JP2004258084A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2004258084A
JP2004258084A JP2003045685A JP2003045685A JP2004258084A JP 2004258084 A JP2004258084 A JP 2004258084A JP 2003045685 A JP2003045685 A JP 2003045685A JP 2003045685 A JP2003045685 A JP 2003045685A JP 2004258084 A JP2004258084 A JP 2004258084A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
crystal display
temperature
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003045685A
Other languages
Japanese (ja)
Inventor
Takahiro Kashiwakawa
貴弘 柏川
Katsuji Ko
勝治 胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003045685A priority Critical patent/JP2004258084A/en
Publication of JP2004258084A publication Critical patent/JP2004258084A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain a gap between substrates, namely electrodes uniform and constant in a display surface in a liquid crystal display element by using post spacers composed only of a resin whose loss modulus of elasticity resulting from heating at a required temperature is in a certain range and making the post spacers be stuck to both substrates placed opposite to each other. <P>SOLUTION: In the liquid crystal display element which is constructed by interposing a liquid crystal between a pair of glass substrates 1 and 2 which are provided with transparent electrodes and of which at least one is transparent, and sealing the periphery with an adhesive sealing member 4 which is a thermosetting resin, the liquid crystal display element is equipped with the post spacers 3 composed of the resin, of which the loss modulus of elasticity G" resulting from heating under a condition of 120°C/10 minutes is in 1×10<SP>2</SP>Pa to 1×10<SP>8</SP>Pa range, and which are interposed between a pair of the glass substrates 1 and 2, are stuck to both substrates 1 and 2 and maintain a distance between both substrates 1 and 2 constant. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
本発明は、基板間のギャップを均一、且つ、一定に維持するの有効な構造をもった液晶表示素子、また、その液晶表示素子に効率良く液晶を注入することができる液晶表示素子の製造方法に関する。
【0002】
【従来の技術】
透明電極を有する2枚の透明基板の間に光スイッチ機能をもつ媒体、例えば、液晶を充填してなる液晶表示素子は、薄い、軽量、低消費電力などの特徴があることから、電卓、家電製品、OA機器などの表示素子、空間光変調素子(spacial light modulator)などとして広く用いられるようになっている。
【0003】
従来、液晶表示素子を製造する場合、液晶表示素子用のスペーサを基板上に散布して固定化する方法が知られているが、基板上にスペーサを均一、且つ、高密度に配置した状態で配向膜材料溶液を塗布することは困難であり、また、配向膜をラビング処理する際、スペーサが剥がれ落ちたりすることから、液晶表示素子の表示品質を維持したまま、スペーサを基板上に固定することは困難である。
【0004】
また、球状粒子、即ち、ビーズを基板上に散布し、基板間のギャップを均一に制御しようとする方法が知られているが、ビーズを散布する方法では、ビーズの配置を制御することは困難であることから、画素部分にもビーズが散布されてしまい、配向欠陥を招来し、表示品位が低下してしまう旨の問題がある。
【0005】
その問題を解消しようとして、フォト・リソグラフィ技術を適用し、画素部分以外に柱状スペーサを設けることも試みられているが、画素部分にスペーサがなければ、配向欠陥や表示品位低下は防止できるのであるが、柱状スペーサは、通常、一方の基板とは接着されているが他方の基板とは接着されていない為、外圧が加わると基板間隔に変動が起こり、干渉縞の発生、色調のばらつき、駆動電圧特性のばらつき等を生ずる旨の問題があり、極端な場合、外圧に依って上下基板同士が接触し、配向膜が損傷されて液晶分子の配向が乱れ、表示品質が低下するなどの問題が起こる。
【0006】
その問題を解消しようとして、柱状スペーサに両基板との接着性を持たせる為の検討が行われているところであるが、基板を重ね合わせる前は、樹脂からなる柱状スペーサの熱硬化が進行していない条件を維持し、その後、基板を重ね合わせ、加熱し、樹脂からなる柱状スペーサを硬化させた場合、基板との密着性は保たれるが、基板を重ね合わせた時の圧力に依って、硬化前の柱状スペーサが変形し、精密なギャップ制御を行うことができない旨の問題がある。
【0007】
その問題を解消しようとして、柱状スペーサに圧力や熱で変形しないビーズを含有させ、強度と接着性を両立させようとする発明が知られている(例えば、特許文献1参照。)。
【0008】
然しながら、その発明に依った場合、ビーズを樹脂に分散させている為、次のような問題が起こる。
(1) ビーズが含有されない柱状スペーサが或程度の確率で存在する為、ギャップ均一性を良好に実現することはできない。
(2) 前記(1)の問題を解消する為、ビーズ含有量を増加させると、ビーズがフィラーとして悪影響を及ぼし、柱状スペーサを製造する際、均一なスピン・コートを行うことができず、厚さにムラを生じ、柱状スペーサの高さが不均一になる。
(3) 均一粒径をもつビーズは高価であり、しかも、スペーサ以外の部分は除去するのであるから、殆どのビーズは廃棄することになり、コストは高いものになる。
【0009】
また、柱状ギャップ保持ピラーをもつ液晶表示装置に於いて、その柱状ギャップ保持ピラーの損失弾性率、貯蔵弾性率、硬度について規定した発明が知られている(例えば、特許文献2参照。)。
【0010】
然しながら、特許文献2に開示された発明では、柱状ギャップ保持ピラーは、対向する基板のうち、一方の側の基板のみに接着され、他方の側の基板には接着されていない構成になっている為、例えば、押圧力を加えた場合、その部分の周囲で表示色が変化してしまい、液晶層厚を小さくする外力に対する耐ストレス性に乏しいことが看取される。
【0011】
【特許文献1】
特開2000−155321号公報
【特許文献2】
特開2000−171804号公報
【0012】
【発明が解決しようとする課題】
本発明では、所要温度で加熱した際の損失弾性率が或範囲内にある樹脂のみからなる柱状スペーサを用い、その柱状スペーサを相対向する基板の両方に接着させ、基板間即ち電極間のギャップが表示面内で均一、且つ、一定に維持できるようにする。
【0013】
【課題を解決するための手段】
本発明に依る液晶表示素子に於いては、透明電極をもち少なくとも一方が透明である一対の基板間に液晶を挟持し周辺を熱硬化性樹脂で封止してなる液晶表示素子に於いて、120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在り前記一対の基板間に介挿されて両基板と接着し且つ両基板間隔を一定に維持する樹脂からなる柱状スペーサを備えてなることが基本になっている。
【0014】
