JP2004259961A - Method of manufacturing wiring board - Google Patents

Method of manufacturing wiring board Download PDF

Info

Publication number
JP2004259961A
JP2004259961A JP2003049345A JP2003049345A JP2004259961A JP 2004259961 A JP2004259961 A JP 2004259961A JP 2003049345 A JP2003049345 A JP 2003049345A JP 2003049345 A JP2003049345 A JP 2003049345A JP 2004259961 A JP2004259961 A JP 2004259961A
Authority
JP
Japan
Prior art keywords
wiring conductor
adhesive layer
insulating sheet
conductor
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049345A
Other languages
Japanese (ja)
Inventor
Takahiro Matsuoka
孝浩 松岡
Isamu Kirikihira
勇 桐木平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003049345A priority Critical patent/JP2004259961A/en
Publication of JP2004259961A publication Critical patent/JP2004259961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a wiring board which has a superior connection reliability between a wiring conductor and a pass-through conductor, without defective transferring of the wiring conductor on an insulation sheet. <P>SOLUTION: A sheet 5 for transferring is such that the wiring conductor 4 formed of a metal foil is attached to a sheet substrate 2 for transferring which is formed of heat-resistant resin via an adhesive layer 3 having an adhesive strength with the metal foil of 0.3 N/25 mm or above at 30°C and 0.2 N/25 mm or below at 60°C. The sheet 5 for transferring is stacked on the front surface of an insulation sheet 1, and then heat and pressure are applied to join the wiring conductor 4 and conductive paste 7 filling in through holes 6 and to plant the wiring conductor 4 in the insulation sheet 1 to transfer the wiring conductor 4 on the insulation sheet 1. Thereafter, while heating the laminate at a temperature not less than one at which the adhesive strength of the adhesive layer 3 with respect to the metal foil is 0.2 N/25 mm or below, and less than one at which a thermosetting resin composition of the insulation sheet 1 starts to flow, the sheet substrate 2 for transferring and the adhesive layer 3 are separated from the insulation sheet 1 on which the wiring conductor 4 has been transferred. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表面に半導体素子や抵抗器等の電子部品を搭載するための配線基板の製造方法に関する。
【0002】
【従来の技術】
従来、プリント基板は、ガラス繊維基材にエポキシ樹脂を含浸させるとともに硬化させて成る絶縁層の上下面に銅箔を被着した後、銅箔をエッチングして微細な配線導体を形成し、しかる後、このようにして配線導体を形成した複数の絶縁層を耐熱性繊維に未硬化の熱硬化性樹脂を含浸させて成るプリプレグを介して積層するとともにプリプレグを硬化させて積層板を形成し、さらに、積層板の上面から下面にかけて所望位置にマイクロドリルにより貫通孔を形成し、その貫通孔の内面に銅めっき膜を付着させて貫通導体を形成し、この貫通導体により絶縁層を挟んで上下に位置する各配線導体間を電気的に接合することにより製作されている。
【0003】
しかしながら、上記のプリント基板は、絶縁層の積層数が増加するとともに貫通導体の数も増加し、配線導体の形成に必要なスペースが確保できなくなり、その結果、電子部品の軽薄短小化に伴う配線基板の多層化、配線導体の微細化の要求に答えられないという問題点を有していた。
【0004】
このような問題点を解決するために、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂等の未硬化の熱硬化性樹脂組成物を含浸させて成る絶縁シートを用意する工程と、この絶縁シートを貫通する貫通孔を穿孔する工程と、この貫通孔内に導電性粉末と架橋材とを含有する熱硬化性の導体ペーストを充填する工程と、耐熱性樹脂から成る転写用シート基材に熱可塑性の接着剤層を介して金属箔から成る配線導体を被着した転写用シートを用意する工程と、絶縁シートの表面に転写用シートを積層し加熱加圧して、配線導体と貫通孔内に充填した導体ペーストとを接合するとともに配線導体を絶縁シートに埋入して転写した後、配線導体が転写された絶縁シートから転写用シート基材および接着剤層を剥離する工程と、配線導体が転写された絶縁シートおよび貫通孔内に導体ペーストが充填された絶縁シートの複数枚を積層し加熱加圧して上下に位置する配線導体を貫通孔内に充填された導体ペーストで接合するととも熱硬化性樹脂組成物および導体ペーストを熱硬化する工程とを行なうことにより、絶縁シートが硬化して成る絶縁層の上下面に配線導体が配設されているとともに導体ペーストが硬化して成る貫通導体により絶縁層を挟んで上下に位置する配線導体同士が電気的に接続されて成る配線基板を製造する方法が提案されている。
【0005】
この製造方法によれば、従来のように絶縁層を積層した積層板の上面から下面にかけて貫通孔を設けるとともにその内面に銅めっき膜を被着させて形成した貫通導体により上下の配線導体間を接続する方法に比較して、貫通導体の径を小さくできるとともに貫通導体の形成位置を各絶縁層毎に自由に設計できることから、高密度の配線導体の形成が可能であり、また、各絶縁シートに配線導体を転写・積層して一括して硬化させることが可能となるために、工程数が少ない等の利点を有する。
【0006】
【特許文献1】
特開2002−198658号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記の配線基板の製造方法では、通常、絶縁シートの熱硬化性樹脂組成物の流動開始温度を80〜100℃程度としており、絶縁シートへの配線導体の埋入はこの流動開始温度より若干高い温度で行なわれていた。また、配線導体を転写用シート基材に被着する接着剤層は、転写用シート基材上に配線導体を形成する際等における配線導体の不用意な剥離を防止するために、配線導体用の金属箔に対する30℃における接着強度が0.3N/25mm以上の熱可塑性樹脂が用いられており、配線導体が埋入された絶縁シートからの転写用シート基材および接着剤層の剥離は温度が20〜25℃程度の室温で行なっていた。
【0008】
そして、このような従来の製造方法では、接着剤層の金属箔に対する30℃における接着強度が0.3N/25mm以上と高いことから、配線導体が埋入された絶縁シートから転写用シート基材および接着剤層を剥離する際に、接着剤層と配線導体とが良好に剥離せずに配線導体側に接着剤が残ったり、配線導体が絶縁シートから剥がれたりして転写不良となることがあり、そのため配線導体と貫通導体とが良好に接合されずに両者が接続不良となってしまうという問題点を有していた。
【0009】
そこで、配線導体を転写用シート基材に被着する接着剤層の材料として、紫外線硬化型あるいは熱硬化型の樹脂を用い、絶縁シートに配線導体を埋入した後、接着剤層を紫外線硬化あるいは熱硬化させることにより接着剤層の接着力を低下させ、その後、配線導体が埋入された絶縁シートから転写用シート基材および接着剤層を剥離する方法が考えられるが、この方法によると、接着剤層が紫外線硬化あるいは熱硬化されるために脆くなり、絶縁シートから剥離する際に転写用シート基材から剥がれて配線導体側に残る危険性が大きくなる。
【0010】
