JP2004262845A - Comprehensive and environmentally compatible method for producing ester - Google Patents

Comprehensive and environmentally compatible method for producing ester Download PDF

Info

Publication number
JP2004262845A
JP2004262845A JP2003055044A JP2003055044A JP2004262845A JP 2004262845 A JP2004262845 A JP 2004262845A JP 2003055044 A JP2003055044 A JP 2003055044A JP 2003055044 A JP2003055044 A JP 2003055044A JP 2004262845 A JP2004262845 A JP 2004262845A
Authority
JP
Japan
Prior art keywords
reaction
acid
ester
carbon dioxide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055044A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshida
真昭 葭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003055044A priority Critical patent/JP2004262845A/en
Publication of JP2004262845A publication Critical patent/JP2004262845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an environmentally compatible method for producing an ester using no water nor an organic solvent in a reaction and also in an isolation of a product. <P>SOLUTION: The reaction comprises removing water formed in a reaction of a carboxylic acid and an alcohol in the presence of an acid catalyst by using a high density gaseous carbon dioxide or carbon dioxide at a supercritical state, consequently separating an unconverted raw material, the ester and the catalyst by using a high density gaseous carbon dioxide or carbon dioxide at a supercritical state. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、反応から生成物の単離に至るまで、有機溶媒も水も用いない、総合的な環境調和型のエステル製造方法に関する。
【0002】
【従来の技術】
20世紀、「化学」は人類の豊かな暮らしに多大の貢献をしてきた。このときのものづくりの価値観は、より性能の良いものをより安価に大量にということであったが、地球環境問題をはじめさまざまな弊害があらわれた。
【0003】
21世紀になった今日、人類の「持続可能な発展」を目指して、そのパラダイムシフトが起ころうとしている。グリーンケミストリーがその一つで、使用後の廃棄まで製造時から考慮に入れる環境に優しいものづくりである(例えば、非特許文献1参照)。
【0004】
エステル化は有機化学反応の中で、最も基本的な反応のひとつである。エステル化方法にはいくつかあるが、カルボン酸を酸塩化物や無水物などで活性化してアルコールと反応する方法は、反応効率が非常によい方法であるが、多量の廃棄物が出ることから、グリーンケミストリーの観点からは好ましくない。カルボン酸とアルコールの脱水縮合による方法は好ましいが、反応性が低い上に生成する水による加水分解反応との平衡反応であるので反応は完結し難く、種々工夫がなされている。
【0005】
平衡を生成系に傾けるにはカルボン酸かアルコールを大過剰に用いたり、生成する水やエステルを反応系外に出すなどが行われる(例えば、特許文献1参照)。
【0006】
反応性の向上には多くの触媒が検討されているが、最近ジフェニルアンモニウムトリフラートを用いたものや、ハフニウム(VI)化合物を触媒に用いたもの(例えば、非特許文献2参照)は、カルボン酸が効率よく活性化され、カルボン酸とアルコールとを1:1で反応してもエステルを高収率で与えることが開示された(例えば、特許文献2、非特許文献3参照)。
【0007】
原料を1:1に用いることからアトムエフィシェンシーの観点から優れているが、原料と同量の有機溶媒を用いて反応し、反応後はクロマトグラフィーなどでまた多くの有機溶媒を用いている。有機溶媒は毒性、引火性があるばかりか、廃棄には結局焼却処分となり、有害物質の新たな発生や多量の二酸化炭素排出となる。また、水に溶ける酸触媒を用いた場合には、反応後、触媒分離のために水洗いをするので、廃水処理が必要となる。
【0008】