前記手段を採ることに依り、柱状スペーサが相対向する基板の両方に接着しているので、基板間即ち電極間のギャップが表示面内で均一、且つ、一定に維持され、表示面を押圧しても、表示色の変化は発生せず、液晶層厚を小さくする外力に対する耐ストレス性は充分に高く、従って、表示品質は向上する。
【0015】
【発明の実施の形態】
本発明では、透明電極を有して少なくとも1枚は透明である2枚以上の基板のギャップを維持すると共に両基板間を接着する為、所要温度条件で軟化または硬化した際の損失弾性率が所要範囲内にある樹脂材料で構成された柱状スペーサを用いる。
【0016】
具体的には、前記柱状スペーサの構成材料としてフォト・レジスト材料から適切なもの、即ち、120〔℃〕/10〔分〕の条件で加熱した際に於ける損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲内にあるものを選択する。
【0017】
前記柱状スペーサに依ってギャップが正確に維持された基板間には光スイッチ機能をもつ媒体である液晶を挟持し、基板の周辺を熱硬化性樹脂で封止して液晶表示素子を構成する。
【0018】
表示を行う為には、基板のうち、少なくとも1枚は透明であり、そして、透明電極上に配向膜を有し、その配向膜としては、表面にラビング処理を施した樹脂配向膜を用いている。
【0019】
柱状スペーサの構成材料としては、市販されているポジ型のフォトレジストの中から選択することができる。
【0020】
液晶としては、ツイステッドネマティック型液晶、スーパーツイステッドネマティック型液晶、ネマティックコレステリック相転移型液晶、ポリマー分散型液晶、強誘電性液晶、反強誘電性液晶、ツイストグレインバウンダリ液晶、電傾効果を示すスメクティックA相液晶を用いることができ、基板に液晶を付着させる場合、その部分にディスペンサを用いて液晶を滴下することで定量的、且つ、容易に付着させることができる。
【0021】
複数枚の基板に於ける周辺を封止する熱硬化性樹脂の硬化温度、及び、加熱に依って硬化して基板に対して接着力を呈する柱状スペーサに於ける軟化温度及び硬化温度は、配向膜のラビング効果を損なわない温度にすることで配向膜にダメージを与えないようにし、また、基板の周辺を封止する熱硬化性樹脂の硬化温度は柱状スペーサの軟化温度及び硬化温度と等しいか、或いは、それよりも高い温度、例えば、120〔℃〕〜180〔℃〕の範囲にすることで、アニール処理に耐え、且つ、ラビング効果を損なわない旨の効果を同時に達成することが可能である。
【0022】
前記した温度制限を採る理由は、液晶パネル形成後、液晶を再配向する為のアニール処理の温度が120〔℃〕程度であり、その120〔℃〕の温度に於ける柱状スペーサ材料のうち、120〔℃〕/10〔分〕の加熱時に於ける損失弾性率が1×10〔Pa〕以下、1×10〔Pa〕以上となるものが基板間のギャップを維持し且つ接着強度を満足する条件であることから、基板周辺の熱硬化性樹脂の硬化温度は120〔℃〕以上にする必要がある。
【0023】
基板のギャップ内に液晶を充填する場合、柱状スペーサでギャップを維持した基板間を封止の為の周辺封止を全く、或いは、実質的に施すことなく、その周辺封止を行っていない部分全域、又は、一部に液晶を付着させた後、液晶を当該基板間に充填すれば、短い時間で完了させることができる。
【0024】
真空注入法を適用することに依って基板間(液晶パネル)に液晶を充填する場合には、基板に液晶を付着させる前後の液晶溜めと液晶パネル内との間に加わる大気圧差や温度差、或いは、その両方を利用して実施することに依って効率良く充填することが可能である。
【0025】
即ち、真空注入法を適用する場合、空の液晶パネルを液晶溜めをもつチャンバ内にセットし、そのチャンバ内を真空にした際に生ずる空の液晶パネル内と外気圧との差が前記圧力差であって、その圧力差を利用して液晶の充填を行うことが可能であり、また、空の液晶パネルを加熱してから急冷した場合、液晶パネル内に真空状態を現出させることができるので、その真空を利用して液晶を充填することも可能である。
【0026】基板の周辺封止部材は、光硬化性樹脂、或いは、基板内部に存在する熱硬化性樹脂の硬化温度よりも高い温度で硬化する熱硬化性樹脂を用いることができ、それに依って、温度上昇を抑止しつつ基板周辺を封止することができる。
【0027】
次に、本発明に於ける具体的実施例を説明するが、これ等実施例に依って本発明が限定されるものではない。
【0028】
製造方法の概略説明
図1及び図2は本発明に依る液晶表示素子を製造する工程を説明する為の工程要所に於ける液晶表示素子及び製造装置を表す要部切断側面図であり、図に於いて、1及び2はガラス基板、3は柱状スペーサ、4は接着封止部材、5は熱処理装置、6は液晶注入口、7はベルジャー、8は液晶、9は液晶溜め、10は搬送機構をそれぞれ示している。
【0029】
図1(A)参照
(1)
透明電極並びに配向膜(両方とも図示せず)を形成したガラス基板2上に温度を120〔℃〕/10〔分〕の条件で上昇させた場合に於ける損失弾性率が1×10〔Pa〕となるフォト・レジスト材料をスピン・コート法を適用することに依って厚さ2〔μm〕となるように塗布する。
【0030】
(2)
フォト・レジスト膜を100〔℃〕で1〔分〕間のプリ・ベーキングを行ってから、直径10〔μm〕の円が100〔μm〕の間隔で縦横に並ぶマスクを用い、紫外線露光装置に依って露光を行う。
【0031】
(3)
現像を行って、接着性をもつ柱状スペーサを作製し、純水で洗浄後、乾燥を行って柱状スペーサ3を得る。
【0032】
図1(B)参照
(4)
ガラス基板2の周辺に接着接着封止部材4を形成してから、接着封止部材4及び柱状スペーサ3上にガラス基板1を載置した組み立て体を熱処理装置5内に装填し、接着接着封止部材4である熱硬化性樹脂の硬化温度、例えば、120〔℃〕〜150〔℃〕の温度で加熱加圧する。尚、この温度は、配向膜のラビング効果が維持される温度範囲内である。
【0033】
この工程を経ることで、接着性柱状スペーサ3は圧力を受けた状態で軟化或いは硬化して、ガラス基板1とガラス基板2との間を弾性を維持したまま接着し、そして、これと同時に、ガラス基板2の周辺に形成した接着封止部材4に依ってガラス基板2とガラス基板1の周辺が封止される。
【0034】
図2参照
(5)
ガラス基板2とガラス基板1との組み立て体は、搬送機構10に依ってベルジャー7内に搬送され、接着封止部材4に於ける適所に形成されている液晶注入口6を介してガラス基板2とガラス基板1との間に液晶8を注入した後、液晶注入口6を封止して完成する。
【0035】
次に、幾つかの具体的実施例と、それ等の実施例に於ける主たる実施例に対応する比較例とを挙げて説明する。
実施例1
(1)
透明電極を全面に形成した200×100×1.1t〔mm〕であるガラス基板1及び2に対し、スピン・コータを用い、3〔重量%〕のポリイミド溶液を2000〔rpm〕の回転数で塗布し、200〔℃〕の温度で30〔分〕間の焼成を行い、次いで、一対の前記ガラス基板1及び2をラビング処理して液晶配向膜とした。
【0036】
(2)
前記一対のガラス基板の一方のガラス基板2に120〔℃〕/10〔分〕で加熱した場合の損失弾性率が1×10〔Pa〕であるポジ型フォト・レジスト(AZ−5200:クラリアント製)を厚さが2〔μm〕となるように、スピン・コータを用いて、均一な塗布膜を形成した。
【0037】
(3)
前記塗布膜について、ホット・プレート上で100〔℃〕、1〔分〕間のプリ・ベーキングを行い、その後、直径10〔μm〕の円が100〔μm〕の間隔で縦横に並ぶマスクを用い、紫外線露光装置に依って1〔分〕間の露光を行った。
【0038】
(4)
現像を行い、ポジ型フォト・レジストからなる柱状ピラーを作製し、純水で洗浄後、乾燥を行って接着性柱状スペーサ3とした。
【0039】
(5)
柱状スペーサ3を形成したガラス基板2の周辺に、液晶注入口6を除いて、150〔℃〕、1時間で硬化するエポキシ樹脂からなる接着封止部材4を印刷法に依って形成する。
【0040】
(6)
一対のガラス基板1及び2を透明電極が対向するように貼り合わせ、真空袋に挿入し、150〔℃〕、1時間の加熱を行って接着封止部材4であるエポキシ樹脂を硬化した。
【0041】
(7)
柱状スペーサ3の作用で所要のギャップを維持している一対のガラス基板1及び2間に液晶注入口6を介して強誘電性液晶を注入してから、液晶注入口6を封止して強誘電性液晶表示素子とした。
【0042】
前記のようにして作製した液晶表示素子をクロスニコルス下に置き、先端径が0.8〔mm〕のペン先に依って荷重を100〔g〕として中央を押圧したところ、ペン先の周囲で表示色の変化は発生せず、液晶層厚を小さくする外力に対する耐ストレス性が認められた。
【0043】
比較例1
柱状スペーサ3のフォト・レジスト材料として、120〔℃〕/10〔分〕の条件で温度上昇させた際に於ける損失弾性率が1×10〔Pa〕にならないものを用いた以外、実施例1と全く同様にして比較例1の液晶表示素子を作製した。
【0044】
前記比較例1の液晶表示素子を、実施例1の場合と同様、クロスニコルス下に置き、先端径が0.8〔mm〕のペン先に依って荷重を100〔g〕として中央を押圧したところ、ペン先の周囲で表示色の変化は発生せず、液晶層厚を小さくする外力に対する耐ストレス性が認められた。