本発明の配線基板の製造方法は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、絶縁シートへの配線導体の転写不良がなく、配線導体と貫通導体との接続信頼性に優れた配線基板の製造方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明の配線基板の製造方法は、耐熱性繊維に未硬化の熱硬化性樹脂組成物を含浸させて成る絶縁シートを用意する工程と、この絶縁シートに貫通孔を穿孔する工程と、この貫通孔内に熱硬化性の導体ペーストを充填する工程と、耐熱性樹脂から成る転写用シート基材に接着剤層を介して金属箔から成る配線導体を被着した転写用シートを用意する工程と、前記絶縁シートの表面に前記転写用シートを積層し加熱加圧して、前記配線導体と前記貫通孔内に充填した前記導体ペーストとを接合するとともに前記配線導体を前記絶縁シートに埋入して転写した後、前記配線導体が転写された前記絶縁シートから前記転写用シート基材および前記接着剤層を剥離する工程と、前記配線導体が転写された前記絶縁シートおよび前記貫通孔内に前記導体ペーストが充填された前記絶縁シートの複数枚を積層し加熱加圧して上下に位置する前記配線導体を前記貫通孔内に充填された前記導体ペーストで接合するととも前記熱硬化性樹脂組成物および前記導体ペーストを熱硬化する工程とを具備する配線基板の製造方法において、前記接着剤層は前記金属箔に対する接着強度が温度の上昇とともに低下し、30℃において0.3N/25mm以上であり、かつ60℃において0.2N/25mm以下となるものであって、前記絶縁シートからの前記転写用シート基材および前記接着剤層の剥離を、前記接着剤層の前記金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ前記熱硬化性樹脂組成物の流動開始温度未満の温度に加熱しながら行なうことを特徴とするものである。
【0012】
本発明の配線基板の製造方法によれば、金属箔から成る配線導体を転写用シート基材に被着させている接着剤層の金属箔に対する接着強度が温度の上昇とともに低下し、30℃において0.3N/25mm以上であり、かつ60℃において0.2N/25mm以下であって、絶縁シートからの転写用シート基材および接着剤層の剥離を接着剤層の金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ絶縁シートの熱硬化性樹脂組成物の流動開始温度未満の温度に加熱しながら行なうので、転写用シート基材上に配線導体を形成する際等における配線導体の不用意な剥離を防止することができるとともに、配線導体が埋入した絶縁シートから転写用シート基材および接着剤層を剥離する際には接着剤層の接着強度が低いとともに接着剤層が脆くなることもなく、配線導体と接着剤層とが良好に剥離して配線導体の転写不良が発生することはない。また、剥離時の絶縁シートの変形が防止される。従って、貫通導体と配線導体とが良好に接続された両者の接続信頼性に優れた配線基板を提供することができる。
【0013】
【発明の実施の形態】
次に、本発明の配線基板の製造方法を、図1に基づいて詳細に説明する。
図1(a)〜(f)は、本発明の配線基板の製造方法を説明するための各工程毎の断面図であり、これらの図において、1は絶縁シート、2は転写用シート基材、3は接着剤層、4は配線導体、5は転写用シート、6は貫通孔、7は導体ペーストである。
【0014】
まず、図1(a)に示すように、耐熱性繊維に未硬化の熱硬化性樹脂組成物を含浸させて成る絶縁シート1を用意する。
絶縁シート1は、配線基板における絶縁層となるものであり、その厚みは50〜200μmが好ましく、厚みが50μm未満であると絶縁性が低下する傾向があり、200μmを超えると配線基板を軽量化できなくなる傾向がある。従って、絶縁シート1の厚みは50〜200μmが好ましい。
【0015】
なお、熱硬化性樹脂組成物の流動開始温度は、主として樹脂の分子量に依存し、80〜100℃の温度範囲が好ましい。熱硬化性樹脂組成物の流動開始温度が80℃未満であると樹脂の分子量が低くなって溶融粘度も低くなり、絶縁シート1に配線導体4を埋入する際や、後述するように配線導体4が転写された絶縁シート1および貫通孔6内に導体ペースト7が充填された絶縁シート1の複数枚を積層し加熱加圧して絶縁シート1の熱硬化性樹脂組成物および導体ペースト7を熱硬化させる際に、熱硬化性樹脂組成物が過剰に流動して配線導体4の位置がずれてしまい、配線導体4と導体ペースト7とが良好に接続されなくなってしまう傾向にあり、100℃を超えると樹脂の分子量が高くなって溶融粘度も高くなり、絶縁シート1に配線導体4を埋入させる際にその埋入が困難となる傾向にある。従って、熱硬化性樹脂組成物の流動開始温度は、80〜100℃の温度範囲が好ましい。
【0016】
なお、本発明の配線基板の製造方法でいう流動開始温度とは、絶縁シート1を25×25mmの四角形状に切取り、それを離型フィルムで挟み、所定温度で10MPaの圧力を印加しながら10分間プレスした時に、切り取った絶縁シート1の上下面の面積の増大が1%を超える時点の温度をさす。
【0017】
次に、図1(b)に断面図で示すように、絶縁シート1にレーザ光の照射により貫通孔6を穿孔する。このような貫通孔6は、絶縁シート1に従来周知の炭酸ガスレーザやYAGレーザ等を用いることにより形成される。貫通孔6の径は30〜200μmであることが好ましく、径が30μmより小さいと、後述するように貫通孔6内に導体ペースト7を充填する際に、導体ペースト7を良好に充填することが困難となる傾向があり、200μmを超えると高密度配線が困難となる傾向にある。従って、貫通孔6の径は30〜200μmであることが好ましい。
【0018】
次に、図1(c)に断面図で示すように、貫通孔6内に導電性粉末と架橋剤とから成る導体ペースト7を充填する。このような導体ペースト7としては、銅や銀等の導電性粉末にイソシアヌレートやエポキシ化合物等の液状の架橋剤とを混練したものが好ましく、導体ペースト7を熱硬化させて成る貫通導体を低抵抗化するという観点からは、金属粉末に少なくとも錫を含む低融点金属を含有させても良い。
【0019】
なお、貫通孔6内への導体ペースト7の充填は、貫通孔6に対応する孔を有するメタルマスクを用いたスクリーン印刷法で行なわれる。または、絶縁シート1の上下面に保護フィルムを被着し、保護フィルムと絶縁シート1とを同時に穿孔して貫通孔6を形成した後に、保護フィルムの上から導体ペースト7を充填しても良い。この場合、導体ペースト7は、その上下の端面が保護フィルムの表面より1〜5μm程度盛り上がるようにして充填されるので、導体ペースト7の保護フィルム表面より盛り上がった部分を、例えば掻き取ることにより除去し、導体ペースト7の上下の端面の高さを揃えることが好ましい。この導体ペースト7の盛り上がった部分を掻き取る方法は、ゴム製のスキージの下面に無塵紙を取り付け、それで保護フィルムの表面を数回擦り、保護フィルム上の導体ペースト7を除去する等の方法を用いればよい。
【0020】
次に、図1(d)に断面図で示すように、耐熱性樹脂から成る転写用シート基材2に金属箔から成る配線導体4を熱可塑性の接着剤層3を介して被着した転写用シート5を用意する。このような転写用シート5は、例えば、厚みが25μm程度の耐熱性樹脂から成る転用シート基材2の一方の主面全面に熱可塑性樹脂から成る接着剤層3を介して厚みが12μm程度の銅から成る金属箔を剥離可能に接着した後、金属箔上にフィルム状感光性レジストを被着するとともにこのレジストを露光・現像して配線導体4のパターンに対応するパターンのエッチングマスクを形成し、しかる後、これを塩化第二鉄溶液中に浸漬して金属箔の非パターン部をエッチング除去して配線導体4を形成した後、感光性レジストを剥離除去し、最後に配線導体4の表面を蟻酸や銅イオン、pH調整剤等から成る粗化液に浸漬して粗化することにより製作される。
【0021】
転写用シート5に用いられる転写用シート基材2は、ポリエチレンテレフタレート(PET)樹脂やポリカーボネート(PC)等の耐熱性樹脂から成り、金属箔をエッチングして配線導体4を形成する際の支持体、および配線導体4を絶縁シート1に転写する際の支持体としての機能を有する。そして、その厚みは20〜50μmが好ましく、厚みが20μm未満であるとその剛性が低下し金属箔をエッチングする際に配線導体4が変形し易くなる傾向にあり、50μmを超えるとその柔軟性が低下し絶縁シート1から剥離し難くなる傾向にある。従って、転写用シート基材2の厚みは20〜50μmが好ましい。
【0022】
また、転写用シート基材2に被着された配線導体4は、例えば金・銀・銅・アルミニウムの少なくとも1種を含む低抵抗金属の電解金属箔から成り、その厚みは5〜35μmが好ましく、さらには10〜18μmが好ましい。配線導体4の厚みが5μm未満であると配線導体4の抵抗値が大きなものとなる傾向があり、また、35μmを超えると配線導体4を絶縁シート1に転写する際に絶縁シート1への配線導体4の埋入量が多くなり、絶縁シート1の歪みが大きくなり熱硬化性樹脂組成物の硬化後に基板が変形を起こし易くなる傾向がある。従って、配線導体4の厚みは5〜35μmが好ましい。
【0023】
さらに、配線導体4を転写用シート基材2に被着している接着剤層3は、アクリル酸エステル/メタクリル酸メチル/アクリル酸共重合体のアクリル樹脂にアジピン酸等の可塑剤を配合して成り、図2に示すように、配線導体を形成する金属箔に対する接着強度が温度の上昇に伴って低下し、30℃において0.3N/25mm以上、かつ60℃において0.2N/25mm以下となるものである。そして、このような接着剤層3により配線導体4を転写用シート基材2上に剥離可能に保持している。
【0024】
なお、接着剤層3の30℃における金属箔に対する接着強度が0.3N/25mm未満であると、転写用シート基材2上に被着された金属箔をエッチングして配線導体4を形成する際に、エッチング液および粗化液により配線導体4が転写用シート基材2から剥がれ易くなる傾向にあり、60℃における接着強度が0.2N/25mmより大きくなると、後述するように配線導体4を絶縁シート1に埋入させた後、転写用シート基材2および接着剤層3を剥離する際、配線導体4が転写用シート基材2側に残り絶縁シート1に確実に転写されなくなる傾向にある。従って、接着剤層3と金属箔との接着強度は、30℃において0.3N/25mm以上、60℃において0.2N/25mm以下に特定される。
【0025】
また、接着剤層3の厚みが1μm未満であると配線導体4を充分に密着することが難しくなる傾向にあり、10μmを超えると転写用シート基材2上に被着された金属箔をエッチングして配線導体4を形成する際に、エッチング液および粗化液が接着剤層3に浸透膨潤して接着力を低下させて配線導体4が剥がれてしまい易くなる傾向にある。従って、接着剤層3の厚みは1〜10μmであることが好ましい。
