JP2004264901A - Successively patterned body, its manufacturing method, and cable - Google Patents

Successively patterned body, its manufacturing method, and cable Download PDF

Info

Publication number
JP2004264901A
JP2004264901A JP2003033733A JP2003033733A JP2004264901A JP 2004264901 A JP2004264901 A JP 2004264901A JP 2003033733 A JP2003033733 A JP 2003033733A JP 2003033733 A JP2003033733 A JP 2003033733A JP 2004264901 A JP2004264901 A JP 2004264901A
Authority
JP
Japan
Prior art keywords
cable
holding member
rfid
longitudinal direction
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033733A
Other languages
Japanese (ja)
Inventor
Masashi Hara
昌志 原
Kazunaga Kobayashi
和永 小林
Satoru Shiobara
悟 塩原
Takeshi Osato
健 大里
Osamu Koyasu
修 子安
Yukiaki Tanaka
志明 田中
Takeshi Honjo
武史 本庄
Keiji Ohashi
圭二 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003033733A priority Critical patent/JP2004264901A/en
Priority to PCT/JP2004/001421 priority patent/WO2004073130A1/en
Priority to TW093103208A priority patent/TW200425172A/en
Publication of JP2004264901A publication Critical patent/JP2004264901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/56Processes for repairing optical cables
    • G02B6/562Processes for repairing optical cables locatable, e.g. using magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a successively patterned body for cable which stores a large amount of information on the cable more than before, and has a little possibility that the stored information becomes unrecognizable when long hours have passed after the installation. <P>SOLUTION: The successively patterned body 1 is constituted such that it has a holding member 3 which is composed of a resin or a heat shrinkable member and is extended lengthwise, and a plurality of RFID (radio frequency identification) elements 5 which are wrapped around in and provided inside the holding member 3, the respective RFID elements 5 are disposed at intervals in the longitudinal direction of the holding member 3, and the inner diameter of the holding member 3 of a spot where the RFID element 5 is provided is larger than the inner diameter of the holding member 3 of a spot where the RFID element 5 is not provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数のRFID(Radio Frequency Identification)素子を、長く延びた部材の長手方向に、間隔をあけて設けて構成された連長体、その製造方法及び上記連長体が設けられたケーブルに係り、特に、上記長く延びた部材の内径を長手方向で変えて、上記各RFID素子を保持しているものに関する。
【0002】
【従来の技術】
従来、たとえば、敷設されている多数のメタルケーブルや光ファイバケーブルの中から、目的とするケーブルのみを識別する方法として、上記各ケーブルの外皮(シース)表面に印字を施し、または上記各ケーブルにタグを取り付け、ケーブルを識別する方法が知られている。
【0003】
ここで、上記印字は、製造者名、製造年月日、ケーブルの品名、ケーブルの長さ等の情報を、インクや熱転写レーザ等で、上記ケーブルの外皮表面に施すことによって行われている。また、上記タグには、上記印字されているものとほぼ同様な情報が、たとえば刻印されている。そして、上記タグは上記ケーブルの外皮に貼り付けられ、または上記ケーブルにたとえば金属線を用いて吊り下げられている。
【0004】
ところで、ケーブル表面に印字をする場合、上記ケーブルの長手方向に沿って印字がされるため、文字数が多くなると、敷設されているケーブルを長い区間にわたって露出させる必要がある。しかし、上記ケーブルが、たとえば、トラフ内に敷設され、このトラフに蓋がされていると、上記蓋を長い区間にわたって取り外す必要があり、さらに上記トラフが土砂の中に埋設されている場合、上記土砂を長い区間にわたって取り除く必要があり、上記ケーブルを露出させるために多大な工数が必要になる。
【0005】
そこで、上記印字をする場合、上記ケーブルの長手方向に沿ってされる印字の長さを極力短くすることが望ましいが、このように印字の長さを制限すると、上記ケーブルに関して必要な情報の総てを、上記ケーブルの外皮に印字することが困難であるという問題がある。
【0006】
また、上記ケーブルの外皮表面に印字された文字や記号等の、上記ケーブルに関する情報は、長い期間の経過や、たとえばケーブル設置時の擦り等によって、かすれたり消えてしまい判読不可能になる場合があるという問題がある。
【0007】
さらに、タグを上記ケーブルに設ける場合、長尺のケーブルに一定の間隔で、タグを多数個設けなければならず、タグを設ける際の工数がかかり、また、上記印字をする場合と同様に、タグに多くの情報を書き込むことは困難であり、さらに、上記ケーブルに設けたタグがケーブルから離脱し、またはタグに記載されている情報が時間の経過とともに、かすれたり消えてしまい判読不可能になる場合があるという問題がある。
【0008】
そこで、上述のようなケーブル外皮表面への印字やタグに代えて、ケーブル外皮表面に、たとえば、QRコード(二次元バーコード)を貼り付けた構成のケーブルが開示されている(たとえば特許文献1)。
【0009】
【特許文献1】
特開2001−21730号公報
【0010】
【発明が解決しようとする課題】
ところで、上記特許文献1に示すケーブルによれば、このケーブルに関する情報がQRコード化されているので、上述のように印字やタグを使用する場合よりも、上記ケーブルに関する情報を大量に格納することができる。
【0011】
しかし、上記QRコード化された情報は、上記ケーブルの表面に設けられているので、上述のように印字をした場合と同様に、長い期間の経過や、たとえばケーブル設置時の擦り等によって、かすれたり消えてしまい、またはケーブル表面からはがれてしまい判読不可能になる場合があるという問題がある。
【0012】
本発明は、上記問題点に鑑みてなされたものであり、ケーブルに関する情報を従来よりも多量に格納可能であり、設置後長時間が経過しても上記格納している情報が判別不可能となるおそれが少ないケーブルおよびこのケーブルへの設置が容易な連長体およびこの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の本発明は、樹脂または熱収縮部材で構成され、長く延びた保持部材と、上記保持部材に包み込まれて、上記保持部材内部に設けられた複数のRFID素子とを有し、上記各RFID素子同士は上記保持部材の長手方向で間隔をあけて配置され、上記RFID素子が設けられている箇所の上記保持部材の内径を上記RFID素子が設けられていない箇所の上記保持部材の内径よりも大きく構成することによって、上記各RFID素子の上記保持部材長手方向への移動を規制している連長体である。
【0014】
請求項2に記載の本発明は、ケーブルコアと、樹脂または熱収縮部材で構成され、長く延びた保持部材と、上記保持部材に包み込まれて、上記保持部材内部に設けられた複数のRFID素子とを具備し、上記各RFID素子同士は上記保持部材の長手方向で間隔をあけて配置され、上記RFID素子が設けられている箇所の上記保持部材の内径を、上記RFID素子が設けられていない箇所の上記保持部材の内径よりも大きく構成することによって、上記各RFID素子の上記保持部材長手方向への移動を規制していると共に、上記ケーブルコアに一体的に設けられた連長体と、上記ケーブルコアと上記連長体とを被覆しているシースとを有するケーブルである。
【0015】