【0045】
また、比較例1の液晶表示素子の中央を支持し、両端に300〔g〕の荷重を加えたところ、全表示面に亙って表示色の変化は観察されず、液晶層厚は全面に亙って如何なる箇所でも変化することはなかった。
【0046】
然し、比較例1の液晶表示素子を−40〔℃〕RH(室温)環境に1〔時間〕放置し、上記同様の試験を行った結果、液晶層に乱れを生じて表示品質が低下する現象が見られた。これは、温度環境に依り、液晶が膨張する際、液晶パネルが該膨張に追従できなかった為に発生したものと考えられる。
【0047】
実施例2
柱状スペーサ3のフォト・レジスト材料として、120〔℃〕/10〔分〕の条件で温度上昇させた際に於ける損失弾性率が1×10〔Pa〕であるシリコーン系レジスト(グラシア:日本ペイント製)を用いた以外、実施例1と全く同様にして実施例2の液晶表示素子を作製した。
【0048】
前記のようにして作製した液晶表示素子をクロスニコルス下に置き、先端径が0.8〔mm〕のペン先に依って荷重を100〔g〕として中央を押圧したところ、ペン先の周囲で表示色の変化は発生せず、液晶層厚を小さくする外力に対する耐ストレス性が認められた。
【0049】
また、実施例2の液晶表示素子の中央を支持し、両端に300〔g〕の荷重を加えたところ、全表示面に亙って表示色の変化は観察されず、液晶層厚は全面に亙って如何なる箇所でも変化することはなかった。
【0050】
更に、実施例2の液晶表示素子を−40〔℃〕RH(室温)環境に1〔時間〕放置し、上記同様の試験を行ったが、液晶の表示品質に変化は見られず、液晶の体積膨張に対する追従性が確認された。
【0051】
比較例2
接着封止部材4の硬化温度を190〔℃〕、1〔時間〕で硬化させた以外は実施例1と全く同様にして比較例2の液晶表示素子を作製した。
【0052】
この場合、接着封止部材4の硬化温度が190〔℃〕であり、この温度はラビング・ダメージが発生する温度180〔℃〕を越えている為、当然、表示品質は低下した。
【0053】
実施例3
強誘電性液晶をツイステッドネマティック型液晶に代替し、基板1及び2間のギャップを6〔μm〕にした以外、実施例1と全く同じ条件で液晶表示素子を作製した。
【0054】
実施例3の液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0055】
実施例4
強誘電性液晶をスーパーツイステッドネマティック型液晶に代替し、基板1及び2間のギャップを6〔μm〕にした以外、実施例1と全く同じ条件で液晶表示素子を作製した。
【0056】
実施例4の液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0057】
実施例5
強誘電性液晶をネマティックコレステリック相転移型液晶に代替し、基板1及び2間のギャップを6〔μm〕にした以外、実施例1と全く同じ条件で液晶表示素子を作製した。
【0058】
実施例5の液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0059】
実施例6
強誘電性液晶を反強誘電性液晶に代替した以外、実施例1と全く同じ条件で液晶表示素子を作製した。
【0060】
実施例6の液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0061】
実施例7
強誘電性液晶をツイストグレインバウンダリ液晶に代替し、基板1及び2間のギャップを6〔μm〕にした以外、実施例1と全く同じ条件で液晶表示素子を作製した。
【0062】
実施例7の液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0063】
実施例8
強誘電性液晶をスメクティックA相液晶に代替し、基板1及び2間のギャップを6〔μm〕にした以外、実施例1と全く同じ条件で液晶表示素子を作製した。
【0064】
実施例8の液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0065】
実施例9
液晶注入方法として、真空注入方法を採用せず、柱状スペーサ3を形成したガラス基板2上に強誘電性液晶を滴下した後、ガラス基板2の周辺に接着封止部材4を施し、ガラス基板1及び2を重ね合わせて加熱することに依って接着し液晶表示素子を作製した。この場合、基板周辺の接着封止部材4と柱状スペーサ3を間において、両ガラス基板1及び2を接着させたことを除き、実施例1と全く同じ条件を採用している。
【0066】
実施例9では、液晶注入時間が不要となる為、実施例1に比較し、製造時間を短縮することができた。また、完成した液晶表示素子を実施例1の場合と同様にして評価したところ、実施例1の液晶表示素子と同様に良好な特性を実現することができた。
【0067】
前記した各実施例に於いて、柱状スペーサの材料としては、シリコーン系ポジ型レジストとして日本ペイント製の商品名グラシア、クラリアント製の商品名AZ−5200などを挙げたが、その他には、例えば、クラリアント製のノボラック系ポジ型レジストである商品名AZ−5214E、或いは、その他にシリコーン系ポジ型レジスト、アクリル系ポジ型レジスト、感光性ポリイミドなど多くのポジ型レジストを用いた場合も同効である。
【0068】
本発明に於いては、前記説明した実施の形態を含め、多くの形態で実施することができ、以下、それを付記として例示する。
【0069】
(付記1)
透明電極をもち少なくとも一方が透明である一対の基板間に液晶を挟持し周辺を熱硬化性樹脂で封止してなる液晶表示素子に於いて、
120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在り前記一対の基板間に介挿されて両基板と接着し且つ両基板間隔を一定に維持する樹脂からなる柱状スペーサを備えてなること
を特徴とする液晶表示素子。
【0070】
(付記2)
樹脂からなる柱状スペーサは120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在るフォト・レジストからなること
を特徴とする(付記1)記載の液晶表示素子。
【0071】
(付記3)
樹脂からなる柱状スペーサは損失弾性率G″が硬化時間に対応して上昇するものであること
を特徴とする(付記1)記載の液晶表示素子。
【0072】
(付記4)
柱状スペーサを構成する樹脂は硬化温度が配向膜のラビング効果を損なう温度に達しない範囲のものであること
を特徴とする(付記1)記載の液晶表示素子。
【0073】
(付記5)
基板周辺を封止する熱硬化性樹脂の硬化温度と加熱に依って硬化し対向する一対の基板に接着力をもつ柱状スペーサの軟化温度及び硬化温度とが配向膜のラビング効果を損なう温度に達しない温度であると共に前記基板の周辺を封止する熱硬化性樹脂の硬化温度が前記柱状スペーサの硬化温度以上であること
を特徴とする(付記1)記載の液晶表示素子。
【0074】
(付記6)
柱状スペーサを構成する樹脂と基板周辺を封止する熱硬化性樹脂との硬化温度が120〔℃〕〜180〔℃〕の範囲であること
を特徴とする(付記1)記載の液晶表示素子。
【0075】
(付記7)
柱状スペーサを構成する樹脂と基板周辺を封止する熱硬化性樹脂との硬化時間が2〔時間〕以内であること
を特徴とする(付記1)記載の液晶表示素子。
【0076】
(付記8)
透明電極をもち少なくとも一方が透明である一対の基板間に液晶を挟持し周辺を周辺封止剤で封止してなる液晶表示素子の製造方法に於いて、
何れか一方の基板上に120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在って前記一対の基板間に介挿された場合に両基板と接着し且つ両基板間隔を一定に維持する柱状スペーサを形成する工程と、
前記一方の基板に他方の基板を重ね合わせて液晶注入口となるべき箇所を除き周辺封止剤を施し加圧加熱して液晶パネルを形成する工程と、
前記液晶注入口から前記液晶パネル内に液晶を真空注入してから前記液晶注入口を封止する工程と
が含まれてなることを特徴とする液晶表示素子の製造方法。
【0077】
(付記9)
透明電極をもち少なくとも一方が透明である一対の基板間に液晶を挟持し周辺を熱硬化性樹脂で封止してなる液晶表示素子の製造方法に於いて、
何れか一方の基板上に120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在って前記一対の基板間に介挿された場合に両基板と接着し且つ両基板間隔を一定に維持する柱状スペーサを形成する工程と、
前記一方の基板上に液晶を滴下して付着させる工程と、
前記一方の基板と他方の基板とを対向させ且つ両基板間に熱硬化性樹脂を介在させて両基板を加熱封止する工程と
が含まれてなることを特徴とする液晶表示素子の製造方法。
【0078】
(付記10)
液晶パネルに液晶を付着させる前後に於ける液晶溜めと前記液晶パネル内との間に於ける圧力差を利用して前記液晶パネルに液晶を充填すること
を特徴とする(付記8)記載の液晶表示素子の製造方法。
【0079】
(付記11)
液晶パネルに液晶を付着させる前後に於ける液晶溜めと前記液晶パネル内との間に於ける温度差を利用して前記液晶パネルに液晶を充填すること
を特徴とする(付記8)記載の液晶表示素子の製造方法。
【0080】
(付記12)
