JP2004256448A - Method for decoloring 6-hydroxy-2-naphthoic acid - Google Patents

Method for decoloring 6-hydroxy-2-naphthoic acid Download PDF

Info

Publication number
JP2004256448A
JP2004256448A JP2003049503A JP2003049503A JP2004256448A JP 2004256448 A JP2004256448 A JP 2004256448A JP 2003049503 A JP2003049503 A JP 2003049503A JP 2003049503 A JP2003049503 A JP 2003049503A JP 2004256448 A JP2004256448 A JP 2004256448A
Authority
JP
Japan
Prior art keywords
hydroxy
naphthoic acid
acid
decolorizing
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003049503A
Other languages
Japanese (ja)
Inventor
Naoko Fukunishi
直子 福西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2003049503A priority Critical patent/JP2004256448A/en
Publication of JP2004256448A publication Critical patent/JP2004256448A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively decoloring 6-hydroxy-2-naphthoic acid. <P>SOLUTION: The method for decoloring 6-hydroxy-2-naphthoic acid is a method for decoloring 6-hydroxy-2-naphthoic acid by decoloring treatment and comprises carrying out the decoloring treatment while maintaining a solution system of 6-hydroxy-2-naphthoic acid at pH ≤6. Activated carbon treatment is preferable as the decoloring treatment. Roughly purified 6-hydroxy-2-naphthoic acid is subjected to decoloring treatment. A reaction mixture obtained by reaction using Kolbe Schmitt reaction or the roughly purified reaction mixture is used as the roughly purified 6-hydroxy-2-naphthoic acid. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種工業原料、特に染料、顔料、樹脂(液晶ポリマー等)などの原料として有用な6−ヒドロキシ−2−ナフトエ酸の脱色方法に関する。
【0002】
【従来の技術】
6−ヒドロキシ−2−ナフトエ酸は、通常、コルベ・シュミット反応により得られた6−ヒドロキシ−2−ナフトエ酸の粗精製物(粗6−ヒドロキシ−2−ナフトエ酸)を、溶媒(例えば、水や、水/アルコール系溶剤等の水性媒体など)を用いて再結晶することにより製品化されている(特許文献1参照)。しかしながら、この再結晶により製品化された6−ヒドロキシ−2−ナフトエ酸は着色しており、製品の着色が問題となっている。
【0003】
【特許文献1】
国際公開公報WO01/14307
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、6−ヒドロキシ−2−ナフトエ酸を効果的に脱色することができる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記目的を達成するため鋭意検討した結果、6−ヒドロキシ−2−ナフトエ酸を活性炭処理により脱色する際に、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHをコントロールすると、6−ヒドロキシ−2−ナフトエ酸を効果的に脱色することができることを見出し、本発明を完成した。
【0006】
すなわち、本発明は、6−ヒドロキシ−2−ナフトエ酸を脱色処理により脱色する方法であって、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHを6以下に維持しながら脱色処理を行うことを特徴とする6−ヒドロキシ−2−ナフトエ酸の脱色方法を提供する。
