JP2004263827A - Pressure container, and method for manufacturing the same - Google Patents

Pressure container, and method for manufacturing the same Download PDF

Info

Publication number
JP2004263827A
JP2004263827A JP2003057038A JP2003057038A JP2004263827A JP 2004263827 A JP2004263827 A JP 2004263827A JP 2003057038 A JP2003057038 A JP 2003057038A JP 2003057038 A JP2003057038 A JP 2003057038A JP 2004263827 A JP2004263827 A JP 2004263827A
Authority
JP
Japan
Prior art keywords
resin
pressure vessel
fiber
reinforcing
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003057038A
Other languages
Japanese (ja)
Other versions
JP2004263827A5 (en
Inventor
Hidehiro Takemoto
秀博 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003057038A priority Critical patent/JP2004263827A/en
Publication of JP2004263827A publication Critical patent/JP2004263827A/en
Publication of JP2004263827A5 publication Critical patent/JP2004263827A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure container 1 capable of sufficiently coping with higher gas charge pressure, and a method for manufacturing the same. <P>SOLUTION: This pressure container 1 is provided with a container main body comprising a straight drum part 4, and semispherical dome parts 5a and 5b closing both ends of the straight drum part 4, with a fiber reinforcement resin layer 3 comprising bundles of reinforcement fibers formed on it. Between the dome part 5a/5b and the fiber reinforcement resin layer 3, reinforcement members 7a and 7b are provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高圧ガスが充填され、例えば、自動車などに搭載される圧力容器およびその製造方法に関する。
【0002】
【従来の技術】
従来、高圧ガスの貯蔵容器としては、鋼鉄製の容器が用いられている。しかしながら、鋼鉄製の貯蔵容器は質量が大きく、移動や輸送等に多大な労力を必要とするものであった。そのため、例えば、気体燃料を用いる自動車では、車両質量を小さくし燃料消費量を抑制するため、燃料貯蔵容器を軽量化することが求められている。
そこで、高圧ガスの貯蔵容器として、従来の鋼鉄製のものに代えて、樹脂やアルミニウム等の金属製のライナー材を強化繊維で補強した複合材料からなる圧力容器が用いられるようになってきている。この繊維強化複合材料からなる圧力容器は、充填圧力を高くでき、かつ軽量化が可能になる。
【0003】
繊維強化複合材料からなる圧力容器として、例えば、特許文献1〜5に記載されたものが挙げられる。図7は、特許文献1に記載の圧力容器を示す部分断面図である。この圧力容器50は、円筒状の金属製のライナー材51(容器本体)の直胴部52上に、樹脂被覆を施した強化材を内側から外側に向けて層状に巻き付けて、繊維強化プラスチック製の被覆層(繊維強化樹脂層)53を形成したものである。
【0004】
【特許文献1】
特開平6−331032号公報
【特許文献2】
特開平7−52897号公報
【特許文献3】
特開平8−270793号公報
【特許文献4】
特開平10−119138号公報
【特許文献5】
特開平11−230347号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の圧力容器では、直胴部52の両側のドーム部54a,54bに被覆層が設けられていないので、ドーム部54a,54bの強度が不十分であった。しかも、このような構造の圧力容器は、破裂する際にはドーム部54a,54bから破壊する可能性が高く、好ましくない。そこで、ドーム部にも被覆層を設けてドーム部の強度を高めることが考えられる。
ところで、近年、ガスの充填圧力を従来よりも高くできる圧力容器が求められているが、単にドーム部に被覆層を設けただけの圧力容器では、繊維配向によっては充填圧力を高くしたときの容器ドーム部の弾性率が非線形領域となり剛性不足を生じる可能性があるために、ガスの充填圧力を高めた場合には、ドーム部が許容圧力を超えて破裂するおそれがあった。すなわち、ガスの充填圧力を高めることに対して十分に対応できないおそれがあった。
本発明は、前記事情を鑑みてなされたものであり、ガスの充填圧力を高くすることに対して十分に対応できる圧力容器およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の圧力容器は、直胴部とこの直胴部の両端を塞ぐ半球状のドーム部とからなる容器本体上に、強化繊維束を有する繊維強化樹脂層が形成された圧力容器において、前記ドーム部と前記繊維強化樹脂層との間に、補強材が備えられたことを特徴とする。