液晶パネルに液晶を付着させる前後に於ける液晶溜めと前記液晶パネル内との間に於ける圧力差及び温度差を利用して前記液晶パネルに液晶を充填すること
を特徴とする(付記8)記載の液晶表示素子の製造方法。
【0081】
(付記13)
基板周辺を封止する熱硬化性樹脂が光硬化性樹脂或いは基板内部に用いられている熱硬化性樹脂の硬化温度に比較して高い温度で硬化するものであること
を特徴とする(付記8)記載の液晶表示素子の製造方法。
【0082】
(付記14)
基板上に液晶を滴下して付着させる工程に於いて、
ディスペンサを用いて液晶を滴下すること
を特徴とする(付記9)記載の液晶表示素子の製造方法。
【0083】
(付記15)
液晶は、ツイステッドネマティック型液晶、スーパーツイステッドネマティック型液晶、ネマティックコレステリック相転移型液晶、ポリマー分散型液晶、強誘電性液晶、反強誘電性液晶、ツイストグレインバウンダリ液晶、電傾効果を示すスメクティックA相液晶から選択されること
を特徴とする(付記8)或いは(付記9)記載の液晶表示素子の製造方法。
【0084】
【発明の効果】
本発明に依る液晶表示素子に於いては、透明電極をもち少なくとも一方が透明である一対の基板間に液晶を挟持し周辺を熱硬化性樹脂で封止してなる液晶表示素子に於いて、120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在り前記一対の基板間に介挿されて両基板と接着し且つ両基板間隔を一定に維持する樹脂からなる柱状スペーサを備えることが基本になっている。
【0085】
前記構成を採ることに依り、柱状スペーサが相対向する基板の両方に接着しているので、基板間即ち電極間のギャップが表示面内で均一、且つ、一定に維持され、表示面を押圧しても、表示色の変化は発生せず、液晶層厚を小さくする外力に対する耐ストレス性は充分に高く、従って、表示品質は向上する。
【図面の簡単な説明】
【図1】本発明に依る液晶表示素子を製造する工程を説明する為の工程要所に於ける液晶表示素子及び製造装置を表す要部切断側面図である。
【図2】本発明に依る液晶表示素子を製造する工程を説明する為の工程要所に於ける液晶表示素子及び製造装置を表す要部切断側面図である。
【符号の説明】
1及び2 ガラス基板
3 柱状スペーサ
4 接着封止部材
5 熱処理装置
6 液晶注入口
7 ベルジャー
8 液晶
9 液晶溜め
10 搬送機構
[0001]
The present invention relates to a liquid crystal display device having a structure effective to maintain a uniform and constant gap between substrates, and a method of manufacturing a liquid crystal display device capable of efficiently injecting liquid crystal into the liquid crystal display device. About.
[0002]
[Prior art]
A medium having an optical switch function between two transparent substrates having transparent electrodes, for example, a liquid crystal display element filled with liquid crystal has characteristics such as thinness, light weight, and low power consumption. It has been widely used as a product, a display element such as an OA device, a spatial light modulator, and the like.
[0003]
Conventionally, when a liquid crystal display element is manufactured, a method of dispersing and fixing a spacer for a liquid crystal display element on a substrate is known, but in a state where the spacers are uniformly and densely arranged on the substrate. It is difficult to apply the alignment film material solution, and when rubbing the alignment film, the spacers are peeled off, so that the spacers are fixed on the substrate while maintaining the display quality of the liquid crystal display element. It is difficult.
[0004]
Further, a method is known in which spherical particles, that is, beads are scattered on a substrate, and a gap between the substrates is controlled uniformly. However, it is difficult to control the arrangement of the beads by the method of scattering beads. Therefore, there is a problem that beads are scattered also in the pixel portion, which causes an alignment defect and lowers display quality.
[0005]
To solve the problem, it has been attempted to apply a photolithography technique to provide columnar spacers other than the pixel portion, but if there is no spacer in the pixel portion, alignment defects and degradation in display quality can be prevented. However, since the columnar spacers are usually bonded to one substrate but not to the other substrate, when an external pressure is applied, the spacing between the substrates fluctuates, causing interference fringes, variation in color tone, and driving. In extreme cases, the upper and lower substrates come into contact with each other due to external pressure, and the alignment film is damaged, the alignment of liquid crystal molecules is disturbed, and the display quality is degraded. Occur.
[0006]
In order to solve the problem, studies are being made to make the columnar spacers have adhesiveness to both substrates, but before the substrates are overlapped, the thermosetting of the resinous columnar spacers is progressing. If the conditions are not maintained, then the substrates are superimposed, heated, and the columnar spacer made of resin is cured, the adhesion with the substrate is maintained, but depending on the pressure when the substrates are superimposed, There is a problem that the columnar spacer before curing is deformed and precise gap control cannot be performed.