【0026】
なお、接着剤層3の接着強度の調整は、例えば、アクリル樹脂のアクリル酸の共重合体量を増やすと銅箔との水素結合が多くなり接着強度が向上し、また、可塑剤の添加量を増やすと接着剤層3が軟らかくなり銅箔の粗化面に追随して接着強度が向上するため、アクリル樹脂のアクリル酸の共重合体量と可塑剤の添加量を増減すればよい。また、温度の上昇に対する接着強度の低下度合いは、可塑剤の種類によって調整することができ、例えばポリエステル系の可塑剤において温度の上昇に対する接着強度の低下度合いが大きくなり、フタル酸系の可塑剤において小さくなる傾向にある。従って、これらの可塑剤を単独で、あるいは混合して用いればよい。このような接着強度は、JIS Z 0237に準拠して測定を行なうことにより測定される。
【0027】
次に、図1(e)に断面図で示すように、配線導体4と貫通孔6内に充填した導体ペースト7とが接合するように絶縁シート1の表面に転写用シート5を積層し、これらを絶縁シート1の熱硬化性樹脂組成物の流動開始温度以上の温度(80〜150℃)に加熱しながら0.5〜5MPa程度の圧力で数分間加圧することにより配線導体4を絶縁シート1に埋入した後、接着剤層3の金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ絶縁シート1の熱硬化性樹脂組成物の流動開始温度未満の温度に加熱しながら絶縁シート1から転写用シート基材2および接着剤層3を剥離する。
【0028】
このように本発明の配線基板の製造方法では、金属箔から成る配線導体を転写用シート基材に被着させている接着剤層3の金属箔に対する接着強度が温度の上昇とともに低下し、金属箔に対する接着強度が30℃において0.3N/25mm以上、60℃において0.2N/25mm以下であるとともに、配線導体4が転写された絶縁シート1からの転写用シート基材2および接着剤層3の剥離を、接着剤層3の金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ絶縁シート1の熱硬化性樹脂組成物の流動開始温度未満の温度に加熱して行なうことが重要である。
【0029】
転写用シート基材に配線導体4を被着する接着剤層3の金属箔に対する接着強度が温度の上昇とともに低下し、金属箔に対する接着強度が30℃において0.3N/25mm以上、60℃において0.2N/25mm以下である転写用シート5を用いて、絶縁シート1に配線導体4を埋入して転写した後、配線導体4が転写された絶縁シート1からの転写用シート基材2および接着剤層3の剥離を、接着剤層3の金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ絶縁シート1の熱硬化性樹脂組成物の流動開始温度未満の温度に加熱して行なうことにより、剥離時に接着剤層3と配線導体4との接着強度が充分小さいものとなるとともに接着剤層3が脆くなることがないため、接着剤層3と配線導体4とが良好に剥離して絶縁シート1に配線導体4を確実かつ良好に転写することができる。また、絶縁シート1が流動することがないので変形せず導体ペースト7と配線導体4とが正確かつ確実に接合される。
【0030】
なお、配線導体4が埋入された絶縁シート1から転写用シート基材2および接着剤層3を剥離する際の温度が、接着剤層3の金属箔に対する接着強度が0.2N/25mmを超える温度未満であると、剥離時に接着剤層3と配線導体4とが良好に剥離せずに配線導体4の転写不良となり易く、また絶縁シート1の熱硬化性樹脂組成物の流動開始温度以上であると、剥離時に絶縁シート1が変形して配線導体4に変形や位置ずれを発生させ易くなる。従って、配線導体4が埋入された絶縁シート1から転写用シート基材2および接着剤層3を剥離する際の温度は、接着剤層3の金属箔に対する接着強度が0.2N/25mmを超える温度以上でかつ絶縁シート1の熱硬化性樹脂組成物の流動開始温度未満の温度に特定される。
【0031】
また、絶縁シート1から転写用シート基材2および接着剤層3を剥離する時には、絶縁シート1と転写用シート基材2および接着剤層3とのなす剥離の角度が60°以上となるようにして剥離することが望ましい。剥離の角度が60°未満の場合、配線導体4表面上に接着剤が残り易くなる傾向がある。この剥離の角度はできるだけ大きいほうが良く、望ましくは100°〜180°、最適には110°〜170°が用いられる。
【0032】
なお、絶縁シート1はロール状の連続体ではなく、1枚ずつカットされて供給されることが望ましい。これは、転写用シート5がロール状の連続体で供給される方が効率的であるため、絶縁シート1を動かして細かな位置の調整を行ない、転写用シート5との位置合わせを行なった方が、位置合わせ機構がコンパクトになるためである。さらに、転写用シート5と絶縁シート1との位置合わせは画像認識装置により、光学的に行なうことが好ましいが、その他、様々な公知の方法も使用しても良い。
【0033】
最後に、図1(f)に断面図で示すように、配線導体4が転写された絶縁シート1および貫通孔6内に導体ペースト7が充填された絶縁シート1の複数枚を積層し加熱加圧して上下に位置する配線導体4を貫通孔6内に充填された導体ペースト7で接合するととも熱硬化性樹脂組成物および導体ペースト7を熱硬化させることにより、絶縁シート1の熱硬化性樹脂組成物が硬化して成る絶縁層の上下面に配線導体4が配設されているとともに上下に位置する配線導体4同士を貫通孔6内に充填した導体ペースト7が硬化して成る貫通導体により電気的に接続して成る配線基板が完成する。なお、加熱加圧処理にあたっては、絶縁シート1の積層体をフッ素系樹脂などから成る離型性シートで上下から挟みこみ、1〜5MPaの圧力で180〜240℃の温度で加熱加圧処理する方法が採用される。
【0034】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能であることは言うまでもない。
【0035】
【実施例】
本発明の配線基板の製造方法において、転写状態を評価するために、次に説明する評価用の配線基板を製作した。
まず、耐熱性繊維に流動開始温度が100℃の未硬化の熱硬化性樹脂を含浸させて成る絶縁シートと耐熱性樹脂から成る転写用シート基材に金属箔から成る配線導体を、金属箔との接着強度が30℃において0.25N/25mm以上、60℃において0.25N/25mm以下である熱可塑性の樹脂から成る接着剤層を介して被着した転写用シートとを用意した。
【0036】
次に、絶縁シートに炭酸ガスレーザで100μmの貫通孔を形成し、銅と低融点金属および熱硬化性樹脂からなる導体ペーストを貫通孔に充填した後、導体ペーストと配線導体とを接合するように絶縁シートの表面に転写用シートを積層し、それを110℃の温度で加熱しながら3MPaの圧力で加圧して配線導体を埋入して転写した後、表1に示す条件で絶縁シートから転写用シート基材および接着剤層を150度の剥離角度で剥離し、その後、配線導体の転写の状態を観察した。その結果を表1に示す。
【0037】
【表1】

Figure 2004259961
【0038】
表1に示したように、30℃での接着強度が0.3N/25mm未満の場合(試料No.1)、金属箔との接着強度が小さいため転写シートを用意する際のエッチング時に配線導体が剥離してしまった。60℃での接着強度が0.2N/25mmより大きい場合(試料No.2)、配線導体が転写用シート基材側に残り絶縁シートに良好に転写できなかった。また、剥離温度を接着強度が0.2N/25mm以下となる温度未満で剥離した場合(試料No.3)、配線導体が転写用シート基材側に残り絶縁シートに良好に転写できなかった。また、剥離温度を絶縁シートの熱硬化性樹脂組成物の流動開始温度以上に高くした場合(試料No.7)、絶縁シートが変形し貫通導体と配線導体の位置が合わず転写不良となってしまった。それに対して、30℃での接着強度が0.3N/25mm以上、かつ60℃での接着強度が0.2N/25mm以上の接着剤層を用いて剥離温度を接着強度が0.2N/25mm以上の温度でかつ熱硬化樹脂組成物の流動開始温度未満とした場合、(試料No.4〜6)、転写は良好に行なわれた。
【0039】
【発明の効果】
本発明の配線基板の製造方法によれば、金属箔から成る配線導体を転写用シート基材に被着させている接着剤層の金属箔に対する接着強度が温度の上昇とともに低下し、30℃において0.3N/25mm以上であり、かつ60℃において0.2N/25mm以下であって、絶縁シートからの転写用シート基材および接着剤層の剥離を接着剤層の金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ絶縁シートの熱硬化性樹脂組成物の流動開始温度未満の温度に加熱しながら行なうので、転写用シート基材上に配線導体を形成する際等における配線導体の不用意な剥離を防止することができるとともに、配線導体が埋入した絶縁シートから転写用シート基材および接着剤層を剥離する際には接着剤層の接着強度が低いとともに接着剤層が脆くなることもなく、配線導体と接着剤層とが良好に剥離して配線導体の転写不良が発生することはない。また、剥離時の絶縁シートの変形が防止される。従って、貫通導体と配線導体とが良好に接続された両者の接続信頼性に優れた配線基板を提供することができる。
【図面の簡単な説明】
【図1】(a)〜(f)は、本発明の配線基板の製造方法を説明するための工程毎の断面図である。
【図2】剥離温度に対する接着剤層と金属箔との接着強度との関係を示す図である。
【符号の説明】
1・・・・・・絶縁シート
2・・・・・・転写用シート基材
3・・・・・・接着剤層
4・・・・・・配線導体
5・・・・・・転写用シート
6・・・・・・貫通孔
7・・・・・・導体ペースト[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a wiring board for mounting electronic components such as semiconductor elements and resistors on a surface.
[0002]
[Prior art]