請求項3に記載の本発明は、長く延びた保持部材とこの保持部材内に設けられた複数のRFID素子とによって構成される連長体の製造方法において、上記各RFID素子を、ガスの圧力で押し出し、被覆加工に使用する押し出しヘッド内へ間歇的に送り込むと共に、上記押し出しヘッド内で、上記保持部材を構成する樹脂によって上記各RFID素子に対して押し出し被覆加工を施し、上記各RFID素子の上記保持部材長手方向への移動を規制するために、上記RFID素子が設けられている箇所の上記保持部材の内径を、上記RFID素子が設けられていない箇所の上記保持部材の内径よりも大きく構成する連長体の製造方法である。
【0016】
請求項4に記載の本発明は、長く延びたパイプ状部材とこのパイプ状部材内に設けられた複数のRFID素子とによって構成される連長体の製造方法において、熱収縮性部材で構成された上記パイプ状部材内に、上記各RFID素子を、間隔をあけて挿入配置する挿入配置工程と、上記各RFID素子を保持するまで、上記パイプ状部材を加熱して上記パイプ状部材を収縮させる加熱工程とを有する連長体の製造方法である。
【0017】
【発明の実施の形態】
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る連長体1の概略構成を示す断面図である。
【0018】
連長体1は、樹脂または熱収縮部材で構成され長く延びた保持部材3を備え、この保持部材3に包み込まれて、上記保持部材3の内部(円環状の外壁で囲まれている内部空間)に複数のRFID(Radio Frequency Identification)素子5が設けられている。なお、上記RFID素子5に格納されている情報は、たとえば電磁波を媒体にして、RFIDリーダで読み取り可能になっている。
【0019】
上記各RFID素子5同士は、上記保持部材3の長手方向で間隔をあけて配置され、上記RFID素子5が設けられている箇所の上記保持部材3の内径(以下、「有RFID素子部の内径」という場合がある。)が、上記RFID素子5が設けられていない箇所の上記保持部材3の内径(以下、「無RFID素子部の内径」という場合がある。)よりも大きく構成されていることによって、上記各RFID素子5の上記保持部材3の長手方向への移動が規制されている。なお、上記各RFID素子5同士の各間隔の値は一定の値であってもよいし、上記各RFID素子5同士の各間隔は互いが異なっていてもよい。
【0020】
さらに詳しく説明すると、RFID素子5は、たとえば、両端部が半球状である円柱状に形成され、また、上記RFID素子5の外郭部は電磁波を通過させる硬質の部材(たとえば、ガラスやプラスチック)で構成され、上記RFID素子5の長手方向と上記パイプ状部材3の長手方向とがほぼ一致するように、上記各RFID素子5が設けられている。
【0021】
また、上記有RFID素子部の内径が、無RFID素子部の内径よりも大きく構成されているということは、たとえば、上記有RFID素子部の内径が、上記RFID素子5の外形とほぼ等しく、上記無RFID素子部の内径が「0」である場合も含むものとする。すなわち、図1に示すように、各RFID素子5の全外周面に上記保持部材3が密着し、各RFID素子5同士の間が、内部に空の間(たとえば、空気のみで満たされた空間)が存在しない保持部材3で充填されていてもよい。
【0022】
さらに、保持部材3が各RFID素子5を保持して、上記保持部材3に対する各RFID素子5の相対的な移動を規制できるようになっていればよい。
【0023】
なお、連長体1では、保持部材3の長手方向の垂直な断面の形状を、たとえば円形状とし、無RFID素子部の外径を、有RFID素子部の外径よりも大きく構成している。そして、各RFID素子5を包み込んだ高温の上記保持部材3が冷めるときに、上記保持部材3がほぼ一様に(均等に)冷めるようにして、上記保持部材3が歪まないようにしている。また、保持部材3を上述のような形状に形成することによって、保持部材3を構成する部材の必要量を軽減している。
【0024】
図2は、上記連長体1を製造するための連長体製造装置7の概略構成を示す図である。
【0025】
連長体製造装置7は本体部9を備え、この本体部9の上部側には、ホッパ11が設けられている。なお、上記ホッパ11は、上記保持部材3を構成する部材であって、たとえばペレット状の熱可塑性樹脂部材を収納可能になっている。
【0026】
また、上記本体部9の一側部側には、RFID素子フィーダ13が設けられている。ここで、上記RFID素子フィーダ13は、RFID素子収納部15とガス押し出し器17とによって構成され、ガス押し出し器17が発生するガス圧によって、上記RFID素子収納部15が格納している複数のRFID素子を1つづつ、本体部9に設けられている、図示しない押し出しヘッドに間歇的に供給できるようになっている。
【0027】
そして、上記収納ホッパ11に収納されている熱可塑性樹脂を加熱することによって溶融した熱可塑性樹脂を上記押し出しヘッドへ供給し、この供給された熱可塑性樹脂で、上記間歇的に供給された各RFID素子5を包み込んで、各RFID素子5を被覆し、各RFID素子5が、上記熱可塑性樹脂の内部に設けられ、連長体1が製造される。なお、この製造された連長体1は、本体部9の他側部側から、連長体製造装置7の外部に、矢印ARの方向で連続的に(一体的につながって)排出される。
【0028】
また、上記押し出しヘッドを用いて、上記熱可塑性樹脂で被覆されることにより、各RFID素子5は上記熱可塑性樹脂(保持部材)の長手方向で間隔をあけて配置され、上記RFID素子5が設けられている箇所の上記保持部材の内径は、上記RFID素子5が設けられていない箇所の上記保持部材の内径よりも大きく構成されようになっている。そして、上記各RFID素子5の上記保持部材長手方向への移動が規制される。換言すれば、上記各RFID素子5は固定される。
【0029】
次に、連長体1が設けられているケーブル19について説明する。
【0030】
図3は、連長体1が設けられているケーブル19の概略構成を示す断面図である。
【0031】
なお、上記断面図(図3)は、ケーブル19の軸方向に直角な平面でケーブル19を切断した場合の断面図である。
【0032】
ケーブル19は、内部にケーブルコア21を備え、このケーブルコア21の外側はシース23で覆われている。
【0033】
ケーブルコア21は、この中心部にケーブル19の長手方向に沿って長く設けられた抗張体25を備え、抗張体25の周りを囲むように、断面が円形状のスロット27が、ケーブル19の長手方向に沿って長く設けられている。
【0034】
スロット27の外周にほぼ等角度で分配された位置には、ケーブル19の長手方向に沿って、複数の溝29A〜29Eが設けられている。そして、上記各溝29A〜29Eの総てには、たとえば4芯の光ファイバテープ31が適数個配設されており、上記各溝29A〜29Eが設けられている箇所以外の、スロット27の外周壁に接して、連長体1が設けられている。なお、連長体1はスロット27の外周壁に縦添えまたは横巻きされている。
【0035】
なお、上記各溝29A〜29Eおよび上記連長体1は、格納するためにケーブル19をドラムに巻いた場合、外側に位置する光ファイバテープ31のみが延びることを防いで、各光ファイバテープ31が、ほぼ均等に延びるようにするために、上記各溝29A〜29Eは、ケーブル27の長手方向に延伸する中心軸CLに対して、平行に直進しているのではなく(図3の紙面に直角に延びているのではなく)、僅かにねじれて長手方向に延伸している。つまり、図3の紙面に対して僅かに斜めに傾いて延びている。
【0036】
そして、連長体1と光ファイバテープ31が設けられているスロット27とを一体にして両者を覆うように、スロット27の外周と上記連長体1とには、上記連長体1と光ファイバテープ31とを押さえ込むための押え巻き33が横巻きされ、これによって、連長体1は、ケーブルコア21に一体的に設けられている。
【0037】
また、押え巻き33がされたケーブルコア21の外側は、長手方向の断面が円環状のシース23で被覆されている。なお、上記シース23は、たとえば、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ノンハロゲン難燃材、燃やした場合に有毒ガスを発生せず、またビニルとの分別が容易なエコ材等で構成されている。
【0038】
次に、ケーブル35について説明する。
【0039】
図4は、連長体1が設けられているケーブル35の概略構成を示す断面図である。
【0040】
なお、上記断面図(図4)は、ケーブル35の軸方向に直角な平面でケーブル35を切断した場合の断面図である。
【0041】
ケーブル35は、内部にケーブルコア37を備え、このケーブルコア37の外側はシース39で覆われている。
【0042】
ケーブルコア37は、この中心部にケーブル37の長手方向に沿って長く設けられた抗張体41を具備した、長手方向に垂直な断面が円形状のテンションメンバ43を備え、長手方向に垂直な断面が円形状である複数の光ファイバコード45のみで、テンションメンバ43の周りを囲んでいる。なお、上記各光ファイバコード45は、ケーブル35の長手方向に沿って長く設けられている。
【0043】
そして、上記各光ファイバコード45を、上記テンションメンバ43に固定するために、上記各光ファイバコード45を覆うように押え巻き47が横巻きされている。
【0044】
さらに、横巻きされた押え巻き47の外壁に連長体1を接触させて配設し(縦添えまたは横巻きして、連長体1をケーブルコア37に設け)、この連長体1と押え巻き47がされたケーブルコア37とを一体化して両者を覆うように、押え巻き49が横巻きされている。また、押え巻き49がされたケーブルコア37の外側は、長手方向の断面が円環状のシース39で被覆されている。なお、上記シース39は、ケーブル19のシース23とほぼ同様に、たとえば、ポリエチレン、ポリ塩化ビニル、ノンハロゲン難燃材、または、エコ材等で構成されている。
【0045】
また、上記各光ファイバコード45や上記連長体1は、ケーブル19の場合と同様に、ケーブル35の長手方向に僅かに捻れて延伸している。
【0046】
次に、ケーブル51について説明する。
【0047】
図5は、連長体1が設けられているケーブル51の概略構成を示す断面図である。
【0048】