【0007】
前記脱色処理としては活性炭処理が好適である。本発明では、6−ヒドロキシ−2−ナフトエ酸の粗精製物を脱色処理に付すことができ、前記6−ヒドロキシ−2−ナフトエ酸の粗精製物としては、コルベ・シュミット反応を利用した反応により得られた反応混合物又は該反応混合物の粗精製物を好適に用いることができる。
【0008】
また、本発明では、硫酸または塩酸を用いて、6−ヒドロキシ−2−ナフトエ酸を含む溶液系のpHを6以下に調整することができる。不活性ガスの雰囲気下で脱色処理を行うことが好ましい。
【0009】
【発明の実施の形態】
本発明の6−ヒドロキシ−2−ナフトエ酸の脱色方法では、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHを6以下に維持しながら脱色処理(活性炭処理など)を行っている。このように、活性炭処理などの脱色処理に際して、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHを6以下に維持しているので、6−ヒドロキシ−2−ナフトエ酸を効果的に脱色することができる。しかも、脱色処理の際に、溶液系のpHを調整(調節)しているだけであるので、優れた作業性で脱色処理を行うことができる。
【0010】
脱色処理に付す被処理物としては、すでに精製された6−ヒドロキシ−2−ナフトエ酸であってもよく、6−ヒドロキシ−2−ナフトエ酸の粗精製物であってもよい。前記6−ヒドロキシ−2−ナフトエ酸の粗精製物としては、6−ヒドロキシ−2−ナフトエ酸を含む粗精製物(未精製物を含む)であれば特に制限されず、例えば、公知の6−ヒドロキシ−2−ナフトエ酸の生成反応により得られた6−ヒドロキシ−2−ナフトエ酸を含む反応混合物(反応生成物;未精製物)または該反応混合物の粗精製物(例えば、6−ヒドロキシ−2−ナフトエ酸を含む粗精製溶液や、6−ヒドロキシ−2−ナフトエ酸の粗結晶など)などを用いることができる。
【0011】
本発明は6−ヒドロキシ−2−ナフトエ酸の脱色方法に関しており、脱色処理に付す被処理物に含まれる6−ヒドロキシ−2−ナフトエ酸の生成反応(製造方法)は特に制限されない。なお、公知の6−ヒドロキシ−2−ナフトエ酸の生成反応としては、一般的には、米国特許第1593816号明細書や、特開昭57−95939号公報に記載のようなコルベ・シュミット反応を利用した生成反応を用いることができるが、特開2002−128725号公報に記載の生成反応、特開2002−302465号公報に記載の生成反応、特表平5−503299号公報に記載の生成反応、特開平2−124847号公報に記載の生成反応、Bull.Chem.Soc.Jpn.,75,619−622(2002)に記載の生成反応なども利用することができる。前記コルベ・シュミット反応を利用した反応により得られた6−ヒドロキシ−2−ナフトエ酸を含む反応混合物または該反応混合物の粗精製物は、通常、不純物として、3−ヒドロキシ−2−ナフトエ酸、2−ヒドロキシ−1−ナフトエ酸、3−ヒドロキシナフタレン−2,7−ジカルボン酸、未反応の2−ナフトール(β−ナフトール)又はその誘導体(カリウム塩やナトリウム塩等)などを含有している。
【0012】
本発明では、6−ヒドロキシ−2−ナフトエ酸の粗精製物としては、コルベ・シュミット反応を利用した反応により得られた反応混合物(反応粗液)又は該反応混合物の粗精製物を好適に用いることができる。このようなコルベ・シュミット反応を利用した生成反応では、2−ナフトール又はその誘導体(2−ナフトールのカリウム塩やナトリウム塩など)を原料としており、該コルベ・シュミット反応を利用して得られる反応粗液から、6−ヒドロキシ−2−ナフトエ酸を単離する(粗精製する)方法としては、一般的には、酸を用いた方法が利用されている。具体的には、例えば、2−ナフトール又はその誘導体を原料とし且つコルベ・シュミット反応を利用して得られる反応粗液に、所定量の水を添加し、酸(硫酸や塩酸など)を用いて、pHを6.5〜8.0に調整し(調節し)、未反応の2−ナフトール又はその誘導体を2−ナフトールとして遊離させ、この前後のいずれかで、反応媒体と水層とを分離した後、水層を疎水性溶媒によって抽出し、2−ナフトールを分離することにより、6−ヒドロキシ−2−ナフトエ酸を粗精製することができる。なお、6−ヒドロキシ−2−ナフトエ酸は、疎水性溶媒によって2−ナフトールを抽出した後の水層に含まれている。
【0013】
本発明では、6−ヒドロキシ−2−ナフトエ酸の粗精製物として、該コルベ・シュミット反応を利用して得られる反応粗液から、中和(約pH7に調整)を利用して原料の2−ナフトール又はその誘導体を分離除去した後の水層(粗精製溶液)を好適に用いることができる。このように、6−ヒドロキシ−2−ナフトエ酸として、粗精製溶液を用いる場合は、そのまま、pH調整を行って脱色処理に供することができるが、精製(又は粗精製)等によって得られる6−ヒドロキシ−2−ナフトエ酸の結晶(又は粗結晶)を用いる場合は、前記結晶(又は粗結晶)を溶媒(アルカリ性水性媒体等の水性媒体など)に溶解させて6−ヒドロキシ−2−ナフトエ酸が溶解した溶液(例えば、6−ヒドロキシ−2−ナフトエ酸を含むアルカリ性溶液)系を調製した後、pH調整を行って脱色処理に供することができる。