Conventionally, a printed circuit board is formed by impregnating and curing a glass fiber base material with an epoxy resin and then applying copper foil on the upper and lower surfaces of an insulating layer, and then etching the copper foil to form fine wiring conductors. Afterwards, a plurality of insulating layers thus formed the wiring conductors are laminated via a prepreg formed by impregnating uncured thermosetting resin into heat-resistant fibers, and the prepreg is cured to form a laminate, Further, a through hole is formed at a desired position from the upper surface to the lower surface of the laminate by a microdrill, a copper plating film is attached to the inner surface of the through hole to form a through conductor, and the through conductor is sandwiched between insulating layers. Are manufactured by electrically connecting the respective wiring conductors located at the same position.
[0003]
However, in the above-mentioned printed circuit board, the number of insulating layers increases and the number of through conductors also increases, so that the space required for forming wiring conductors cannot be secured. There was a problem that it was not possible to respond to the demand for a multilayered substrate and a fine wiring conductor.
[0004]
In order to solve such a problem, a step of preparing an insulating sheet obtained by impregnating a heat-resistant fiber base material with an uncured thermosetting resin composition such as an allyl-modified polyphenylene ether resin, and A step of perforating a through hole that penetrates; a step of filling a thermosetting conductive paste containing a conductive powder and a cross-linking material in the through hole; A step of preparing a transfer sheet on which a wiring conductor made of a metal foil is applied via an adhesive layer, and laminating the transfer sheet on the surface of an insulating sheet, and applying heat and pressure to fill the wiring conductor and the through holes. Bonding the transferred conductor paste and embedding and transferring the wiring conductor in the insulating sheet, and then peeling the transfer sheet base material and the adhesive layer from the insulating sheet to which the wiring conductor has been transferred; Heat and pressure and heat and press to join the upper and lower wiring conductors with the conductive paste filled in the through-holes and thermosetting Performing a step of thermally curing the resin composition and the conductive paste, whereby the wiring conductors are disposed on the upper and lower surfaces of the insulating layer formed by curing the insulating sheet, and the insulating material is insulated by the through conductor formed by curing the conductive paste. There has been proposed a method of manufacturing a wiring board in which wiring conductors located above and below a layer are electrically connected to each other.
[0005]
According to this manufacturing method, a through-hole is provided from the upper surface to the lower surface of the laminated plate in which the insulating layers are laminated as in the related art, and the upper and lower wiring conductors are formed by the through conductor formed by applying a copper plating film on the inner surface. Compared to the connection method, the diameter of the through conductor can be reduced, and the position of the through conductor can be freely designed for each insulating layer, so that a high-density wiring conductor can be formed. Since it becomes possible to transfer and laminate the wiring conductors and to cure them all at once, there are advantages such as a small number of steps.
[0006]
[Patent Document 1]
JP-A-2002-198658
[Problems to be solved by the invention]
However, in the above-described method for manufacturing a wiring board, the flow start temperature of the thermosetting resin composition of the insulating sheet is usually set to about 80 to 100 ° C. It was performed at a slightly higher temperature. Further, the adhesive layer for applying the wiring conductor to the transfer sheet base material is used to prevent inadvertent peeling of the wiring conductor when forming the wiring conductor on the transfer sheet base material. A thermoplastic resin having an adhesive strength of not less than 0.3 N / 25 mm at 30 ° C. to a metal foil is used, and the transfer sheet base material and the adhesive layer are separated from the insulating sheet in which the wiring conductor is embedded by the temperature. Was carried out at a room temperature of about 20 to 25 ° C.
