JP2004261839A - Multiple electrode gas shielded arc welding method - Google Patents

Multiple electrode gas shielded arc welding method Download PDF

Info

Publication number
JP2004261839A
JP2004261839A JP2003054491A JP2003054491A JP2004261839A JP 2004261839 A JP2004261839 A JP 2004261839A JP 2003054491 A JP2003054491 A JP 2003054491A JP 2003054491 A JP2003054491 A JP 2003054491A JP 2004261839 A JP2004261839 A JP 2004261839A
Authority
JP
Japan
Prior art keywords
electrode
welding
wire
current
trailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054491A
Other languages
Japanese (ja)
Other versions
JP3759114B2 (en
Inventor
Masahiro Honma
正浩 本間
Shigeo Nagaoka
茂雄 長岡
Hiroyuki Kawasaki
浩之 川崎
Takuya Kishimoto
卓也 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003054491A priority Critical patent/JP3759114B2/en
Priority to KR1020040013601A priority patent/KR100590351B1/en
Publication of JP2004261839A publication Critical patent/JP2004261839A/en
Application granted granted Critical
Publication of JP3759114B2 publication Critical patent/JP3759114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • B23K9/1735Arc welding or cutting making use of shielding gas and of a consumable electrode making use of several electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple electrode gas shielded arc welding with which even in the case of generating the outer disturbance ((1) excessive gap in a fillet welding part, (2) excessive coated film thickness in a shop primer, (3) variation etc., of current, voltage in a shop) in a high speed welding having ≥ 200 cm/min welding speed, the welding workability is very stabilized without needing the correction. <P>SOLUTION: A wire including flux for gas shielded arc welding is used as a preceding electrode 3 and a following electrode 5 and the distance between the preceding electrode and the following electrode, is set to 15-50 mm, and a filler wire 4 is inserted into molten metal 8 between the preceding electrode and the following electrode, and while supplying a positive current in the filler wire 4 (the filler wire is a negative electrode to the molten metal), the welding performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はフラックス入りワイヤを使用した多電極ガスシールドアーク溶接方法に関し、特に多電極1プール溶接施工(2電極で1つの溶接池を形成するガスシールドアーク溶接法)において、磁気吹きの発生によりスパッタが多発し、ビード形状が悪化することを防止できる多電極ガスシールドアーク溶接方法に関する。
【0002】
【従来の技術】
従来、造船又は橋梁の水平すみ肉溶接の高能率化を図るために、多電極ガスシールドアーク溶接方法が検討されてきた。多電極ガスシールドアーク溶接方法の1プール溶接施工としては次のような技術が提案されている。
【0003】
特開平6−234075号公報(特許文献1)には、アルカリ金属酸化物の1種以上、アルカリ金属酸化物を除く酸化物、Mg、Si及びMnを含有する所定の組成のフラックス入りワイヤを先行電極及び後行電極として使用し、両電極間を15乃至50mmにしてガスシールドアーク溶接を行う方法が開示されている。この従来方法により、1m/分以上の高速溶接において、作業性が良好で且つ耐気孔性が優れたガスシールドアーク水平すみ肉溶接方法が得られるとされている。
【0004】
また、特開平6−312267号公報(特許文献2)には、先行電極と後行電極の両方、又は一方に、溶着金属の拡散性水素量が15.0乃至40.0ミリリットル/100gであるルチール系フラックス入りワイヤを使用し、両電極の極間距離を20乃至50mmとし、実質的に1プールを形成して水平すみ肉溶接を行なう方法が開示されている。この方法により、造船、橋梁等の分野で多用されているプライマー塗装鋼板の水平すみ肉溶接において、特に高能率で耐ピット性に優れた高速水平すみ肉ガスシールドアーク溶接法が得られるとされる。
【0005】
更に、特開平7−256455号公報(特許文献3)には、直径が1.2乃至2.0mmの溶接ワイヤを使用し、第1電極と第2電極との間隔を15乃至40mm、第2電極と第3電極との間隔を70mm以上とし、各電極に750A以下の溶接電流を供給し、第1及び第2電極より第1の溶融池を形成し、第3電極により第2の溶融池を形成して、2m/分以上の溶接速度で溶接を実施する方法が開示されている。この方法により、特殊な大容量溶接機を必要とせず、ビード外観・形状及びアーク安定性等の溶接作業性が優れ、且つ、ピット、ブローホール及び融合不良等の溶接欠陥が発生しないガスシールドアーク溶接方法が提供されるとされている。
【0006】
特開平9−277042号公報(特許文献4)には、フラックスコアードワイヤーを使用して、2電極にて行う水平すみ肉溶接方法において、後行電極の溶接電流を先行電極の0.8乃至0.9倍の範囲になるようにすると共に、両電極間の距離を、10乃至100mmの範囲内となるようにし、また先行電極の後退角及び後行電極の前進角が夫々5乃至10°の範囲内となるようにすみ肉溶接する方法が開示されている。この方法により、湯流れの無い安定した湯溜りが形成されて、欠陥の無いビードが得られ、溶接速度を高速化した場合でも、良好なビードが得られるとされている。
【0007】
更に、特開平10−216943号公報(特許文献5)には、少なくとも後行電極をルチール系フラックス入りワイヤとするフラックス入りワイヤを使用して行う2電極1プール方式の水平すみ肉ガスシールドアーク溶接方法において、先行電極のワイヤ突き出し長さが後行電極の突き出し長さに対し、下記数式1を満足するように施工する方法が開示されている。この本発明により、溶接構造物の歪みを低減するために小脚長化した場合でも、溶接欠陥がなく、良好なビード形状が得られる小脚長高速水平すみ肉ガスシールドアーク溶接方法が得られる。
【0008】
【数1】
(WL1+5mm)<WL2≦45mm
但し、WL1=15乃至25mm
【0009】
特開2000−52033号公報(特許文献6)には、3電極以上の多電極アーク溶接において、最後部の電極3以外の電極1、2を異なる極性の直流電極の組み合わせで使用する方法が開示されている。そして、この方法により、最後部の電極のアークに影響を与える帰還電流値を小さくしアークの安定性が良く、且つビード形状の良好な多層溶接を可能とする多電極アーク溶接方法が得られるとしている。
【0010】
更に、特開2001−225168号公報(特許文献7)には、2本のワイヤを使用する消耗電極ガスシールドアーク溶接方法において、先行ワイヤ及び後行ワイヤにパルス電流を通電して先行ワイヤ及び後行ワイヤのアーク長をパルス周波数を変化させて溶接電流の平均値を増減させることによって制御を行なう溶接構造物における消耗電極ガスシールドアーク溶接方法が開示されている。この方法は、特に2電極消耗電極ガスシールドアーク溶接方法に関するものである。
【0011】
【特許文献1】
特開平6−234075号公報
【特許文献2】
特開平6−312267号公報
【特許文献3】
特開平7−256455号公報
【特許文献4】
特開平9−277042号公報
【特許文献5】
特開平10−216943号公報
【特許文献6】
特開2000−52033号公報
【特許文献7】
特開2001−225168号公報
【0012】
【発明が解決しようとする課題】
しかしながら、上記の技術では実際の構造物の場合、各種の外乱要因(▲1▼すみ肉溶接部の過大ギャップ、▲2▼ショッププライマの過大塗布膜厚、▲3▼工場内での電流電圧変動等)により、これらの施工のポイントである湯溜り10(図2参照)の均一性且つ安定性が無くなり、その結果アーク不安定が生じて、スパッタ多発、ビード形状、外観及び揃いの悪化、アンダカットの多発等により、手直し溶接が増大している。特に、溶接速度150乃至200cm/分前後においてこの傾向が著しくなるので、溶接速度が大きくても、手直し比率が増大して結果的には溶接工数が大幅に増加するという不具合が生じている。
【0013】