金属触媒を用いた場合、生成物との分離は重要なことであるが、反応後のワークアップに超臨界流体抽出技術を利用したものがある。均一触媒反応において反応後、超臨界エタンなどを用いて有機物を抽出し、貴金属のRhやPd触媒を分離する方法が開示されているが、生成物は混合物のままで単離はされていない(例えば、特許文献3、4参照)。
【0009】
【特許文献1】特開平06−287162号公報
【特許文献2】特開2002−121170号公報
【特許文献3】特開昭55−20790号公報
【特許文献4】特開昭56−21651号公報
【非特許文献1】「Green Chemistry: Theory and Practice」、Oxford University Press, 1998
【非特許文献2】Tetrahedron Lett., 41, 5249 (2000)
【非特許文献3】Science, 290, 1140 (2000)
【0010】
【発明が解決しようとする課題】
近年、環境調和型反応が開発されているが、それらは単位反応のみの一面的な環境評価であり、反応から、反応後のワークアップ、生成物の単離まで、総合的に環境を配慮した製造システムの検討はなされていない。
【0011】
本発明の課題は、反応から生成物の単離まで有機溶媒や水を用いない、グリーンケミストリーの観点に立った、総合的な環境調和型エステル製造方法を提供するものである。
【0012】
【課題を解決するための手段】
本発明者は、総合的な環境調和型のエステル製造方法について鋭意研究の結果、本発明を完成するに至った。
【0013】
すなわち、本発明に係る請求項1記載のエステルの製造方法は、酸触媒下、カルボン酸とアルコールとの反応で生成する水を、高密度の気体状又は超臨界状態の二酸化炭素で除去することを特徴とする。
【0014】
請求項2記載のエステルの製造方法は、酸触媒がプロトン酸であることを特徴とする請求項1に記載のエステルの製造方法である。
【0015】
請求項3記載のエステルの製造方法は、エステル化反応に引き続き、未反応の原料とエステル及び触媒を、高密度の気体状又は超臨界状態の二酸化炭素で分離することを特徴とする請求項1又は2に記載のエステルの製造方法である。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0017】
本発明では、高密度の気体状又は超臨界状態の二酸化炭素、すなわち2〜35MPaの二酸化炭素を溶媒として使用することにより、生成するエステルが高密度の気体状又は超臨界状態の二酸化炭素に完全には溶解せずに液相を形成するため、生成した水がエステルの液相から高密度の気体状又は超臨界状態の二酸化炭素に拡散し、効率よく反応することに特徴がある。
【0018】
本発明では、この特徴をさらに効果的にするために、反応で発生する水を高密度の気体状又は超臨界状態の二酸化炭素で連続的に抽出することを行い、カルボン酸とアルコールとのエステル化反応平衡を生成系に傾け、エステルの収率向上を果たしている。
【0019】
多くの物質は溶媒に対していくらかの溶解度を持っているが、それは温度に依存する。超臨界流体では温度と圧力により物質の溶解度を変化させることができるので、天然物抽出に多く用いられてきた。
【0020】
本発明では、水やアルコール、カルボン酸、エステル、触媒の超臨界二酸化炭素への溶解度が、温度、圧力を変えると大幅に異なることに注目して、反応時に反応系から生成する水の抽出、反応に引き続き、反応容器からエステルと未反応のアルコールとを超臨界二酸化炭素で抽出した。このとき、図3の反応システム模式図のような隣接する抽出容器の温度条件を、反応容器の温度条件と異なるようにセットすることで、反応容器には触媒だけ残し、抽出容器には純粋なエステルが蓄積され、トラップには水とアルコールが回収される。ここでは水とアルコールの分離はしなかったが、もう一つ抽出容器を追加することで分離も可能である。
【0021】
一般に、反応後のワークアップは生成物の単離までに、水洗や有機溶媒による洗浄、蒸留やクロマトグラフィーなど多くの有機溶媒や作業工程を必要とするのに対して、本発明では反応に引き続く抽出工程のみで、有機溶媒も水も必要なく、生成物を単離できることから、簡便で、エネルギー的にも環境的にも経済的にもメリットの高い製造方法である。さらに、触媒がリサイクルできることから、連続反応にすることも可能である。
【0022】
本発明では、高密度の気体状又は超臨界状態の二酸化炭素を反応媒体や抽出媒体に用いているが、窒素や低級炭化水素を用いることも可能だが、窒素では二酸化炭素を用いたときと同じ温度、圧力条件では密度が低く、適当な溶解度を得にくい。低級炭化水素は引火性があり、グリーンケミストリーの観点から二酸化炭素が推奨される。
【0023】
本発明において使用される酸触媒としては、プロトン酸としてヘテロポリ酸、酸性イオン交換樹脂、p−トルエンスルホン酸、Nafion NR−50、Nafion SAC−13、硫酸化ジルコニア、さらにMontmorillonite K−10、ゼオライトなどが挙げられるが、ヘテロポリ酸が好ましく、なかでも12−タングストリン酸が特に好ましい。
【0024】
本発明に用いられるカルボン酸としては、例えば、アクリル酸、メタクリル酸、プロピオン酸、フマル酸、マレイン酸、安息香酸、フェニル酪酸、フタル酸、テレフタル酸、ヘキサヒドロフタル酸、マロン酸、ブテノン酸、コハク酸、酪酸、ペンタン酸、シクロヘキサンカルボン酸、アジピン酸、ステアリン酸、オキサリン酸、サリチル酸、ラウリン酸、ブテン酸、ペンテン酸などの炭素数3〜20の直鎖状、分岐鎖状または芳香族カルボン酸が好ましく例示される。
【0025】