[0008]
In such a conventional production method, since the adhesive strength of the adhesive layer to the metal foil at 30 ° C. is as high as 0.3 N / 25 mm or more, the transfer sheet base material is transferred from the insulating sheet in which the wiring conductor is embedded. When peeling off the adhesive layer and the adhesive layer, the adhesive layer and the wiring conductor may not be separated well and the adhesive may remain on the wiring conductor side, or the wiring conductor may peel off from the insulating sheet, resulting in transfer failure. Therefore, there has been a problem that the wiring conductor and the through conductor are not joined well and the two are poorly connected.
[0009]
Therefore, as a material of the adhesive layer for attaching the wiring conductor to the transfer sheet base material, a UV-curable or thermosetting resin is used, and after the wiring conductor is embedded in the insulating sheet, the adhesive layer is cured by UV. Alternatively, a method of lowering the adhesive force of the adhesive layer by heat curing, and then peeling the transfer sheet base material and the adhesive layer from the insulating sheet in which the wiring conductor is embedded is considered, but according to this method, In addition, the adhesive layer becomes brittle due to ultraviolet curing or heat curing, and when peeled from the insulating sheet, the risk of being peeled off from the transfer sheet base material and remaining on the wiring conductor side increases.
[0010]
The method of manufacturing a wiring board according to the present invention has been completed in view of the problems of the related art, and has as its object to eliminate poor transfer of the wiring conductor to the insulating sheet and to reduce the connection reliability between the wiring conductor and the through conductor. It is intended to provide a method for manufacturing a wiring board having excellent performance.
[0011]
[Means for Solving the Problems]
The method for producing a wiring board according to the present invention includes a step of preparing an insulating sheet formed by impregnating a heat-resistant fiber with an uncured thermosetting resin composition; a step of forming a through hole in the insulating sheet; A step of filling a thermosetting conductive paste into the holes, and a step of preparing a transfer sheet in which a wiring conductor made of a metal foil is applied to a transfer sheet base material made of a heat-resistant resin via an adhesive layer. Stacking the transfer sheet on the surface of the insulating sheet, applying heat and pressure, joining the wiring conductor and the conductor paste filled in the through hole, and embedding the wiring conductor in the insulating sheet. Removing the transfer sheet base material and the adhesive layer from the insulating sheet to which the wiring conductor has been transferred, and transferring the wiring conductor to the insulating sheet and the through hole. A plurality of the insulating sheets filled with the paste are laminated and heated and pressed to join the wiring conductors positioned above and below with the conductor paste filled in the through holes, and the thermosetting resin composition and the A step of thermally curing the conductive paste, wherein the adhesive layer has an adhesive strength to the metal foil that decreases with an increase in temperature, is 0.3 N / 25 mm or more at 30 ° C., and It is 0.2 N / 25 mm or less at 60 ° C., and the peel strength of the transfer sheet base material and the adhesive layer from the insulating sheet is such that the adhesive strength of the adhesive layer to the metal foil is 0. The method is characterized in that the heating is performed while heating to a temperature not lower than 2 N / 25 mm or less and lower than the flow start temperature of the thermosetting resin composition.
[0012]
According to the method for manufacturing a wiring board of the present invention, the adhesive strength of the adhesive layer for attaching the wiring conductor made of metal foil to the transfer sheet substrate decreases with increasing temperature, and at 30 ° C. 0.3 N / 25 mm or more and 0.2 N / 25 mm or less at 60 ° C., and when the transfer sheet base material and the adhesive layer are separated from the insulating sheet, the adhesive strength of the adhesive layer to the metal foil is 0. Since the heating is performed while heating to a temperature equal to or higher than 2 N / 25 mm and lower than the flow start temperature of the thermosetting resin composition of the insulating sheet, wiring when forming a wiring conductor on the transfer sheet base material or the like is performed. It is possible to prevent inadvertent peeling of the conductor, and that the adhesive strength of the adhesive layer is low when peeling the transfer sheet base material and the adhesive layer from the insulating sheet embedded with the wiring conductor. To no the adhesive layer becomes fragile, poor transfer of the wiring conductor does not occur in the wiring conductor and the adhesive layer is satisfactorily peeled. In addition, deformation of the insulating sheet at the time of peeling is prevented. Therefore, it is possible to provide a wiring board in which the through conductor and the wiring conductor are well connected and have excellent connection reliability.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a method for manufacturing a wiring board according to the present invention will be described in detail with reference to FIG.
1 (a) to 1 (f) are cross-sectional views for each step for explaining a method of manufacturing a wiring board according to the present invention. In these figures, 1 is an insulating sheet, and 2 is a transfer sheet base material. Reference numeral 3 denotes an adhesive layer, 4 denotes a wiring conductor, 5 denotes a transfer sheet, 6 denotes a through hole, and 7 denotes a conductor paste.
[0014]
First, as shown in FIG. 1A, an insulating sheet 1 is prepared by impregnating a heat-resistant fiber with an uncured thermosetting resin composition.
The insulating sheet 1 serves as an insulating layer in a wiring board, and preferably has a thickness of 50 to 200 μm. If the thickness is less than 50 μm, the insulating property tends to decrease. If the thickness exceeds 200 μm, the wiring board is reduced in weight. It tends to be impossible. Therefore, the thickness of the insulating sheet 1 is preferably 50 to 200 μm.
[0015]
The flow start temperature of the thermosetting resin composition mainly depends on the molecular weight of the resin, and is preferably in the range of 80 to 100C. When the flow start temperature of the thermosetting resin composition is lower than 80 ° C., the molecular weight of the resin is reduced and the melt viscosity is also reduced, and when the wiring conductor 4 is embedded in the insulating sheet 1 or as described later, The insulating sheet 1 to which the conductive paste 4 has been transferred and a plurality of insulating sheets 1 filled with the conductive paste 7 in the through holes 6 are laminated and heated and pressed to heat the thermosetting resin composition of the insulating sheet 1 and the conductive paste 7. At the time of curing, the thermosetting resin composition excessively flows and the position of the wiring conductor 4 shifts, and the wiring conductor 4 and the conductor paste 7 tend to be not well connected. If it exceeds, the molecular weight of the resin increases and the melt viscosity also increases, and when the wiring conductor 4 is embedded in the insulating sheet 1, the embedding tends to be difficult. Therefore, the flow start temperature of the thermosetting resin composition is preferably in the range of 80 to 100C.
[0016]
The flow start temperature referred to in the method for manufacturing a wiring board of the present invention is defined as a value obtained by cutting an insulating sheet 1 into a square shape of 25 × 25 mm, sandwiching it with a release film, and applying a pressure of 10 MPa at a predetermined temperature. The temperature at which the area of the upper and lower surfaces of the cut insulating sheet 1 exceeds 1% when pressed for 1 minute.
[0017]
Next, as shown in a sectional view of FIG. 1B, a through hole 6 is formed in the insulating sheet 1 by irradiating a laser beam. Such a through hole 6 is formed by using a conventionally known carbon dioxide gas laser, a YAG laser, or the like on the insulating sheet 1. The diameter of the through-hole 6 is preferably 30 to 200 μm, and if the diameter is smaller than 30 μm, when the conductive paste 7 is filled into the through-hole 6 as described later, the conductive paste 7 can be filled well. When the thickness exceeds 200 μm, high-density wiring tends to be difficult. Therefore, the diameter of the through hole 6 is preferably 30 to 200 μm.
[0018]
Next, as shown in the cross-sectional view of FIG. 1C, the through-hole 6 is filled with a conductive paste 7 made of a conductive powder and a crosslinking agent. As such a conductive paste 7, a conductive powder such as copper or silver kneaded with a liquid crosslinking agent such as isocyanurate or an epoxy compound is preferable. From the viewpoint of resistance, the metal powder may contain a low melting point metal containing at least tin.