本発明はかかる問題点に鑑みてなされたものであって、溶接速度が200cm/分以上の高速溶接において上述した外乱要因(▲1▼すみ肉溶接部の過大ギャップ、▲2▼ショッププライマの過大塗布膜厚、▲3▼工場内での電流電圧変動等)が生じても、溶接作業性が極めて安定し、手直しの必要がない多電極ガスシールドアーク溶接方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明に係る多電極ガスシールドアーク溶接方法は、ガスシールドアーク溶接用フラックス入りワイヤを先行電極及び後行電極として使用し、先行電極と後行電極との極間距離を15乃至50mmに設定し、フィラーワイヤを前記先行電極と後行電極との間の溶融金属中に挿入し、前記フィラーワイヤに正極性の電流(フィラーワイヤが溶融金属に対して負極性)を流しながら溶接することを特徴とする。
【0015】
この多電極ガスシールドアーク溶接方法において、例えば、前記フィラーワイヤがフラックス入りワイヤである。また、前記後行電極の更に後方に第3電極を前記後行電極と前記第3電極との間の極間距離が100mm以上となるように設けることが好ましい。更に、前記フィラーワイヤに流す電流が100A以上であることが好ましい。
【0016】
本発明者等は上記目的を達成するために鋭意研究を重ねた結果、従来から指摘されている先行電極と後行電極との間で形成される所謂湯溜りを安定化させればアークが安定化するという知見に加えて、更にスパッタの抑制、ビード形状、外観及び揃いの安定化並びにアンダカットを抑制できることを見出したものである。そこで、従来は湯溜りの安定化に対し、電極の前進後退角度、極間距離、電極の狙い位置、母材アースの取る位置、ワイヤ突き出し長さ等を調整していたのに対し、本発明では全く新規の着想の基に、湯溜りにフィラーワイヤを挿入し、且つ、そのフィラ−ワイヤに正極性の電流を流しながら溶接するものである。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態に係る多電極ガスシールドアーク溶接方法を示す平面図、図2はその溶融金属部を示す拡大縦断面図である。図1及び図2に示す溶接態様は、水平すみ肉溶接に関するものであるが、本発明はこの様な態様に限定されていないことは勿論である。被溶接材としての下板1が水平に設置され、立板2がこの下板1上に垂直に配置されている。この立板2と下板1との間の隅部を先行電極3,後行電極4及び第3電極6により、すみ肉溶接する。この場合に、先行電極3と後行電極5との間の溶融金属8に、フィラーワイヤ4が挿入されている。本実施形態においては、先行電極3と後行電極5との間の極間距離が15乃至50mmであり、後行電極5と第3電極6との間の極間距離が100mm以上である。また、フィラーワイヤ4は、フィラーワイヤ4が溶融金属8に対して負極性になるように給電され(正極性電流)、この給電電流は100A以上である。
【0018】
この水平すみ肉溶接において、先行電極3及び後行電極5により溶融金属8が形成され、この溶融金属8が凝固して、溶接金属7が形成される。溶融スラグ9は溶接金属7上に浮上する。なお、符号10は湯溜りを示す。
【0019】
次に、上述の数値限定の理由について説明する。
先行電極と後行電極との間の極間距離:15乃至50mm
本発明においては、先行電極と後行電極の極間が15乃至50mmであることが必須である。ここで、極間距離とは、各電極におけるワイヤ先端間の距離である。DC電源を用いて溶接を行う場合、磁気吹き及び1つの溶融池形成の点から先行電極及び後行電極の極間距離が問題となる。この極間距離が15mmよりも小さいと、先行電極、後行電極が共にアークが安定せず、ビード外観・形状が悪くなり、またスパッタの発生量が多くなる。一方、極間距離が50mmよりも大きいと、2電極で1つの溶融池を形成することが不可能となり、耐ピット性が悪くなる。従って、先行電極と後行電極の極間距離を15乃至50mmの範囲とする。なお、より好ましい範囲は、25乃至35mmである。
【0020】
フィラーワイヤ及びその極性:溶融池が正極性、フィラーワイヤーが負極性
本発明においては、フィラーワイヤ4を先行電極3と後行電極5との間に形成される溶融金属8(プール)に挿入することが最も重要な特徴である。そのフィラーワイヤ4としては、ソリッドワイヤ又はフラックス入りワイヤを適用できる。ソリッドワイヤの場合には従来のメッキありソリッドワイヤでもよく、また最近、適用範囲が拡大しているメッキ無しソリッドワイヤでも良い。特に成分は規定がなくJISZ3312に規定されるYGW11乃至YGW24の中から適切なものを選択できる。フラックス入りワイヤの場合には成分の調整が可能であり、先行電極3に使用するワイヤの成分と後行電極に使用するワイヤの成分を変えたりしても良い。なお、フラックス入りワイヤの中でも所謂メタル系と称される金属粉を主体とするフラックスを充填したワイヤが好ましい。フィラーワイヤは主に抵抗加熱により溶融するためスラグ形成剤のような融点の高い粉体は解け残りが懸念されるため、メタル系であれば殆ど金属粉末であるため容易に溶融していく。
【0021】
いずれにしても、湯溜りの安定化にはフィラーワイヤ4を溶融池(溶融金属8)に挿入して、その極性が正極性(フィラーワイヤ4が負極性)の電流をフィラーワイヤに供給することが必須である。逆極性にすると各種の外乱要因(▲1▼すみ肉溶接部の過大ギャップ、▲2▼ショッププライマの過大塗布膜厚、▲3▼工場内での電流電圧変動等)の影響を解消することはできない。極間距離が15mm未満の場合の問題点と同様に、先行電極、後行電極が共にアークが安定せず、ビード外観・形状が悪くなる、また、スパッタの発生量が多くなる等の問題が生じる。スパッタの多発はシールドノズルへのスパッタの付着によりシールド不良になり気孔発生の原因にもなる。一方、フィラーワイヤに正極性電流を流すと、各種外乱にも影響されない安定した湯溜りが形成される。このメカニズムは必ずしも明らかではないが、以下のように考察することができる。
【0022】
湯溜りを安定して形成するために、プールの粘性及び溶接速度等の重要なファクターがあるが、2電極のアークの発生方向及びアーク力(プラズマ気流による圧力)が適当にバランスしていることも、湯溜りの安定形成に欠くことができないと考えられる。磁気吹きにより、このアークの方向性、力のバランスが崩れると、湯溜りが不安定となり、健全な溶接ができなくなる。
【0023】
一般に磁気吹きと言われている現象はその原因は大きく分けて2種類と思われる。即ちアークを通過して被溶接物を流れる電流が被溶接物の形状不均一及び被溶接物の形状そのものが非対称複雑である場合、又は被溶接物の端部を溶接する場合に端部であるため被溶接物の一方向に電流が流れやすい場合、被溶接物のアース位置が不適当な場合等の理由により、被溶接物に流れる電流全体により生じる磁界が不均一になる場合である。構造物の形状やアース線の取り方により、アーク発生点近傍の磁界の偏りの影響によりアークが偏向することが1つ目の磁気吹き現象である。この場合は多電極施工法の複数のアーク全体が影響を受け、いずれか一方向に偏向する等の問題が生じる。この対策には従来アース位置を複数設けたりすることが提案されている。本発明者らはこれには被溶接物に流れる全電流を下げることが溶融池近傍の磁界の偏りを低減出来るのではと考えた。その具体的方策として、溶融池にフィラーを挿入し、逆向きに電流を流すことで、被溶接物に流れる全電流値を下げることが適切であると考察した。逆極性の2電極に間に、正極性のフィラーを挿入することで、プール近傍の構造物に流れる直流電流が2電極の電流の和から、フィラーワイヤの電流を差し引いた値となるため、磁界の偏りが小さくなりこのため、磁気吹きが起こり難くなったものと思われる。
【0024】
図4を使用して上記の説明を補足する。iは先行電極に流れる溶接電流を表し、iは後行電極に流れる溶接電流を表し、iはフィラーワイヤに流れる電流を表す。フィラーワイヤを挿入しない場合には、被溶接物に流れる全電流はi+iである。しかし、フィラーワイヤを挿入して逆向きにiを流すことによリ、被溶接物に流れる全電流はi+i−iとなり、iの電流分が低下する。そのため、全電流により生じる磁界も低下し、被溶接物に流れる電流全体により、磁気吹きは軽減される。
【0025】
もう一つの磁気吹きの原因としては2電極1プールを構成する先行電極と後行電極による2つのアーク同士による干渉である。従来、湯溜りは先行電極と後行電極により挟まれた溶融金属が先行電極と後行電極のアーク力により押されて安定しているものと考えられ、2つのアークは互いに引合う方向(湯溜りを押し合う方向)に調整するのが必要と考えられていたが、本発明では逆にフィラーには逆向き電流を流すことによって夫々のアークにはフィラーからは反発する方向に電磁力を加えると湯溜りが極めて安定することを発見した。この理由は必ずしも明確ではないが、以下のように推定できる。もともと2電極に同一方向の電流を流すと夫々の電極の磁界の影響で引き合う方向に力が働き、この状態で湯溜りをつくりながら上手くバランスしているが、例えば磁気吹き等をきっかけに湯溜りを越えて互いのアークが引き合う状況、又はギャップが大きくプールが下がり湯溜りが無くなれば、アークが直接引き合う状況になる。一旦、こうなると安定した湯溜りを再形成することが困難となることが推測できる。2電極の間に存在する適当な湯溜りがアークの干渉を和らげる役割を持っていると思われる。2電極の間に逆向きに電流を流すフィラーワイヤがあれば、この2電極の電流による偏った磁界をある程度キャンセルすることになるため、2電極が引き合う力が弱くなりアークの干渉が低減されることになる。従って、本発明においては、フィラーワイヤには溶接電流とは逆向きに電流を流すことが大きなポイントとなる。
【0026】
更に、フィラーワイヤの挿入は2電極1プールである本施工法での湯溜りを安定化させる別の効果ももたらす。即ち、フィラーによる溶着金属の増加はアークよりも低温度の溶融金属を供給し、この溶融金属を湯溜り部分に供給することは湯溜り安定に極めて有効と考えられる。フィラーワイヤを挿入することで、溶着金属が増加して、湯溜りが大きくなり、また湯の温度が低下している(アークを発生していないから)と考えられる。湯溜りが大きくなることは、磁気吹きを低減する方向であり、湯の温度が下がることも溶融金属の流動性が低下して湯溜りの揺れを抑制するのに効果があると推定される。
【0027】
第3電極と後行電極の極間距離:100mm以上
本発明は3電極による施工でも適用できる。3電極の溶接を行う場合には大脚長溶接(通常脚長が8mm以上)を目的としており、第3電極と後行電極の極間距離は100mm以上離す必要があり、100mm未満では先行電極(第1電極)と後行電極(第2電極)による母材(被溶接材)への投入された熱量の関連で第3電極によりさらに母材への入熱が加わるために、図3に示すように、アンダカットが発生し、手直し溶接が必要となる。100mm以上離すと第3電極の溶接までに母材温度が下がり、アンダカット発生が少なくなる。なお、第3電極にもガスシールドアーク溶接用フラックス入りワイヤを適用する。