本発明に用いられるアルコールとしては、例えば、メタノール、エタノール、プロパノール、2−メチルプロパノール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、2−エチルヘキサノール、デカノール、ドデカノール、ステアリルアルコール等の脂肪族一価アルコール類、シクロヘキサノール等の脂環式一価アルコール類、ベンジルアルコール等の芳香族一価アルコール類、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール、ポリビニルアルコール等の多価アルコールを挙げることができる。
【0026】
【実施例】
以下、本発明の実施例について説明するが、かかる実施例によって本発明が限定されるものではない。
【0027】
実施例1 <触媒検討>
ステンレス製50mlオートクレーブに4−フェニル酪酸(0.3296 g,2.01 mmol)、1−オクタノール(0.26 g,2.00 mmol)、12−タングストリン酸n水和物(H[PW1240]nHO)(0.0208 g,0.30 mol%; n=30として)あるいは他の触媒(p−トルエンスルホン酸は0.3 mol%、他の個体酸触媒は0.02 g)を入れ、常圧で液化二酸化炭素を18.37 g加えた。 湯浴にて90℃に加熱すると、超臨界状態(8.8 MPa)となり1時間撹拌した。
【0028】
反応後、オートクレーブを氷浴で十分冷やして圧力を下げてからガスを抜き、オートクレーブを開けた。オートクレーブ内にクロロホルムを加えて生成物を溶解し、触媒を濾過して除去したのち、50 mlにメスアップしその内5mlをとり、クマリンを内部標準としてFT−NMRによって定量した。
【0029】
この結果を表1に示す。
【0030】
【表1】

Figure 2004262845
【0031】
実施例2 <触媒量検討>
ステンレス製50 mlオートクレーブに4−フェニル酪酸(0.3296 g,2.01 mmol)、1−オクタノール(0.26 g,2.00 mmol)を加え、触媒に12−タングストリン酸を用いて90℃あるいは50℃で9MPa 、1時間反応し、実施例1と同様な操作を行い、触媒量と収率の関係を検討した。
【0032】
この結果を図1に示す。
【0033】
実施例3 <反応温度検討>
ステンレス製50 mlオートクレーブに4−フェニル酪酸(0.3296 g,2.01 mmol)、1−オクタノール(0.26 g,2.00 mmol)を加え、触媒に12−タングストリン酸を用いて9MPa 、1時間反応し、実施例1と同様な操作を行い、反応温度と収率の関係を検討した。
【0034】
この結果を図2に示す。
【0035】
実施例4 <反応基質検討>
ステンレス製50 mlオートクレーブにカルボン酸(2.01 mmol)、アルコール(2.00 mmol)を加え、触媒に12−タングストリン酸を用いて100℃で10 MPa 、1時間反応し、実施例1と同様な操作を行い、収率を算出した。
【0036】
この結果を表2に示す。
【0037】
【表2】
Figure 2004262845
【0038】
実施例5 <反応からエステル単離まで超臨界二酸化炭素利用>
図3のような反応システムのうち、ステンレス製50 mlの反応容器に4−フェニル酪酸(1.6478 g,10.03 mmol)、1−オクタノール(2.40 ml,15.24 mmol)、12−タングストリン酸(0.1029 g,0.30 mol%)を入れて装置に取り付けた。抽出容器は重さをはかり(618.20 g)、空のままで反応容器と同様に取り付けた。反応容器、抽出容器ともに100℃にしてからポンプで二酸化炭素を送入し、圧力8.8 MPa、流量34.3 g/hになってから反応開始とし、3時間撹拌した。反応終了後ポンプの出力を上げ、反応容器を100℃から50℃に冷却し、抽出容器は100℃のままで、圧力9.8 MPa、流量114.3 g/hになったところで抽出を開始し、約8時間抽出した。
【0039】
抽出終了後、圧力を常圧に戻し、反応容器と抽出容器を反応装置から外し、抽出容器の抽出後の重量を量ったところ620.66gであり、抽出前に比べて2.46g増えた。これはガスクロマトグラフィーで分析し、純度99.6%のエステルであることを確認した。これは93%の収率に相当する。反応装置から放出されるガスをアセトンでトラップしたものをFT−NMRで定量したところ、エステルが7%、1−オクタノールが20%確認された。
【0040】
実施例6 <触媒の再利用>
実施例5で反応・抽出が終わった反応容器に、4−フェニル酪酸(0.3284 g,2.00 mmol)、1−オクタノール(0.48 ml,3.05 mmol)を加え、常圧で液化二酸化炭素を14.79 g入れて100℃に加熱し、圧力9.0 MPaで1時間バッチ式の反応をおこなった。
【0041】
反応混合物をFT−NMRによって定量したところ、エステルは94%、4−フェニル酪酸は6%、1−オクタノールは31%であり、触媒がリサイクルできることを確認した。
【0042】
【発明の効果】
本発明によれば、反応から生成物の単離に至るまで、有機溶媒も水も用いない、総合的な環境調和型のエステル製造方法を提供することができる。
【図面の簡単な説明】
【図1】12−タングストリン酸の量を変えたときのエステル収率との関係図
【図2】反応温度とエステル収率との関係図
【図3】反応システムの模式図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a comprehensive environment-friendly ester production method that does not use an organic solvent or water from the reaction to the isolation of a product.
[0002]
[Prior art]