[0019]
The filling of the conductive paste 7 into the through holes 6 is performed by a screen printing method using a metal mask having holes corresponding to the through holes 6. Alternatively, a protective film may be applied to the upper and lower surfaces of the insulating sheet 1, and the protective film and the insulating sheet 1 may be simultaneously pierced to form the through holes 6, and then the conductive film 7 may be filled from above the protective film. . In this case, since the conductive paste 7 is filled so that the upper and lower end surfaces are raised from the surface of the protective film by about 1 to 5 μm, a portion of the conductive paste 7 raised from the surface of the protective film is removed by, for example, scraping off. It is preferable that the heights of the upper and lower end surfaces of the conductor paste 7 are made uniform. A method of scraping the raised portion of the conductive paste 7 is to attach a dust-free paper to the lower surface of a rubber squeegee, and then rub the surface of the protective film several times to remove the conductive paste 7 on the protective film. It may be used.
[0020]
Next, as shown in the cross-sectional view of FIG. 1D, a transfer in which a wiring conductor 4 made of a metal foil is adhered to a transfer sheet base 2 made of a heat-resistant resin via a thermoplastic adhesive layer 3. A preparation sheet 5 is prepared. Such a transfer sheet 5 has, for example, a thickness of about 12 μm over an entirety of one main surface of a transfer sheet substrate 2 made of a heat-resistant resin having a thickness of about 25 μm via an adhesive layer 3 made of a thermoplastic resin. After a metal foil made of copper is releasably adhered, a film-shaped photosensitive resist is applied on the metal foil, and the resist is exposed and developed to form an etching mask having a pattern corresponding to the pattern of the wiring conductor 4. Thereafter, this is immersed in a ferric chloride solution to remove the non-patterned portion of the metal foil by etching to form the wiring conductor 4. Then, the photosensitive resist is peeled off and finally, the surface of the wiring conductor 4 is removed. Is immersed in a roughening solution composed of formic acid, copper ions, a pH adjuster and the like to roughen.
[0021]
The transfer sheet base 2 used for the transfer sheet 5 is made of a heat-resistant resin such as polyethylene terephthalate (PET) resin or polycarbonate (PC), and is used as a support when the metal foil is etched to form the wiring conductor 4. , And a function as a support when the wiring conductor 4 is transferred to the insulating sheet 1. The thickness is preferably 20 to 50 μm. If the thickness is less than 20 μm, the rigidity is reduced and the wiring conductor 4 tends to be easily deformed when etching the metal foil. And tends to be difficult to peel off from the insulating sheet 1. Therefore, the thickness of the transfer sheet substrate 2 is preferably 20 to 50 μm.
[0022]
The wiring conductor 4 attached to the transfer sheet substrate 2 is made of, for example, an electrolytic metal foil of a low-resistance metal containing at least one of gold, silver, copper, and aluminum, and preferably has a thickness of 5 to 35 μm. And more preferably 10 to 18 μm. If the thickness of the wiring conductor 4 is less than 5 μm, the resistance value of the wiring conductor 4 tends to be large, and if it exceeds 35 μm, when the wiring conductor 4 is transferred to the insulating sheet 1, wiring to the insulating sheet 1 is performed. The amount of the conductor 4 to be embedded increases, the distortion of the insulating sheet 1 increases, and the substrate tends to easily deform after the thermosetting resin composition is cured. Therefore, the thickness of the wiring conductor 4 is preferably 5 to 35 μm.
[0023]
Further, the adhesive layer 3 for attaching the wiring conductor 4 to the transfer sheet base material 2 is obtained by mixing a plasticizer such as adipic acid with an acrylic resin of acrylate / methyl methacrylate / acrylic acid copolymer. As shown in FIG. 2, the adhesive strength to the metal foil forming the wiring conductor decreases with increasing temperature, and is 0.3 N / 25 mm or more at 30 ° C. and 0.2 N / 25 mm or less at 60 ° C. It is what becomes. The wiring conductor 4 is held on the transfer sheet base material 2 by the adhesive layer 3 so as to be peelable.
[0024]
If the adhesive strength of the adhesive layer 3 to the metal foil at 30 ° C. is less than 0.3 N / 25 mm, the metal foil attached on the transfer sheet base material 2 is etched to form the wiring conductor 4. At this time, the wiring conductor 4 tends to be easily peeled off from the transfer sheet substrate 2 by the etching solution and the roughening solution, and if the adhesive strength at 60 ° C. is more than 0.2 N / 25 mm, the wiring conductor 4 will be described later. When the transfer sheet substrate 2 and the adhesive layer 3 are peeled off after embedding the wiring sheet 4 in the insulating sheet 1, the wiring conductors 4 remain on the transfer sheet substrate 2 side and tend not to be reliably transferred to the insulating sheet 1. It is in. Therefore, the adhesive strength between the adhesive layer 3 and the metal foil is specified to be 0.3 N / 25 mm or more at 30 ° C. and 0.2 N / 25 mm or less at 60 ° C.
[0025]
If the thickness of the adhesive layer 3 is less than 1 μm, it tends to be difficult to sufficiently adhere the wiring conductor 4. If the thickness exceeds 10 μm, the metal foil applied on the transfer sheet substrate 2 is etched. When the wiring conductor 4 is formed, the etching liquid and the roughening liquid tend to permeate and swell into the adhesive layer 3 to reduce the adhesive strength, so that the wiring conductor 4 tends to be peeled off. Therefore, the thickness of the adhesive layer 3 is preferably 1 to 10 μm.
[0026]
The adhesive strength of the adhesive layer 3 is adjusted, for example, by increasing the amount of the acrylic acid copolymer of the acrylic resin, thereby increasing the number of hydrogen bonds with the copper foil and improving the adhesive strength. As the adhesive layer 3 is increased, the adhesive layer 3 becomes softer and follows the roughened surface of the copper foil to improve the adhesive strength. Therefore, the amount of the acrylic acid copolymer of the acrylic resin and the amount of the plasticizer added may be increased or decreased. In addition, the degree of decrease in adhesive strength with respect to temperature rise can be adjusted depending on the type of plasticizer. For example, in polyester-based plasticizers, the degree of decrease in bond strength with temperature rise is increased, and phthalic acid-based plasticizers are used. Tend to be smaller. Therefore, these plasticizers may be used alone or as a mixture. Such an adhesive strength is measured by performing a measurement according to JIS Z 0237.
[0027]
Next, as shown in the sectional view of FIG. 1E, the transfer sheet 5 is laminated on the surface of the insulating sheet 1 so that the wiring conductor 4 and the conductive paste 7 filled in the through hole 6 are joined. The wiring conductor 4 is pressurized at a pressure of about 0.5 to 5 MPa for several minutes while heating them at a temperature (80 to 150 ° C.) equal to or higher than the flow start temperature of the thermosetting resin composition of the insulating sheet 1 so that the wiring conductor 4 is formed. 1 and then heated to a temperature not lower than the temperature at which the adhesive strength of the adhesive layer 3 to the metal foil is 0.2 N / 25 mm or less and lower than the flow start temperature of the thermosetting resin composition of the insulating sheet 1. While transferring, the transfer sheet base material 2 and the adhesive layer 3 are peeled off from the insulating sheet 1.
[0028]
As described above, in the method for manufacturing a wiring board according to the present invention, the adhesive strength of the adhesive layer 3 for attaching the wiring conductor made of metal foil to the transfer sheet base material decreases with increasing temperature, and Adhesive strength to foil is not less than 0.3 N / 25 mm at 30 ° C. and not more than 0.2 N / 25 mm at 60 ° C., and transfer sheet substrate 2 and adhesive layer from insulating sheet 1 to which wiring conductor 4 has been transferred. 3 is performed by heating the adhesive layer 3 to a temperature at which the adhesive strength of the adhesive layer 3 to the metal foil becomes 0.2 N / 25 mm or less and lower than the flow start temperature of the thermosetting resin composition of the insulating sheet 1. This is very important.
