、及び純水を添加し、公知の混合装置を用いて攪拌混合し、得られたスラリーをスプレードライヤーで乾燥し造粒する。得られた原料混合粒子は、型に充填し、一軸加圧成形機あるいは静水圧加圧成形機(CIP)を用いて加圧成形する。この際、バインダーの添加量は、原料粉末の粒径にも依存するが、0.5〜3重量%の範囲が適切である。また、スプレードライヤーで造粒する粒子のサイズは、10〜200μm程度とすることが好ましい。
上記方法において、原料粒子の粒径が1μmに近い場合には造粒せずに、そのままバインダーを添加して、加圧成形することもできる。
As the dry molding step, a conventionally known method such as uniaxial pressure molding or hydrostatic molding can be adopted as dry pressure molding.
Dry molding can be performed, for example, as follows. First, a binder such as PVA and pure water are added to Y 2 O 3 powder as a raw material, and the mixture is stirred and mixed using a known mixing apparatus, and the obtained slurry is dried and granulated by a spray drier. . The obtained raw material mixed particles are filled in a mold and subjected to pressure molding using a uniaxial pressure molding machine or a hydrostatic pressure molding machine (CIP). At this time, the amount of the binder to be added depends on the particle size of the raw material powder, but is preferably in the range of 0.5 to 3% by weight. The size of the particles to be granulated by the spray dryer is preferably about 10 to 200 μm.
In the above method, when the particle diameter of the raw material particles is close to 1 μm, it is also possible to press-mold without adding granules without adding granules.

また、湿式成形工程としては、従来公知の押し出し成形、湿式加圧成形、鋳込み成形などの方法を採用することができる。これらのうちで、ニアネットシェープ品が得られることによりその後の切削加工などの工程が不要になり、製造工程が簡便で、複雑形状の成形体を成形することができ、また、緻密な成形体が得られる点で鋳込み成形法が好ましい。
このような鋳込み成形は、次のようにして行うことができる。まず、原料となるYの粉末に分散剤、可塑剤、ゲル化剤などの添加剤、及び水を添加し、攪拌混合する。得られたスラリーを石膏型、樹脂型、セラミックス型などの型に流しこみ、あるいは加圧して流し込み、型中で乾燥させて成形することができる。
Further, as the wet molding step, a conventionally known method such as extrusion molding, wet pressure molding, cast molding and the like can be adopted. Of these, a near net shape product is obtained, so that subsequent steps such as cutting are not required, the manufacturing process is simple, a molded product having a complicated shape can be formed, and a dense molded product can be formed. The casting method is preferred from the viewpoint of obtaining the following.
Such a casting can be performed as follows. First, additives such as a dispersant, a plasticizer, and a gelling agent, and water are added to Y 2 O 3 powder as a raw material, and the mixture is stirred and mixed. The obtained slurry can be cast into a mold such as a gypsum mold, a resin mold, or a ceramic mold, or can be poured under pressure, and dried in the mold to be molded.

第3の工程は脱脂及び焼成工程である。脱脂は、前工程までで、有機添加剤を加えていない場合には省略することも可能であるが、バインダーなどの有機物を使用している場合には、成形体を加熱して有機物を分解あるいは揮散除去する。この際の温度は、500〜900℃程度の温度で十分である。   The third step is a degreasing and firing step. Degreasing can be omitted if no organic additive is added up to the previous step, but if an organic substance such as a binder is used, the molded body is heated to decompose or decompose the organic substance. Volatilize and remove. In this case, a temperature of about 500 to 900 ° C. is sufficient.

ついで、Y原料粉末を用いて成形した成形体を水素雰囲気中で焼成する。
この工程で用いる水素雰囲気は、純水素雰囲気でもよいが、アルゴンガスなど、Yと非反応性の不活性ガスが混合されていても差し支えない。ただし、経済性を考慮すれば、アルゴンガス等を添加しない市販されている水素ガスがもっとも好ましい。水素雰囲気ガスは、焼成炉内を流通させてもよいし、滞留していてもよい。
Next, the compact formed using the Y 2 O 3 raw material powder is fired in a hydrogen atmosphere.
The hydrogen atmosphere used in this step may be a pure hydrogen atmosphere, but an inert gas that is non-reactive with Y 2 O 3 such as an argon gas may be mixed. However, in consideration of economy, a commercially available hydrogen gas to which no argon gas or the like is added is most preferable. The hydrogen atmosphere gas may be circulated in the firing furnace or may be retained.