In the 20th century, "chemistry" has made a great contribution to the affluent life of mankind. At this time, the value of manufacturing was to produce a lot of better products at lower cost and in large quantities, but various adverse effects such as global environmental problems appeared.
[0003]
Today, in the 21st century, a paradigm shift is about to take place with the aim of "sustainable development" for humankind. One of these is green chemistry, which is an environmentally friendly manufacturing that takes into consideration from the time of manufacture until disposal after use (for example, see Non-Patent Document 1).
[0004]
Esterification is one of the most fundamental organic chemical reactions. Although there are several esterification methods, the method of activating a carboxylic acid with an acid chloride or anhydride and reacting with an alcohol is a method with very high reaction efficiency, but a large amount of waste is generated. From the viewpoint of green chemistry. Although a method by dehydration condensation of carboxylic acid and alcohol is preferable, the reaction is difficult to complete because it is an equilibrium reaction with a hydrolysis reaction with generated water in addition to low reactivity, and various measures have been taken.
[0005]
In order to shift the equilibrium toward the production system, a large excess of carboxylic acid or alcohol is used, or the produced water or ester is taken out of the reaction system (for example, see Patent Document 1).
[0006]
Many catalysts have been studied to improve the reactivity. Recently, those using diphenylammonium triflate and those using a hafnium (VI) compound as a catalyst (for example, see Non-Patent Document 2) have been developed using carboxylic acid. Is efficiently activated, and gives a high yield of an ester even when a carboxylic acid and an alcohol are reacted at a ratio of 1: 1 (for example, see Patent Document 2 and Non-Patent Document 3).
[0007]
It is excellent from the viewpoint of atom efficiency because the raw material is used at a ratio of 1: 1. However, the reaction is performed using the same amount of organic solvent as the raw material, and after the reaction, many organic solvents are used again by chromatography and the like. . Organic solvents are not only toxic and flammable, but they are ultimately incinerated for disposal, generating new harmful substances and emitting large amounts of carbon dioxide. In addition, when an acid catalyst that is soluble in water is used, washing is performed after the reaction to separate the catalyst, so that wastewater treatment is required.