【0014】
pHの調整に際しては、酸を用いることができる。酸としては、無機酸、有機酸のいずれであってもよいが、無機酸が好適である。無機酸としては、例えば、硫酸、塩酸、硝酸、リン酸、ホウ酸、炭酸などが挙げられ、硫酸、塩酸を好適に用いることができる。酸は単独で又は2種以上組み合わせて使用することができる。
【0015】
溶液系のpHとしては、6以下であればよく、4〜6(好ましくは5〜5.5)であることが望ましい。
【0016】
脱色処理方法としては、溶液系のpHを6以下に維持しながら行う方法であれば特に制限されず、例えば、公知の活性炭処理方法を利用することができる。このような活性炭処理方法としては、例えば、pHが6以下に調整された溶液系に、活性炭を投入し、攪拌等により混合する方法などが挙げられる。
【0017】
脱色処理時の温度は、特に制限されず、室温又はそれ以下の温度で行ってもよいが、効率を高める観点から、高温で行うことが好ましい。なお、脱色処理を高温で行う場合、pH調整の前後あるいはpH調整中で、または脱色処理中で、溶液系を昇温させることができる。脱色処理(特に、活性炭処理)を行う際の温度としては、6−ヒドロキシ−2−ナフトエ酸が析出せず、溶解状態を保持することができる温度であれば特に制限されず、例えば、50〜100℃(好ましくは60〜80℃)の範囲から選択することができる。
【0018】
溶液系の昇温、pH調整、活性炭処理などの各工程(特に活性炭処理)は、空気中で行ってもよいが、不活性ガス(例えば、窒素、ヘリウム、アルゴン等)の雰囲気下で行うことが好ましく、特に窒素雰囲気下で行うことが好適である。
【0019】
pH調整する前の6−ヒドロキシ−2−ナフトエ酸を含む溶液系における溶媒としては、6−ヒドロキシ−2−ナフトエ酸が溶解する溶媒であれば特に制限されないが、例えば、水や、水と水溶性有機溶媒との混合溶媒などの水性媒体を好適に用いることができ、特に水が好適である。水性媒体は単独で又は2種以上組み合わせて使用することができる。
【0020】
前記水性媒体中には塩基性成分や酸性成分が含まれていてもよく、すなわち、水性媒体としては、アルカリ性、中性、酸性のいずれの状態であってもよい。例えば、アルカリ性の水性媒体(アルカリ性水性媒体)としては、水性媒体(例えば、水や、水と水溶性有機溶媒との混合溶媒など)に、塩基性成分を添加することにより調製できる。塩基性成分としては、無機塩基及び有機塩基の何れであってもよい。塩基性成分の代表的な例としては、例えば、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物;炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;酢酸カリウム、酢酸ナトリウムなどのアルカリ金属有機酸塩;ナトリウムメトキシド、ナトリウムエトキシドなどのアルカリ金属アルコキシド;水酸化カルシウムなどのアルカリ土類金属水酸化物;炭酸カルシウムなどのアルカリ土類金属炭酸塩などが挙げられる。アルカリ性水性媒体において、塩基性成分の濃度は、特に制限されず、6−ヒドロキシ−2−ナフトエ酸が溶解していればよい。
【0021】
なお、前記水性媒体において、水と混合が可能な水溶性有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等の低級アルコール(1価のC1−4アルコール)や、エチレングリコール等の多価アルコールなどのアルコール類;酢酸などのカルボン酸類;アセトン、メチルエチルケトンなどのケトン類;テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類;アセトニトリルなどのニトリル類などが挙げられる。
【0022】
脱色処理としての活性炭処理で用いられる活性炭としては、特に制限されず、例えば、塩化亜鉛炭、水蒸気炭などの粉末炭や、各種の粒状炭などの公知の活性炭から適宜選択して用いることができる。活性炭は単独で又は2種以上組み合わせて使用することができる。
【0023】
なお、活性炭の使用量としては、例えば、溶液系内に含まれる6−ヒドロキシ−2−ナフトエ酸(又は固形分)100重量部に対して0.1〜20重量部(好ましくは1〜10重量部)程度の範囲から選択することができる。
【0024】
本発明の6−ヒドロキシ−2−ナフトエ酸の脱色方法は、下記の工程(A)および工程(B)を具備することができる。
(A)6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHを6以下に調整する工程
(B)前記工程(A)での溶液系に脱色剤(活性炭など)を投入し、前記溶液系のpHを6以下に維持しながら、脱色処理(活性炭処理など)を行う工程
【0025】