なお、上記断面図(図5)は、ケーブル51の軸方向に直角な平面でケーブル51を切断した場合の断面図である。
【0049】
ケーブル51は、スロットに形成されている各溝のうちの1つに連長体を配設している点が、ケーブル19とは異なり、その他の点はケーブル19とほぼ同様に構成されている。
【0050】
すなわち、ケーブル51は、内部にケーブルコア53を備え、このケーブルコア53の外側はシース55で覆われている。
【0051】
ケーブルコア53は、この中心部にケーブル51の長手方向に沿って長く設けられた抗張体57を備え、抗張体57の周りを囲むように、断面が円形状のスロット59が、ケーブル51の長手方向に沿って長く設けられている。
【0052】
スロット59の外周にほぼ等角度で分配された位置には、ケーブル51の長手方向に沿って、複数の溝61A〜61Fが設けられている。そして、上記各溝61A〜61Fのうちの1つの溝61F内に、ケーブル51の長手方向に沿って、連長体1が設けられている。また他の各溝61A〜61Eには、たとえば4芯の光ファイバテープ63が適数個設けられている。
【0053】
さらに、連長体1と光ファイバテープ63とが設けられているスロット59の外周には、上記連長体1と光ファイバテープ63とを押さえ込むための押え巻き65が横巻きされている。
【0054】
このようにして、連長体1は、ケーブルコア53に一体化されて設けられている。
【0055】
なお、上記各光ファイバテープ63や上記連長体1は、ケーブル19の場合と同様に、ケーブル51の長手方向に僅かに捻れて延伸している。
【0056】
また、押え巻き65がされたケーブルコア53の外側は、長手方向の断面が円環状のシース55で被覆されている。なお、上記シース55は、ケーブル19の場合とほぼ同様に、たとえば、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ノンハロゲン難燃材、燃やした場合に有毒ガスを発生せず、またビニルとの分別が容易なエコ材等で構成されている。
【0057】
次に、ケーブル67について説明する。
【0058】
図6は、連長体1が設けられているケーブル67の概略構成を示す断面図である。
【0059】
なお、上記断面図(図6)は、ケーブル67の軸方向に直角な平面でケーブル67を切断した場合の断面図である。
【0060】
ケーブル67は、連長体と各光ファイバコードとを用いて、テンションメンバの周りを囲んでいる点が、ケーブル35とは異なり、その他の点はケーブル35とほぼ同様に構成されている。
【0061】
すなわち、ケーブル67は、内部にケーブルコア69を備え、このケーブルコア69の外側はシース71で覆われている。
【0062】
ケーブルコア69は、この中心部にケーブル67の長手方向に沿って長く設けられた抗張体73を具備した、長手方向に垂直な断面が円形状のテンションメンバ75を備え、連長体1と、長手方向に垂直な断面が円形状である複数の光ファイバコード77とが、テンションメンバ75の周りを囲んで、ケーブル67の長手方向に沿って長く設けられている。換言すれば、図6に示すケーブル67の断面図では、各光ファイバコード77および連長体1が、テンションメンバ75の外周壁に接し、さらに、隣り合う各光ファイバコード77同士が互いに接し、連長体1が設けられている箇所では、この連長体1とこの連長体1と隣り合う光ファイバコード77とが互いに接している。
【0063】
さらに、図6の断面図において、連長体1の外周のうちで、テンションメンバ75から最も離れた部位と、各光ファイバコード77の各外周のうちで、テンションメンバ75から最も離れた各部位とを、互いに結んだ包絡線に沿って、上記連長体1と光ファイバコード77とを押さえ込むための押え巻き79が横巻きされている。
【0064】
このようにして、連長体1は、ケーブルコア69に一体化されて設けられている。
【0065】
なお、上記各光ファイバコード77や上記連長体1は、ケーブル19の場合と同様に、ケーブル67の長手方向に僅かに捻れて延伸している。
【0066】
また、押え巻き79がされたケーブルコア69の外側は、長手方向の断面が円環状のシース71で被覆されている。なお、上記シース71は、ケーブル19の場合とほぼ同様に、たとえば、ポリエチレン、ポリ塩化ビニル、ノンハロゲン難燃材、または、エコ材等で構成されている。
【0067】
なお、ケーブル19やケーブル35は、ケーブルコアの外形に対して連長体1の外形が十分に小さい場合の実施形態であり、ケーブルコアの外形に対して連長体1の外形が十分に小さくはない場合には、ケーブル51やケーブル67のような実施形態にすることが望ましい。
【0068】
連長体1によれば、保持部材3の長手方向に間隔をあけて、複数のRFID素子5が配置され固定されており、連長体1が長く一体的に形成されているので、連長体1の長手方向とケーブルの長手方向とを互いにそろえて、連長体1を上記ケーブルのケーブルコアに一体化して設けることが容易になり、各RFID素子5を上記ケーブルの長手方向に間隔をあけて設けるときの作業が容易になる。
【0069】
また、連長体1によれば、円柱状のRFID素子5の長手方向と、連長体1の長手方向とを互いに一致させて、連長体1を形成しているので、連長体1の外形を、極力小さくすることができ、連長体1をケーブルに設ける際に上記ケーブルの外形の増加を極力小さくすることができる。
【0070】
また、連長体1によれば、樹脂で形成された保持部材3の内部に各RFID素子5が設けられることによって、各RFID素子5が保護されている。したがって、たとえば、各RFID素子5の外皮が破損しやすい部材で構成されている場合に連長体1が外力を受けても、RFID素子5が破損しにくくなっており、連長体1の取り扱いが容易になる。
【0071】
連長体1を備えたケーブル19によれば、ケーブル19に関する情報(たとえば、ケーブル19を識別するための情報)を記憶している記憶媒体としてRFID素子を採用しているので、ケーブル19の外皮(シースの外周面)への印字またはケーブル19へのタグの貼り付けやタグの吊り下げによって、ケーブル19に関する情報を格納(表示)するよりも、大量の情報を格納でき、しかも、ケーブル19の外皮を露出させずに、RFID素子5の情報を読み取り表示可能なRFIDリーダをケーブル19に近づけるだけで、RFID素子5に格納されている情報を上記RFIDリーダで読み取って表示することができる。つまり、ケーブル19に関する情報を容易に読み取って表示することができる。
【0072】
また、連長体1を備えたケーブル19によれば、ケーブル19に関する情報を記憶している記憶媒体としてRFID素子5を採用し、このRFID素子5を、ケーブル19のシース23が被覆しているので、ケーブル19敷設後の長い期間の経過や、ケーブル19を設置するときの擦り等によって、ケーブル19に関する情報がかすれたり消えたりして、判読不可能になることを回避することができる。また、RFID素子5が、シース23で被覆されているので、たとえばケーブル19を設置するときにこのケーブル19に外力がかかっても、この外力がシース23で緩和され、上記RFID素子5が破損しにくくなる。
【0073】
また、連長体1を備えたケーブル19によれば、パイプ状のシース23の肉厚部に、RFID素子5が埋め込まれていることはなく、シース23がこの長手方向にほぼ一様な形態になっているので、ケーブル19を、たとえば、設置や保守のために折り曲げても、シース23の肉厚部に応力集中が発生しにくく、したがって、上記設置や保守による折り曲げによって、ケーブル19のシース23が破損しにくくなる。
【0074】
また、ケーブルコア21にシース23を被覆する場合、断面がほぼ円形状のケーブルコア21に、断面が円環状のシース33を被覆すればよく、シース23の肉厚部内にRFID素子5を設ける必要はないので、上記被覆を容易に行うことができる。
【0075】
また、ケーブル19によれば、連長体1の長手方向に所定の間隔をあけて、各RFID素子5を設けているので、ケーブル19の長手方向の任意の位置で、ケーブル19に関する情報を取得することができる。そして、ケーブル19がたとえばトラフ内に敷設されこのトラフに蓋がされ、さらにこのトラフが土砂の中に埋設されている場合でも、上記土砂を長い区間にわたって取り除くことなく、土砂の一部を取り除くだけで、上記ケーブル19の情報を読み取ることができ、上記土砂を取り除く工数を削減することができる。
【0076】
なお、上記各RFID素子5の設置間隔は、RFID素子5に格納されている情報を、RFIDリーダが読み取り可能な距離に応じて決定すればよい。たとえば、上記読み取り可能な距離が1mである場合に、各RFID素子5の設置間隔を1mにすれば、ケーブル19から0.87m(1m÷2×√3≒0.87m)以内の距離にRFIDリーダを近づければ、RFID素子5に格納されている情報を、上記RFIDリーダで読み取ることができる。
【0077】
なお、上記各RFID素子5に格納されている、ケーブル19に関する情報は、連長体1の製造前に予め各RFID素子5に格納されていてもよいし、たとえば、図2に示す連長体製造装置7の、連長体1の排出部分に、RFID素子5に情報を書き込み可能なRFIDライターを設置し、または、連長体製造装置7のRFID素子収納部15にRFIDライターを設置して、連長体1を製造するときに、ケーブル19に関する情報を、各RFID素子5に書き込んでもよい。さらに、ケーブル19の敷設後、RFIDライターを用いて、各RFID素子5の情報を書き換えてもよい。
【0078】
連長体1を備えた各ケーブル35、51、67によれば、各ケーブル35、51、67に関する情報を大量に格納でき、しかも、各ケーブル35、51、67に関する情報を容易に読み取って表示することができる等、ケーブル19が備える効果とほぼ同様な効果を奏する。
【0079】
また、各ケーブル35、51、67において、ケーブル19と同様に、連長体1の長手方向に所定の間隔をあけて、各RFID素子5を設けているので、各ケーブル35、51、67の長手方向の任意の位置で、各ケーブル35、51、67に関する情報を取得することができる。
【0080】
なお、上記各RFID素子5の設置間隔は、ケーブル19と同様に決定すればよい。
【0081】
また、上記各RFID素子5に格納されている、各ケーブル35、51、67に関する情報も、ケーブル19の場合と同様に書き込むことができる。