[0029]
The adhesive strength of the adhesive layer 3 for attaching the wiring conductor 4 to the transfer sheet base material with respect to the metal foil decreases as the temperature increases, and the adhesive strength with respect to the metal foil is 0.3 N / 25 mm or more at 30 ° C. and 60 ° C. Using a transfer sheet 5 of 0.2 N / 25 mm or less, after embedding and transferring the wiring conductor 4 in the insulating sheet 1, a transfer sheet base material 2 from the insulating sheet 1 to which the wiring conductor 4 has been transferred. And peeling of the adhesive layer 3 at a temperature not lower than the temperature at which the adhesive strength of the adhesive layer 3 to the metal foil is 0.2 N / 25 mm or less and lower than the flow start temperature of the thermosetting resin composition of the insulating sheet 1. By performing the heating, the adhesive strength between the adhesive layer 3 and the wiring conductor 4 at the time of peeling becomes sufficiently small and the adhesive layer 3 does not become brittle. Peels well It is possible to reliably and satisfactorily transferred wiring conductor 4 to the insulating sheet 1. Further, since the insulating sheet 1 does not flow, the conductor paste 7 and the wiring conductor 4 are accurately and reliably joined without deformation.
[0030]
The temperature at which the transfer sheet base material 2 and the adhesive layer 3 are peeled off from the insulating sheet 1 in which the wiring conductor 4 is embedded is such that the adhesive strength of the adhesive layer 3 to the metal foil is 0.2 N / 25 mm. If the temperature is lower than the temperature, the adhesive layer 3 and the wiring conductor 4 do not peel off satisfactorily at the time of peeling, so that the transfer of the wiring conductor 4 tends to be defective, and the flow starting temperature of the thermosetting resin composition of the insulating sheet 1 or more In this case, the insulating sheet 1 is deformed at the time of peeling, so that the wiring conductor 4 is easily deformed or displaced. Accordingly, the temperature at which the transfer sheet base material 2 and the adhesive layer 3 are peeled off from the insulating sheet 1 in which the wiring conductor 4 is embedded is such that the adhesive strength of the adhesive layer 3 to the metal foil is 0.2 N / 25 mm. The temperature is specified to be higher than or equal to the temperature and lower than the flow start temperature of the thermosetting resin composition of the insulating sheet 1.
[0031]
When the transfer sheet substrate 2 and the adhesive layer 3 are peeled off from the insulating sheet 1, the peel angle between the insulating sheet 1 and the transfer sheet substrate 2 and the adhesive layer 3 is 60 ° or more. It is desirable to peel off. When the peeling angle is less than 60 °, the adhesive tends to remain on the surface of the wiring conductor 4. The angle of this peeling is preferably as large as possible, preferably 100 ° to 180 °, and most preferably 110 ° to 170 °.
[0032]
It is preferable that the insulating sheet 1 is not a roll-shaped continuous body but cut and supplied one by one. Since it is more efficient that the transfer sheet 5 is supplied in a roll-shaped continuum, the insulating sheet 1 is moved to finely adjust the position, and the transfer sheet 5 is aligned with the transfer sheet 5. This is because the positioning mechanism becomes compact. Further, the alignment between the transfer sheet 5 and the insulating sheet 1 is preferably performed optically by an image recognition device, but other various known methods may also be used.
[0033]
Finally, as shown in the sectional view of FIG. 1 (f), a plurality of insulating sheets 1 on which the wiring conductors 4 are transferred and insulating sheets 1 in which the conductive paste 7 is filled in the through holes 6 are laminated and heated. By pressing the wiring conductors 4 positioned above and below with the conductive paste 7 filled in the through-holes 6 and thermosetting the thermosetting resin composition and the conductive paste 7, the thermosetting resin of the insulating sheet 1 is formed. The wiring conductors 4 are disposed on the upper and lower surfaces of the insulating layer formed by curing the composition, and the through-conductors formed by curing the conductor paste 7 in which the wiring conductors 4 positioned above and below are filled in the through holes 6 are provided. A wiring board formed by electrical connection is completed. In the heating and pressurizing treatment, the laminated body of the insulating sheet 1 is sandwiched from above and below with a release sheet made of a fluororesin or the like, and is heated and pressed at a pressure of 1 to 5 MPa at a temperature of 180 to 240 ° C. The method is adopted.
[0034]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the scope of the present invention.
[0035]
【Example】
In the method for manufacturing a wiring board of the present invention, a wiring board for evaluation described below was manufactured in order to evaluate a transfer state.
First, a wiring conductor made of a metal foil is transferred to a transfer sheet base made of a heat-resistant resin and an insulating sheet formed by impregnating a heat-resistant fiber with an uncured thermosetting resin having a flow start temperature of 100 ° C. And a transfer sheet adhered through an adhesive layer made of a thermoplastic resin having an adhesive strength of 0.25 N / 25 mm or more at 30 ° C. and 0.25 N / 25 mm or less at 60 ° C.
[0036]
Next, a 100 μm through hole is formed in the insulating sheet with a carbon dioxide gas laser, and a conductive paste made of copper, a low melting point metal and a thermosetting resin is filled in the through hole, and then the conductive paste and the wiring conductor are joined. A transfer sheet is laminated on the surface of the insulating sheet, and is heated at a temperature of 110 ° C. while applying a pressure of 3 MPa to embed and transfer the wiring conductor, and then transferred from the insulating sheet under the conditions shown in Table 1. The sheet base material and the adhesive layer were peeled at a peel angle of 150 degrees, and then the state of transfer of the wiring conductor was observed. Table 1 shows the results.
[0037]
[Table 1]
Figure 2004259961
[0038]
As shown in Table 1, when the adhesive strength at 30 ° C. was less than 0.3 N / 25 mm (Sample No. 1), the wiring strength was low at the time of etching when preparing the transfer sheet because the adhesive strength with the metal foil was low. Has peeled off. When the adhesive strength at 60 ° C. was larger than 0.2 N / 25 mm (Sample No. 2), the wiring conductor remained on the transfer sheet base material side and could not be satisfactorily transferred to the insulating sheet. When the peeling temperature was less than the temperature at which the adhesive strength was 0.2 N / 25 mm or less (Sample No. 3), the wiring conductor remained on the transfer sheet base material side and could not be satisfactorily transferred to the insulating sheet. In addition, when the peeling temperature is set to be higher than the flow start temperature of the thermosetting resin composition of the insulating sheet (Sample No. 7), the insulating sheet is deformed, the positions of the through conductor and the wiring conductor do not match, and a transfer failure occurs. Oops. On the other hand, using an adhesive layer having an adhesive strength at 30 ° C. of 0.3 N / 25 mm or more and an adhesive strength at 60 ° C. of 0.2 N / 25 mm or more, the peeling temperature is adjusted to 0.2 N / 25 mm. When the temperature was above the temperature and lower than the flow start temperature of the thermosetting resin composition (Sample Nos. 4 to 6), the transfer was performed well.