前記工程(A)では、適当な温度下で、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHを、必要に応じて酸を用いて、また攪拌等により混合しながら6以下に調整することができる。前記6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系は、6−ヒドロキシ−2−ナフトエ酸として、(1)コルベ・シュミット反応を利用して得られる反応粗液から、中和(約pH7に調整)を利用して原料の2−ナフトールを分離除去した後の水層(粗精製溶液)を用いる場合は、そのままの粗精製溶液を用いることができ、また、(2)精製(又は粗精製)等によって得られる6−ヒドロキシ−2−ナフトエ酸の結晶(又は粗結晶)を用いる場合は、前記結晶(又は粗結晶)を溶媒(アルカリ性水性媒体等の水性媒体など)に投入し、適当な温度下で、必要に応じて攪拌等により混合して溶解させることにより調製することができる。
【0026】
なお、結晶(又は粗結晶)を溶解させる溶媒の使用量としては、特に制限されず、6−ヒドロキシ−2−ナフトエ酸を完全に又はほぼ完全に溶解させることができる量であることが望ましい。
【0027】
溶解時やpH調整時の温度としては、使用する溶媒の種類や量、酸の種類や量などにより適宜選択することができ、一般的には、0〜100℃(例えば、10℃〜80℃)の範囲である。
【0028】
前記工程(B)では、工程(A)により得られた6−ヒドロキシ−2−ナフトエ酸の溶液系(溶液中)に、適当な温度下で、活性炭等の脱色剤を投入し、攪拌等により混合して、溶液系のpHを6以下に維持しながら、活性炭処理等の脱色処理を行うことができる。なお、脱色剤の投入は、1度(1回)に行ってもよく、徐々に又は数回に分けて行ってもよい。また、脱色処理の処理時間としては、特に制限されず、脱色の程度などに応じて任意に設定すればよいが、通常、5〜60分(好ましくは5〜15分)とすることができる。脱色処理後の脱色剤(活性炭など)は、ろ過などの公知の分離方法を利用して除去することができる。
【0029】
なお、6−ヒドロキシ−2−ナフトエ酸をより一層脱色する場合には、さらに同様の操作に付して繰り返し脱色操作を行えばよい。
【0030】
本発明の脱色方法により脱色を行った後の6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系から、6−ヒドロキシ−2−ナフトエ酸は、常套の手段により酸析処理、濾過、乾燥させることにより得ることができる。例えば、脱色処理を行った後の6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系から、硫酸等の酸を加える酸析処理により、3−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシナフタレン−2,7−ジカルボン酸などの副生物を除去する。
【0031】
また、析出した6−ヒドロキシ−2−ナフトエ酸の粗結晶(固体)を水で洗浄し、濾布を用いて遠心濾過し、熱風乾燥機または真空乾燥機(減圧乾燥機)により乾燥することにより、高度に脱色された6−ヒドロキシ−2−ナフトエ酸を得ることができる。
【0032】
本発明の脱色方法により得られる6−ヒドロキシ−2−ナフトエ酸の精製品は、各種工業原料、特に染料、顔料、樹脂(液晶ポリマー等)などの原料として好適に使用できる。
【0033】
【発明の効果】
本発明の6−ヒドロキシ−2−ナフトエ酸の脱色方法によれば、前記のように、6−ヒドロキシ−2−ナフトエ酸を脱色処理により脱色する際に、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHをコントロールしているので、6−ヒドロキシ−2−ナフトエ酸を効果的に脱色することができる。
【0034】
【実施例】
以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、色相については、以下の評価方法を用いて評価した。
(色相の評価方法)
試料0.1gに酢酸を全量が10mlになるまで加えて、試料を酢酸に溶解させ、この酢酸溶液(測定サンプル)を測定容器に入れ、前記酢酸溶液の波長(λ)400nmにおける吸光度(ABS)を、装置名「UV−visible recording spectrophotometer」(島津製作所社製)を用いて測定し、下記の式を用いて、着色度を定義する。
着色度=[λ=400nmにおける吸光度(ABS)]/[測定サンプル中の試料の量(g)]
【0035】
(実施例1)
6−ヒドロキシ−2−ナフトエ酸の粗精製物(粗6−ヒドロキシ−2−ナフトエ酸)として、コルベ・シュミット法により製造し、粗精製された粗精製物を用いた。具体的には、前記6−ヒドロキシ−2−ナフトエ酸の粗精製物は、次のようにして得られたものである。コルベ・シュミット反応を利用した生成反応により得られた反応混合物220重量部を、反応温度280℃から85℃に冷却した後、窒素雰囲気下、水200重量部を添加し、攪拌して、水層と、反応媒体層とを分離した。さらに、窒素雰囲気下、得られた水層に、硫酸11重量部を添加し、pHを7.0に調整して、未反応の2−ナフトールカリウムを、2−ナフトールとして遊離させ、さらにトルエン170重量部を添加して、2−ナフトールを抽出分離することにより、6−ヒドロキシ−2−ナフトエ酸の粗精製物(水層)を得ることができる。
【0036】
2−ナフトールを抽出分離除去した後の水層である6−ヒドロキシ−2−ナフトエ酸の粗精製物を、窒素雰囲気下、80℃まで昇温しながら、硫酸を添加して、pH5.5に調整した後、80℃を保持させた状態で、脱色剤としての活性炭(商品名「カルボラフィン」武田製薬社製)1重量部を攪拌しながら添加して、さらに10分間攪拌し、その後ろ過して、脱色処理を行った。