本発明において、水素ガスを雰囲気ガスとして用いることにより、被焼成物を詰め粉や治具で被覆することなく加熱しても着色せず、透明な焼結体が得られる。また、水素雰囲気中での加熱によって、成形体表面に存在する金属不純物等が減少し半導体処理装置に適した材料を得ることができる。さらに、焼成炉材料として、Mo台板や、タングステンヒータを用いることができ、これによって焼成炉内材料による加熱温度の制約を受けることなく、1700℃以上の高温で加熱焼成することができ、焼結体の緻密度を向上させることができる。   In the present invention, by using hydrogen gas as the atmospheric gas, a transparent sintered body can be obtained that is not colored even when heated without being covered with a filling powder or a jig, without heating the object to be fired. In addition, by heating in a hydrogen atmosphere, metal impurities and the like existing on the surface of the compact are reduced, and a material suitable for a semiconductor processing apparatus can be obtained. Further, as a firing furnace material, a Mo base plate or a tungsten heater can be used, whereby the heating and firing can be performed at a high temperature of 1700 ° C. or more without being restricted by the heating temperature due to the material in the firing furnace. The compactness of the aggregate can be improved.

本工程の焼成温度は、前述したとおり、1710〜1850℃の範囲が好ましい。焼成温度が、1700℃以下では曲げ強度が50MPa未満と不十分である。一方、焼成温度を1850℃を超える値とするためには、焼成炉の部材をより耐熱性の優れたものを採用する必要があるが、得られるY焼結体は、それに見合った特性改善を期待することができず、経済的でない。 As described above, the firing temperature in this step is preferably in the range of 1710 to 1850 ° C. If the firing temperature is 1700 ° C. or lower, the bending strength is insufficient, less than 50 MPa. On the other hand, in order to set the firing temperature to a value exceeding 1850 ° C., it is necessary to employ a firing furnace member having more excellent heat resistance, but the obtained Y 2 O 3 sintered body is suitable for it. No improvement in characteristics can be expected and it is not economical.

前記焼成温度は、1710〜1850℃の範囲で任意に選択できるが、焼成温度が、1710〜1780℃までは、得られるY焼結体の平均結晶粒径30μm未満で透光性が乏しい。焼成温度が、1780℃を超えると平均結晶粒径が30μm以上となり透光性が発現され、焼成温度が高いほど平均結晶粒径が大きくなり透光性も高くなる。しかしながら、焼結体の機械的強度は焼成温度が高いほど低下し、半導体用部材として必要な曲げ強度50MPa以上を達成するためには、平均結晶粒径が400μmで、焼成温度は1850℃以下の条件となる。従って、Yの焼成温度は、1710〜1850℃が好ましい。 The firing temperature can be arbitrarily selected in the range of 1710 to 1850 ° C., but the firing temperature is up to 1710 to 1780 ° C., and the obtained Y 2 O 3 sintered body has an average crystal grain size of less than 30 μm and a light transmitting property. poor. When the firing temperature exceeds 1780 ° C., the average crystal grain size becomes 30 μm or more, exhibiting light transmission. As the firing temperature increases, the average crystal grain size increases and the light transmission increases. However, the mechanical strength of the sintered body decreases as the firing temperature increases, and in order to achieve a bending strength of 50 MPa or more required for a semiconductor member, the average crystal grain size is 400 μm and the firing temperature is 1850 ° C. or lower. Condition. Therefore, the firing temperature of Y 2 O 3 is preferably 1710 to 1850 ° C.