[0039]
【The invention's effect】
According to the method for manufacturing a wiring board of the present invention, the adhesive strength of the adhesive layer for attaching the wiring conductor made of metal foil to the transfer sheet substrate decreases with increasing temperature, and at 30 ° C. 0.3 N / 25 mm or more and 0.2 N / 25 mm or less at 60 ° C., and when the transfer sheet base material and the adhesive layer are separated from the insulating sheet, the adhesive strength of the adhesive layer to the metal foil is 0. Since the heating is performed while heating to a temperature equal to or higher than 2 N / 25 mm and lower than the flow start temperature of the thermosetting resin composition of the insulating sheet, wiring when forming a wiring conductor on the transfer sheet base material or the like is performed. In addition to preventing inadvertent peeling of the conductor, when the transfer sheet base material and the adhesive layer are peeled from the insulating sheet embedded with the wiring conductor, the adhesive strength of the adhesive layer is low. To no the adhesive layer becomes fragile, poor transfer of the wiring conductor does not occur in the wiring conductor and the adhesive layer is satisfactorily peeled. Further, deformation of the insulating sheet at the time of peeling is prevented. Therefore, it is possible to provide a wiring board excellent in connection reliability between the through conductor and the wiring conductor that are well connected.
[Brief description of the drawings]
FIGS. 1A to 1F are cross-sectional views for explaining steps of a method for manufacturing a wiring board according to the present invention.
FIG. 2 is a diagram showing a relationship between a peeling temperature and an adhesive strength between an adhesive layer and a metal foil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulating sheet 2 ... Transfer sheet base material 3 ... Adhesive layer 4 ... Wiring conductor 5 ... Transfer sheet 6 ... through-hole 7 ... conductor paste

Claims (1)

耐熱性繊維に未硬化の熱硬化性樹脂組成物を含浸させて成る絶縁シートを用意する工程と、
該絶縁シートに貫通孔を穿孔する工程と、
該貫通孔内に熱硬化性の導体ペーストを充填する工程と、
耐熱性樹脂から成る転写用シート基材に接着剤層を介して金属箔から成る配線導体を被着した転写用シートを用意する工程と、
前記絶縁シートの表面に前記転写用シートを積層し加熱加圧して、前記配線導体と前記貫通孔内に充填した前記導体ペーストとを接合するとともに前記配線導体を前記絶縁シートに埋入して転写した後、前記配線導体が転写された前記絶縁シートから前記転写用シート基材および前記接着剤層を剥離する工程と、
前記配線導体が転写された前記絶縁シートおよび前記貫通孔内に前記導体ペーストが充填された前記絶縁シートの複数枚を積層し加熱加圧して上下に位置する前記配線導体を前記貫通孔内に充填された前記導体ペーストで接合するととも前記熱硬化性樹脂組成物および前記導体ペーストを熱硬化する工程と
を具備する配線基板の製造方法において、
前記接着剤層は前記金属箔に対する接着強度が温度の上昇とともに低下し、30℃において0.3N/25mm以上であり、かつ60℃において0.2N/25mm以下となるものであって、前記絶縁シートからの前記転写用シート基材および前記接着剤層の剥離を、前記接着剤層の前記金属箔に対する接着強度が0.2N/25mm以下となる温度以上でかつ前記熱硬化性樹脂組成物の流動開始温度未満の温度に加熱しながら行なうことを特徴とする配線基板の製造方法。
A step of preparing an insulating sheet formed by impregnating a heat-resistant fiber with an uncured thermosetting resin composition,
Drilling through holes in the insulating sheet;
A step of filling the through-hole with a thermosetting conductive paste,
A step of preparing a transfer sheet in which a wiring conductor made of a metal foil is applied to a transfer sheet base made of a heat-resistant resin via an adhesive layer,
The transfer sheet is laminated on the surface of the insulating sheet, heated and pressurized to join the wiring conductor and the conductor paste filled in the through hole, and embed the wiring conductor in the insulating sheet and transfer. Then, a step of peeling the transfer sheet base material and the adhesive layer from the insulating sheet to which the wiring conductor has been transferred,
The insulating sheet to which the wiring conductor is transferred and a plurality of the insulating sheets filled with the conductor paste in the through-hole are stacked, and heated and pressed to fill the through-hole with the wiring conductor positioned vertically. And a step of thermosetting the thermosetting resin composition and the conductor paste together with the joined conductor paste.
The adhesive layer has an adhesive strength to the metal foil that decreases with an increase in temperature, and is 0.3 N / 25 mm or more at 30 ° C. and 0.2 N / 25 mm or less at 60 ° C. The peeling of the transfer sheet base material and the adhesive layer from the sheet is performed at a temperature not lower than the temperature at which the adhesive strength of the adhesive layer to the metal foil is 0.2 N / 25 mm or less, and of the thermosetting resin composition. A method for manufacturing a wiring board, wherein the method is performed while heating to a temperature lower than a flow start temperature.
JP2003049345A 2003-02-26 2003-02-26 Method of manufacturing wiring board Pending JP2004259961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049345A JP2004259961A (en) 2003-02-26 2003-02-26 Method of manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049345A JP2004259961A (en) 2003-02-26 2003-02-26 Method of manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2004259961A true JP2004259961A (en) 2004-09-16

Family

ID=33115090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049345A Pending JP2004259961A (en) 2003-02-26 2003-02-26 Method of manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2004259961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152260A (en) * 2004-10-26 2006-06-15 Hitachi Chem Co Ltd Composite, prepreg, metal foil-clad laminated plate and multilayer printed wiring board obtained using the same, and manufacturing method of multilayer printed wiring board
JP2006152261A (en) * 2004-10-25 2006-06-15 Hitachi Chem Co Ltd Composite, prepreg, metal foil-clad laminated plate, and multilayer printed wiring board and manufacturing method thereof
JP2010129910A (en) * 2008-11-28 2010-06-10 Kyocer Slc Technologies Corp Method of manufacturing wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152261A (en) * 2004-10-25 2006-06-15 Hitachi Chem Co Ltd Composite, prepreg, metal foil-clad laminated plate, and multilayer printed wiring board and manufacturing method thereof
JP2006152260A (en) * 2004-10-26 2006-06-15 Hitachi Chem Co Ltd Composite, prepreg, metal foil-clad laminated plate and multilayer printed wiring board obtained using the same, and manufacturing method of multilayer printed wiring board
JP2010129910A (en) * 2008-11-28 2010-06-10 Kyocer Slc Technologies Corp Method of manufacturing wiring board

Similar Documents

Publication Publication Date Title
JP3867523B2 (en) Printed circuit board and manufacturing method thereof
JP4434315B2 (en) Manufacturing method of multilayer wiring board
JP2002094200A (en) Circuit board, electric insulating material therefor and method of manufacturing the same
JP2006210524A (en) Multilayered circuit board and its manufacturing method
JP2008300819A (en) Printed circuit board and method for manufacturing the same
JP4413522B2 (en) Wiring transfer sheet and manufacturing method thereof, and wiring board and manufacturing method thereof
JP3600317B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2003007768A (en) Interlayer connection material, and manufacturing method and using method therefor
JP5047906B2 (en) Wiring board manufacturing method
JP2009152496A (en) Manufacturing method of printed wiring board
JP3956087B2 (en) Method for manufacturing printed circuit board
JP4626225B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for producing multilayer printed wiring board
JP2004259961A (en) Method of manufacturing wiring board
JP4776056B2 (en) Conductive paste
JP2004253515A (en) Method of manufacturing wiring board
WO2004039136A1 (en) Method for manufacturing resin substrate and method for manufacturing multilayer resin substrate
JP2004153000A (en) Method of manufacturing printed board, and printed board manufactured thereby
JPH1070363A (en) Method for manufacturing printed wiring board
JP2004241427A (en) Method of manufacturing wiring board
JPH1174640A (en) Manufacture of printed wiring board
JP2007266165A (en) Manufacturing method of multilayer wiring board
JP3900862B2 (en) Method for manufacturing printed circuit board
JP2007266162A (en) Multilayer wiring board, and manufacturing method thereof
JP2007035716A (en) Manufacturing method of printed circuit board
JPH07106756A (en) Manufacture of printed wiring board