【0037】
その後、窒素雰囲気下、水層を25℃まで冷却して得られる懸濁液に、硫酸を適量添加してpHを5.0とし、副生する3−ヒドロキシ−2−ナフトエ酸や3−ヒドロキシナフタレン−2,7−ジカルボン酸を分離除去し、乾燥させて、6−ヒドロキシ−2−ナフトエ酸の粗結晶を得た。この6−ヒドロキシ−2−ナフトエ酸の粗結晶の着色度を、前記の色相の評価方法により求めたところ、0.43であった。
【0038】
(比較例1)
実施例1と同様にして得られた、6−ヒドロキシ−2−ナフトエ酸の粗精製物(水層)を、窒素雰囲気下、80℃まで昇温しながら、脱色剤としての活性炭(商品名「カルボラフィン」武田製薬社製)1重量部を攪拌しながら添加して、さらに10分間攪拌し、その後ろ過して、脱色処理を行った。この時の、水層のpHは、7.88であった。
【0039】
その後、実施例1と同様にして、窒素雰囲気下、水層を25℃まで冷却して得られる懸濁液に、硫酸を適量添加してpHを5.0とし、副生する3−ヒドロキシ−2−ナフトエ酸や3−ヒドロキシナフタレン−2,7−ジカルボン酸を分離除去し、乾燥させて、6−ヒドロキシ−2−ナフトエ酸の粗結晶を得た。この6−ヒドロキシ−2−ナフトエ酸の粗結晶の着色度を、実施例1と同様にして、前記の色相の評価方法により求めたところ、2.40であった。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for decolorizing 6-hydroxy-2-naphthoic acid, which is useful as a raw material for various industrial raw materials, particularly dyes, pigments, resins (liquid crystal polymers and the like).
[0002]
[Prior art]
6-Hydroxy-2-naphthoic acid is usually prepared by adding a crude product of 6-hydroxy-2-naphthoic acid (crude 6-hydroxy-2-naphthoic acid) obtained by a Kolbe-Schmidt reaction to a solvent (for example, water). Or an aqueous medium such as a water / alcohol-based solvent) for recrystallization (see Patent Document 1). However, the 6-hydroxy-2-naphthoic acid commercialized by this recrystallization is colored, and coloring of the product is a problem.
[0003]
[Patent Document 1]
International Publication WO01 / 14307
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method capable of effectively decolorizing 6-hydroxy-2-naphthoic acid.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object. As a result, when decolorizing 6-hydroxy-2-naphthoic acid by activated carbon treatment, the pH of a solution system in which 6-hydroxy-2-naphthoic acid was dissolved was adjusted. By controlling, it was found that 6-hydroxy-2-naphthoic acid could be effectively decolorized, and the present invention was completed.
[0006]
That is, the present invention is a method for decolorizing 6-hydroxy-2-naphthoic acid by a decolorizing treatment, wherein the decolorizing treatment is performed while maintaining the pH of a solution system in which 6-hydroxy-2-naphthoic acid is dissolved at 6 or less. A method for decolorizing 6-hydroxy-2-naphthoic acid is provided.