本発明の圧力容器においては、前記補強材が、繊維強化樹脂からなることが好ましい。
または、前記補強材が、強化繊維を製織した織物であることが好ましい。
さらに、容器本体が金属からなることが好ましい。
本願請求項5の圧力容器の製造方法は、直胴部とこの直胴部の両端を塞ぐ半球状のドーム部とからなる容器本体上に繊維強化樹脂層を形成させる圧力容器の製造方法において、
ドーム部上に補強材を取り付ける工程と、容器本体および補強材の上に樹脂を含浸した強化繊維束を巻き付ける工程と、加熱して樹脂を硬化させる工程とを有することを特徴とする。
本願請求項6の圧力容器の製造方法は、直胴部とこの直胴部の両端を塞ぐ半球状のドーム部とからなる容器本体上に繊維強化樹脂層を形成させる圧力容器の製造方法において、
ドーム部上に未硬化のプリプレグまたは樹脂を含浸していない強化繊維織物を付与する工程と、容器本体および未硬化のプリプレグまたは樹脂を含浸していない強化繊維織物の上に樹脂を含浸した強化繊維束を巻き付ける工程と、加熱して樹脂を硬化させる工程とを有することを特徴とする。
【0007】
【発明の実施の形態】
本発明の圧力容器の一実施形態例について図面を参照して説明する。
図1は、本実施形態例の圧力容器を示すものである。
この圧力容器1は、円筒状の直胴部4と、直胴部4の両端を塞ぐ半球状のドーム部5a,5bとからなる容器本体2上に、強化繊維束を有する繊維強化樹脂層3が形成されたものであり、さらにドーム部5a,5bと繊維強化樹脂層3との間に補強材7a,7bが備えられたものである。 また、容器本体2の一方のドーム部5a先端には、ガスを導出入する導出入口6が設けられている。
【0008】
補強材7a,7bは、繊維強化樹脂層3の形成前に予め取り付けられたものである。この補強材7a,7bの形状は、図2(a),(b)に示すように、切頭円錐体の底面10aに抉れ部8a,8bが形成されており、強化繊維束が容易に巻き付けられるように、円周面9と上面10bとの角が滑らかにされている。ここで、抉れ部8a,8bは、この補強材をドーム部に取り付けた際に、表面がドーム部の表面に密着するように抉られている。
導出入口6が設けられたドーム部5aに取り付けられる補強材7aには、図2(a)に示すように、その抉れ部8aが上面10bとつながって、導出入部を通す開口部11が形成されている。一方、導出入口6が設けられていないドーム部5bに取り付けられる補強材7bとしては、図2(a)に示す形態に加えて、図2(b)に示すように、その抉れ部8bは上面10bとつながっておらず、開口部は形成されていないものを採用することもできる。容器の強度の向上を優先させる場合は、図2(b)を採用するのが好ましく、容器の軽量化を優先させる場合は図2(a)を採用すればよい。
【0009】
補強材7a,7bは、強化繊維を含有する予め成形されたプリプレグ等の繊維強化樹脂からなることが好ましい。補強材7a,7bが強化繊維を含有する予め成形された繊維強化樹脂からなることで、最終的に得られる圧力容器において、補強材の形状が容器形状に合致するので、目的の強度を確実に発現させることができる。
【0010】
この、補強材7a,7bをなす繊維強化樹脂中の強化繊維の種類としては、高弾性率の繊維であれば特に制限されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、PBO繊維等が挙げられる。さらに、これらの強化繊維から複数を用いてもよい。
また、繊維強化樹脂を構成するマトリックス樹脂としては、例えば、ポリエチレン樹脂、ポリアミド樹脂などの熱可塑性樹脂やフェノール樹脂、エポキシ樹脂、尿素樹脂、ウレタン樹脂、アクリル樹脂、シリコン樹脂などの熱硬化性樹脂などが挙げられる。
【0011】
容器本体2は、金属製であることが好ましく、その金属の材料は特に限定されないが、例えば、アルミニウム合金、マグネシウム合金、鉄などを挙げることができる。これらの中でも、特に、アルミニウム合金は、容器本体2を軽量化するには好適である。
また、容器本体2は樹脂製であってもよく、樹脂としては、例えば、ポリエチレン樹脂、ポリアミド樹脂などの公知の熱可塑性樹脂やフェノール樹脂、エポキシ樹脂、尿素樹脂、ウレタン樹脂、アクリル樹脂、シリコン樹脂などの公知の熱硬化性樹脂などが挙げられる。
【0012】
容器本体2上の繊維強化樹脂層3では、樹脂を含浸した強化繊維束が配置されている。繊維強化樹脂層3に含まれる樹脂(マトリックス樹脂)としては特に限定されず、補強材をなす繊維強化樹脂と同じものを使用できるが、中でも、圧力容器1の高温条件下での使用の際に問題となる熱変形を防止できることから、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂をマトリックス樹脂とすることが好ましい。また、繊維強化樹脂層3に含まれる強化繊維束の種類についても特に限定されず、補強材をなす繊維強化樹脂中の強化繊維と同じものを使用できる。
【0013】
以上説明した圧力容器1にあっては、ドーム部5a,5bと繊維強化樹脂層3との間に、補強材7a,7bが備えられているので、充填圧力を高くしたときでもドーム部5a,5bの弾性率が線形領域になり、破裂が防止される。したがって、ガスの充填圧力を高くすることに対して十分に対応できる。
しかも、補強材7a,7bは繊維強化樹脂からなるので、十分な補強効果を有する。
【0014】
なお、本発明の圧力容器は、上述した実施形態例に限定されない。例えば、上述した実施形態例の補強材は、予め成形された繊維強化樹脂からなっていたが、繊維強化樹脂に代えて、含浸した樹脂が未硬化または半硬化(Bステージ状態)であるプリプレグからなるものであってもよい。このプリプレグからなるものは、繊維強化樹脂層の形成前に容器本体に付与されたプリプレグが、繊維強化樹脂層の形成と同時に硬化されて繊維強化樹脂に成形されたものである。
また、補強材としては、樹脂が含浸されていない強化繊維からなるものであってもよい。強化繊維からなるものとしては、例えば、強化繊維の織物などが挙げられる。強化繊維の織物中でも、半球状のドーム部に容易に付与でき、且つ繊維配向が理想的に配置できることから、図3に示すような、強化繊維21が円形状(渦巻き状)に製織された円形織物22が好ましい。