【0028】
フィラーワイヤの電流:100A以上
フィラーワイヤに流す電流はワイヤ溶融速度に影響を与え、高すぎると溶融金属(溶融プール)からはみ出しアークになるため、自ずから上限はあるが、逆に低すぎることは抵抗加熱には影響がない。通常は、下限値は存在しないが、本発明においては、磁気吹きを抑制するためには最低限の電流値がある。100A未満ではその効果がない。更に詳しくは先行電極と後行電極の電流値に関連があるが通常の範囲であれば100Aが下限値である。なお、フィラーワイヤの電源には垂下特性又は定電流特性が適しており、アーク溶接電源とは別個の電源にして独立して制御されることが望まれる。単に母材に流れる溶接電流をフィラーワイヤで分流させるのではなく、積極的に逆向き電流を制御すべきである。
【0029】
その他の溶接条件は、従来から施工されている2電極タンデム溶接と変わりがない。必要に応じて規制するのが望ましい条件は以下のようである。
【0030】
ワイヤ径
先行電極のワイヤの直径(ワイヤ径という)は1.2乃至4.0mm、後行電極のワイヤ径は1.2乃至4.0mmとし、且つ、(先行電極のワイヤ径)≧(後行電極のワイヤ径)の関係にするのが望ましい。ワイヤ径は、アークの安定性、溶融池の安定性及びビード外観に大きく影響を及ぼし、特に多電極の場合では先行電極及び後行電極のワイヤ径のバランスも重要である。
【0031】
即ち、先行電極のワイヤ径が1.2mmよりも小さいと、アークが安定せず、ビード形状が悪くなり、4.0mmよりも大きいと、先行電極からのスパッタ発生量が多くなる。また、後行電極のワイヤ径が1.2mmよりも小さいとアークの広がりがなくなり、ビード外観・形状が悪くなる。また先行電極よりも大きいと後行電極におけるアーク及び溶融池が不安定となり、後行電極からのスパッタ発生量が多くなる。従って、先行電極及び後行電極のワイヤ径並びに両者の関係を上記のとおりとする。
【0032】
先行電極、後行電極及び第3電極の組成
先行電極、後行電極及び第3電極として、いずれもフラックス入りワイヤを適用する。ルチールを主体とするチタニヤ系フラックス入りワイヤ又は所謂メタル系と称する金属粉を主体とするフラックス入りワイヤのいずれでも適用可能である。
【0033】
なお、先行電極及び後行電極に使用するフラックス入りワイヤについては特に通常の単電極用に設計されたものより多電極施工法に適した組成が好ましい。即ち、先行電極及び後行電極の両方のフラックス入りワイヤにより1つの溶融池が形成されるためで、第3電極については溶融池は別個に形成されるため、このような配慮は不要である。特に、組成についての制限はないが、特に好ましいワイヤ組成はチタニヤ系フラックス入りワイヤの場合にはワイヤ全質量あたり酸化物(TiO、SiO、MgO、Al、FeO、Fe、ZrO等)は1.5乃至5.5質量%である。酸化物が1.5質量%未満ではビード表面を被うスラグがまだらになり、ビード外観・形状が悪化する。一方、酸化物が5.5質量%を超えると、スラグ量が過剰となり、スラグの流動性が大きくなるために、ビード止端部の揃いが悪化する。従って、酸化物は1.5乃至5.5質量%の範囲とする。なお、酸化物の原料にはルチール、イルミナイト、ジルコンサンド、アルミナ、マグネシア、珪砂等が挙げられる。
【0034】
アルカリ金属酸化物(KO、NaO及びLiO換算)は種々のものが適用でき、合計でワイヤ全質量あたり0.01乃至0.15質量%含有すべきである。これらのアルカリ金属酸化物が0.01質量%未満では、アークの安定が得られない。一方、アルカリ金属酸化物が0.15質量%を超えると、アークの吹きつけが強くなりすぎ、溶融池が安定しない。また、アルカリ金属酸化物の原料は吸湿しやすいので、ワイヤ全体の耐吸湿性が劣化しやすい。従って、アルカリ金属酸化物はKO、NaO及びLiOの1種又は2種以上を0.01乃至0.15質量%の範囲とする。なお、KO、NaO、LiOの原料としては、長石、ソーダガラス、カリガラス等が挙げられる。
【0035】
更にMg、Si、Mnが脱酸剤等の目的で添加される。Mgは原料としては、金属Mg、Al−Mg、Si−Mg、Ni−Mg等が挙げられる。Si原料としては、Fe−Si、Fe−Si−Mn等が挙げられる。Mn原料としては、金属Mn、Fe−Mn、Fe−Si−Mn等が挙げられる。
【0036】
その他、含有される組成は、鉄粉、フッ化物、酸化ビスマス等である。メタル系フラックス入りワイヤの場合の特に好ましいワイヤ組成はワイヤ全質量あたり酸化物(TiO、SiO、MgO、Al、FeO、Fe、ZrO等)は1.5質量%以下である。その代わり、金属原料はワイヤ全質量あたり98質量%以上を含有させる。換言するとフラックス中には金属原料をフラックス全質量あたり94質量%以上含ませることが望ましい。金属原料は鉄粉又はFe−Mn及びFe−Si等の鉄合金がある。アーク安定剤としてアルカリ金属酸化物(KO、NaO及びLiO換算)はチタニヤ系と同様の種々のものが適用でき、合計でワイヤ全質量あたり0.01乃至0.15質量%含有すべきである。これらのアルカリ金属酸化物が0.01質量%未満では、アークの安定が得られない。一方、アルカリ金属酸化物が0.15質量%を超えると、アークの吹きつけが強くなりすぎ、溶融池が安定しない。また、アルカリ金属酸化物の原料が吸湿しやすいので、ワイヤ全体の耐吸湿性が劣化しやすい。従って、アルカリ金属酸化物はKO、NaO及びLiOの1種又は2種以上を0.01乃至0.15%の範囲とする。なお、KO、NaO、LiOの原料としては、長石、ソーダガラス、カリガラス等が挙げられる。その他、Mg、Si、Mnは同様に添加される。
【0037】
前進・後退角
先行電極のワイヤの角度を0乃至後退角15°とし、後行電極のワイヤの角度を0乃至前進角25°とするのが望ましい。前進角及び後退角は、スパッタの発生量、ビード形状に大きく影響を及ぼす。先行電極は前進角になると先行電極からスパッタ発生量が多くなり、後退角が15°よりも大きくなるとアンダカット発生し易くなる。後行電極は後退角になるとアーク安定せず、スパッタ発生多くなる。前進角が25°よりも大きくなると、ビード外観・形状が悪くなる。従って、先行電極及び後行電極のワイヤ角度を上記のとおりとする。
【0038】
トーチ角度:
先行電極及び後行電極共にトーチ角度を40乃至60°とするのが望ましい。トーチ角度は、ビード形状及びビード外観に大きく影響を及ぼす。40°よりも小さいと、下板にアンダカットが発生し易くなり、60°よりも大きいと、上板にアンダカットを発生し易くする。従って、先行電極及び後行電極共にトーチ角度を上記のとおりとする。
【0039】
溶接電流
先行電極の電流を250A以上の直流ワイヤ正極性(DCEP、Direct Current Electrode Positive)、後行電極の電流を200A以上の直流ワイヤ正極性(DCEP)とし、且つ、(先行電極の電流)≧(後行電極の電流)の関係とするのが望ましい。これは一般に溶接構造物のすみ肉溶接部に必要とされる脚長4.0mmを確保するために必要な電流であり、上記電流を下回るとアークが安定しない。また、先行電極の電流が後行電極の電流よりも小さいと、先行電極と後行電極におけるアークの干渉により、先行電極のアークが乱れるためにビードの外観・形状が悪くなる。従って、先行電極と後行電極の電流並びに両者の関係を上記のとおりとする。
【0040】
また、特に上記施工法を2電極(ツイン)で行う場合、以下に示す条件において前記目的の達成が可能であることが判明した。
【0041】
シフト間隔
立板を挾む両先行電極・後行電極のシフト間隔を0乃至30mm又は70mm以上とするのが望ましい。シフト間隔が30乃至70mmの間では、スパッタの発生が多くなり、溶接作業性が悪くなるので、この間を除いたシフト間隔とする。ここで、シフト間隔とは、図5に示すように、各先行電極のずれの距離を表す。
【0042】
なお、更に本発明を効果的に実施するには、狙い位置(即ち、ワイヤ先端からの上板までの距離)の調整が重要なポイントとなる。狙い位置は、溶込み確保、外観・形状が良好なビードの形成、溶融池の安定性及び耐気孔性に大きく影響を及ぼす。そのためには、先行電極の狙い位置はルートより下板側0乃至2mm、後行電極の狙い位置はルートより下板側0乃至3mmとし、且つ、先行電極の狙い位置が後行電極の狙い位置よりもルートに近いか又は同一とするのが望ましい。
【0043】
先行電極の狙い位置は、溶込みを確保するために調整する必要があり、狙いが立板側であると、立板にアンダカットが発生しや易くなり、ビード形状が悪くなり、また狙いが下板側2mmよりも大きいと、ルート部の溶込みを確保できず、ビードが等脚とならないことから、すみ肉部の強度を確保できない。また、後行電極の狙い位置は、ビード外観・形状を良くするために調整する必要があり、狙いが下板側0mm(上板側)よりも小さいか又は3mmよりも大きいと、溶融池が安定せず、ビード外観・形状が悪くなり、またスパッタの発生量が多くなる。また後行電極の狙い位置が先行電極の狙い位置よりもルートに近くなると、耐気孔性が悪くなり、また溶融池が安定せず、ビード外観・形状が悪くなる。従って、先行電極及び後行電極の狙い位置並びに両者の関係を上記のとおりとする。なお、第3電極は逆に上板側を狙い、ルート部から上板側に5mm程度を狙う。
【0044】
【実施例】
以下、本発明の実施例について、本発明の範囲から外れる比較例と対比して説明する。
【0045】
下記表1に示す成分組成のフラックスを軟鋼製ケーシング内にフラックス率14%で充填して直径1.6mmのフラックス入りワイヤを製造し、このワイヤを先行電極、後行電極及び第3電極のワイヤとして使用し、以下の条件で溶接試験を行った。溶接条件は以下のとおりである。
(1)供試鋼板及び継手形状:12mm×100mm×1000mm鋼板を用いてT型すみ肉継手を形成した。なお、プライマ膜厚は40μmである。
(2)溶接姿勢:2電極水平すみ肉溶接
(3)シールドガス:100%CO、流量25リットル/分
(4)ワイヤ突出し長さ:25mm
(5)電源特性:DCワイヤ(+)
(6)ワイヤ径:先行電極:1.6mm、後行電極:1.6mm、第3電極:1.6mm
(7)溶接電流・電圧:先行電極:500A×38V、後行電極:450A×35V、第3電極:400A×33V
(8)トーチ角度:先行電極:50°、後行電極:50°、第3電極:50°
(9)前進・後退角:先行電極:後退角10°、後行電極:前進角10°、第3電極:前進角0°
(10)狙い位置:先行電極:0mm、後行電極:2mm(下板側)、第3電極:5mm(上板側)
(11)極間距離:25mm
(12)溶接速度:2.2m/分
(13)フィラーワイヤ径:1.2mm
(14)すみ肉ルート部のギャップ:2.0mm
この溶接試験の溶接条件を下記表2に示し、その結果を下記表3に示す。
【0046】
【表1】