【0082】
また、上記各ケーブル19、35、51、67を、光ファイバケーブルではなくメタルケーブルにしてもよいし、光ファイバとメタル線とが混在しているケーブルにしてもよい。
【0083】
[第2の実施の形態]
次に、本発明の第2の実施の形態に係る連長体やこの連長体を用いたケーブルについて説明する。
【0084】
第2の実施形態に係る連長体は、熱収縮性部材で構成されたパイプ状部材内に、各RFID素子を、間隔をあけて挿入配置し、この後、上記各RFID素子を保持するまで上記パイプ状部材を加熱し、上記パイプ状部材を収縮させて形成されるものである。
【0085】
ここで、上記第2の実施形態に係る連長体を製造する場合について詳しく説明する。
【0086】
まず、各RFID素子を上記パイプ状部材内に挿入するための貫通穴(たとえばスリット)を、上記パイプ状部材の肉厚部に、長手方向で間隔をあけて設ける。
【0087】
続いて、上記各貫通穴を介して各RFID素子を上記パイプ状部材内に挿入し、上記挿入された各RFID素子の位置を、上記パイプ状部材の長手方向に僅かにずらして、上記各RFID素子が上記パイプ状部材内でこのパイプ状部材の長手方向に間隔をあけて配設された状態にすると共に、上記各RFID素子が、上記貫通穴が設けられている位置を避けた位置に配設されるようにする。
【0088】
続いて、上記パイプ状部材に、たとえばお湯をかけることによって、上記パイプ状部材を加熱し、上記パイプ状部材を収縮させて、上記パイプ状部材が上記各RFID素子を保持するようにする。
【0089】
第2の実施形態に係る連長体によれば、この連長体を製造する場合、第1の実施形態のように、高温で溶融している状態の保持部材3内に、RFID素子5をを挿入する必要がなく、上記温度よりも低い温度で、保持部材を収縮させることができるので、高温によってRFID素子の機能が阻害されるおそれが少なくなる。
【0090】
また、保持部材内に各RFID素子5を挿入する場合、保持部材に設けられた貫通穴を用いることができるので、連長体を長く形成するために保持部材が長く形成されていても、各RFID素子を、間隔をあけて挿入配置しやすい。また、上記保持部材を加熱して収縮させた場合、上記貫通穴の位置には、各RFID素子が位置していないので、上記保持部材が、上記貫通穴のところから破損するおそれが少なくなる。
【0091】
また、上記第2の実施形態に係る連長体は、第1の実施形態に係る連長体1のようにケーブルに設けることができ、各ケーブル19、35、51、67のようなケーブルを構成することができる。
【0092】
【発明の効果】
本発明によれば、ケーブルに関する情報を従来よりも多量に格納可能であり、設置後長時間が経過しても上記格納している情報が判別不可能となるおそれが少なく、設置や保守のために折り曲げても破損しにくいケーブルおよびこのケーブルへの設置が容易な連長体およびこの連長体の製造方法を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る連長体の概略構成を示す断面図である。
【図2】連長体を製造するための連長体製造装置の概略構成を示す図である。
【図3】連長体が設けられているケーブルの概略構成を示す断面図である。
【図4】連長体が設けられているケーブルの概略構成を示す断面図である。
【図5】連長体が設けられているケーブルの概略構成を示す断面図である。
【図6】連長体が設けられているケーブルの概略構成を示す断面図である。
【符号の説明】
1 連長体
3 保持部材
5 RFID素子
19、35、51,67 ケーブル
21、37、53、69 ケーブルコア
23、39、55、71 シース
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous body formed by providing a plurality of RFID (Radio Frequency Identification) elements at intervals in the longitudinal direction of a long member, a method of manufacturing the same, and a cable provided with the continuous body. In particular, the present invention relates to a device that holds the respective RFID elements by changing the inner diameter of the elongated member in the longitudinal direction.
[0002]
[Prior art]
Conventionally, for example, as a method of identifying only a target cable from among a large number of laid metal cables or optical fiber cables, printing is performed on the outer surface (sheath) of each cable, or Methods for attaching tags and identifying cables are known.
[0003]
Here, the printing is performed by applying information such as a manufacturer name, a manufacturing date, a cable product name, and a cable length to the outer surface of the cable with ink, a thermal transfer laser, or the like. Further, information substantially similar to the printed information is engraved on the tag, for example. Then, the tag is attached to an outer cover of the cable, or is suspended from the cable using, for example, a metal wire.
[0004]
By the way, when printing is performed on the cable surface, the printing is performed along the longitudinal direction of the cable. Therefore, when the number of characters increases, it is necessary to expose the laid cable over a long section. However, if the cable is laid in a trough, for example, and the trough is covered, it is necessary to remove the cover over a long section, and when the trough is buried in earth and sand, It is necessary to remove earth and sand over a long section, and a large number of steps are required to expose the cable.
[0005]
Therefore, when performing the above-described printing, it is desirable to minimize the length of the printing along the longitudinal direction of the cable. However, if the length of the printing is limited in this manner, the total information necessary for the cable is required. However, there is a problem that it is difficult to print on the outer sheath of the cable.
[0006]
In addition, information on the cable, such as characters and symbols printed on the outer surface of the cable, may be unreadable due to elapse of a long period of time or, for example, rubbing at the time of cable installation or the like. There is a problem.
[0007]
Further, when the tags are provided on the cable, a large number of tags must be provided at regular intervals on the long cable, which takes a lot of man-hours when providing the tags, and, like the case of printing, It is difficult to write a lot of information on the tag.Furthermore, the tag provided on the cable is detached from the cable, or the information written on the tag is faded or disappears over time and becomes unreadable. There is a problem that may be.