[0008]
When a metal catalyst is used, the separation from the product is important, but there are some that use supercritical fluid extraction technology for work-up after the reaction. A method is disclosed in which, after the reaction in a homogeneous catalytic reaction, organic substances are extracted using supercritical ethane or the like to separate the noble metal Rh or Pd catalyst, but the product is not isolated as a mixture ( For example, see Patent Documents 3 and 4.)
[0009]
[Patent Document 1] JP-A-06-287162 [Patent Document 2] JP-A-2002-121170 [Patent Document 3] JP-A-55-20790 [Patent Document 4] JP-A-56-21661 [Non-Patent Document 1] "Green Chemistry: Theory and Practice", Oxford University Press, 1998
[Non-Patent Document 2] Tetrahedron Lett. , 41, 5249 (2000)
[Non-Patent Document 3] Science, 290, 1140 (2000)
[0010]
[Problems to be solved by the invention]
In recent years, environmentally friendly reactions have been developed, but these are one-sided environmental evaluations of only unit reactions, and are comprehensively environmentally friendly from the reaction to the work-up after the reaction and isolation of products. No study of the manufacturing system has been made.
[0011]
An object of the present invention is to provide a comprehensive environmentally friendly ester production method from the viewpoint of green chemistry, which does not use an organic solvent or water from the reaction to the isolation of a product.
[0012]
[Means for Solving the Problems]
The present inventor has made extensive studies on a comprehensive environmentally conscious ester production method, and as a result, has completed the present invention.
[0013]
That is, in the method for producing an ester according to claim 1 of the present invention, water produced by a reaction between a carboxylic acid and an alcohol is removed with high-density gaseous or supercritical carbon dioxide under an acid catalyst. It is characterized by.
[0014]
The method for producing an ester according to claim 2 is the method for producing an ester according to claim 1, wherein the acid catalyst is a protonic acid.
[0015]
The method for producing an ester according to claim 3, wherein the unreacted raw material, the ester and the catalyst are separated by high-density gaseous or supercritical carbon dioxide following the esterification reaction. Or a method for producing an ester according to item 2.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0017]
In the present invention, by using high-density gaseous or supercritical carbon dioxide, that is, carbon dioxide of 2 to 35 MPa as a solvent, the produced ester is completely converted into high-density gaseous or supercritical carbon dioxide. Is formed in a liquid phase without dissolving in water, so that the produced water diffuses from the liquid phase of the ester to a high-density gaseous or supercritical carbon dioxide, and reacts efficiently.
[0018]
In the present invention, in order to make this feature more effective, the water generated in the reaction is continuously extracted with high-density gaseous or supercritical carbon dioxide to form an ester of carboxylic acid and alcohol. The reaction equilibrium is devoted to the production system to improve the ester yield.
[0019]
Many substances have some solubility in solvents, which is dependent on temperature. Supercritical fluids have been widely used for natural product extraction because their solubility can be changed by temperature and pressure.
[0020]
In the present invention, water and alcohol, carboxylic acid, ester, the solubility of the catalyst in supercritical carbon dioxide, the temperature, paying attention to the fact that changes significantly by changing the pressure, extraction of water generated from the reaction system during the reaction, Following the reaction, the ester and unreacted alcohol were extracted from the reaction vessel with supercritical carbon dioxide. At this time, by setting the temperature conditions of the adjacent extraction vessels different from the temperature conditions of the reaction vessels as shown in the schematic diagram of the reaction system in FIG. 3, only the catalyst is left in the reaction vessels and pure water is left in the extraction vessels. Esters accumulate and the trap collects water and alcohol. Here, water and alcohol were not separated, but separation can be performed by adding another extraction container.
[0021]
In general, workup after the reaction requires many organic solvents and working steps such as washing with water and an organic solvent, distillation and chromatography, until isolation of the product, whereas the present invention follows the reaction. Since the product can be isolated without the need for an organic solvent or water by only the extraction step, the production method is simple and has high merit in terms of energy, environment and economy. Furthermore, since the catalyst can be recycled, a continuous reaction can be performed.