Figure 2004261839
【0047】
【表2】
Figure 2004261839
【0048】
【表3】
Figure 2004261839
【0049】
但し、表2において、◎は優れている場合、○は良好な場合、△はやや不良の場合、×は不良の場合である。
表1から明らかなように、実施例4、5、7、8、9、10は本願請求項1を満足しており、総合判定で良好であった。特に、実施例7乃至10は請求項3又は4を満足しており、特に良好(優)であった。
【0050】
一方、比較例1は、ソリッドワイヤのフィラーワイヤを湯溜り10に挿入しているにも拘わらず、先行電極と後行電極の極間距離が15mmよりも小さいので、先行電極、後行電極が共にアークが安定せず、ビード外観・形状が悪くなった。またスパッタの発生量が多くなった。また、比較例2は同様にソリッドワイヤのフィラーワイヤを湯溜りに挿入しているにも拘わらず、先行電極と後行電極の極間距離が50mmよりも大きいので、2電極で1つの溶融池を形成することが不可能となり、耐ピツト性が悪くなった。また湯溜りの安定性に欠き、高速溶接ができなくなる。比較例3はフィラーワイヤの極性が逆極性であるため、湯溜りが不安定になりアークが不安定となり、スパッタが増加した。またビード外観・形状が悪化する。比較例6は比較例3のフィラーワイヤがフラックス入りワイヤの場合であるが、フラックス入りワイヤにおいてもフィラーワイヤの極性が逆極性であるため、湯溜りが不安定になり、アークが不安定となりスパッタが増加した。またビード外観・形状が悪化した。
【0051】
【発明の効果】
以上詳述したように、溶接速度が200cm/分以上の高速溶接において、すみ肉溶接部の過大ギャップ、ショッププライマの過大塗布膜厚、工場内での電流電圧変動等の外乱要因が生じても、溶接作業性が極めて安定し、手直しの必要がない多電極ガスシールドアーク溶接方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る多電極ガスシールドアーク溶接方法を示す平面図である。
【図2】同じくその溶融金属部を示す拡大縦断面図である。
【図3】アンダーカットを示す図である。
【図4】本発明の実施形態に係る多電極ガスシールドアーク溶接方法を示す平面回路図である。
【図5】各先行電極のずれの距離を表すシフト間隔を示す平面図である。
【符号の説明】
1;下板
2;立板
3;先行電極
4;フィラーワイヤ
5;後行電極
6;第3電極
7;溶接金属
8;溶融金属
9;溶融スラグ
10;湯溜り[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-electrode gas-shielded arc welding method using a flux-cored wire, and particularly to a multi-electrode one-pool welding process (gas shielded arc welding method in which one welding pool is formed with two electrodes), which causes spattering due to generation of magnetic blowing. The present invention relates to a multi-electrode gas shielded arc welding method capable of preventing occurrence of frequent occurrences and deterioration of a bead shape.
[0002]
[Prior art]
Conventionally, a multi-electrode gas shielded arc welding method has been studied in order to improve the efficiency of horizontal fillet welding of a shipbuilding or bridge. The following technology has been proposed as a one-pool welding process of the multi-electrode gas shielded arc welding method.
[0003]
JP-A-6-234075 (Patent Document 1) discloses a flux-cored wire having a predetermined composition containing at least one kind of alkali metal oxide, an oxide excluding alkali metal oxide, Mg, Si and Mn. A method of performing gas shielded arc welding using an electrode and a trailing electrode with a distance between both electrodes of 15 to 50 mm is disclosed. According to this conventional method, a gas-shielded arc horizontal fillet welding method with good workability and excellent porosity resistance can be obtained in high-speed welding at 1 m / min or more.
[0004]
Japanese Patent Application Laid-Open No. Hei 6-313267 (Patent Document 2) discloses that the amount of diffusible hydrogen of a deposited metal is 15.0 to 40.0 ml / 100 g in both or one of a leading electrode and a trailing electrode. A method is disclosed in which a rutile flux cored wire is used, the distance between the electrodes is 20 to 50 mm, and substantially one pool is formed to perform horizontal fillet welding. According to this method, a high-speed horizontal fillet gas shielded arc welding method with particularly high efficiency and excellent pit resistance can be obtained in horizontal fillet welding of primer-coated steel plates that are frequently used in the fields of shipbuilding, bridges, etc. .
[0005]
Further, JP-A-7-256455 (Patent Document 3) discloses that a welding wire having a diameter of 1.2 to 2.0 mm is used, a distance between the first electrode and the second electrode is 15 to 40 mm, and The distance between the electrode and the third electrode is 70 mm or more, a welding current of 750 A or less is supplied to each electrode, a first molten pool is formed from the first and second electrodes, and a second molten pool is formed by the third electrode. And performing a welding at a welding speed of 2 m / min or more. This method does not require a special large-capacity welding machine, is excellent in welding workability such as bead appearance and shape and arc stability, and does not generate welding defects such as pits, blowholes and poor fusion. It is said that a welding method is provided.
[0006]
Japanese Patent Application Laid-Open No. 9-277042 (Patent Document 4) discloses that in a horizontal fillet welding method using a flux cored wire with two electrodes, the welding current of the following electrode is set to 0.8 to 0 of the preceding electrode. 0.9 times, the distance between the two electrodes should be within the range of 10 to 100 mm, and the receding angle of the leading electrode and the advancing angle of the trailing electrode should be 5 to 10 °, respectively. A method of fillet welding within the range is disclosed. According to this method, a stable pool with no molten metal flow is formed, a bead without defects is obtained, and a good bead is obtained even when the welding speed is increased.
[0007]
Further, Japanese Patent Application Laid-Open No. 10-216943 (Patent Document 5) discloses a two-electrode, one-pool horizontal fillet gas shielded arc welding using a flux-cored wire in which at least the trailing electrode is a rutile flux-cored wire. In the method, there is disclosed a method in which the protruding length of the wire of the preceding electrode satisfies the following formula 1 with respect to the protruding length of the following electrode. According to the present invention, a small leg length high-speed horizontal fillet gas shielded arc welding method that can obtain a good bead shape without welding defects even when the leg length is reduced in order to reduce distortion of the welded structure is obtained.
[0008]
(Equation 1)
(WL1 + 5mm) <WL2 ≦ 45mm
However, WL1 = 15 to 25 mm
[0009]
Japanese Patent Application Laid-Open No. 2000-52033 (Patent Document 6) discloses a method of using electrodes 1 and 2 other than the last electrode 3 in a combination of DC electrodes of different polarities in multi-electrode arc welding of three or more electrodes. Have been. According to this method, a multi-electrode arc welding method capable of reducing the feedback current value affecting the arc of the rearmost electrode, improving the stability of the arc, and enabling a multilayer weld having a good bead shape is obtained. I have.
[0010]
Further, Japanese Unexamined Patent Application Publication No. 2001-225168 (Patent Document 7) discloses a consumable electrode gas shielded arc welding method using two wires, in which a pulse current is applied to a leading wire and a trailing wire so that the leading wire and the trailing wire are energized. A consumable electrode gas shielded arc welding method for a welding structure in which the arc length of a row wire is controlled by changing a pulse frequency to increase or decrease an average value of a welding current is disclosed. This method particularly relates to a two-electrode consumable electrode gas shielded arc welding method.
[0011]
[Patent Document 1]
JP-A-6-234075
[Patent Document 2]
JP-A-6-313267
[Patent Document 3]
JP-A-7-256455
[Patent Document 4]
JP-A-9-277042
[Patent Document 5]
JP-A-10-216943
[Patent Document 6]
JP 2000-52033 A
[Patent Document 7]
JP 2001-225168 A
[0012]
[Problems to be solved by the invention]
However, in the above technology, in the case of an actual structure, various disturbance factors ((1) an excessive gap in a fillet weld, (2) an excessive coating film thickness of a shop primer, (3) a current voltage fluctuation in a factory) Etc.), the uniformity and stability of the basin 10 (see FIG. 2), which is the point of these constructions, are lost, resulting in arc instability, spatter occurrence, bead shape, poor appearance and uniformity, and under Rework welding is increasing due to frequent cuts and the like. In particular, this tendency becomes remarkable at a welding speed of about 150 to 200 cm / min, so that even if the welding speed is high, the reworking ratio is increased, resulting in a problem that the welding man-hour is greatly increased.
[0013]
The present invention has been made in view of such a problem, and the above-described disturbance factors ((1) an excessive gap in a fillet welded area, (2) an excessive shop primer) in high-speed welding at a welding speed of 200 cm / min or more. It is an object of the present invention to provide a multi-electrode gas shielded arc welding method in which the welding workability is extremely stable even if (3) a current-voltage fluctuation in a factory occurs, and coating operation does not require rework.
[0014]
[Means for Solving the Problems]
The multi-electrode gas shielded arc welding method according to the present invention uses a flux-cored wire for gas shielded arc welding as a leading electrode and a trailing electrode, and sets the distance between the leading electrode and the trailing electrode to 15 to 50 mm. Inserting a filler wire into the molten metal between the preceding electrode and the succeeding electrode, and performing welding while flowing a positive current (the filler wire is negative with respect to the molten metal) through the filler wire. And
[0015]
In this multi-electrode gas shielded arc welding method, for example, the filler wire is a flux-cored wire. Further, it is preferable that a third electrode is provided further behind the subsequent electrode such that a distance between the electrodes between the subsequent electrode and the third electrode is 100 mm or more. Further, it is preferable that the current flowing through the filler wire is 100 A or more.
[0016]
The present inventors have conducted intensive studies to achieve the above object, and as a result, if the so-called pool formed between the leading electrode and the trailing electrode, which is conventionally pointed out, is stabilized, the arc will be stable. In addition to the knowledge of the formation of a bead, it has been found that it is possible to further suppress spatter, stabilize the bead shape, appearance and uniformity, and suppress undercut. Therefore, conventionally, the stabilization of the pool was adjusted by adjusting the forward / backward angle of the electrode, the distance between the electrodes, the target position of the electrode, the position of the base metal ground, the length of the wire protrusion, etc. Then, based on a completely new idea, a filler wire is inserted into a pool, and welding is performed while a positive current is applied to the filler wire.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a plan view showing a multi-electrode gas shielded arc welding method according to an embodiment of the present invention, and FIG. 2 is an enlarged vertical sectional view showing the molten metal portion. The welding modes shown in FIGS. 1 and 2 relate to horizontal fillet welding, but it goes without saying that the present invention is not limited to such modes. A lower plate 1 as a material to be welded is installed horizontally, and an upright plate 2 is vertically arranged on the lower plate 1. The corner between the standing plate 2 and the lower plate 1 is fillet welded by the leading electrode 3, the trailing electrode 4, and the third electrode 6. In this case, the filler wire 4 is inserted into the molten metal 8 between the leading electrode 3 and the trailing electrode 5. In the present embodiment, the gap between the leading electrode 3 and the trailing electrode 5 is 15 to 50 mm, and the gap between the trailing electrode 5 and the third electrode 6 is 100 mm or more. The filler wire 4 is supplied with power so that the filler wire 4 has a negative polarity with respect to the molten metal 8 (positive current), and the supplied current is 100 A or more.
[0018]
In this horizontal fillet welding, a molten metal 8 is formed by the leading electrode 3 and the trailing electrode 5, and the molten metal 8 solidifies to form a weld metal 7. The molten slag 9 floats on the weld metal 7. Note that reference numeral 10 indicates a basin.
[0019]
Next, the reason for the above numerical limitation will be described.
Distance between the leading and trailing electrodes: 15 to 50 mm
In the present invention, it is essential that the distance between the leading electrode and the trailing electrode is 15 to 50 mm. Here, the inter-electrode distance is the distance between the tips of the wires in each electrode. When welding is performed using a DC power supply, the distance between the leading and trailing electrodes becomes a problem in terms of magnetic blowing and formation of one molten pool. If the distance between the electrodes is smaller than 15 mm, the arc of both the leading electrode and the trailing electrode will not be stable, the bead appearance and shape will deteriorate, and the amount of spatter generated will increase. On the other hand, if the distance between the electrodes is larger than 50 mm, it becomes impossible to form one molten pool with two electrodes, and the pit resistance deteriorates. Therefore, the inter-electrode distance between the leading electrode and the trailing electrode is set in the range of 15 to 50 mm. Note that a more preferable range is 25 to 35 mm.