(実施例1〜5、比較例1)
平均粒径1μm、純度99.9%のY原料粉末100重量部に対して、バインダーとしてPVAを2重量部添加し、適量の水を添加して湿式で混合しスラリーを形成した。ついで、このスラリーを、石膏型に流し込み、型中で乾燥して、200×200×10mmの板状体を成形した。この成形体を、900℃に加熱して脱脂した後、1m/hrの流量のH雰囲気で、1700℃、1720℃、1750℃、1780℃、1800℃、及び1850℃で6時間焼成し、焼結体を作成した。得られた6種の成形体の平均結晶粒径、曲げ強度、透光性、及び密度を評価した。なお、透光性の有無は、厚さ10mmの試料について、可視光の透過率が10%を超えるものを透過性ありとした。
その結果を表1に示す。
(Examples 1 to 5, Comparative Example 1)
To 100 parts by weight of Y 2 O 3 raw material powder having an average particle diameter of 1 μm and a purity of 99.9%, 2 parts by weight of PVA was added as a binder, an appropriate amount of water was added, and the mixture was wet-mixed to form a slurry. Then, the slurry was poured into a gypsum mold and dried in the mold to form a plate having a size of 200 × 200 × 10 mm. The molded body is heated to 900 ° C. and degreased, and then fired at 1700 ° C., 1720 ° C., 1750 ° C., 1780 ° C., 1800 ° C., and 1850 ° C. for 6 hours in an H 2 atmosphere at a flow rate of 1 m 3 / hr. Then, a sintered body was prepared. The average crystal grain size, bending strength, translucency, and density of the obtained six types of molded bodies were evaluated. In addition, as for the presence or absence of light-transmitting property, a sample having a thickness of 10 mm and having a visible light transmittance of more than 10% was regarded as transmissive.
Table 1 shows the results.

Figure 2004269350
Figure 2004269350

上記表1の結果から明らかなように、従来一般にYの焼結方法として行われている大気中1700℃近辺の焼成条件によって得られる焼結体は、Yの理論密度5.02よりかなり低いものしか得られなかった。一方、本発明の焼結体は、密度が4.99以上と、理論密度にかなり近い値のものが得られた。 As apparent from the results shown in Tables 1, obtained by a conventional generally Y 2 O 3 of firing conditions performed by being around 1700 ° C. in air as a sintering method sintered body theoretical density 5 of Y 2 O 3 Only much lower than 0.02 was obtained. On the other hand, the sintered body of the present invention had a density of 4.99 or more, a value considerably close to the theoretical density.

(実施例6、実施例7)
成型法の差異によって生ずる焼結体の特性を比較するために、樹脂型を用いた加圧鋳込み成形(実施例6)、及びCIP成形(実施例7)によって、作成した成形体を水素雰囲気中で焼成した例を示す。まず、樹脂型を用いた加圧鋳込み成形である実施例6の方法は、前記実施例1と同様にして、スラリーを作成した後、これを合成樹脂で形成した型中に充填し、圧力1kgf/cmで加圧して、200×200×10mmの板状体を成形した。これを乾燥後、実施例1と同様にして脱脂し、1780℃で焼成した。また、CIP成形による実施例7の方法は、スプレードライヤーで造粒した造粒粉を用い、冷間静水圧プレス(CIP)で、100MPaの圧力で、200×200×10mmの板状体を成形した。これを実施例1と同様にして脱脂し、水素雰囲気下で1780℃で6時間焼成した。
これらの試料の密度を測定したところ、鋳込み成形によって作成した実施例6の試料は、密度が4.99g/cm以上であり透光性があったのに対して、CIP成形によって作成した実施例7の試料は、密度が、4.98g/cmであり透光性がなかった。
(Examples 6 and 7)
In order to compare the characteristics of the sintered body caused by the difference in the molding method, the molded body produced by pressure casting using a resin mold (Example 6) and CIP molding (Example 7) was placed in a hydrogen atmosphere. An example of baking is shown. First, in the method of Example 6, which is pressure casting using a resin mold, a slurry is prepared in the same manner as in Example 1, and then this is filled into a mold formed of a synthetic resin, and the pressure is 1 kgf. / Cm 2 to form a 200 × 200 × 10 mm plate. This was dried, degreased in the same manner as in Example 1, and fired at 1780 ° C. In the method of Example 7 by CIP molding, a 200 × 200 × 10 mm plate was formed at a pressure of 100 MPa by a cold isostatic press (CIP) using granulated powder granulated by a spray dryer. did. This was degreased in the same manner as in Example 1, and baked at 1780 ° C. for 6 hours in a hydrogen atmosphere.
When the densities of these samples were measured, the sample of Example 6 prepared by casting was found to have a density of 4.99 g / cm 3 or more and had translucency. The sample of Example 7 had a density of 4.98 g / cm 3 and was not translucent.