この強化繊維からなる補強材には、通常、樹脂が含浸されているが、樹脂が含浸されていなくてもよい。樹脂が含浸されていない場合であっても、この上に繊維強化樹脂層を形成した際に強化繊維の周囲に樹脂が付与されるので、実質的に繊維強化樹脂となる。
【0015】
次に、本発明の圧力容器の製造方法について説明する。
(第1の製造方法例)
まず、図4に示すように、容器本体2のドーム部5a,5b上に、予め成形しておいた補強材7a,7bを取り付ける。次いで、図5に示すように、貯槽12内のマトリックス樹脂溶液13を、強化繊維束14に含浸させ、乾燥して溶剤を除いたものを巻き付け角度5°〜85°で容器本体2および補強材に巻き付ける。ここで、巻き付け角度とは、容器本体2の長手方向を0°とした角度のことである。
次いで、強化繊維束を巻き付けた容器本体を加熱炉で加熱し、マトリックス樹脂を硬化させて、図1に示すように、容器本体2上に繊維強化樹脂層3を形成させる。そして、これを、自緊処理装置(図示せず)を用いて自緊処理して最終的な圧力容器1を得る。ここで、自緊処理とは、容器の内圧を高め(以下、このときの容器の内圧の最大値を自緊処理圧力という)、容器本体を永久変形させた後、容器の内圧を低下させることによって、繊維強化樹脂層3の剛性により圧縮応力を容器本体に与えることである。
【0016】
上述した製造方法において、マトリックス樹脂を硬化させる際の加熱温度は、40〜180℃とすることが好ましい。加熱温度が40℃未満である場合または180℃を越える場合には、圧力容器の疲労特性および破裂特性が劣化するおそれがある。
また、自緊処理圧力は、この圧力を加えて開放した時に、容器本体の降伏点応力の50%以上、98%未満の圧縮応力が容器本体に加わるようにすることが好ましい。自緊処理圧力をこの範囲とすることによって、容器本体に圧縮応力がかかり、ガスの充填放出を繰り返したときに、容器本体にかかる応力が容器本体の材料の線形特性の範囲になるため、優れた疲労特性を得ることができる。ここで、充填圧力とは、ガスを圧力容器内に充填する際の圧力のことであり、破壊圧力とは、圧力容器内の圧力を高めた際に容器が破裂したときの圧力のことである。
【0017】
以上説明した第1の製造方法例にあっては、予め成形しておいた補強材をドーム部に取り付けるので、設計通りの補強材を使用できる。したがって、強化繊維束の巻き付け方法の自由度が上がることから軽量で目的の強度を発現させることができる。
【0018】
(第2の製造方法例)
まず、図6に示すように、容器本体2のドーム部5a,5b上に未硬化のプリプレグ15を硬化後の形状を考慮しながら付与する。次いで、図5に示すように、貯槽12内のマトリックス樹脂溶液13を、強化繊維束14に含浸させ、乾燥して溶剤を除いたものを巻き付け角度5°〜85°で容器本体2および未硬化のプリプレグの上に巻き付ける。
次いで、強化繊維束を巻き付けた容器本体を加熱炉で加熱し、巻き付けた強化繊維束に含浸するマトリックス樹脂および未硬化のプリプレグを硬化させて、図1に示すように、容器本体2上に繊維強化樹脂層3および補強材7a,7bを形成させる。そして、これを、自緊処理装置(図示せず)を用いて自緊処理して最終的な圧力容器1を得る。
なお、この第2の製造方法における好ましい条件は、第1の製造方法と同様である。また、未硬化とは、半硬化の状態を含む。
そして、このような第2の製造方法にあっては、強化繊維束に含浸するマトリックス樹脂と未硬化のプリプレグとを同時に加熱硬化するので、補強材を別途成形する工程を省くことができる。
【0019】
本発明の圧力容器の製造方法は、上述した実施形態例に限定されない。例えば、上記の製造方法例においては、図5に示すように、貯槽12内のマトリックス樹脂溶液13を、強化繊維束14に含浸させ、乾燥して溶剤を除いたものを用いているが、これに代えて、強化繊維束に溶剤を含まないマトリックス樹脂をローラー等で直接含浸したトウプリプレグなども用いることができる。
【0020】
【発明の効果】
本発明の圧力容器によれば、ドーム部の強度が向上しているので、ガスの充填圧力を高くすることに対して十分に対応できる。
本願請求項5の圧力容器の製造方法によれば、最終的に得られる圧力容器において、補強材の形状が容器形状に合致するので、目的の強度を確実に発現させることができる。
また、本願請求項6の圧力容器の製造方法によれば、工程数を減らすことができる。
【図面の簡単な説明】
【図1】本発明の圧力容器の一実施形態例を示す部分断面図である。
【図2】補強材の一例を示す断面図である。
【図3】補強材の他の例を示す上面図である。
【図4】本発明の圧力容器の製造方法に係る第1の製造方法例における一工程を示す部分断面図である。
【図5】圧力容器の製造方法における一工程を模式的に示す図である。
【図6】本発明の圧力容器の製造方法に係る第2の製造方法例における一工程を示す部分断面図である。
【図7】従来の圧力容器の一例を示す部分断面図である。
【符号の説明】
1 圧力容器
2 容器本体
3 繊維強化樹脂層
4 直胴部
5a,5b ドーム部
7a,7b 補強材
15 プリプレグ
21 強化繊維
22 円形織物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure vessel filled with a high-pressure gas and mounted on, for example, an automobile and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, steel containers have been used as high-pressure gas storage containers. However, the steel storage container has a large mass and requires a great deal of labor for movement and transportation. Therefore, for example, in an automobile using a gaseous fuel, it is required to reduce the weight of the fuel storage container in order to reduce the vehicle mass and suppress the fuel consumption.