[0008]
Therefore, a cable having a configuration in which, for example, a QR code (two-dimensional barcode) is attached to the surface of the cable outer cover instead of the above-described printing or tag on the outer surface of the cable is disclosed (for example, Patent Document 1). ).
[0009]
[Patent Document 1]
JP 2001-21730A
[0010]
[Problems to be solved by the invention]
By the way, according to the cable disclosed in Patent Document 1, since the information about the cable is QR-coded, it is necessary to store a large amount of information about the cable as compared with the case of using a print or a tag as described above. Can be.
[0011]
However, since the QR-coded information is provided on the surface of the cable, as in the case of printing as described above, the information may be blurred due to the elapse of a long period of time or rubbing when installing the cable, for example. There is a problem that it may be lost or disappear, or it may come off from the cable surface and become unreadable.
[0012]
The present invention has been made in view of the above problems, and it is possible to store a large amount of information on a cable than before, and it is difficult to determine the stored information even after a long time has elapsed after installation. It is an object of the present invention to provide a cable that is less likely to be formed, a continuous body that can be easily installed on the cable, and a method of manufacturing the same.
[0013]
[Means for Solving the Problems]
The present invention according to claim 1 includes a holding member that is made of a resin or a heat-shrinkable member and extends long, and a plurality of RFID elements that are wrapped by the holding member and provided inside the holding member. The RFID elements are arranged at intervals in the longitudinal direction of the holding member, and the inner diameter of the holding member where the RFID element is provided is the same as the holding member where the RFID element is not provided. By being configured to be larger than the inner diameter of the holding member, the continuous body restricts the movement of each of the RFID elements in the longitudinal direction of the holding member.
[0014]
The present invention according to claim 2, wherein the cable core, a resin or a heat-shrinkable member, and a long holding member, and a plurality of RFID elements wrapped in the holding member and provided inside the holding member. The RFID elements are arranged at intervals in the longitudinal direction of the holding member, and the inner diameter of the holding member at the location where the RFID element is provided is not provided with the RFID element. By configuring the holding member at a location larger than the inner diameter of the holding member, while restricting the movement of each of the RFID elements in the holding member longitudinal direction, a continuous body integrally provided with the cable core, A cable having the cable core and a sheath covering the continuous body.
[0015]
According to a third aspect of the present invention, in the method for manufacturing a continuous body constituted by a long holding member and a plurality of RFID elements provided in the holding member, each of the RFID elements is subjected to a gas pressure. In the extrusion, while intermittently fed into the extrusion head used for the coating process, in the extrusion head, extruded and coated on each of the RFID elements by the resin constituting the holding member, In order to regulate the movement of the holding member in the longitudinal direction, the inner diameter of the holding member where the RFID element is provided is larger than the inner diameter of the holding member where the RFID element is not provided. This is a method for producing a continuous body.
[0016]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a continuous body including a long pipe-shaped member and a plurality of RFID elements provided in the pipe-shaped member. In the pipe-shaped member, the respective RFID elements are inserted and disposed at intervals, and the pipe-shaped member is heated and contracted until the respective RFID elements are held. And a heating step.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of the elongated body 1 according to the first embodiment of the present invention.
[0018]
The elongated body 1 includes a long holding member 3 made of a resin or a heat-shrinkable member. The holding member 3 is wrapped around the holding member 3 (an inner space surrounded by an annular outer wall). ) Are provided with a plurality of RFID (Radio Frequency Identification) elements 5. The information stored in the RFID element 5 can be read by an RFID reader using, for example, an electromagnetic wave as a medium.
[0019]
The respective RFID elements 5 are arranged at intervals in the longitudinal direction of the holding member 3, and the inner diameter of the holding member 3 at the location where the RFID element 5 is provided (hereinafter, “the inner diameter of the existing RFID element portion”) ) May be larger than the inner diameter of the holding member 3 where the RFID element 5 is not provided (hereinafter, sometimes referred to as the “inner diameter of the non-RFID element portion”). Thus, the movement of each of the RFID elements 5 in the longitudinal direction of the holding member 3 is restricted. The value of each interval between the RFID elements 5 may be a constant value, or each interval between the RFID elements 5 may be different from each other.
[0020]
More specifically, the RFID element 5 is formed, for example, in a cylindrical shape with both ends being hemispherical, and the outer part of the RFID element 5 is a hard member (for example, glass or plastic) that allows electromagnetic waves to pass. The respective RFID elements 5 are provided so that the longitudinal direction of the RFID element 5 and the longitudinal direction of the pipe-shaped member 3 substantially match.
[0021]
In addition, the fact that the inner diameter of the RFID element portion is configured to be larger than the inner diameter of the non-RFID element portion means that, for example, the inner diameter of the RFID element portion is substantially equal to the outer shape of the RFID element 5, This includes the case where the inner diameter of the non-RFID element portion is “0”. That is, as shown in FIG. 1, the holding member 3 is in close contact with the entire outer peripheral surface of each RFID element 5, and the space between each RFID element 5 is empty (for example, a space filled only with air). ) May be filled with the holding member 3 that does not exist.
[0022]
Furthermore, it is only necessary that the holding member 3 holds the respective RFID elements 5 so that the relative movement of the respective RFID elements 5 with respect to the holding member 3 can be regulated.
[0023]
In the elongated body 1, the shape of the cross section perpendicular to the longitudinal direction of the holding member 3 is, for example, circular, and the outer diameter of the non-RFID element portion is larger than the outer diameter of the RFID element portion. . When the high-temperature holding member 3 enclosing each RFID element 5 cools, the holding member 3 cools almost uniformly (evenly) so that the holding member 3 is not distorted. In addition, by forming the holding member 3 into the shape described above, the required amount of members constituting the holding member 3 is reduced.
[0024]
FIG. 2 is a diagram showing a schematic configuration of a continuous body manufacturing apparatus 7 for manufacturing the continuous body 1.
[0025]
The continuous body manufacturing apparatus 7 includes a main body 9, and a hopper 11 is provided on an upper side of the main body 9. The hopper 11 is a member that constitutes the holding member 3 and can accommodate, for example, a pellet-shaped thermoplastic resin member.
[0026]
An RFID element feeder 13 is provided on one side of the main body 9. Here, the RFID element feeder 13 includes an RFID element storage unit 15 and a gas pusher 17, and a plurality of RFIDs stored in the RFID element storage unit 15 by gas pressure generated by the gas pusher 17. The elements can be supplied one by one intermittently to an extrusion head (not shown) provided in the main body 9.
[0027]
Then, a thermoplastic resin melted by heating the thermoplastic resin stored in the storage hopper 11 is supplied to the extrusion head, and the intermittently supplied RFIDs are supplied by the supplied thermoplastic resin. Each of the RFID elements 5 is covered so as to enclose the element 5, and each of the RFID elements 5 is provided inside the thermoplastic resin to manufacture the continuous body 1. The manufactured elongated body 1 is continuously (integrally) discharged from the other side of the main body 9 to the outside of the elongated body manufacturing apparatus 7 in the direction of the arrow AR. .
[0028]
Further, by being covered with the thermoplastic resin using the extrusion head, the RFID elements 5 are arranged at intervals in the longitudinal direction of the thermoplastic resin (holding member), and the RFID elements 5 are provided. The inner diameter of the holding member at the location where the RFID element 5 is provided is larger than the inner diameter of the holding member at the location where the RFID element 5 is not provided. Then, the movement of each of the RFID elements 5 in the longitudinal direction of the holding member is restricted. In other words, each of the RFID elements 5 is fixed.
[0029]
Next, the cable 19 provided with the elongated body 1 will be described.
[0030]
FIG. 3 is a cross-sectional view illustrating a schematic configuration of the cable 19 provided with the elongated body 1.
[0031]
The cross-sectional view (FIG. 3) is a cross-sectional view when the cable 19 is cut along a plane perpendicular to the axial direction of the cable 19.
[0032]
The cable 19 has a cable core 21 inside, and the outside of the cable core 21 is covered with a sheath 23.
[0033]
The cable core 21 has a tension member 25 provided at the center thereof along the longitudinal direction of the cable 19, and a slot 27 having a circular cross section is formed around the tension member 25 so as to surround the tension member 25. Are provided long along the longitudinal direction.