Claims (5)

純度が99重量%以上で平均粒径2μm以下のY原料を用いた成形物を水素雰囲気中で1710〜1850℃で焼成し、Y焼結体中に平均結晶粒径が10〜800μmのY結晶を形成させたことを特徴とするY焼結体。 A molded product using a Y 2 O 3 raw material having a purity of 99% by weight or more and an average particle size of 2 μm or less is fired in a hydrogen atmosphere at 1710 to 1850 ° C., and the Y 2 O 3 sintered body has an average crystal particle size. Y 2 O 3 sintered body, characterized in that to form a Y 2 O 3 crystals of 10 to 800 m. 前記Y焼結体の平均結晶粒径が50〜500μmであることを特徴とする請求項1記載のY焼結体。 Y 2 O 3 sintered body of claim 1, wherein the average crystal grain size of the Y 2 O 3 sintered body is 50 to 500 [mu] m. 前記Y焼結体が透光性を有するものであることを特徴とする請求項2記載のY焼結体。 Y 2 O 3 sintered body of claim 2, wherein said Y 2 O 3 sintered body has a light-transmitting property. 純度が99重量%以上で平均粒径が2μm以下のY原料を成形する工程と、
得られた成形体を、水素雰囲気中で1710〜1850℃で焼成し、平均結晶粒径が10〜800μmのY結晶を形成させる工程を少なくとも備えたことを特徴とするY焼結体の製造方法。
Forming a Y 2 O 3 raw material having a purity of 99% by weight or more and an average particle size of 2 μm or less;
The obtained compact was fired at 1,710-1,850 ° C. in a hydrogen atmosphere, the average crystal grain size is characterized in that it comprises at least the step of forming the Y 2 O 3 crystals of 10 to 800 m Y 2 O 3 A method for manufacturing a sintered body.
前記Y原料を成形する工程が、鋳込み成形による成形工程であることを特徴とする請求項4記載のY焼結体の製造方法。

The Y 2 O 3 process of molding the raw material, manufacturing method of claim 4 Y 2 O 3 sintered body wherein it is a molding process by casting.

JP2004036986A 2003-02-17 2004-02-13 Yttrium oxide (y2o3) sintered compact and method of manufacturing the same Pending JP2004269350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036986A JP2004269350A (en) 2003-02-17 2004-02-13 Yttrium oxide (y2o3) sintered compact and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003037836 2003-02-17
JP2004036986A JP2004269350A (en) 2003-02-17 2004-02-13 Yttrium oxide (y2o3) sintered compact and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004269350A true JP2004269350A (en) 2004-09-30
JP2004269350A5 JP2004269350A5 (en) 2005-11-04