Therefore, as a high pressure gas storage container, a pressure container made of a composite material in which a metal liner material such as resin or aluminum is reinforced with reinforcing fibers has been used instead of a conventional steel container. . The pressure vessel made of the fiber reinforced composite material can increase the filling pressure and reduce the weight.
[0003]
Examples of a pressure vessel made of a fiber-reinforced composite material include those described in Patent Documents 1 to 5. FIG. 7 is a partial sectional view showing a pressure vessel described in Patent Document 1. The pressure vessel 50 is made of a fiber-reinforced plastic by winding a resin-coated reinforcing material on a straight body portion 52 of a cylindrical metal liner material 51 (container main body) from the inside to the outside. Is formed by forming a coating layer (fiber-reinforced resin layer) 53 of FIG.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 6-331032 [Patent Document 2]
JP-A-7-52897 [Patent Document 3]
JP-A-8-270793 [Patent Document 4]
JP-A-10-119138 [Patent Document 5]
JP-A-11-230347
[Problems to be solved by the invention]
However, in the pressure vessel described in Patent Literature 1, since the coating layers are not provided on the dome portions 54a and 54b on both sides of the straight body portion 52, the strength of the dome portions 54a and 54b is insufficient. In addition, the pressure vessel having such a structure has a high possibility of breaking from the dome portions 54a and 54b when bursting, which is not preferable. Therefore, it is conceivable to increase the strength of the dome by providing a coating layer on the dome.
By the way, in recent years, there has been a demand for a pressure vessel capable of increasing the gas filling pressure as compared with the conventional one.However, in a pressure vessel having only a coating layer provided on the dome portion, a vessel when the filling pressure is increased depending on the fiber orientation. Since the modulus of elasticity of the dome portion becomes a non-linear region and the rigidity may be insufficient, when the gas filling pressure is increased, the dome portion may burst beyond the allowable pressure. That is, there is a possibility that the method cannot sufficiently cope with increasing the gas filling pressure.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pressure vessel and a method of manufacturing the same that can sufficiently cope with increasing the gas filling pressure.
[0006]
[Means for Solving the Problems]
The pressure vessel of the present invention is a pressure vessel in which a fiber-reinforced resin layer having a reinforcing fiber bundle is formed on a container body including a straight body portion and a hemispherical dome portion closing both ends of the straight body portion. A reinforcing material is provided between the dome portion and the fiber reinforced resin layer.
In the pressure vessel of the present invention, it is preferable that the reinforcing material is made of a fiber-reinforced resin.
Alternatively, the reinforcing material is preferably a woven fabric obtained by weaving reinforcing fibers.
Further, it is preferable that the container body is made of metal.
The method for producing a pressure vessel according to claim 5 of the present application is a method for producing a pressure vessel, wherein a fiber-reinforced resin layer is formed on a vessel body composed of a straight body portion and a hemispherical dome portion closing both ends of the straight body portion.
The method includes a step of attaching a reinforcing material on the dome portion, a step of winding a reinforcing fiber bundle impregnated with a resin on the container body and the reinforcing material, and a step of heating and curing the resin.
The method for manufacturing a pressure vessel according to claim 6 of the present application is a method for manufacturing a pressure vessel, wherein a fiber-reinforced resin layer is formed on a container body including a straight body portion and a hemispherical dome portion closing both ends of the straight body portion.
A step of applying an uncured prepreg or a resin-impregnated reinforced fiber woven fabric on the dome portion, and a reinforced fiber impregnated with a resin on the container body and the uncured prepreg or the unimpregnated reinforced fiber woven fabric of the resin The method includes a step of winding a bundle and a step of heating to cure the resin.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the pressure vessel of the present invention will be described with reference to the drawings.