[0034]
A plurality of grooves 29 </ b> A to 29 </ b> E are provided along the longitudinal direction of the cable 19 at positions substantially equiangularly distributed on the outer periphery of the slot 27. In each of the grooves 29A to 29E, for example, an appropriate number of four-core optical fiber tapes 31 are provided, and the slots 27 of the slots 27 other than where the grooves 29A to 29E are provided are provided. An elongated body 1 is provided in contact with the outer peripheral wall. The elongated body 1 is vertically or horizontally wound on the outer peripheral wall of the slot 27.
[0035]
When the cable 19 is wound around a drum for storage, the grooves 29A to 29E and the elongated body 1 prevent the optical fiber tape 31 located only on the outside from extending, and the optical fiber tape 31 However, in order to extend almost equally, each of the grooves 29A to 29E does not go straight in parallel with the central axis CL extending in the longitudinal direction of the cable 27 (see FIG. Rather than extending at a right angle), it extends slightly longitudinally. That is, they extend slightly obliquely with respect to the paper surface of FIG.
[0036]
The outer periphery of the slot 27 and the elongated body 1 are connected to the elongated body 1 and the slot 27 provided with the optical fiber tape 31 so as to cover the two. A holding roll 33 for holding down the fiber tape 31 is wound horizontally, whereby the continuous body 1 is provided integrally with the cable core 21.
[0037]
The outside of the cable core 21 on which the presser winding 33 is wound is covered with an annular sheath 23 having a longitudinal section. The sheath 23 is made of, for example, polyethylene (PE), polyvinyl chloride (PVC), non-halogen flame-retardant material, eco-friendly material that does not generate toxic gas when burned, and is easily separated from vinyl. Have been.
[0038]
Next, the cable 35 will be described.
[0039]
FIG. 4 is a cross-sectional view illustrating a schematic configuration of the cable 35 provided with the elongated body 1.
[0040]
The sectional view (FIG. 4) is a sectional view when the cable 35 is cut along a plane perpendicular to the axial direction of the cable 35.
[0041]
The cable 35 has a cable core 37 inside, and the outside of the cable core 37 is covered with a sheath 39.
[0042]
The cable core 37 includes a tension member 43 having a tensile member 41 provided at the center thereof along the longitudinal direction of the cable 37 and having a circular cross section perpendicular to the longitudinal direction. Only the plurality of optical fiber cords 45 having a circular cross section surround the tension member 43. Each of the optical fiber cords 45 is provided to be long along the longitudinal direction of the cable 35.
[0043]
In order to fix each of the optical fiber cords 45 to the tension member 43, a presser winding 47 is wound so as to cover each of the optical fiber cords 45.
[0044]
Further, the continuous body 1 is disposed in contact with the outer wall of the horizontally wound holding roll 47 (the continuous body 1 is provided on the cable core 37 by vertically attaching or horizontally winding), and the continuous body 1 A holding roll 49 is wound horizontally so as to integrate the cable core 37 with the holding roll 47 and cover both. Further, the outside of the cable core 37 on which the presser winding 49 is wound is covered with a sheath 39 whose cross section in the longitudinal direction is annular. The sheath 39 is made of, for example, polyethylene, polyvinyl chloride, a non-halogen flame-retardant material, or an eco-friendly material in substantially the same manner as the sheath 23 of the cable 19.
[0045]
Further, each of the optical fiber cords 45 and the elongated body 1 are slightly twisted and extended in the longitudinal direction of the cable 35 as in the case of the cable 19.
[0046]
Next, the cable 51 will be described.
[0047]
FIG. 5 is a cross-sectional view illustrating a schematic configuration of the cable 51 provided with the elongated body 1.
[0048]
The sectional view (FIG. 5) is a sectional view when the cable 51 is cut along a plane perpendicular to the axial direction of the cable 51.
[0049]
The cable 51 is different from the cable 19 in that a continuous elongated body is provided in one of the grooves formed in the slot, and the other points are substantially the same as the cable 19. .
[0050]
That is, the cable 51 includes the cable core 53 inside, and the outside of the cable core 53 is covered with the sheath 55.
[0051]
The cable core 53 includes a tension member 57 provided at the center thereof along the longitudinal direction of the cable 51, and a slot 59 having a circular cross section is formed around the tension member 57 so as to surround the tension member 57. Are provided long along the longitudinal direction.
[0052]
A plurality of grooves 61 </ b> A to 61 </ b> F are provided along the longitudinal direction of the cable 51 at positions distributed at substantially equal angles on the outer circumference of the slot 59. The continuous body 1 is provided in one of the grooves 61A to 61F along the longitudinal direction of the cable 51. In each of the other grooves 61A to 61E, for example, an appropriate number of 4-core optical fiber tapes 63 are provided.
[0053]
Further, on the outer periphery of the slot 59 in which the elongated body 1 and the optical fiber tape 63 are provided, a holding roll 65 for holding down the elongated body 1 and the optical fiber tape 63 is horizontally wound.
[0054]
Thus, the elongated body 1 is provided integrally with the cable core 53.
[0055]
The optical fiber tape 63 and the elongated body 1 are slightly twisted and extended in the longitudinal direction of the cable 51 as in the case of the cable 19.
[0056]
Further, the outside of the cable core 53 on which the presser winding 65 is wound is covered with a sheath 55 having an annular cross section in the longitudinal direction. The sheath 55 is made of, for example, polyethylene (PE), polyvinyl chloride (PVC), a non-halogen flame-retardant material, does not generate a toxic gas when burned, It is made of eco-friendly materials that are easy to separate.
[0057]
Next, the cable 67 will be described.
[0058]
FIG. 6 is a cross-sectional view illustrating a schematic configuration of the cable 67 provided with the elongated body 1.
[0059]
The cross-sectional view (FIG. 6) is a cross-sectional view when the cable 67 is cut along a plane perpendicular to the axial direction of the cable 67.
[0060]
The cable 67 differs from the cable 35 in that it surrounds the tension member using a continuous body and each optical fiber cord, and the other points are substantially the same as the cable 35.
[0061]
That is, the cable 67 includes a cable core 69 inside, and the outside of the cable core 69 is covered with the sheath 71.
[0062]
The cable core 69 includes a tension member 75 having a tensile member 73 provided in the center thereof along the longitudinal direction of the cable 67 and having a circular cross section perpendicular to the longitudinal direction. A plurality of optical fiber cords 77 having a circular cross section perpendicular to the longitudinal direction are provided along the longitudinal direction of the cable 67 so as to surround the tension member 75. In other words, in the cross-sectional view of the cable 67 shown in FIG. 6, each optical fiber cord 77 and the continuous body 1 are in contact with the outer peripheral wall of the tension member 75, and further, each adjacent optical fiber cord 77 is in contact with each other, At the position where the elongated body 1 is provided, the elongated body 1 and the optical fiber cord 77 adjacent to the elongated body 1 are in contact with each other.
[0063]
Further, in the cross-sectional view of FIG. 6, of the outer periphery of the elongated body 1, the portion farthest from the tension member 75 and the outermost portion of each optical fiber cord 77, the portion farthest from the tension member 75. A holding roll 79 for holding down the continuous body 1 and the optical fiber cord 77 is wound horizontally along an envelope connecting the two.
[0064]
Thus, the elongated body 1 is provided integrally with the cable core 69.
[0065]
The optical fiber cords 77 and the elongated body 1 are slightly twisted in the longitudinal direction of the cable 67 and extend in the same manner as the cable 19.
[0066]
Further, the outside of the cable core 69 on which the presser winding 79 is wound is covered with a sheath 71 whose cross section in the longitudinal direction is annular. Note that the sheath 71 is made of, for example, polyethylene, polyvinyl chloride, a non-halogen flame-retardant material, an eco material, or the like, similarly to the case of the cable 19.
[0067]
Note that the cable 19 and the cable 35 are embodiments in which the outer shape of the elongated body 1 is sufficiently smaller than the outer shape of the cable core, and the outer shape of the elongated body 1 is sufficiently smaller than the outer shape of the cable core. If not, it is desirable to use an embodiment like the cable 51 or the cable 67.