[0007]
Activated carbon treatment is preferred as the decolorization treatment. In the present invention, the crudely purified 6-hydroxy-2-naphthoic acid can be subjected to a decolorizing treatment, and the crudely purified 6-hydroxy-2-naphthoic acid is obtained by a reaction utilizing the Kolbe-Schmidt reaction. The obtained reaction mixture or a crude product of the reaction mixture can be suitably used.
[0008]
In the present invention, the pH of a solution system containing 6-hydroxy-2-naphthoic acid can be adjusted to 6 or less using sulfuric acid or hydrochloric acid. It is preferable to perform the decolorization treatment in an atmosphere of an inert gas.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for decolorizing 6-hydroxy-2-naphthoic acid of the present invention, the decolorizing treatment (eg, activated carbon treatment) is performed while maintaining the pH of the solution in which 6-hydroxy-2-naphthoic acid is dissolved at 6 or less. As described above, since the pH of the solution in which 6-hydroxy-2-naphthoic acid is dissolved is maintained at 6 or less during the decolorizing treatment such as the activated carbon treatment, the 6-hydroxy-2-naphthoic acid is effectively decolorized. can do. In addition, since the pH of the solution system is merely adjusted (adjusted) at the time of the decolorization treatment, the decolorization treatment can be performed with excellent workability.
[0010]
The material to be subjected to the decolorizing treatment may be 6-hydroxy-2-naphthoic acid that has already been purified or a crudely purified 6-hydroxy-2-naphthoic acid. The crude product of 6-hydroxy-2-naphthoic acid is not particularly limited as long as it is a crude product containing 6-hydroxy-2-naphthoic acid (including an unpurified product). A reaction mixture containing 6-hydroxy-2-naphthoic acid obtained by a production reaction of hydroxy-2-naphthoic acid (reaction product; unpurified product) or a crude product of the reaction mixture (for example, 6-hydroxy-2 -Naphthoic acid, crude crystals of 6-hydroxy-2-naphthoic acid, etc.).
[0011]
The present invention relates to a method for decolorizing 6-hydroxy-2-naphthoic acid, and the production reaction (production method) of 6-hydroxy-2-naphthoic acid contained in the object to be decolorized is not particularly limited. The known reaction for producing 6-hydroxy-2-naphthoic acid generally includes a Kolbe-Schmidt reaction as described in U.S. Pat. No. 1,593,816 and JP-A-57-95939. The production reaction utilized can be used, and the production reaction described in JP-A-2002-128725, the production reaction described in JP-A-2002-302465, and the production reaction described in JP-T-5-503299 are available. The production reaction described in JP-A-2-124847, Bull. Chem. Soc. Jpn. , 75, 619-622 (2002) can also be used. A reaction mixture containing 6-hydroxy-2-naphthoic acid obtained by the reaction utilizing the Kolbe-Schmidt reaction or a crude product of the reaction mixture is generally used as an impurity to prepare 3-hydroxy-2-naphthoic acid, -Hydroxy-1-naphthoic acid, 3-hydroxynaphthalene-2,7-dicarboxylic acid, unreacted 2-naphthol (β-naphthol) or derivatives thereof (potassium salt, sodium salt, etc.) and the like.
[0012]
In the present invention, as the crude product of 6-hydroxy-2-naphthoic acid, a reaction mixture (reaction crude solution) obtained by a reaction utilizing the Kolbe-Schmidt reaction or a crude product of the reaction mixture is suitably used. be able to. In such a production reaction utilizing the Kolbe-Schmidt reaction, 2-naphthol or a derivative thereof (such as a potassium salt or sodium salt of 2-naphthol) is used as a raw material, and a reaction crude obtained using the Kolbe-Schmidt reaction is used. As a method for isolating (roughly purifying) 6-hydroxy-2-naphthoic acid from a liquid, a method using an acid is generally used. Specifically, for example, a predetermined amount of water is added to a crude reaction solution obtained by using 2-naphthol or a derivative thereof as a raw material and utilizing the Kolbe-Schmidt reaction, and using an acid (such as sulfuric acid or hydrochloric acid). The pH was adjusted to 6.5 to 8.0 (adjusted) to release unreacted 2-naphthol or a derivative thereof as 2-naphthol, and before or after this, the reaction medium and the aqueous layer were separated. After that, the aqueous layer is extracted with a hydrophobic solvent, and 2-naphthol is separated, whereby 6-hydroxy-2-naphthoic acid can be roughly purified. In addition, 6-hydroxy-2-naphthoic acid is contained in the aqueous layer after extracting 2-naphthol with a hydrophobic solvent.