Family

ID=33134018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036986A Pending JP2004269350A (en) 2003-02-17 2004-02-13 Yttrium oxide (y2o3) sintered compact and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004269350A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021990A (en) * 2004-06-07 2006-01-26 Toshiba Ceramics Co Ltd Yttria ceramic component for use in plasma treatment device and its manufacturing method
EP1921053A1 (en) * 2006-10-30 2008-05-14 Applied Materials, Inc. Method for preparing yttria parts and plasma reactor parts comprising yttria
JP2008174801A (en) * 2007-01-19 2008-07-31 Covalent Materials Corp Member for plasma processor
JP2008260651A (en) * 2007-04-11 2008-10-30 Nitsukatoo:Kk Y2o3-based sintered compact
WO2009133638A1 (en) * 2008-04-28 2009-11-05 株式会社フェローテックセラミックス Yttria sinter and member for plasma processor
KR100998258B1 (en) * 2009-09-29 2010-12-03 (주)에스에이치이씨 Yttria ceramics and manufacture method thereof
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
JP2012214319A (en) * 2011-03-31 2012-11-08 Covalent Materials Corp Translucent ceramic and method for producing the same
KR101338090B1 (en) 2012-07-27 2014-01-20 경상대학교산학협력단 Full density yttria ceramic sintered by using for conventional sintering method with fused yttria as starting materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021990A (en) * 2004-06-07 2006-01-26 Toshiba Ceramics Co Ltd Yttria ceramic component for use in plasma treatment device and its manufacturing method
US7964818B2 (en) 2006-10-30 2011-06-21 Applied Materials, Inc. Method and apparatus for photomask etching
KR100958757B1 (en) * 2006-10-30 2010-05-18 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for fabricating plasma reactor parts
US7919722B2 (en) 2006-10-30 2011-04-05 Applied Materials, Inc. Method for fabricating plasma reactor parts
EP1921053A1 (en) * 2006-10-30 2008-05-14 Applied Materials, Inc. Method for preparing yttria parts and plasma reactor parts comprising yttria
KR101341035B1 (en) * 2006-10-30 2013-12-12 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for fabricating plasma reactor parts
JP2008174801A (en) * 2007-01-19 2008-07-31 Covalent Materials Corp Member for plasma processor
JP2008260651A (en) * 2007-04-11 2008-10-30 Nitsukatoo:Kk Y2o3-based sintered compact
WO2009133638A1 (en) * 2008-04-28 2009-11-05 株式会社フェローテックセラミックス Yttria sinter and member for plasma processor
JP2009263187A (en) * 2008-04-28 2009-11-12 Ferrotec Ceramics Corp Yttria sintered compact and member for plasma processing device
US8158544B2 (en) 2008-04-28 2012-04-17 Ferrotec Ceramics Corporation Yttria sintered body and component used for plasma processing apparatus
KR100998258B1 (en) * 2009-09-29 2010-12-03 (주)에스에이치이씨 Yttria ceramics and manufacture method thereof
JP2012214319A (en) * 2011-03-31 2012-11-08 Covalent Materials Corp Translucent ceramic and method for producing the same
KR101338090B1 (en) 2012-07-27 2014-01-20 경상대학교산학협력단 Full density yttria ceramic sintered by using for conventional sintering method with fused yttria as starting materials

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
JP2015199657A (en) Method for producing silicon nitride substrate
KR100599998B1 (en) Y2O3 sinter and manufacturing method thereof
JP2004269350A (en) Yttrium oxide (y2o3) sintered compact and method of manufacturing the same
JPH06211573A (en) Production of transparent y2o3 sintered compact
JPH10273364A (en) Production of transparent yttrium oxide sintered body
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2005170703A (en) Method of manufacturing translucent ceramic and translucent ceramic
Chen et al. Preparation of γ-AlON transparent ceramics by pressureless sintering
CN108424133A (en) A kind of cordierite/aluminium nitride Electronic Packaging ceramic substrate and preparation method
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JPS6374978A (en) Ceramic composite body
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JP2508511B2 (en) Alumina composite
JP2003095731A (en) Method of producing alumina sintered compact
JP4666640B2 (en) Translucent magnesium oxide sintered body and method for producing the same
JP5426224B2 (en) Ceramic sintered body with excellent dimensional accuracy and manufacturing method thereof
JPH06157152A (en) Fiber reinforced composite gradient material and it production
KR19990065774A (en) How to make pottery using eggshells, shellfish or marble
JPH046161A (en) Production of aln sintered body
JP2005225744A (en) Method for manufacturing silicon nitride sintered compact
JP4452810B2 (en) Manufacturing method of transparent magnesia sintered body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222