[0007]
To solve the problem, there is known an invention in which beads which are not deformed by pressure or heat are contained in a columnar spacer to achieve both strength and adhesiveness (for example, see Patent Document 1).
[0008]
However, according to the invention, since the beads are dispersed in the resin, the following problems occur.
(1) Since columnar spacers containing no beads are present with a certain probability, good gap uniformity cannot be realized.
(2) When the content of beads is increased to solve the problem (1), the beads have an adverse effect as a filler, and when manufacturing a columnar spacer, uniform spin coating cannot be performed, and As a result, the height of the columnar spacer becomes uneven.
(3) Beads having a uniform particle size are expensive, and since parts other than the spacers are removed, most of the beads are discarded, resulting in high costs.
[0009]
Further, in a liquid crystal display device having a columnar gap holding pillar, an invention is known in which the loss elastic modulus, storage modulus, and hardness of the columnar gap holding pillar are specified (for example, see Patent Document 2).
[0010]
However, in the invention disclosed in Patent Literature 2, the pillar-shaped gap holding pillar is configured to be bonded to only one of the opposing substrates and not to the other substrate. Therefore, for example, when a pressing force is applied, the display color changes around that portion, and it is understood that the liquid crystal layer has poor stress resistance to an external force that reduces the thickness of the liquid crystal layer.
[0011]
[Patent Document 1]
JP 2000-155321 A [Patent Document 2]
JP 2000-171804 A
[Problems to be solved by the invention]
In the present invention, a columnar spacer made of only a resin having a loss elastic modulus when heated at a required temperature is within a certain range is used, and the columnar spacer is bonded to both opposing substrates, and a gap between the substrates, that is, a gap between the electrodes. Can be maintained uniformly and constant in the display surface.
[0013]
[Means for Solving the Problems]
In the liquid crystal display element according to the present invention, in a liquid crystal display element having a transparent electrode, at least one of which is sandwiched between a pair of transparent substrates and liquid crystal is sealed with a thermosetting resin, The loss elastic modulus G ″ when heated under the condition of 120 ° C./10 minutes is in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa], and is inserted between the pair of substrates. Basically, it is provided with a columnar spacer made of a resin that adheres to both substrates and maintains a constant distance between both substrates.
[0014]
By adopting the above-mentioned means, since the columnar spacer is adhered to both of the opposing substrates, the gap between the substrates, that is, the gap between the electrodes is kept uniform and constant in the display surface, and the display surface is pressed. However, the display color does not change, the stress resistance against external force that reduces the thickness of the liquid crystal layer is sufficiently high, and the display quality is improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, since the gap between two or more substrates that have a transparent electrode and is at least one transparent is maintained and the two substrates are bonded together, the loss elastic modulus when softened or cured at a required temperature condition is reduced. A columnar spacer made of a resin material within a required range is used.
[0016]
More specifically, as a constituent material of the columnar spacer, a suitable material from a photoresist material, that is, a loss elastic modulus G ″ when heated at 120 ° C./10 min. Those in the range of 2 [Pa] to 1 × 10 8 [Pa] are selected.
[0017]
A liquid crystal, which is a medium having an optical switching function, is sandwiched between substrates whose gaps are accurately maintained by the columnar spacers, and the periphery of the substrate is sealed with a thermosetting resin to form a liquid crystal display element.
[0018]
In order to perform display, at least one of the substrates is transparent, and has an alignment film on a transparent electrode, and the alignment film is a resin alignment film having a rubbed surface. I have.
[0019]
The constituent material of the columnar spacer can be selected from commercially available positive photoresists.
[0020]
The liquid crystal includes a twisted nematic liquid crystal, a super twisted nematic liquid crystal, a nematic cholesteric phase transition liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, a twist grain boundary liquid crystal, and a smectic A exhibiting an electroclinic effect. A phase liquid crystal can be used. When a liquid crystal is attached to a substrate, the liquid crystal can be attached quantitatively and easily by dropping the liquid crystal using a dispenser.
[0021]
The curing temperature of the thermosetting resin that seals the periphery of multiple substrates, and the softening temperature and curing temperature of the columnar spacer that is cured by heating to give an adhesive force to the substrate are oriented. A temperature that does not impair the rubbing effect of the film does not damage the alignment film, and the curing temperature of the thermosetting resin that seals the periphery of the substrate is equal to the softening temperature and curing temperature of the columnar spacer. Alternatively, by setting the temperature to a higher temperature, for example, in the range of 120 ° C. to 180 ° C., it is possible to simultaneously achieve the effect of withstanding the annealing treatment and not impairing the rubbing effect. is there.
[0022]
The reason for adopting the above temperature limit is that after forming the liquid crystal panel, the temperature of the annealing treatment for reorienting the liquid crystal is about 120 ° C., and among the columnar spacer materials at the temperature of 120 ° C., Those having a loss elastic modulus of 1 × 10 8 [Pa] or less and 1 × 10 2 [Pa] or more during heating at 120 [° C.] / 10 [min] maintain the gap between the substrates and improve the adhesive strength. Since the conditions are satisfied, the curing temperature of the thermosetting resin around the substrate needs to be 120 ° C. or higher.
[0023]
When filling the gap between the substrates with liquid crystal, the peripheral sealing is not performed at all or substantially without sealing between the substrates with the gap maintained by the columnar spacer, and the peripheral sealing is not performed. After the liquid crystal is attached to the entire area or a part thereof, the liquid crystal is filled between the substrates to complete the processing in a short time.
[0024]
When the liquid crystal is filled between the substrates (liquid crystal panels) by applying the vacuum injection method, the atmospheric pressure difference and the temperature difference between the liquid crystal reservoir before and after the liquid crystal adheres to the substrates and the inside of the liquid crystal panel. Alternatively, the filling can be efficiently performed by using both of them.
[0025]
That is, when the vacuum injection method is applied, an empty liquid crystal panel is set in a chamber having a liquid crystal reservoir, and the difference between the inside of the empty liquid crystal panel and the outside air pressure generated when the chamber is evacuated is the pressure difference. The liquid crystal can be filled by utilizing the pressure difference, and when an empty liquid crystal panel is heated and then rapidly cooled, a vacuum state can be generated in the liquid crystal panel. Therefore, it is possible to fill the liquid crystal using the vacuum.
As the peripheral sealing member of the substrate, a photo-curing resin or a thermosetting resin that cures at a temperature higher than the curing temperature of the thermosetting resin existing inside the substrate can be used. In addition, the periphery of the substrate can be sealed while suppressing a rise in temperature.
[0027]
Next, specific examples of the present invention will be described, but the present invention is not limited by these examples.
[0028]
FIGS. 1 and 2 are cutaway side views of a main part showing a liquid crystal display element and a manufacturing apparatus at key process steps for explaining a step of manufacturing a liquid crystal display element according to the present invention. , 1 and 2 are glass substrates, 3 is a columnar spacer, 4 is an adhesive sealing member, 5 is a heat treatment device, 6 is a liquid crystal injection port, 7 is a bell jar, 8 is a liquid crystal, 9 is a liquid crystal reservoir, and 10 is a carrier. The mechanism is shown respectively.
[0029]
Refer to FIG. 1 (A) (1)
When the temperature is increased on a glass substrate 2 on which a transparent electrode and an alignment film (both not shown) are formed at a temperature of 120 ° C./10 minutes, the loss elastic modulus is 1 × 10 5 [ Is applied so as to have a thickness of 2 [μm] by applying a spin coating method.