[0013]
In the present invention, as a crudely purified product of 6-hydroxy-2-naphthoic acid, 2- (raw material) is obtained from a crude reaction solution obtained by using the Kolbe-Schmidt reaction by neutralization (adjusted to about pH 7). The aqueous layer (crude solution) after separation and removal of naphthol or a derivative thereof can be suitably used. As described above, when a crudely purified solution is used as 6-hydroxy-2-naphthoic acid, the pH can be adjusted as it is and subjected to a decolorizing treatment. When using crystals (or crude crystals) of hydroxy-2-naphthoic acid, the crystals (or crude crystals) are dissolved in a solvent (aqueous medium such as an alkaline aqueous medium) to form 6-hydroxy-2-naphthoic acid. After preparing a dissolved solution (for example, an alkaline solution containing 6-hydroxy-2-naphthoic acid), the pH can be adjusted and the solution can be subjected to a decolorizing treatment.
[0014]
In adjusting the pH, an acid can be used. The acid may be an inorganic acid or an organic acid, but an inorganic acid is preferred. Examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid, and carbonic acid, and sulfuric acid and hydrochloric acid can be preferably used. The acids can be used alone or in combination of two or more.
[0015]
The pH of the solution system may be 6 or less, and is preferably 4 to 6 (preferably 5 to 5.5).
[0016]
The decolorizing method is not particularly limited as long as the method is performed while maintaining the pH of the solution system at 6 or less. For example, a known activated carbon processing method can be used. Examples of such an activated carbon treatment method include a method in which activated carbon is put into a solution system whose pH is adjusted to 6 or less, and mixed by stirring or the like.
[0017]
The temperature during the decolorization treatment is not particularly limited, and may be performed at room temperature or lower, but is preferably performed at a high temperature from the viewpoint of increasing efficiency. When the decolorization treatment is performed at a high temperature, the temperature of the solution system can be raised before or after the pH adjustment, during the pH adjustment, or during the decolorization treatment. The temperature at which the decolorization treatment (particularly, activated carbon treatment) is performed is not particularly limited as long as 6-hydroxy-2-naphthoic acid does not precipitate and can maintain a dissolved state. It can be selected from the range of 100 ° C (preferably 60 to 80 ° C).
[0018]
Each step (particularly, activated carbon treatment) such as temperature rise, pH adjustment, and activated carbon treatment of the solution system may be performed in the air, but should be performed in an atmosphere of an inert gas (eg, nitrogen, helium, argon, etc.). It is particularly preferable to carry out the reaction under a nitrogen atmosphere.
[0019]
The solvent in the solution system containing 6-hydroxy-2-naphthoic acid before the pH adjustment is not particularly limited as long as the solvent dissolves 6-hydroxy-2-naphthoic acid. An aqueous medium such as a mixed solvent with an organic solvent can be suitably used, and water is particularly preferable. The aqueous medium can be used alone or in combination of two or more.
[0020]
The aqueous medium may contain a basic component or an acidic component, that is, the aqueous medium may be in any of alkaline, neutral, and acidic states. For example, the alkaline aqueous medium (alkaline aqueous medium) can be prepared by adding a basic component to an aqueous medium (for example, water or a mixed solvent of water and a water-soluble organic solvent). The basic component may be any of an inorganic base and an organic base. Representative examples of the basic component include, for example, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; alkali metal carbonates such as potassium carbonate and sodium carbonate; alkalis such as potassium hydrogen carbonate and sodium hydrogen carbonate. Metal bicarbonates; alkali metal organic acid salts such as potassium acetate and sodium acetate; alkali metal alkoxides such as sodium methoxide and sodium ethoxide; alkaline earth metal hydroxides such as calcium hydroxide; alkaline earth metals such as calcium carbonate Metal carbonates and the like. In the alkaline aqueous medium, the concentration of the basic component is not particularly limited as long as 6-hydroxy-2-naphthoic acid is dissolved.