FIG. 1 shows a pressure vessel according to this embodiment.
The pressure vessel 1 has a fiber reinforced resin layer 3 having a reinforcing fiber bundle on a container body 2 having a cylindrical straight body 4 and hemispherical domes 5 a and 5 b closing both ends of the straight body 4. Are formed, and reinforcing members 7a and 7b are further provided between the dome portions 5a and 5b and the fiber reinforced resin layer 3. Further, at the tip of one dome portion 5a of the container body 2, an outlet 6 for introducing and introducing gas is provided.
[0008]
The reinforcing members 7a and 7b are attached before forming the fiber reinforced resin layer 3. As shown in FIGS. 2A and 2B, the shapes of the reinforcing members 7a and 7b are such that the hollow portions 8a and 8b are formed on the bottom surface 10a of the truncated cone, and the reinforcing fiber bundle can be easily formed. The corner between the circumferential surface 9 and the upper surface 10b is smoothed so as to be wound. Here, the recessed portions 8a and 8b are recessed such that when the reinforcing material is attached to the dome portion, the surface is in close contact with the surface of the dome portion.
As shown in FIG. 2 (a), in the reinforcing member 7a attached to the dome portion 5a provided with the lead-out entrance 6, the recessed portion 8a is connected to the upper surface 10b to form an opening 11 through which the lead-in / out portion passes. Have been. On the other hand, as the reinforcing member 7b attached to the dome portion 5b in which the outlet 6 is not provided, in addition to the form shown in FIG. 2A, as shown in FIG. It is also possible to adopt one that is not connected to the upper surface 10b and has no opening. When priority is given to improving the strength of the container, it is preferable to employ FIG. 2B, and when priority is given to reducing the weight of the container, FIG. 2A may be employed.
[0009]
The reinforcing members 7a and 7b are preferably made of a fiber-reinforced resin such as a pre-formed prepreg containing reinforcing fibers. Since the reinforcing members 7a and 7b are made of a preformed fiber-reinforced resin containing reinforcing fibers, in the finally obtained pressure vessel, the shape of the reinforcing material conforms to the shape of the container. Can be expressed.
[0010]
The type of the reinforcing fibers in the fiber reinforced resin forming the reinforcing members 7a and 7b is not particularly limited as long as the fibers have a high elastic modulus. For example, carbon fibers, glass fibers, aramid fibers, boron fibers, PBO fibers And the like. Further, a plurality of these reinforcing fibers may be used.
Examples of the matrix resin constituting the fiber-reinforced resin include thermoplastic resins such as polyethylene resin and polyamide resin, and thermosetting resins such as phenol resin, epoxy resin, urea resin, urethane resin, acrylic resin, and silicone resin. Is mentioned.
[0011]
The container body 2 is preferably made of a metal, and the material of the metal is not particularly limited, and examples thereof include an aluminum alloy, a magnesium alloy, and iron. Among these, an aluminum alloy is particularly suitable for reducing the weight of the container body 2.
The container body 2 may be made of a resin. Examples of the resin include a known thermoplastic resin such as a polyethylene resin and a polyamide resin, a phenol resin, an epoxy resin, a urea resin, a urethane resin, an acrylic resin, and a silicone resin. And other known thermosetting resins.
[0012]
In the fiber reinforced resin layer 3 on the container body 2, a reinforcing fiber bundle impregnated with resin is arranged. The resin (matrix resin) contained in the fiber reinforced resin layer 3 is not particularly limited, and the same resin as the fiber reinforced resin serving as the reinforcing material can be used. Among them, when the pressure vessel 1 is used under high temperature conditions, It is preferable to use a thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, or a phenol resin as the matrix resin, since thermal deformation, which is a problem, can be prevented. Further, the type of the reinforcing fiber bundle included in the fiber-reinforced resin layer 3 is not particularly limited, and the same reinforcing fiber in the fiber-reinforced resin as the reinforcing material can be used.
[0013]
In the pressure vessel 1 described above, since the reinforcing members 7a and 7b are provided between the dome portions 5a and 5b and the fiber reinforced resin layer 3, even when the filling pressure is increased, the dome portions 5a and 5b are provided. The elastic modulus of 5b is in a linear region, and rupture is prevented. Therefore, it is possible to sufficiently cope with increasing the gas filling pressure.
Moreover, since the reinforcing members 7a and 7b are made of fiber reinforced resin, they have a sufficient reinforcing effect.
[0014]
Note that the pressure vessel of the present invention is not limited to the above-described embodiment. For example, the reinforcing material of the above-described embodiment is made of a fiber reinforced resin molded in advance. Instead of the fiber reinforced resin, a prepreg in which the impregnated resin is uncured or semi-cured (B stage state) is used. It may be. The prepreg formed from the prepreg applied to the container body before the formation of the fiber reinforced resin layer is cured at the same time as the formation of the fiber reinforced resin layer and molded into a fiber reinforced resin.