[0030]
(2)
After pre-baking the photoresist film at 100 ° C. for 1 minute, a UV-ray exposure apparatus was used with a mask in which circles having a diameter of 10 μm were arranged vertically and horizontally at intervals of 100 μm. Exposure is performed.
[0031]
(3)
After development, a columnar spacer having an adhesive property is produced, washed with pure water, and dried to obtain a columnar spacer 3.
[0032]
Refer to FIG. 1 (B) (4)
After forming the adhesive bonding sealing member 4 around the glass substrate 2, the assembly in which the glass substrate 1 is mounted on the bonding sealing member 4 and the columnar spacer 3 is loaded into the heat treatment apparatus 5, and the adhesive bonding sealing is performed. Heat and pressure are applied at the curing temperature of the thermosetting resin as the stop member 4, for example, at a temperature of 120 ° C. to 150 ° C. Note that this temperature is within a temperature range in which the rubbing effect of the alignment film is maintained.
[0033]
Through this step, the adhesive columnar spacer 3 is softened or hardened under pressure, and adheres between the glass substrate 1 and the glass substrate 2 while maintaining the elasticity. The periphery of the glass substrate 2 and the periphery of the glass substrate 1 are sealed by the adhesive sealing member 4 formed around the glass substrate 2.
[0034]
Refer to FIG. 2 (5)
The assembly of the glass substrate 2 and the glass substrate 1 is transported into the bell jar 7 by the transport mechanism 10, and is passed through the liquid crystal injection port 6 formed at an appropriate position in the adhesive sealing member 4. After the liquid crystal 8 is injected between the substrate and the glass substrate 1, the liquid crystal injection port 6 is sealed to complete the process.
[0035]
Next, some specific examples and comparative examples corresponding to the main examples in these examples will be described.
Example 1
(1)
Using a spin coater, 3% by weight of a polyimide solution was applied to glass substrates 1 and 2 of 200 × 100 × 1.1 t [mm] having transparent electrodes formed on the entire surface at a rotation speed of 2000 rpm. It was applied and baked at a temperature of 200 ° C. for 30 minutes, and then a rubbing treatment was performed on the pair of glass substrates 1 and 2 to form a liquid crystal alignment film.
[0036]
(2)
A positive-type photoresist (AZ-5200: Clariant) having a loss elastic modulus of 1 × 10 5 [Pa] when one of the pair of glass substrates 2 is heated at 120 ° C./10 [minutes]. Was formed using a spin coater to form a uniform coating film having a thickness of 2 μm.
[0037]
(3)
The coating film is pre-baked on a hot plate at 100 ° C. for 1 minute, and then a mask in which circles having a diameter of 10 μm are arranged vertically and horizontally at intervals of 100 μm is used. Exposure was performed for 1 minute using an ultraviolet exposure apparatus.
[0038]
(4)
After development, a columnar pillar made of a positive photoresist was prepared, washed with pure water, and dried to form an adhesive columnar spacer 3.
[0039]
(5)
Around the glass substrate 2 on which the columnar spacers 3 are formed, an adhesive sealing member 4 made of an epoxy resin that cures for one hour at 150 ° C. is formed by a printing method except for the liquid crystal injection port 6.
[0040]
(6)
The pair of glass substrates 1 and 2 were bonded so that the transparent electrodes faced each other, inserted into a vacuum bag, and heated at 150 ° C. for one hour to cure the epoxy resin as the adhesive sealing member 4.
[0041]
(7)
A ferroelectric liquid crystal is injected through a liquid crystal injection port 6 between a pair of glass substrates 1 and 2 that maintain a required gap by the action of the columnar spacer 3, and then the liquid crystal injection port 6 is sealed and the liquid crystal is injected. This was a dielectric liquid crystal display device.
[0042]
The liquid crystal display element prepared as described above was placed under the cross nichols, and the center was pressed with a load of 100 g according to a pen tip having a tip diameter of 0.8 mm. No change in display color occurred, and stress resistance to external force that reduced the thickness of the liquid crystal layer was observed.
[0043]
Comparative Example 1
Except for using a photoresist material for the columnar spacer 3 whose loss elastic modulus did not become 1 × 10 5 [Pa] when the temperature was increased under the condition of 120 ° C./10 min. A liquid crystal display device of Comparative Example 1 was manufactured in exactly the same manner as in Example 1.
[0044]
The liquid crystal display element of Comparative Example 1 was placed under the cross nichols as in Example 1, and the center was pressed with a load of 100 [g] using a pen tip having a tip diameter of 0.8 [mm]. However, no change in display color occurred around the pen tip, and stress resistance to external force that reduced the thickness of the liquid crystal layer was observed.
[0045]
When the center of the liquid crystal display device of Comparative Example 1 was supported and a load of 300 [g] was applied to both ends, no change in display color was observed over the entire display surface, and the liquid crystal layer thickness was increased over the entire surface. It did not change at any point throughout.
[0046]
However, the liquid crystal display element of Comparative Example 1 was left in an environment of -40 ° C. and RH (room temperature) for 1 hour, and the same test was performed. As a result, the liquid crystal layer was disturbed and the display quality deteriorated. It was observed. It is considered that this occurred because the liquid crystal panel could not follow the expansion when the liquid crystal expanded due to the temperature environment.
[0047]
Example 2
As a photoresist material for the columnar spacer 3, a silicone resist having a loss elastic modulus of 1 × 10 2 [Pa] when the temperature is increased under the condition of 120 ° C./10 [minutes] (Gracia: Japan A liquid crystal display element of Example 2 was produced in exactly the same manner as in Example 1 except that (made of paint) was used.
[0048]
The liquid crystal display element prepared as described above was placed under the cross nichols, and the center was pressed with a load of 100 g according to a pen tip having a tip diameter of 0.8 mm. No change in display color occurred, and stress resistance to external force that reduced the thickness of the liquid crystal layer was observed.
[0049]
When the center of the liquid crystal display device of Example 2 was supported and a load of 300 [g] was applied to both ends, no change in display color was observed over the entire display surface, and the liquid crystal layer thickness was increased over the entire surface. It did not change at any point throughout.
[0050]
Further, the liquid crystal display device of Example 2 was left in an environment of -40 [° C.] RH (room temperature) for 1 [hour], and the same test as above was carried out. Followability to volume expansion was confirmed.
[0051]
Comparative Example 2
A liquid crystal display device of Comparative Example 2 was produced in exactly the same manner as in Example 1, except that the adhesive sealing member 4 was cured at a curing temperature of 190 ° C. and 1 hour.
[0052]
In this case, the curing temperature of the adhesive sealing member 4 is 190 ° C., which exceeds the temperature at which rubbing damage occurs 180 ° C., so that the display quality is naturally deteriorated.
[0053]
Example 3
A liquid crystal display device was manufactured under exactly the same conditions as in Example 1 except that the ferroelectric liquid crystal was replaced with a twisted nematic liquid crystal and the gap between the substrates 1 and 2 was 6 [μm].
[0054]
When the liquid crystal display device of Example 3 was evaluated in the same manner as in Example 1, it was possible to realize good characteristics similarly to the liquid crystal display device of Example 1.
[0055]
Example 4
A liquid crystal display device was manufactured under exactly the same conditions as in Example 1 except that the ferroelectric liquid crystal was replaced with a super twisted nematic liquid crystal and the gap between the substrates 1 and 2 was 6 [μm].
[0056]
When the liquid crystal display device of Example 4 was evaluated in the same manner as in the case of Example 1, good characteristics were able to be realized similarly to the liquid crystal display device of Example 1.