[0068]
According to the elongate body 1, the plurality of RFID elements 5 are arranged and fixed at intervals in the longitudinal direction of the holding member 3, and the elongate body 1 is long and integrally formed. The longitudinal direction of the body 1 and the longitudinal direction of the cable are aligned with each other so that the continuous body 1 can be easily provided integrally with the cable core of the cable, and the RFID elements 5 can be spaced apart in the longitudinal direction of the cable. The work at the time of installation is facilitated.
[0069]
Further, according to the elongated body 1, since the elongated direction of the columnar RFID element 5 and the elongated direction of the elongated body 1 are matched with each other to form the elongated body 1, the elongated body 1 is formed. Can be made as small as possible, and when the continuous body 1 is provided in the cable, the increase in the outer shape of the cable can be made as small as possible.
[0070]
Further, according to the elongated body 1, each RFID element 5 is provided inside the holding member 3 formed of resin, thereby protecting each RFID element 5. Therefore, for example, when the outer skin of each RFID element 5 is made of a member that is easily damaged, even if the elongated body 1 receives an external force, the RFID element 5 is hardly damaged. Becomes easier.
[0071]
According to the cable 19 provided with the elongated body 1, since the RFID element is employed as a storage medium for storing information on the cable 19 (for example, information for identifying the cable 19), the outer sheath of the cable 19 is used. By printing on (outer peripheral surface of the sheath), attaching a tag to the cable 19, or suspending the tag, a larger amount of information can be stored than storing (displaying) information on the cable 19, and the cable 19 The information stored in the RFID element 5 can be read and displayed by the RFID reader only by bringing the RFID reader capable of reading and displaying the information of the RFID element 5 close to the cable 19 without exposing the outer skin. That is, information on the cable 19 can be easily read and displayed.
[0072]
Further, according to the cable 19 provided with the elongated body 1, the RFID element 5 is employed as a storage medium for storing information on the cable 19, and the RFID element 5 is covered with the sheath 23 of the cable 19. Therefore, it is possible to prevent the information about the cable 19 from being blurred or disappearing due to the elapse of a long period of time after the cable 19 is laid or the rubbing when the cable 19 is installed, so that the information cannot be read. Further, since the RFID element 5 is covered with the sheath 23, even if an external force is applied to the cable 19 when, for example, the cable 19 is installed, the external force is reduced by the sheath 23 and the RFID element 5 is damaged. It becomes difficult.
[0073]
Further, according to the cable 19 provided with the elongated body 1, the RFID element 5 is not embedded in the thick portion of the pipe-shaped sheath 23, and the sheath 23 is substantially uniform in the longitudinal direction. Therefore, even if the cable 19 is bent for installation or maintenance, for example, stress concentration hardly occurs at the thick portion of the sheath 23. 23 is less likely to be damaged.
[0074]
When covering the cable core 21 with the sheath 23, the cable core 21 having a substantially circular cross section may be covered with the sheath 33 having an annular cross section, and the RFID element 5 must be provided in the thick portion of the sheath 23. Therefore, the coating can be easily performed.
[0075]
Further, according to the cable 19, since the RFID elements 5 are provided at predetermined intervals in the longitudinal direction of the elongated body 1, information on the cable 19 is obtained at an arbitrary position in the longitudinal direction of the cable 19. can do. And even if the cable 19 is laid in a trough and the trough is covered, and the trough is buried in the earth and sand, only a part of the earth and sand is removed without removing the earth and sand over a long section. Thus, the information of the cable 19 can be read, and the number of steps for removing the earth and sand can be reduced.
[0076]
Note that the installation interval of each of the RFID elements 5 may be determined according to the distance at which the information stored in the RFID element 5 can be read by the RFID reader. For example, if the readable distance is 1 m and the interval between the RFID elements 5 is set to 1 m, the RFID is placed within 0.87 m (1 m (2 × ÷ 3 ≒ 0.87 m) from the cable 19. When the reader is approached, information stored in the RFID element 5 can be read by the RFID reader.
[0077]
The information on the cable 19 stored in each of the RFID elements 5 may be stored in advance in each of the RFID elements 5 before the manufacture of the elongated body 1, or, for example, the elongated body shown in FIG. An RFID writer capable of writing information to the RFID element 5 is installed at the discharge portion of the continuous body 1 of the manufacturing apparatus 7, or an RFID writer is installed in the RFID element storage unit 15 of the continuous body manufacturing apparatus 7. When manufacturing the elongated body 1, information on the cable 19 may be written to each RFID element 5. Further, after the cable 19 is laid, the information of each RFID element 5 may be rewritten using an RFID writer.
[0078]
According to each of the cables 35, 51, 67 provided with the elongated body 1, a large amount of information on each of the cables 35, 51, 67 can be stored, and information on each of the cables 35, 51, 67 can be easily read and displayed. For example, the same effects as those of the cable 19 can be obtained.
[0079]
In addition, in each cable 35, 51, 67, similarly to the cable 19, each RFID element 5 is provided at a predetermined interval in the longitudinal direction of the continuous elongated body 1. Information about each cable 35, 51, 67 can be obtained at any position in the longitudinal direction.
[0080]
The intervals between the RFID elements 5 may be determined in the same manner as the cable 19.
[0081]
Further, information on each of the cables 35, 51, and 67 stored in each of the RFID elements 5 can be written in the same manner as in the case of the cable 19.
[0082]
Further, the cables 19, 35, 51, 67 may be metal cables instead of optical fiber cables, or cables in which optical fibers and metal wires are mixed.
[0083]
[Second embodiment]
Next, a continuous body according to a second embodiment of the present invention and a cable using the continuous body will be described.
[0084]
In the continuous body according to the second embodiment, the respective RFID elements are inserted and arranged at intervals in a pipe-shaped member formed of a heat-shrinkable member, and thereafter, until the respective RFID elements are held. It is formed by heating the pipe-shaped member and shrinking the pipe-shaped member.
[0085]
Here, the case of manufacturing the elongated body according to the second embodiment will be described in detail.
[0086]
First, through holes (for example, slits) for inserting each RFID element into the pipe-shaped member are provided in the thick portion of the pipe-shaped member at intervals in the longitudinal direction.
[0087]
Subsequently, each RFID element is inserted into the pipe-shaped member through each through-hole, and the position of each inserted RFID element is slightly shifted in the longitudinal direction of the pipe-shaped member, and each RFID element is shifted. The elements are arranged in the pipe-shaped member at intervals in the longitudinal direction of the pipe-shaped member, and the RFID elements are arranged at positions avoiding the positions where the through holes are provided. To be installed.
[0088]
Subsequently, for example, hot water is applied to the pipe-shaped member to heat the pipe-shaped member and to contract the pipe-shaped member so that the pipe-shaped member holds each of the RFID elements.
[0089]
According to the continuous body according to the second embodiment, when manufacturing the continuous body, as in the first embodiment, the RFID element 5 is placed in the holding member 3 in a state of being melted at a high temperature. Since the holding member can be contracted at a temperature lower than the above temperature, there is less possibility that the function of the RFID element is hindered by the high temperature.
[0090]
Further, when inserting each RFID element 5 into the holding member, the through-hole provided in the holding member can be used. Therefore, even if the holding member is formed long in order to form the elongated body, It is easy to insert and arrange the RFID elements at intervals. In addition, when the holding member is contracted by heating, since the RFID elements are not located at the positions of the through holes, the risk of the holding members being damaged from the through holes is reduced.
[0091]
Further, the continuous body according to the second embodiment can be provided on a cable like the continuous body 1 according to the first embodiment, and a cable such as each of the cables 19, 35, 51, and 67 can be provided. Can be configured.