Further, the reinforcing material may be made of reinforcing fibers not impregnated with a resin. Examples of the reinforcing fiber include a woven fabric of the reinforcing fiber. Among the reinforcing fiber woven fabrics, since the hemispherical dome portion can be easily applied and the fiber orientation can be ideally arranged, as shown in FIG. 3, the reinforcing fibers 21 are woven in a circular shape (a spiral shape). Fabric 22 is preferred.
The reinforcing material made of the reinforcing fiber is usually impregnated with a resin, but may not be impregnated with the resin. Even when the resin is not impregnated, the resin is provided around the reinforcing fibers when the fiber reinforced resin layer is formed thereon, so that the fiber is substantially a fiber reinforced resin.
[0015]
Next, a method for manufacturing the pressure vessel of the present invention will be described.
(Example of First Manufacturing Method)
First, as shown in FIG. 4, preformed reinforcing members 7a and 7b are mounted on the dome portions 5a and 5b of the container body 2. Next, as shown in FIG. 5, the reinforcing fiber bundle 14 is impregnated with the matrix resin solution 13 in the storage tank 12, dried and the solvent is removed, and the container body 2 and the reinforcing material are wound at an angle of 5 ° to 85 °. Wrap around. Here, the winding angle is an angle with the longitudinal direction of the container body 2 set to 0 °.
Next, the container body around which the reinforcing fiber bundle is wound is heated in a heating furnace to cure the matrix resin, and a fiber reinforced resin layer 3 is formed on the container body 2 as shown in FIG. Then, this is subjected to self-tightening treatment using a self-tightening treatment device (not shown) to obtain a final pressure vessel 1. Here, the self-tightening treatment is to increase the internal pressure of the container (hereinafter, the maximum value of the internal pressure of the container at this time is referred to as the self-tightening treatment pressure), reduce the internal pressure of the container after permanently deforming the container body. Thereby, compressive stress is applied to the container body by the rigidity of the fiber reinforced resin layer 3.
[0016]
In the above-described manufacturing method, the heating temperature at the time of curing the matrix resin is preferably 40 to 180 ° C. If the heating temperature is less than 40 ° C. or exceeds 180 ° C., the fatigue characteristics and burst characteristics of the pressure vessel may be deteriorated.
Further, it is preferable that the self-tensioning pressure is such that a compression stress of 50% or more and less than 98% of a yield point stress of the container body is applied to the container body when the pressure is released by applying this pressure. By setting the self-tensioning pressure within this range, a compressive stress is applied to the container body, and when the gas is repeatedly charged and discharged, the stress applied to the container body falls within the range of the linear characteristics of the material of the container body. Fatigue characteristics can be obtained. Here, the filling pressure is a pressure when the gas is filled into the pressure vessel, and the burst pressure is a pressure when the vessel ruptures when the pressure in the pressure vessel is increased. .
[0017]
In the first example of the manufacturing method described above, a reinforcing material that has been formed in advance is attached to the dome portion, so that a reinforcing material as designed can be used. Therefore, since the degree of freedom of the method of winding the reinforcing fiber bundle is increased, the desired strength can be realized with light weight.
[0018]
(Example of second manufacturing method)
First, as shown in FIG. 6, an uncured prepreg 15 is applied onto the dome portions 5a and 5b of the container body 2 while taking into consideration the shape after curing. Next, as shown in FIG. 5, the reinforcing fiber bundle 14 is impregnated with the matrix resin solution 13 in the storage tank 12, dried, and the solvent is removed, and the container body 2 and the uncured material are wound at an angle of 5 ° to 85 °. And wrap it over the prepreg.
Next, the container body around which the reinforcing fiber bundle is wound is heated in a heating furnace, and the matrix resin impregnated into the wound reinforcing fiber bundle and the uncured prepreg are cured, and as shown in FIG. The reinforced resin layer 3 and the reinforcing members 7a and 7b are formed. Then, this is subjected to self-tightening treatment using a self-tightening treatment device (not shown) to obtain a final pressure vessel 1.
Note that preferable conditions in the second manufacturing method are the same as those in the first manufacturing method. Uncured includes a semi-cured state.
In the second manufacturing method, since the matrix resin impregnated into the reinforcing fiber bundle and the uncured prepreg are simultaneously heated and cured, the step of separately forming the reinforcing material can be omitted.
[0019]
The method for manufacturing the pressure vessel of the present invention is not limited to the above-described embodiment. For example, in the above-described example of the manufacturing method, as shown in FIG. 5, the matrix resin solution 13 in the storage tank 12 is impregnated into the reinforcing fiber bundle 14 and dried to remove the solvent. Instead, a tow prepreg or the like in which a matrix resin containing no solvent is directly impregnated with a reinforcing fiber bundle by a roller or the like can be used.
[0020]
【The invention's effect】
According to the pressure vessel of the present invention, since the strength of the dome portion is improved, it is possible to sufficiently cope with increasing the gas filling pressure.
According to the method for manufacturing a pressure vessel according to claim 5 of the present application, in the finally obtained pressure vessel, the shape of the reinforcing material matches the shape of the vessel, so that the desired strength can be reliably achieved.
Further, according to the method for manufacturing a pressure vessel of claim 6 of the present application, the number of steps can be reduced.