[0020]
Filler wire and its polarity: molten pool has positive polarity, filler wire has negative polarity
In the present invention, the most important feature is to insert the filler wire 4 into the molten metal 8 (pool) formed between the leading electrode 3 and the trailing electrode 5. As the filler wire 4, a solid wire or a flux-cored wire can be applied. In the case of a solid wire, a conventional solid wire with plating may be used, or a solid wire without plating whose application range has been expanded recently. In particular, the components are not specified, and an appropriate component can be selected from YGW11 to YGW24 specified in JISZ3312. In the case of the flux cored wire, the components can be adjusted, and the component of the wire used for the leading electrode 3 and the component of the wire used for the trailing electrode may be changed. Note that, among flux-cored wires, a wire filled with a flux mainly composed of a metal powder, which is a so-called metal type, is preferable. Since the filler wire is mainly melted by resistance heating, a powder having a high melting point such as a slag forming agent is likely to remain unmelted, and if a metal is used, it is easily melted because it is almost a metal powder.
[0021]
In any case, in order to stabilize the pool, the filler wire 4 is inserted into the molten pool (molten metal 8), and a current having a positive polarity (the filler wire 4 is a negative polarity) is supplied to the filler wire. Is required. Reverse polarity eliminates the effects of various disturbance factors ((1) excessive gap in fillet weld, (2) excessive coating film thickness of shop primer, (3) current voltage fluctuation in factory, etc.). Can not. Similar to the problem when the distance between the electrodes is less than 15 mm, both the leading electrode and the trailing electrode have unstable arcs, resulting in poor bead appearance and shape, and a large amount of spatter. Occurs. Frequent spattering causes poor shielding due to the spatter adhering to the shield nozzle and also causes pores. On the other hand, when a positive current is applied to the filler wire, a stable pool is formed that is not affected by various disturbances. Although this mechanism is not always clear, it can be considered as follows.
[0022]
There are important factors such as the viscosity of the pool and the welding speed in order to stably form a pool, but the direction of arc generation and the arc force (pressure by the plasma stream) of the two electrodes must be properly balanced. Also, it is considered that a stable formation of a pool is indispensable. If the balance between the directionality and the force of the arc is lost due to the magnetic blowing, the pool becomes unstable, and sound welding cannot be performed.
[0023]
The cause of the phenomenon generally referred to as magnetic blowing is considered to be roughly divided into two types. That is, the current flowing through the workpiece through the arc is the end when the shape of the workpiece is non-uniform and the shape of the workpiece itself is asymmetrically complex, or when welding the end of the workpiece. For this reason, the magnetic field generated by the entire current flowing through the workpiece becomes non-uniform, for example, when the current easily flows in one direction of the workpiece, or when the ground position of the workpiece is inappropriate. The first magnetic blowing phenomenon is that the arc is deflected by the influence of the bias of the magnetic field near the arc generating point depending on the shape of the structure and how to take the ground wire. In this case, a plurality of arcs in the multi-electrode application method are affected as a whole, and a problem such as deflection in any one direction occurs. Conventionally, it has been proposed to provide a plurality of ground positions for this measure. The present inventors have thought that reducing the total current flowing through the workpiece can reduce the bias of the magnetic field near the molten pool. As a specific measure, we considered that it is appropriate to insert a filler into the molten pool and flow the current in the opposite direction to reduce the total current value flowing through the workpiece. By inserting a filler of positive polarity between the two electrodes of opposite polarity, the DC current flowing through the structure near the pool becomes a value obtained by subtracting the current of the filler wire from the sum of the currents of the two electrodes. It is supposed that the magnetic bias was less likely to occur.
[0024]
The above description will be supplemented with reference to FIG. i1Represents the welding current flowing through the leading electrode, i2Represents the welding current flowing through the succeeding electrode, and i3Represents the current flowing through the filler wire. If no filler wire is inserted, the total current flowing through the workpiece is i1+ I2It is. However, by inserting a filler wire,3The total current flowing through the workpiece is i1+ I2−i3And i3Of the current decreases. Therefore, the magnetic field generated by the total current is also reduced, and magnetic blowing is reduced by the entire current flowing through the workpiece.
[0025]
Another cause of the magnetic blowing is interference between two arcs caused by a leading electrode and a trailing electrode constituting a two-electrode one-pool. Conventionally, it is considered that the pool is stable because the molten metal sandwiched between the leading electrode and the trailing electrode is pushed by the arc force of the leading electrode and the trailing electrode. It was thought that it was necessary to adjust in the direction of pushing the pool), but in the present invention, by applying a reverse current to the filler, an electromagnetic force is applied to each arc in a direction to repel each arc from the filler. And found that the pool was extremely stable. The reason for this is not necessarily clear, but can be estimated as follows. Originally, when a current in the same direction is applied to two electrodes, a force acts in the attracting direction due to the influence of the magnetic field of each electrode. When the arcs are attracted to each other over the gap, or when the gap is large and the pool is lowered and there is no pool, the arcs are attracted directly. It can be assumed that once this happens, it becomes difficult to re-form a stable pool. It is believed that a suitable pool located between the two electrodes has a role in mitigating arc interference. If there is a filler wire that allows current to flow in the opposite direction between the two electrodes, the biased magnetic field due to the current of the two electrodes will be canceled to some extent, so that the attraction between the two electrodes is weakened and the arc interference is reduced. Will be. Therefore, in the present invention, it is a major point that a current is applied to the filler wire in a direction opposite to the welding current.
[0026]
Furthermore, the insertion of the filler wire also has another effect of stabilizing the pool in the present construction method of a two-electrode one-pool method. That is, it is considered that increasing the amount of the deposited metal by the filler supplies the molten metal at a temperature lower than that of the arc, and supplying the molten metal to the pool is very effective for the pool stability. It is considered that the insertion of the filler wire increases the amount of deposited metal, increases the size of the pool, and lowers the temperature of the molten metal (since no arc is generated). Increasing the size of the basin tends to reduce magnetic blowing, and it is estimated that lowering the temperature of the basin is also effective in suppressing the sway of the basin by reducing the fluidity of the molten metal.
[0027]
Distance between the third electrode and the succeeding electrode: 100 mm or more
The present invention can also be applied to construction using three electrodes. When three electrodes are to be welded, the purpose is large leg length welding (normally, the leg length is 8 mm or more). The distance between the third electrode and the following electrode needs to be 100 mm or more. As shown in FIG. 3, heat input to the base material is further applied by the third electrode in relation to the amount of heat input to the base material (material to be welded) by the first electrode) and the subsequent electrode (second electrode). In addition, undercut occurs, and rework welding is required. If the distance is 100 mm or more, the temperature of the base material is lowered by the time the third electrode is welded, and the occurrence of undercut is reduced. Note that a flux-cored wire for gas shielded arc welding is also applied to the third electrode.
[0028]
Filler wire current: 100A or more
The current flowing through the filler wire affects the wire melting rate. If the current is too high, an arc protrudes from the molten metal (molten pool), and there is an upper limit. However, if the current is too low, there is no effect on the resistance heating. Normally, there is no lower limit, but in the present invention, there is a minimum current value for suppressing magnetic blowing. If it is less than 100A, there is no effect. More specifically, the lower limit value is related to the current values of the leading electrode and the trailing electrode, but 100 A is within a normal range. The power supply of the filler wire is suitable for a drooping characteristic or a constant current characteristic, and it is desired that the filler wire be a power supply separate from the arc welding power supply and be controlled independently. Rather than simply diverting the welding current flowing through the base material with the filler wire, the reverse current should be actively controlled.
[0029]
Other welding conditions are the same as those of conventional two-electrode tandem welding. Conditions that should be regulated as necessary are as follows.
[0030]
Wire diameter
The wire diameter (wire diameter) of the leading electrode is 1.2 to 4.0 mm, the wire diameter of the trailing electrode is 1.2 to 4.0 mm, and (wire diameter of the leading electrode) ≧ (the trailing electrode) (Wire diameter). The wire diameter greatly affects the stability of the arc, the stability of the molten pool, and the appearance of the bead. Particularly in the case of a multi-electrode, the balance between the wire diameters of the leading electrode and the trailing electrode is also important.
[0031]
That is, if the wire diameter of the preceding electrode is smaller than 1.2 mm, the arc is not stabilized, and the bead shape is deteriorated. If the wire diameter is larger than 4.0 mm, the amount of spatter generated from the preceding electrode increases. On the other hand, if the wire diameter of the subsequent electrode is smaller than 1.2 mm, the arc does not spread and the bead appearance and shape deteriorate. On the other hand, if it is larger than the leading electrode, the arc and the molten pool in the trailing electrode become unstable, and the amount of spatter generated from the trailing electrode increases. Therefore, the wire diameters of the leading electrode and the trailing electrode and the relationship between them are as described above.
[0032]
Composition of leading electrode, trailing electrode and third electrode
A flux-cored wire is used for each of the leading electrode, the trailing electrode, and the third electrode. Either a titania-based flux-cored wire mainly composed of rutile or a so-called metal-based flux-cored wire mainly composed of metal powder is applicable.
[0033]