[0092]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the information regarding a cable can be stored in a larger amount than before, and even if a long time passes after installation, there is little possibility that the stored information cannot be determined. It is possible to provide a cable that is not easily damaged even when bent into a bent shape, a continuous body that can be easily installed on the cable, and a method of manufacturing the continuous body.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a continuous body according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a schematic configuration of a continuous body manufacturing apparatus for manufacturing a continuous body.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 4 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 5 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 6 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
[Explanation of symbols]
1 streak
3 Holding member
5 RFID element
19, 35, 51, 67 cable
21, 37, 53, 69 Cable core
23, 39, 55, 71 sheath

Claims (4)

樹脂または熱収縮部材で構成され、長く延びた保持部材と;上記保持部材に包み込まれて、上記保持部材内部に設けられた複数のRFID素子と;
を有し、上記各RFID素子同士は上記保持部材の長手方向で間隔をあけて配置され、上記RFID素子が設けられている箇所の上記保持部材の内径を上記RFID素子が設けられていない箇所の上記保持部材の内径よりも大きく構成することによって、上記各RFID素子の上記保持部材長手方向への移動を規制していることを特徴とする連長体。
A holding member that is made of resin or a heat-shrinkable member and extends long; a plurality of RFID elements wrapped by the holding member and provided inside the holding member;
The RFID elements are arranged at intervals in the longitudinal direction of the holding member, and the inner diameter of the holding member where the RFID element is provided is the inner diameter of the location where the RFID element is not provided. A continuous body characterized in that it is configured to be larger than the inner diameter of the holding member to restrict movement of each of the RFID elements in the longitudinal direction of the holding member.
ケーブルコアと;
樹脂または熱収縮部材で構成され、長く延びた保持部材と、上記保持部材に包み込まれて、上記保持部材内部に設けられた複数のRFID素子とを具備し、上記各RFID素子同士は上記保持部材の長手方向で間隔をあけて配置され、上記RFID素子が設けられている箇所の上記保持部材の内径を、上記RFID素子が設けられていない箇所の上記保持部材の内径よりも大きく構成することによって、上記各RFID素子の上記保持部材長手方向への移動を規制していると共に、上記ケーブルコアに一体的に設けられた連長体と;
上記ケーブルコアと上記連長体とを被覆しているシースと;
を有することを特徴とするケーブル。
A cable core;
A holding member that is made of resin or a heat-shrinkable member, and includes a long holding member, and a plurality of RFID elements wrapped in the holding member and provided inside the holding member; Are arranged at intervals in the longitudinal direction, the inner diameter of the holding member at the location where the RFID element is provided is configured to be larger than the inner diameter of the holding member at the location where the RFID element is not provided. A continuous body that regulates the movement of each of the RFID elements in the longitudinal direction of the holding member and is provided integrally with the cable core;
A sheath covering the cable core and the elongated body;
A cable comprising:
長く延びた保持部材とこの保持部材内に設けられた複数のRFID素子とによって構成される連長体の製造方法において、
上記各RFID素子を、ガスの圧力で押し出し、被覆加工に使用する押し出しヘッド内へ間歇的に送り込むと共に、上記押し出しヘッド内で、上記保持部材を構成する樹脂によって上記各RFID素子に対して押し出し被覆加工を施し、上記各RFID素子の上記保持部材長手方向への移動を規制するために、上記RFID素子が設けられている箇所の上記保持部材の内径を、上記RFID素子が設けられていない箇所の上記保持部材の内径よりも大きく構成することを特徴とする連長体の製造方法。
In a method for manufacturing a continuous body constituted by a long holding member and a plurality of RFID elements provided in the holding member,
Each of the RFID elements is extruded under the pressure of gas, and is intermittently fed into an extrusion head used for coating processing. In the extrusion head, each of the RFID elements is extruded and coated with a resin constituting the holding member. In order to perform processing and regulate the movement of each of the RFID elements in the longitudinal direction of the holding member, the inner diameter of the holding member where the RFID element is provided is changed to the inner diameter of the place where the RFID element is not provided. A method of manufacturing a continuous body, wherein the continuous member is configured to be larger than the inner diameter of the holding member.
長く延びたパイプ状部材とこのパイプ状部材内に設けられた複数のRFID素子とによって構成される連長体の製造方法において、
熱収縮性部材で構成された上記パイプ状部材内に、上記各RFID素子を、間隔をあけて挿入配置する挿入配置工程と;
上記各RFID素子を保持するまで、上記パイプ状部材を加熱して上記パイプ状部材を収縮させる加熱工程と;
を有することを特徴とする連長体の製造方法。
In a method for manufacturing a continuous body constituted by a long pipe-shaped member and a plurality of RFID elements provided in the pipe-shaped member,
Inserting and placing the RFID elements in the pipe-shaped member made of a heat-shrinkable member at an interval;
A heating step of heating the pipe-shaped member and contracting the pipe-shaped member until each of the RFID elements is held;
A method for producing a continuous body, comprising:
JP2003033733A 2003-02-12 2003-02-12 Successively patterned body, its manufacturing method, and cable Pending JP2004264901A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003033733A JP2004264901A (en) 2003-02-12 2003-02-12 Successively patterned body, its manufacturing method, and cable
PCT/JP2004/001421 WO2004073130A1 (en) 2003-02-12 2004-02-10 Long continuous body, process for producing the same and cable
TW093103208A TW200425172A (en) 2003-02-12 2004-02-11 Long continuous body, process for producing the same, and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033733A JP2004264901A (en) 2003-02-12 2003-02-12 Successively patterned body, its manufacturing method, and cable

Publications (1)

Publication Number Publication Date
JP2004264901A true JP2004264901A (en) 2004-09-24

Family

ID=32866241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033733A Pending JP2004264901A (en) 2003-02-12 2003-02-12 Successively patterned body, its manufacturing method, and cable

Country Status (3)

Country Link
JP (1) JP2004264901A (en)
TW (1) TW200425172A (en)
WO (1) WO2004073130A1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961947B1 (en) * 2010-06-24 2013-03-15 Commissariat Energie Atomique INCORPORATION OF CHIP ELEMENTS IN A GUIPE WIRE
CN102685673B (en) * 2012-05-18 2015-07-29 奇点新源国际技术开发(北京)有限公司 A kind of cable system
GB2516002A (en) * 2013-05-15 2015-01-14 Rafael Zvi Karl Kilim Plastic moulding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203527A (en) * 2002-01-09 2003-07-18 Hitachi Cable Ltd Wire/cable having electronic identification function

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US9058529B2 (en) 2008-08-28 2015-06-16 Corning Optical Communications LLC RFID-based systems and methods for collecting telecommunications network information
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8333518B2 (en) 2010-05-06 2012-12-18 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Also Published As

Publication number Publication date
TW200425172A (en) 2004-11-16
WO2004073130A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP2004264901A (en) Successively patterned body, its manufacturing method, and cable
JP2004247090A (en) Lengthy body, manufacturing method of the same, and cable
JP2004265624A (en) Connected long body and cable
JP2004245963A (en) Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body
US6915050B2 (en) Identification member in slots in the core of an optical fiber cable
EP3553578B1 (en) Intermittent connection type optical fiber tape core, method for manufacturing same, optical fiber cable, and optical fiber cord
US20080204235A1 (en) Fiber optic cable with integral radio frequency identification system
RU2690233C2 (en) Free buffer, free buffer type fiber-optic cable, method of separating individual fibers of a fiber-optic tape in a free buffer, method of making a free buffer and method of assembling multiple optical fibers
US20070120684A1 (en) Methods for manufacturing and application of RFID built-in cable, and dedicated RFID reading systems
CN109313967B (en) Traceable power cable and method
JP7120248B2 (en) Optical fiber unit and optical fiber cable
JP4469622B2 (en) RFID continuous body and cable
EP3912825A1 (en) Computer program, apparatus , printing apparatus and printing system
US20080199134A1 (en) System for identifying optical fibers and cables
JP2004139535A (en) Information storing device and string length body equipped with the same
WO2004072988A1 (en) Rf id prolonged body and cable
JP2005347137A (en) Cable with identification information, and method of applying identification information to cable
JP4698148B2 (en) Cable and RFID continuous body
JP2004309841A (en) Optical fiber fusing and reinforcing member and optical fiber management method using the same
US20210181442A1 (en) Optical fiber cable and manufacturing method of optical fiber cable
JP2020101757A (en) Optical cable manufacturing method, and optical cable
JP2004247134A (en) Rfid length body and cable
JP6592909B2 (en) Optical cable and manufacturing method thereof
JP3006601B1 (en) Optical cable
JP2009086177A (en) Optical cable unit, optical cable assembly, and method of detecting optical cable unit