[0057]
Example 5
A liquid crystal display device was manufactured under exactly the same conditions as in Example 1 except that the ferroelectric liquid crystal was replaced with a nematic cholesteric phase transition type liquid crystal and the gap between the substrates 1 and 2 was 6 [μm].
[0058]
When the liquid crystal display device of Example 5 was evaluated in the same manner as in Example 1, it was possible to realize good characteristics similarly to the liquid crystal display device of Example 1.
[0059]
Example 6
A liquid crystal display device was manufactured under exactly the same conditions as in Example 1 except that the ferroelectric liquid crystal was replaced with an antiferroelectric liquid crystal.
[0060]
When the liquid crystal display device of Example 6 was evaluated in the same manner as in Example 1, it was possible to realize good characteristics as in the liquid crystal display device of Example 1.
[0061]
Example 7
A liquid crystal display device was manufactured under exactly the same conditions as in Example 1, except that the ferroelectric liquid crystal was replaced with a twist grain boundary liquid crystal and the gap between the substrates 1 and 2 was changed to 6 [μm].
[0062]
When the liquid crystal display device of Example 7 was evaluated in the same manner as in Example 1, it was possible to realize good characteristics similarly to the liquid crystal display device of Example 1.
[0063]
Example 8
A liquid crystal display device was manufactured under the same conditions as in Example 1 except that the ferroelectric liquid crystal was replaced with a smectic A phase liquid crystal and the gap between the substrates 1 and 2 was changed to 6 [μm].
[0064]
When the liquid crystal display device of Example 8 was evaluated in the same manner as in Example 1, good characteristics were able to be realized similarly to the liquid crystal display device of Example 1.
[0065]
Example 9
As a liquid crystal injection method, a ferroelectric liquid crystal is dropped on the glass substrate 2 on which the columnar spacers 3 are formed without employing the vacuum injection method, and then an adhesive sealing member 4 is applied to the periphery of the glass substrate 2. And 2 were superimposed and bonded by heating to produce a liquid crystal display device. In this case, exactly the same conditions as in Example 1 were adopted except that the two glass substrates 1 and 2 were bonded between the adhesive sealing member 4 and the columnar spacer 3 around the substrate.
[0066]
In the ninth embodiment, since the liquid crystal injection time is not required, the manufacturing time can be reduced as compared with the first embodiment. Further, when the completed liquid crystal display device was evaluated in the same manner as in Example 1, it was possible to realize good characteristics similarly to the liquid crystal display device of Example 1.
[0067]
In each of the above-described embodiments, as the material of the columnar spacer, Nippon Paint's trade name of Gracia, Clariant's trade name of AZ-5200, etc. were mentioned as silicone-based positive resists. The same effect is obtained when many positive resists such as AZ-5214E (trade name) which is a novolak positive resist made by Clariant or other silicone positive resists, acrylic positive resists, and photosensitive polyimides are used. .
[0068]
The present invention can be embodied in many forms including the above-described embodiment, and will be exemplified below as additional notes.
[0069]
(Appendix 1)
In a liquid crystal display element having a transparent electrode and a liquid crystal sandwiched between a pair of substrates at least one of which is transparent and a periphery of which is sealed with a thermosetting resin,
The loss elastic modulus G ″ when heated under the condition of 120 ° C./10 minutes is in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa], and is inserted between the pair of substrates. A liquid crystal display element comprising a columnar spacer made of a resin adhered to both substrates and maintaining a constant distance between the two substrates.
[0070]
(Appendix 2)
The columnar spacer made of resin has a photo-electricity having a loss elastic modulus G ″ in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa] when heated under the condition of 120 ° C./10 minutes. The liquid crystal display device according to (Supplementary Note 1), comprising a resist.
[0071]
(Appendix 3)
The liquid crystal display element according to (Supplementary Note 1), wherein the columnar spacer made of resin has a loss elastic modulus G ″ that increases in accordance with the curing time.
[0072]
(Appendix 4)
The liquid crystal display element according to claim 1, wherein the resin constituting the columnar spacer has a curing temperature in a range not reaching a temperature at which the rubbing effect of the alignment film is impaired.
[0073]
(Appendix 5)
The curing temperature of the thermosetting resin that seals around the substrate and the softening temperature and curing temperature of the columnar spacer that is cured by heating and adheres to a pair of substrates facing each other reach a temperature that impairs the rubbing effect of the alignment film. 2. The liquid crystal display element according to claim 1, wherein the curing temperature of the thermosetting resin for sealing the periphery of the substrate is not lower than the curing temperature of the columnar spacer.
[0074]
(Appendix 6)
The liquid crystal display element according to (Appendix 1), wherein the curing temperature of the resin constituting the columnar spacer and the thermosetting resin for sealing the periphery of the substrate is in a range of 120 ° C. to 180 ° C.
[0075]
(Appendix 7)
The liquid crystal display element according to (Supplementary Note 1), wherein the curing time of the resin constituting the columnar spacer and the thermosetting resin sealing the periphery of the substrate is 2 hours or less.
[0076]
(Appendix 8)
In a method for manufacturing a liquid crystal display element, wherein a liquid crystal is sandwiched between a pair of substrates having a transparent electrode and at least one of which is transparent, and the periphery is sealed with a peripheral sealant.
The loss elastic modulus G ″ when heating on either one of the substrates under the condition of 120 ° C./10 minutes is in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa]. A step of forming a columnar spacer that adheres to both substrates when inserted between the pair of substrates and maintains a constant distance between both substrates,
A step of forming a liquid crystal panel by applying a peripheral sealant except for a portion to be a liquid crystal injection port by superimposing the other substrate on the one substrate, and applying pressure and heating,
Vacuum-injecting liquid crystal into the liquid crystal panel from the liquid crystal injection port, and then sealing the liquid crystal injection port.
[0077]
(Appendix 9)
In a method of manufacturing a liquid crystal display element comprising a liquid crystal sandwiched between a pair of substrates having a transparent electrode and at least one of which is transparent and sealing the periphery with a thermosetting resin,
The loss elastic modulus G ″ when heating on either one of the substrates under the condition of 120 ° C./10 minutes is in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa]. A step of forming a columnar spacer that adheres to both substrates when inserted between the pair of substrates and maintains a constant distance between both substrates,
A step of dropping and attaching liquid crystal to the one substrate;
A method of heating and sealing the two substrates by interposing a thermosetting resin between the one substrate and the other substrate and interposing a thermosetting resin between the two substrates. .
[0078]
(Appendix 10)
The liquid crystal according to claim 8, wherein the liquid crystal is filled in the liquid crystal panel by utilizing a pressure difference between a liquid crystal reservoir before and after the liquid crystal is attached to the liquid crystal panel and the inside of the liquid crystal panel. A method for manufacturing a display element.
[0079]
(Appendix 11)
9. The liquid crystal according to claim 8, wherein the liquid crystal is filled with the liquid crystal by utilizing a temperature difference between a liquid crystal reservoir before and after the liquid crystal is attached to the liquid crystal panel and the inside of the liquid crystal panel. A method for manufacturing a display element.
[0080]
(Appendix 12)
The liquid crystal panel is filled with liquid crystal by utilizing a pressure difference and a temperature difference between a liquid crystal reservoir before and after the liquid crystal is attached to the liquid crystal panel and the inside of the liquid crystal panel (Supplementary Note 8). The manufacturing method of the liquid crystal display element described in.
[0081]
(Appendix 13)
The thermosetting resin for sealing the periphery of the substrate is cured at a higher temperature than the curing temperature of the photocurable resin or the thermosetting resin used inside the substrate (Supplementary Note 8). )).