The flux-cored wire used for the leading electrode and the trailing electrode preferably has a composition more suitable for a multi-electrode construction method than a wire designed especially for a single electrode. That is, since one molten pool is formed by the flux-cored wires of both the leading electrode and the trailing electrode, and the molten pool is formed separately for the third electrode, such consideration is unnecessary. Although there is no particular restriction on the composition, a particularly preferred wire composition is oxide (TiO.sub.2) per total mass of the wire in the case of a titania-based flux-cored wire.2, SiO2, MgO, Al2O3, FeO, Fe2O3, ZrO2Etc.) is 1.5 to 5.5% by mass. If the oxide content is less than 1.5% by mass, the slag covering the bead surface becomes mottled, and the bead appearance and shape deteriorate. On the other hand, when the amount of the oxide exceeds 5.5% by mass, the amount of slag becomes excessive, and the fluidity of the slag increases, so that the uniformity of the bead toe portion deteriorates. Therefore, the content of the oxide is in the range of 1.5 to 5.5% by mass. Raw materials for the oxide include rutile, illuminite, zircon sand, alumina, magnesia, silica sand, and the like.
[0034]
Alkali metal oxide (K2O, Na2O and Li2Various (O conversion) can be applied, and the total content should be 0.01 to 0.15% by mass based on the total mass of the wire. If the content of these alkali metal oxides is less than 0.01% by mass, arc stability cannot be obtained. On the other hand, when the content of the alkali metal oxide exceeds 0.15% by mass, the blowing of the arc becomes too strong, and the molten pool becomes unstable. In addition, since the alkali metal oxide raw material easily absorbs moisture, the moisture absorption resistance of the entire wire is likely to deteriorate. Therefore, the alkali metal oxide is K2O, Na2O and Li2One or more of O is in the range of 0.01 to 0.15% by mass. Note that K2O, Na2O, Li2Examples of the raw material of O include feldspar, soda glass, potash glass and the like.
[0035]
Further, Mg, Si, and Mn are added for the purpose of a deoxidizing agent or the like. As a raw material of Mg, metal Mg, Al-Mg, Si-Mg, Ni-Mg and the like can be mentioned. Examples of the Si raw material include Fe-Si and Fe-Si-Mn. Examples of the Mn raw material include metal Mn, Fe-Mn, and Fe-Si-Mn.
[0036]
In addition, the composition contained is iron powder, fluoride, bismuth oxide and the like. A particularly preferred wire composition for a metal-based flux cored wire is oxide (TiO 2)2, SiO2, MgO, Al2O3, FeO, Fe2O3, ZrO2Etc.) is 1.5% by mass or less. Instead, the metal raw material contains 98% by mass or more based on the total mass of the wire. In other words, it is desirable that the flux contains 94% by mass or more of the metal raw material based on the total mass of the flux. Metal raw materials include iron powder or iron alloys such as Fe-Mn and Fe-Si. Alkali metal oxide (K2O, Na2O and Li2As for O), various kinds of materials similar to those of titania can be applied, and the total content should be 0.01 to 0.15% by mass based on the total mass of the wire. If the content of these alkali metal oxides is less than 0.01% by mass, arc stability cannot be obtained. On the other hand, when the content of the alkali metal oxide exceeds 0.15% by mass, the blowing of the arc becomes too strong, and the molten pool becomes unstable. Further, since the alkali metal oxide raw material easily absorbs moisture, the moisture absorption resistance of the entire wire is likely to be deteriorated. Therefore, the alkali metal oxide is K2O, Na2O and Li2One or more types of O are in the range of 0.01 to 0.15%. Note that K2O, Na2O, Li2Examples of the raw material of O include feldspar, soda glass, potash glass and the like. In addition, Mg, Si, and Mn are similarly added.
[0037]
Forward / backward angle
It is desirable that the angle of the wire of the leading electrode be 0 to 15 ° and the angle of the wire of the succeeding electrode be 0 to 25 °. The advancing angle and the receding angle greatly affect the amount of spatter generated and the bead shape. When the leading electrode has a forward angle, the amount of spatter generated from the leading electrode increases, and when the receding angle is greater than 15 °, undercut is easily generated. When the trailing electrode is at a receding angle, the arc is not stabilized, and the amount of spatter is increased. If the advancing angle is greater than 25 °, the bead appearance and shape will be poor. Therefore, the wire angles of the leading electrode and the trailing electrode are set as described above.
[0038]
Torch angle:
It is desirable that the torch angle of both the leading electrode and the trailing electrode be 40 to 60 °. The torch angle has a significant effect on bead shape and bead appearance. When the angle is smaller than 40 °, undercut is easily generated in the lower plate, and when it is larger than 60 °, the undercut is easily generated in the upper plate. Therefore, the torch angle is set as described above for both the leading electrode and the trailing electrode.
[0039]
Welding current
The current of the leading electrode is a direct current positive electrode (DCEP) of 250 A or more, the current of the succeeding electrode is a direct current positive (DCEP) of 200 A or more, and (current of the leading electrode) ≧ (rear current) It is desirable that the relationship be as follows. This is a current generally required to secure a leg length of 4.0 mm required for a fillet weld of a welded structure. If the current is less than the above current, the arc will not be stable. If the current of the leading electrode is smaller than the current of the trailing electrode, the arc of the leading electrode and the trailing electrode interfere with each other, causing the arc of the leading electrode to be disturbed, thereby deteriorating the appearance and shape of the bead. Accordingly, the currents of the leading electrode and the trailing electrode and the relationship between the two are set as described above.
[0040]
In particular, it has been found that the above-mentioned object can be achieved under the following conditions when the above-mentioned construction method is performed with two electrodes (twin).
[0041]
Shift interval
It is desirable that the shift distance between the leading electrode and the trailing electrode sandwiching the standing plate be 0 to 30 mm or 70 mm or more. When the shift interval is between 30 and 70 mm, the occurrence of spatter increases and welding workability deteriorates. Therefore, the shift interval excluding this interval is used. Here, the shift interval indicates a shift distance of each preceding electrode as shown in FIG.
[0042]
In order to further effectively implement the present invention, it is important to adjust the target position (that is, the distance from the wire tip to the upper plate). The target position has a great influence on securing penetration, formation of a bead having a good appearance and shape, stability of a molten pool, and porosity resistance. For this purpose, the target position of the leading electrode is 0 to 2 mm below the route, the target position of the trailing electrode is 0 to 3 mm below the route, and the target position of the leading electrode is the target position of the trailing electrode. It is desirable to be closer to or the same as the route.
[0043]
The aiming position of the leading electrode must be adjusted to ensure penetration.If the aim is on the upright side, undercuts are likely to occur on the upright, the bead shape will be poor, and the aiming will be poor. If it is larger than 2 mm on the lower plate side, penetration of the root portion cannot be secured, and the bead does not become an equal leg, so that the strength of the fillet portion cannot be secured. In addition, the target position of the subsequent electrode needs to be adjusted to improve the bead appearance and shape. If the target is smaller than the lower plate side 0 mm (upper plate side) or larger than 3 mm, the molten pool is It is not stable, the bead appearance and shape are poor, and the amount of spatter generated is large. If the target position of the succeeding electrode is closer to the route than the target position of the preceding electrode, the porosity resistance is deteriorated, the molten pool is not stabilized, and the bead appearance and shape are deteriorated. Therefore, the target positions of the leading electrode and the trailing electrode and the relationship between them are as described above. Meanwhile, the third electrode is aimed at the upper plate side, and is aimed at about 5 mm from the root portion toward the upper plate side.
[0044]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention.
[0045]
A flux having a component composition shown in Table 1 below was filled into a mild steel casing at a flux rate of 14% to produce a flux-cored wire having a diameter of 1.6 mm, and this wire was used as a leading electrode, a trailing electrode, and a third electrode wire. And a welding test was performed under the following conditions. The welding conditions are as follows.
(1) Test steel plate and joint shape: A T-shaped fillet joint was formed using a 12 mm x 100 mm x 1000 mm steel plate. Note that the primer film thickness is 40 μm.
(2) Welding posture: 2 electrode horizontal fillet welding
(3) Shield gas: 100% CO2, Flow rate 25 l / min
(4) Wire protrusion length: 25 mm
(5) Power supply characteristics: DC wire (+)
(6) Wire diameter: lead electrode: 1.6 mm, trailing electrode: 1.6 mm, third electrode: 1.6 mm
(7) Welding current and voltage: Leading electrode: 500 A × 38 V, trailing electrode: 450 A × 35 V, third electrode: 400 A × 33 V
(8) Torch angle: leading electrode: 50 °, trailing electrode: 50 °, third electrode: 50 °
(9) Forward / backward angle: leading electrode: backward angle 10 °, trailing electrode: forward angle 10 °, third electrode: forward angle 0 °
(10) Target position: leading electrode: 0 mm, trailing electrode: 2 mm (lower plate side), third electrode: 5 mm (upper plate side)
(11) Distance between poles: 25 mm
(12) Welding speed: 2.2 m / min
(13) Filler wire diameter: 1.2 mm
(14) Gap of fillet root: 2.0 mm
The welding conditions for this welding test are shown in Table 2 below, and the results are shown in Table 3 below.
[0046]
[Table 1]
Figure 2004261839
[0047]
[Table 2]
Figure 2004261839
[0048]
[Table 3]
Figure 2004261839
[0049]
However, in Table 2, ◎ indicates excellent, ○ indicates good, △ indicates slightly defective, and × indicates defective.
As is clear from Table 1, Examples 4, 5, 7, 8, 9, and 10 satisfied Claim 1 of the present application, and were good in the overall judgment. In particular, Examples 7 to 10 satisfied Claim 3 or 4, and were particularly good (excellent).
[0050]
On the other hand, in Comparative Example 1, despite the fact that the filler wire of the solid wire was inserted into the well 10, the distance between the leading electrode and the trailing electrode was smaller than 15 mm. In both cases, the arc was not stable, and the bead appearance and shape were poor. Also, the amount of spatter generated was increased. In Comparative Example 2, the distance between the leading electrode and the succeeding electrode was larger than 50 mm, despite the fact that the filler wire of the solid wire was similarly inserted into the pool, so that one molten pool with two electrodes was used. Cannot be formed, and the pitting resistance has deteriorated. In addition, the stability of the pool is lacking, and high-speed welding cannot be performed. In Comparative Example 3, since the filler wire had the opposite polarity, the pool became unstable, the arc became unstable, and the spatter increased. In addition, the bead appearance and shape deteriorate. Comparative Example 6 is a case where the filler wire of Comparative Example 3 is a flux-cored wire, but the flux-cored wire also has the opposite polarity of the filler wire. increased. Also, the bead appearance and shape deteriorated.
[0051]
【The invention's effect】
As described above in detail, in high-speed welding at a welding speed of 200 cm / min or more, even if disturbance factors such as an excessive gap in a fillet weld, an excessive coating film thickness of a shop primer, and a current-voltage variation in a factory occur. In addition, it is possible to provide a multi-electrode gas shielded arc welding method in which welding workability is extremely stable and no rework is required.
[Brief description of the drawings]
FIG. 1 is a plan view showing a multi-electrode gas shielded arc welding method according to an embodiment of the present invention.
FIG. 2 is an enlarged vertical sectional view showing the molten metal part.
FIG. 3 is a diagram showing an undercut.
FIG. 4 is a plan circuit diagram showing a multi-electrode gas shielded arc welding method according to an embodiment of the present invention.
FIG. 5 is a plan view showing a shift interval indicating a shift distance of each leading electrode.
[Explanation of symbols]
1; lower plate
2; standing plate
3: Lead electrode
4: Filler wire
5; trailing electrode
6; third electrode
7; weld metal
8; molten metal
9; molten slag
10; pool