[0022]
In the present invention, high-density gaseous or supercritical carbon dioxide is used for the reaction medium and the extraction medium, but nitrogen and lower hydrocarbons can be used, but nitrogen is the same as when carbon dioxide is used. Under temperature and pressure conditions, the density is low, and it is difficult to obtain appropriate solubility. Lower hydrocarbons are flammable, and carbon dioxide is recommended from the viewpoint of green chemistry.
[0023]
The acid catalyst used in the present invention includes, as a protonic acid, a heteropolyacid, an acidic ion exchange resin, p-toluenesulfonic acid, Nafion NR-50, Nafion SAC-13, sulfated zirconia, Montmorillonite K-10, zeolite, and the like. However, heteropoly acids are preferred, and 12-tungstophosphoric acid is particularly preferred.
[0024]
As the carboxylic acid used in the present invention, for example, acrylic acid, methacrylic acid, propionic acid, fumaric acid, maleic acid, benzoic acid, phenylbutyric acid, phthalic acid, terephthalic acid, hexahydrophthalic acid, malonic acid, butenonic acid, C3-C20 linear, branched or aromatic carboxylic acids such as succinic acid, butyric acid, pentanoic acid, cyclohexanecarboxylic acid, adipic acid, stearic acid, oxalic acid, salicylic acid, lauric acid, butenoic acid, and pentenoic acid Acids are preferably exemplified.
[0025]
Examples of the alcohol used in the present invention include aliphatic monohydric alcohols such as methanol, ethanol, propanol, 2-methylpropanol, butanol, hexanol, heptanol, octanol, 2-ethylhexanol, decanol, dodecanol and stearyl alcohol; Alicyclic monohydric alcohols such as cyclohexanol, aromatic monohydric alcohols such as benzyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, trimethylolethane, pentaerythritol, dipentaerythritol, sorbitol, Polyhydric alcohols such as polyvinyl alcohol can be exemplified.
[0026]
【Example】
Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.
[0027]
Example 1 <Examination of catalyst>
4-Phenylbutyric acid (0.3296 g, 2.01 mmol), 1-octanol (0.26 g, 2.00 mmol), 12-tungstophosphoric acid n-hydrate (H 3 [PW 12 O 40 ] nH 2 O) (0.0208 g, 0.30 mol%; n = 30) or another catalyst (0.3 mol% for p-toluenesulfonic acid, 0.1 mol for other solid acid catalyst). 02 g), and 18.37 g of liquefied carbon dioxide was added at normal pressure. When heated to 90 ° C. in a water bath, the mixture became supercritical (8.8 MPa) and was stirred for 1 hour.
[0028]
After the reaction, the autoclave was cooled sufficiently in an ice bath to reduce the pressure, then gas was released, and the autoclave was opened. Chloroform was added to the autoclave to dissolve the product, and the catalyst was removed by filtration. Thereafter, the volume was made up to 50 ml, 5 ml of which was taken, and quantified by FT-NMR using coumarin as an internal standard.
[0029]
Table 1 shows the results.
[0030]
[Table 1]
Figure 2004262845
[0031]
Example 2 <Examination of catalyst amount>
4-Phenylbutyric acid (0.3296 g, 2.01 mmol) and 1-octanol (0.26 g, 2.00 mmol) were added to a 50-ml stainless steel autoclave, and 90-gram catalyst was prepared using 12-tungstophosphoric acid. The reaction was carried out at 9 ° C. or 50 ° C. for 1 hour, and the same operation as in Example 1 was performed to examine the relationship between the amount of the catalyst and the yield.
[0032]
The result is shown in FIG.
[0033]
Example 3 <Study of reaction temperature>
4-Phenylbutyric acid (0.3296 g, 2.01 mmol) and 1-octanol (0.26 g, 2.00 mmol) were added to a 50 ml stainless steel autoclave, and 9 MPa using 12-tungstophosphoric acid as a catalyst. After reacting for 1 hour, the same operation as in Example 1 was performed, and the relationship between the reaction temperature and the yield was examined.
[0034]
The result is shown in FIG.