[0082]
(Appendix 14)
In the process of dropping and attaching liquid crystal on the substrate,
The method for producing a liquid crystal display element according to (Supplementary Note 9), wherein the liquid crystal is dropped using a dispenser.
[0083]
(Appendix 15)
The liquid crystal includes twisted nematic liquid crystal, super twisted nematic liquid crystal, nematic cholesteric phase transition liquid crystal, polymer dispersed liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, twist grain boundary liquid crystal, and smectic A phase showing the electroclinical effect. The method for producing a liquid crystal display device according to (Supplementary Note 8) or (Supplementary Note 9), wherein the method is selected from liquid crystals.
[0084]
【The invention's effect】
In the liquid crystal display element according to the present invention, in a liquid crystal display element having a transparent electrode, at least one of which is sandwiched between a pair of transparent substrates and liquid crystal is sealed with a thermosetting resin, The loss elastic modulus G ″ when heated under the condition of 120 ° C./10 minutes is in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa] and is inserted between the pair of substrates. Basically, there is provided a columnar spacer made of a resin that adheres to both substrates and maintains a constant distance between the two substrates.
[0085]
By adopting the above configuration, since the columnar spacers are adhered to both of the opposing substrates, the gap between the substrates, that is, between the electrodes, is uniform and maintained within the display surface, and the display surface is pressed. However, the display color does not change, the stress resistance against external force that reduces the thickness of the liquid crystal layer is sufficiently high, and the display quality is improved.
[Brief description of the drawings]
FIG. 1 is a fragmentary sectional side view showing a liquid crystal display element and a manufacturing apparatus at a process essential point for explaining a step of manufacturing a liquid crystal display element according to the present invention.
FIG. 2 is a fragmentary sectional side view showing a liquid crystal display element and a manufacturing apparatus at a process essential point for explaining a step of manufacturing a liquid crystal display element according to the present invention.
[Explanation of symbols]
1 and 2 Glass substrate 3 Columnar spacer 4 Adhesive sealing member 5 Heat treatment device 6 Liquid crystal injection port 7 Bell jar 8 Liquid crystal 9 Liquid crystal reservoir 10 Transport mechanism

Claims (5)

透明電極をもち少なくとも一方が透明である一対の基板間に液晶を挟持し周辺を熱硬化性樹脂で封止してなる液晶表示素子に於いて、
120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在り前記一対の基板間に介挿されて両基板と接着し且つ両基板間隔を一定に維持する樹脂からなる柱状スペーサを備えてなること
を特徴とする液晶表示素子。
In a liquid crystal display element having a transparent electrode and a liquid crystal sandwiched between a pair of substrates at least one of which is transparent and a periphery of which is sealed with a thermosetting resin,
The loss elastic modulus G ″ when heated under the condition of 120 ° C./10 minutes is in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa], and is inserted between the pair of substrates. A liquid crystal display element comprising a columnar spacer made of a resin adhered to both substrates and maintaining a constant distance between the two substrates.
樹脂からなる柱状スペーサは120〔℃〕/10〔分〕の条件で加熱した際の損失弾性率G″が1×10〔Pa〕〜1×10〔Pa〕の範囲に在るフォト・レジストからなること
を特徴とする請求項1記載の液晶表示素子。
The columnar spacer made of resin has a photo-electricity having a loss elastic modulus G ″ in the range of 1 × 10 2 [Pa] to 1 × 10 8 [Pa] when heated under the condition of 120 ° C./10 minutes. 2. The liquid crystal display device according to claim 1, comprising a resist.
樹脂からなる柱状スペーサは損失弾性率G″が硬化時間に対応して上昇するものであること
を特徴とする請求項1記載の液晶表示素子。
2. The liquid crystal display element according to claim 1, wherein the columnar spacer made of resin has a loss elastic modulus G ″ that increases in accordance with the curing time.
柱状スペーサを構成する樹脂は硬化温度が配向膜のラビング効果を損なう温度に達しない範囲のものであること
を特徴とする請求項1記載の液晶表示素子。
2. The liquid crystal display device according to claim 1, wherein the resin constituting the columnar spacer has a curing temperature within a range not reaching a temperature at which the rubbing effect of the alignment film is impaired.
基板周辺を封止する熱硬化性樹脂の硬化温度と加熱に依って硬化し対向する一対の基板に接着力をもつ柱状スペーサの軟化温度及び硬化温度とが配向膜のラビング効果を損なう温度に達しない温度であると共に前記基板の周辺を封止する熱硬化性樹脂の硬化温度が前記柱状スペーサの硬化温度以上であること
を特徴とする請求項1記載の液晶表示素子。
The curing temperature of the thermosetting resin that seals around the substrate and the softening temperature and curing temperature of the columnar spacer that is cured by heating and adheres to a pair of substrates facing each other reach a temperature that impairs the rubbing effect of the alignment film. 2. The liquid crystal display device according to claim 1, wherein the temperature of the thermosetting resin for sealing the periphery of the substrate is not lower than the temperature of the columnar spacer.
JP2003045685A 2003-02-24 2003-02-24 Liquid crystal display element Pending JP2004258084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045685A JP2004258084A (en) 2003-02-24 2003-02-24 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045685A JP2004258084A (en) 2003-02-24 2003-02-24 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2004258084A true JP2004258084A (en) 2004-09-16

Family

ID=33112431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045685A Pending JP2004258084A (en) 2003-02-24 2003-02-24 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2004258084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196413A (en) * 2016-12-27 2019-01-11 积水化学工业株式会社 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196413A (en) * 2016-12-27 2019-01-11 积水化学工业株式会社 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element

Similar Documents

Publication Publication Date Title
JP2001356354A (en) Method for manufacturing liquid crystal display device
US5812232A (en) Optical switching device with hard spacers exhibiting thermoplastic property at a temperature not higher than 150° C. and fabrication process
KR20060126338A (en) Liquid crystal display device and method for manufacturing the same
US20060017876A1 (en) Displays and method for fabricating displays
JP4171626B2 (en) Liquid crystal display
JP4318954B2 (en) Liquid crystal panel and manufacturing method thereof
JPH08110524A (en) Optical switch element and its production
JPH1164862A (en) Liquid crystal display element
TW201001028A (en) Manufacturing method of alignment film and manufacturing method of liquid crystal display panel
JP2004258084A (en) Liquid crystal display element
JPH10221666A (en) Manufacture of liquid crystal display element
JP4137512B2 (en) Manufacturing method of liquid crystal display device
JP4190213B2 (en) Liquid crystal display device and manufacturing method thereof
JPH10301115A (en) Liquid crystal display element and its production
JP3998516B2 (en) Manufacturing method of liquid crystal display device
JP4100972B2 (en) Liquid crystal display device and manufacturing method thereof
JP4230245B2 (en) Liquid crystal display device and manufacturing method thereof
JP2006084906A (en) Panel for optical modulator, and method for manufacturing same
JPH10148836A (en) Liquid crystal panel and its production
JP2004029336A (en) Method for manufacturing liquid crystal display device
JP2004246046A (en) Method for manufacturing liquid crystal display element, and liquid crystal display element
JP2004012996A (en) Liquid crystal display and its manufacturing method
KR100466391B1 (en) Method for manufacturing liquid crystal display device utilizing spin coating
JPH09258233A (en) Liquid crystal display element and electronic apparatus
JPH0439651B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Effective date: 20080609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014