Claims (4)

ガスシールドアーク溶接用フラックス入りワイヤを先行電極及び後行電極として使用し、先行電極と後行電極との極間距離を15乃至50mmに設定し、フィラーワイヤを前記先行電極と後行電極との間の溶融金属中に挿入し、前記フィラーワイヤに正極性の電流(フィラーワイヤが溶融金属に対して負極性)を流しながら溶接することを特徴とする多電極ガスシールドアーク溶接方法。The flux-cored wire for gas shielded arc welding is used as a leading electrode and a trailing electrode, the distance between the leading electrode and the trailing electrode is set to 15 to 50 mm, and a filler wire is formed between the leading electrode and the trailing electrode. A multi-electrode gas shielded arc welding method, wherein the welding is performed while a positive current (the filler wire has a negative polarity with respect to the molten metal) flows through the filler wire while being inserted into a molten metal between the electrodes. 前記フィラーワイヤがフラックス入りワイヤであることを特徴とする請求項1に記載の多電極ガスシールドアーク溶接方法。The multi-electrode gas shielded arc welding method according to claim 1, wherein the filler wire is a flux-cored wire. 前記後行電極の更に後方に第3電極を前記後行電極と前記第3電極との間の極間距離が100mm以上となるように設けたことを特徴とする請求項1又は2に記載の多電極ガスシールドアーク溶接方法。The third electrode according to claim 1, wherein a third electrode is provided further behind the subsequent electrode such that a distance between the electrodes between the subsequent electrode and the third electrode is 100 mm or more. 4. Multi-electrode gas shielded arc welding method. 前記フィラーワイヤに流す電流が100A以上であることを特徴とする請求項1乃至3のいずれか1項に記載の多電極ガスシールドアーク溶接方法。4. The multi-electrode gas shielded arc welding method according to claim 1, wherein a current flowing through the filler wire is 100 A or more. 5.
JP2003054491A 2003-02-28 2003-02-28 Multi-electrode gas shielded arc welding method Expired - Lifetime JP3759114B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003054491A JP3759114B2 (en) 2003-02-28 2003-02-28 Multi-electrode gas shielded arc welding method
KR1020040013601A KR100590351B1 (en) 2003-02-28 2004-02-27 Multielectrode gas-shield arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054491A JP3759114B2 (en) 2003-02-28 2003-02-28 Multi-electrode gas shielded arc welding method