[0035]
Example 4 <Reaction substrate study>
Carboxylic acid (2.01 mmol) and alcohol (2.00 mmol) were added to a 50 ml stainless steel autoclave, and reacted at 10 ° C. for 1 hour at 100 ° C. using 12-tungstophosphoric acid as a catalyst. The same operation was performed to calculate the yield.
[0036]
Table 2 shows the results.
[0037]
[Table 2]
Figure 2004262845
[0038]
Example 5 <Utilization of supercritical carbon dioxide from reaction to isolation of ester>
In the reaction system as shown in FIG. 3, a 4-phenylbutyric acid (1.6478 g, 10.03 mmol), 1-octanol (2.40 ml, 15.24 mmol), 12 -Tungstophosphoric acid (0.1029 g, 0.30 mol%) was charged and attached to the apparatus. The extraction vessel was weighed (618.20 g) and mounted empty and similar to the reaction vessel. After the temperature of both the reaction vessel and the extraction vessel was raised to 100 ° C., carbon dioxide was fed by a pump, and the reaction was started when the pressure reached 8.8 MPa and the flow rate reached 34.3 g / h, and the mixture was stirred for 3 hours. After the completion of the reaction, the output of the pump was increased, the reaction vessel was cooled from 100 ° C. to 50 ° C., and the extraction vessel was started at a pressure of 9.8 MPa and a flow rate of 114.3 g / h with the extraction vessel kept at 100 ° C. And extracted for about 8 hours.
[0039]
After completion of the extraction, the pressure was returned to normal pressure, the reaction vessel and the extraction vessel were removed from the reactor, and the weight of the extraction vessel after extraction was 620.66 g, which was 2.46 g higher than before the extraction. . This was analyzed by gas chromatography to confirm that it was an ester having a purity of 99.6%. This corresponds to a 93% yield. When the gas released from the reactor was trapped with acetone and quantified by FT-NMR, 7% of the ester and 20% of 1-octanol were confirmed.
[0040]
Example 6 <Reuse of catalyst>
To the reaction vessel after the reaction and extraction in Example 5, 4-phenylbutyric acid (0.3284 g, 2.00 mmol) and 1-octanol (0.48 ml, 3.05 mmol) were added, and the mixture was added under normal pressure. 14.79 g of liquefied carbon dioxide was added, heated to 100 ° C., and a batch reaction was performed at a pressure of 9.0 MPa for 1 hour.
[0041]
When the reaction mixture was quantified by FT-NMR, ester was 94%, 4-phenylbutyric acid was 6%, and 1-octanol was 31%, confirming that the catalyst could be recycled.
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, from a reaction to isolation | separation of a product, the organic environmentally friendly ester production method which does not use an organic solvent and water can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the ester yield when the amount of 12-tungstophosphoric acid is changed. FIG. 2 is a diagram showing the relationship between the reaction temperature and the ester yield. FIG. 3 is a schematic diagram of the reaction system.

Claims (3)

酸触媒下、カルボン酸とアルコールとの反応で生成する水を、高密度の気体状又は超臨界状態の二酸化炭素で除去することを特徴とするエステルの製造方法。A method for producing an ester, comprising removing water produced by a reaction between a carboxylic acid and an alcohol under an acid catalyst with high-density gaseous or supercritical carbon dioxide. 酸触媒がプロトン酸であることを特徴とする請求項1に記載のエステルの製造方法。The method for producing an ester according to claim 1, wherein the acid catalyst is a protonic acid. エステル化反応に引き続き、未反応の原料とエステル及び触媒を、高密度の気体状又は超臨界状態の二酸化炭素で分離することを特徴とする請求項1又は2に記載のエステルの製造方法。The method for producing an ester according to claim 1, wherein, after the esterification reaction, the unreacted raw material, the ester, and the catalyst are separated with high-density gaseous or supercritical carbon dioxide.