[Brief description of the drawings]
FIG. 1 is a partial sectional view showing an embodiment of a pressure vessel according to the present invention.
FIG. 2 is a cross-sectional view illustrating an example of a reinforcing member.
FIG. 3 is a top view showing another example of a reinforcing member.
FIG. 4 is a partial cross-sectional view showing one step in a first example of a manufacturing method according to the method for manufacturing a pressure vessel of the present invention.
FIG. 5 is a view schematically showing one step in a method for manufacturing a pressure vessel.
FIG. 6 is a partial cross-sectional view showing one step in a second example of the manufacturing method according to the method for manufacturing a pressure vessel of the present invention.
FIG. 7 is a partial sectional view showing an example of a conventional pressure vessel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressure container 2 Container main body 3 Fiber reinforced resin layer 4 Straight body part 5a, 5b Dome part 7a, 7b Reinforcement material 15 Prepreg 21 Reinforcement fiber 22 Circular fabric

Claims (6)

直胴部とこの直胴部の両端を塞ぐ半球状のドーム部とからなる容器本体上に、強化繊維束を有する繊維強化樹脂層が形成された圧力容器において、
前記ドーム部と前記繊維強化樹脂層との間に、補強材が備えられたことを特徴とする圧力容器。
In a pressure vessel in which a fiber-reinforced resin layer having a reinforcing fiber bundle is formed on a container body comprising a straight body portion and a hemispherical dome portion closing both ends of the straight body portion,
A pressure vessel, wherein a reinforcing material is provided between the dome portion and the fiber reinforced resin layer.
前記補強材が、繊維強化樹脂からなることを特徴とする請求項1に記載の圧力容器。The pressure vessel according to claim 1, wherein the reinforcing member is made of a fiber reinforced resin. 前記補強材が、強化繊維を製織した織物であることを特徴とする請求項1に記載の圧力容器。The pressure vessel according to claim 1, wherein the reinforcing material is a woven fabric obtained by weaving reinforcing fibers. 容器本体が金属からなることを特徴とする請求項1〜3のいずれかに記載の圧力容器。The pressure vessel according to any one of claims 1 to 3, wherein the vessel body is made of metal. 直胴部とこの直胴部の両端を塞ぐ半球状のドーム部とからなる容器本体上に繊維強化樹脂層を形成させる圧力容器の製造方法において、
ドーム部上に補強材を取り付ける工程と、容器本体および補強材の上に樹脂を含浸した強化繊維束を巻き付ける工程と、加熱して樹脂を硬化させる工程とを有することを特徴とする圧力容器の製造方法。
In a method for manufacturing a pressure vessel, a fiber-reinforced resin layer is formed on a container body comprising a straight body portion and a hemispherical dome portion closing both ends of the straight body portion,
A pressure vessel comprising: a step of attaching a reinforcing material on the dome portion; a step of winding a reinforcing fiber bundle impregnated with a resin on the container body and the reinforcing material; and a step of heating and curing the resin. Production method.
直胴部とこの直胴部の両端を塞ぐ半球状のドーム部とからなる容器本体上に繊維強化樹脂層を形成させる圧力容器の製造方法において、
ドーム部上にプリプレグまたは樹脂を含浸していない強化繊維織物を付与する工程と、容器本体およびプリプレグまたは樹脂を含浸していない強化繊維織物の上に樹脂を含浸した強化繊維束を巻き付ける工程と、加熱して樹脂を硬化させる工程とを有することを特徴とする圧力容器の製造方法。
In a method for manufacturing a pressure vessel, a fiber-reinforced resin layer is formed on a container body comprising a straight body portion and a hemispherical dome portion closing both ends of the straight body portion,
A step of providing a reinforced fiber fabric not impregnated with a prepreg or a resin on the dome portion, and a step of winding a reinforcing fiber bundle impregnated with the resin on the container body and the reinforced fiber fabric not impregnated with the prepreg or the resin, Heating the resin to cure the resin.