Publications (2)

Publication Number Publication Date
JP2004261839A true JP2004261839A (en) 2004-09-24
JP3759114B2 JP3759114B2 (en) 2006-03-22

Family

ID=33118819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054491A Expired - Lifetime JP3759114B2 (en) 2003-02-28 2003-02-28 Multi-electrode gas shielded arc welding method

Country Status (2)

Country Link
JP (1) JP3759114B2 (en)
KR (1) KR100590351B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088199A (en) * 2009-10-26 2011-05-06 Kobe Steel Ltd Gas shielded arc welding method
CN102069265A (en) * 2010-12-23 2011-05-25 哈尔滨工业大学 Dynamic twin-wire three-arc welding method
CN103252564A (en) * 2012-02-17 2013-08-21 株式会社神户制钢所 Multielectrode gas-shield arc welding method and device
CN103347638A (en) * 2011-02-16 2013-10-09 株式会社神户制钢所 Automatic multi-electrode gas shielded arc welding device
CN103370163A (en) * 2011-02-28 2013-10-23 株式会社神户制钢所 Gas shielded arc welding method and welding apparatus
KR20140114778A (en) 2013-03-19 2014-09-29 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
CN104772552A (en) * 2015-03-30 2015-07-15 大连理工大学 Three-wire gas shielded indirect electric arc welding method, device, overlay welding method and narrow gap welding method
CN105382383A (en) * 2014-08-28 2016-03-09 株式会社神户制钢所 Multi-electrode gas-shielded arc welding method
CN105817752A (en) * 2015-01-23 2016-08-03 天津大学 Method of compound welding twin arcs and cold wire pulse
CN109226938A (en) * 2017-07-10 2019-01-18 株式会社神户制钢所 Multielectrode gas-shielded electric arc single side soldering method
CN115279528A (en) * 2020-03-31 2022-11-01 株式会社神户制钢所 Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964025B2 (en) * 2006-08-01 2012-06-27 株式会社神戸製鋼所 Multi-electrode gas shielded arc welding method
CN100589914C (en) * 2006-08-01 2010-02-17 株式会社神户制钢所 Multiple electrode gas protection arc welding method
JP5634916B2 (en) * 2011-02-28 2014-12-03 株式会社神戸製鋼所 Gas shield arc welding equipment
JP6777609B2 (en) * 2017-09-11 2020-10-28 株式会社神戸製鋼所 Multi-electrode gas shield arc welding method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088199A (en) * 2009-10-26 2011-05-06 Kobe Steel Ltd Gas shielded arc welding method
CN102069265A (en) * 2010-12-23 2011-05-25 哈尔滨工业大学 Dynamic twin-wire three-arc welding method
CN102069265B (en) * 2010-12-23 2012-08-22 哈尔滨工业大学 Dynamic twin-wire three-arc welding method
CN103347638A (en) * 2011-02-16 2013-10-09 株式会社神户制钢所 Automatic multi-electrode gas shielded arc welding device
CN103347638B (en) * 2011-02-16 2016-01-20 株式会社神户制钢所 Multielectrode gas-shielded electric arc automatic soldering device
CN103370163B (en) * 2011-02-28 2015-09-02 株式会社神户制钢所 Gas protection arc welding method and welder
CN103370163A (en) * 2011-02-28 2013-10-23 株式会社神户制钢所 Gas shielded arc welding method and welding apparatus
CN103252564A (en) * 2012-02-17 2013-08-21 株式会社神户制钢所 Multielectrode gas-shield arc welding method and device
KR20140114778A (en) 2013-03-19 2014-09-29 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
CN105382383A (en) * 2014-08-28 2016-03-09 株式会社神户制钢所 Multi-electrode gas-shielded arc welding method
JP2016049537A (en) * 2014-08-28 2016-04-11 株式会社神戸製鋼所 Multielectrode gas shielded-arc welding method
CN105817752A (en) * 2015-01-23 2016-08-03 天津大学 Method of compound welding twin arcs and cold wire pulse
CN104772552A (en) * 2015-03-30 2015-07-15 大连理工大学 Three-wire gas shielded indirect electric arc welding method, device, overlay welding method and narrow gap welding method
CN109226938A (en) * 2017-07-10 2019-01-18 株式会社神户制钢所 Multielectrode gas-shielded electric arc single side soldering method
CN115279528A (en) * 2020-03-31 2022-11-01 株式会社神户制钢所 Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device

Also Published As

Publication number Publication date
KR100590351B1 (en) 2006-06-19
JP3759114B2 (en) 2006-03-22
KR20040078064A (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP4964025B2 (en) Multi-electrode gas shielded arc welding method
KR100899056B1 (en) Multielectrode gas-shield arc welding method
JP3759114B2 (en) Multi-electrode gas shielded arc welding method
JP5345392B2 (en) Tandem gas metal arc welding method, welding torch and welding apparatus used therefor
KR101707324B1 (en) Multielectrode gas-shielded arc welding method
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP5260469B2 (en) Gas shield arc welding method
WO2017057194A1 (en) High-current pulsed arc welding method and flux cored welding wire
WO2018159038A1 (en) Arc welding method for hot-dip galvanized steel sheet, and method for manufacturing welded member
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2003053545A (en) Tandem arc welding method
KR102216814B1 (en) Multi-electrode submerged arc welding method and welding device
KR20190006446A (en) Multi-electrode gas-shielded arc one-side welding method
KR100757838B1 (en) Multi-electrode gas-shield flux cored wire for arc welding
JP2006075847A (en) Hybrid welding method by laser beam and arc
WO2017221470A1 (en) Arc welding method for hot-dip galvanized steel sheet and method for manufacturing welded member
JP7388969B2 (en) Tandem gas shielded arc welding method and welding equipment
JPH11226735A (en) Gas shield arc welding method
JP2614966B2 (en) Gas shielded arc welding flux cored wire for multiple electrodes
JP2005313226A (en) Flux-cored wire for multiple electrode gas shielded arc welding
JP2749968B2 (en) High current density welding method
JP2996829B2 (en) Horizontal fillet welding method by carbon dioxide shielded arc welding
KR0125262B1 (en) Flux-cored wire for use in gas shielded arc welding with multi-electrodes and process using the same
JP3333305B2 (en) Gas shielded arc welding method
JP2003320478A (en) Titanium alloy welding wire for mig welding, welding method, and welding metal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

EXPY Cancellation because of completion of term