JP2003055044A 2003-02-28 2003-02-28 Comprehensive and environmentally compatible method for producing ester Pending JP2004262845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055044A JP2004262845A (en) 2003-02-28 2003-02-28 Comprehensive and environmentally compatible method for producing ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055044A JP2004262845A (en) 2003-02-28 2003-02-28 Comprehensive and environmentally compatible method for producing ester

Publications (1)

Publication Number Publication Date
JP2004262845A true JP2004262845A (en) 2004-09-24

Family

ID=33119163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055044A Pending JP2004262845A (en) 2003-02-28 2003-02-28 Comprehensive and environmentally compatible method for producing ester

Country Status (1)

Country Link
JP (1) JP2004262845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220861A (en) * 2005-02-09 2006-08-24 Fuji Photo Film Co Ltd Photosensitive composition, photosensitive film, permanent pattern, and forming method thereof
CN113402386A (en) * 2021-05-28 2021-09-17 武汉亿科德精细化工有限公司 Synthesis method of neopentyl glycol dibenzoate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220861A (en) * 2005-02-09 2006-08-24 Fuji Photo Film Co Ltd Photosensitive composition, photosensitive film, permanent pattern, and forming method thereof
JP4494243B2 (en) * 2005-02-09 2010-06-30 富士フイルム株式会社 Photosensitive composition and photosensitive film, and permanent pattern and method for forming the same
CN113402386A (en) * 2021-05-28 2021-09-17 武汉亿科德精细化工有限公司 Synthesis method of neopentyl glycol dibenzoate
CN113402386B (en) * 2021-05-28 2024-05-03 武汉亿科德精细化工有限公司 Synthesis method of neopentyl glycol dibenzoate

Similar Documents

Publication Publication Date Title
Mizushima et al. Palladium-catalysed carbonylation of aryl halides in ionic liquid media: high catalyst stability and significant rate-enhancement in alkoxycarbonylation
CN101238091B (en) Production of di-(2-ethylhexyl) terephthalate
TW482757B (en) Method for producing methyl methacrylate
RU2645214C2 (en) Method of producing methacrolein and its air-conditioning / dehydration for direct oxidative etherification
Sobhani et al. Nano n-propylsulfonated γ-Fe 2 O 3 (NPS-γ-Fe 2 O 3) as a magnetically recyclable heterogeneous catalyst for the efficient synthesis of 2-indolyl-1-nitroalkanes and bis (indolyl) methanes
KR102263549B1 (en) Improved (meth)acrylic acid production process
JP4831394B2 (en) Method for producing carboxylic acid compound
JP2008127282A (en) Method for producing 2,5-furandicarboxylic diester
TW201229025A (en) A process for the production of methacrylic acid and its derivatives and polymers produced therefrom
CN105408299B (en) Pass through the method for the esterification continuous production light acrylate of thick ester level acrylic acid
CN101830821A (en) Chemical synthesis method of N-alcoxyloxalyl alanine ester
Cadierno et al. Microwave-assisted InCl3-catalyzed Meyer–Schuster rearrangement of propargylic aryl carbinols in aqueous media: a green approach to α, β-unsaturated carbonyl compounds
TW201323402A (en) Process for preparing alpha-hydroxycarboxylic esters
JP2004262845A (en) Comprehensive and environmentally compatible method for producing ester
Cheng et al. The Pd (OAc) 2-catalyzed homocoupling of arylboronic acids in water and ionic liquid
WO2023108799A1 (en) Co-production process method for synthesizing methyl propionate and other polyesters and alcohols from methanol and co
CN109942358A (en) A kind of solid acid catalysis low-boiling point alcohol continuous esterification technique
Peng et al. Palladium catalyzed carbonylation of benzyl chlorides: Additive-controlled divergent synthesis of benzyl arylacetates and arylacetic acids
CN104311394B (en) A kind of method of phenol deoxidation
CN101973858A (en) Method for synthesizing tert-butylated hydroxyanisole through solid-liquid-phase reaction
CN114230450B (en) Methyl propionate synthesis process device utilizing coupling hydrogenation reaction rectifying tower
CN113461512B (en) Preparation method of 3-hydroxypropionic acid
WO2015095999A1 (en) Method for preparing polyoxymethylene dimethyl ether carbonyl compound and methyl methoxyacetate
JP2005336121A (en) METHOD FOR PRODUCING 3,5-DI-tert-BUTYL-4-HYDROXYBENZOIC ACID
CN209778706U (en) Continuous system for catalyzing esterification of low-boiling-point alcohol by solid acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110