JP2003057038A 2003-03-04 2003-03-04 Pressure container, and method for manufacturing the same Pending JP2004263827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057038A JP2004263827A (en) 2003-03-04 2003-03-04 Pressure container, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057038A JP2004263827A (en) 2003-03-04 2003-03-04 Pressure container, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004263827A true JP2004263827A (en) 2004-09-24
JP2004263827A5 JP2004263827A5 (en) 2006-04-20

Family

ID=33120554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057038A Pending JP2004263827A (en) 2003-03-04 2003-03-04 Pressure container, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004263827A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172028A (en) * 2003-12-08 2005-06-30 Murata Mach Ltd Pressure container
KR100746218B1 (en) 2006-12-12 2007-08-03 고영완 Manufacture apparatus of gas container and manufacture method thereof
JP2010236614A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Composite container and method of manufacturing the same
WO2015078555A1 (en) * 2013-11-29 2015-06-04 Rehau Ag + Co Method for producing a pressure accumulator, and pressure accumulator
JP2015158243A (en) * 2014-02-24 2015-09-03 株式会社日本製鋼所 hydrogen gas accumulator
JPWO2016020972A1 (en) * 2014-08-04 2017-05-25 日産自動車株式会社 High-pressure tank and high-pressure tank manufacturing method
JP2017110669A (en) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 Tank manufacturing method and tank
KR101782821B1 (en) 2016-10-12 2017-09-28 주식회사 대흥정공 An lpg composite fule tank for a vehicle
JP2017215001A (en) * 2016-06-01 2017-12-07 サムテック株式会社 Composite container
RU2708751C1 (en) * 2018-08-09 2019-12-11 Тойота Дзидося Кабусики Кайся High-pressure reservoir and method of its production
EP3872386A4 (en) * 2018-10-23 2022-07-27 Yachiyo Industry Co., Ltd. Pressure vessel
WO2023096238A1 (en) * 2021-11-25 2023-06-01 롯데케미칼 주식회사 High-pressure vessel having impact-resistant stiffener member

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172028A (en) * 2003-12-08 2005-06-30 Murata Mach Ltd Pressure container
KR100746218B1 (en) 2006-12-12 2007-08-03 고영완 Manufacture apparatus of gas container and manufacture method thereof
JP2010236614A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Composite container and method of manufacturing the same
US9956712B2 (en) 2013-11-29 2018-05-01 Rehau Ag+Co Method for producing a pressure accumulator, and pressure accumulator
WO2015078555A1 (en) * 2013-11-29 2015-06-04 Rehau Ag + Co Method for producing a pressure accumulator, and pressure accumulator
CN105793019A (en) * 2013-11-29 2016-07-20 瑞好股份公司 Method for producing a pressure accumulator, and pressure accumulator
JP2015158243A (en) * 2014-02-24 2015-09-03 株式会社日本製鋼所 hydrogen gas accumulator
JPWO2016020972A1 (en) * 2014-08-04 2017-05-25 日産自動車株式会社 High-pressure tank and high-pressure tank manufacturing method
JP2017110669A (en) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 Tank manufacturing method and tank
JP2017215001A (en) * 2016-06-01 2017-12-07 サムテック株式会社 Composite container
KR101782821B1 (en) 2016-10-12 2017-09-28 주식회사 대흥정공 An lpg composite fule tank for a vehicle
RU2708751C1 (en) * 2018-08-09 2019-12-11 Тойота Дзидося Кабусики Кайся High-pressure reservoir and method of its production
EP3608580A1 (en) 2018-08-09 2020-02-12 Toyota Jidosha Kabushiki Kaisha Pressure vessel and manufacturing method thereof
CN110822280A (en) * 2018-08-09 2020-02-21 丰田自动车株式会社 Pressure vessel and method for manufacturing the same
CN110822280B (en) * 2018-08-09 2022-01-11 丰田自动车株式会社 Pressure vessel and method for manufacturing the same
US11421824B2 (en) 2018-08-09 2022-08-23 Toyota Jidosha Kabushiki Kaisha Pressure vessel and manufacturing method thereof
EP3872386A4 (en) * 2018-10-23 2022-07-27 Yachiyo Industry Co., Ltd. Pressure vessel
WO2023096238A1 (en) * 2021-11-25 2023-06-01 롯데케미칼 주식회사 High-pressure vessel having impact-resistant stiffener member

Similar Documents

Publication Publication Date Title
US11162638B1 (en) Polar cap-reinforced pressure vessel
JP5238577B2 (en) Composite container and method for manufacturing composite container
AU2002318781B2 (en) Fiber reinforced thermoplastic pressure vessels
US8074826B2 (en) Damage and leakage barrier in all-composite pressure vessels and storage tanks
JP3527737B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
JP2004263827A (en) Pressure container, and method for manufacturing the same
JP3534743B1 (en) High-pressure tank using high-rigidity fiber and method for manufacturing the same
JP7207103B2 (en) High pressure tank and its manufacturing method
US11098851B2 (en) High-pressure tank and attachment structure thereof
JP2012042032A (en) High pressure gas tank, its manufacturing method and manufacturing device
US10422477B2 (en) Composite vessel assembly and method of manufacture
CN114909598A (en) High pressure vessel
JP2005214271A (en) Fiber reinforced pressure vessel
JP6958326B2 (en) How to manufacture high pressure tank
JP2006300140A (en) Method of manufacturing high-pressure gas storage vessel and high-pressure gas storage vessel
US20200247070A1 (en) High-pressure tank and method of manufacturing the same
JP2005113971A (en) Liner for pressure resistant container
JP2010249147A (en) Frp tank and method for manufacturing the same
CN115992928A (en) High-pressure tank and method for manufacturing high-pressure tank
US20210270419A1 (en) High-pressure tank and manufacturing method of high-pressure tank
US20190247978A1 (en) Manufacturing method for high pressure tank
JP2004245348A (en) Pressure container
JP2008249021A (en) Pressure vessel and its manufacturing method
CN114556009A (en) Method for producing a pressure vessel and pressure vessel
LU500634B1 (en) Pressure vessel with optimized outer composite structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203