[0021]
In the aqueous medium, examples of the water-soluble organic solvent that can be mixed with water include lower alcohols (monohydric C1-4 alcohols) such as methanol, ethanol, and isopropyl alcohol, and polyhydric alcohols such as ethylene glycol. Alcohols such as alcohol; carboxylic acids such as acetic acid; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and ethylene glycol dimethyl ether; and nitriles such as acetonitrile.
[0022]
The activated carbon used in the activated carbon treatment as the decolorizing treatment is not particularly limited, and for example, can be appropriately selected from known activated carbons such as powdered charcoal such as zinc chloride charcoal and steam charcoal and various types of granular charcoal. . Activated carbon can be used alone or in combination of two or more.
[0023]
The amount of activated carbon used is, for example, 0.1 to 20 parts by weight (preferably 1 to 10 parts by weight) with respect to 100 parts by weight of 6-hydroxy-2-naphthoic acid (or solid content) contained in the solution system. Part) range.
[0024]
The method for decolorizing 6-hydroxy-2-naphthoic acid of the present invention can include the following steps (A) and (B).
(A) a step of adjusting the pH of a solution system in which 6-hydroxy-2-naphthoic acid is dissolved to 6 or less; (B) a decolorizing agent (eg, activated carbon) is added to the solution system in the step (A); A step of performing a decolorizing treatment (eg, activated carbon treatment) while maintaining the pH of the system at 6 or less.
In the step (A), the pH of the solution in which 6-hydroxy-2-naphthoic acid is dissolved is adjusted to 6 or less at an appropriate temperature by using an acid, if necessary, or by mixing with stirring. can do. The solution system in which the 6-hydroxy-2-naphthoic acid is dissolved is converted into 6-hydroxy-2-naphthoic acid by neutralization (to about pH 7) from a crude reaction solution obtained by using (1) Kolbe-Schmidt reaction. When the aqueous layer (crude solution) after separation and removal of the raw material 2-naphthol is used by using (adjustment), the crude solution can be used as it is, and (2) purification (or crude purification) ), A crystal (or a crude crystal) of 6-hydroxy-2-naphthoic acid obtained by the method described above is charged into a solvent (eg, an aqueous medium such as an alkaline aqueous medium). It can be prepared by mixing and dissolving as needed under stirring at a temperature.
[0026]
The amount of the solvent used to dissolve the crystals (or crude crystals) is not particularly limited, and is preferably an amount that can completely or almost completely dissolve 6-hydroxy-2-naphthoic acid.
[0027]
The temperature at the time of dissolution or pH adjustment can be appropriately selected depending on the type and amount of the solvent to be used, the type and amount of the acid, and the like, and is generally 0 to 100 ° C (for example, 10 ° C to 80 ° C). ) Range.
[0028]
In the step (B), a decolorizing agent such as activated carbon is added to the solution system (in a solution) of 6-hydroxy-2-naphthoic acid obtained in the step (A) at an appropriate temperature, followed by stirring or the like. The decolorization treatment such as the activated carbon treatment can be performed while mixing and maintaining the pH of the solution system at 6 or less. The decolorizing agent may be charged once (once), gradually, or divided into several times. The processing time of the decolorization processing is not particularly limited, and may be arbitrarily set according to the degree of decolorization, but is usually 5 to 60 minutes (preferably 5 to 15 minutes). The decolorizing agent (such as activated carbon) after the decolorizing treatment can be removed by using a known separation method such as filtration.
[0029]
In the case where 6-hydroxy-2-naphthoic acid is further decolorized, the decolorization operation may be performed by repeating the same operation.
[0030]
From a solution in which 6-hydroxy-2-naphthoic acid has been dissolved after decolorization by the decolorization method of the present invention, 6-hydroxy-2-naphthoic acid is subjected to acid precipitation treatment, filtration and drying by conventional means. Can be obtained by For example, from a solution in which 6-hydroxy-2-naphthoic acid has been dissolved after the decolorization treatment, 3-hydroxy-2-naphthoic acid and 3-hydroxynaphthalene-2 are obtained by acid precipitation treatment in which an acid such as sulfuric acid is added. By-products such as, 7,7-dicarboxylic acid are removed.
[0031]
Further, the precipitated crude crystals of 6-hydroxy-2-naphthoic acid (solid) are washed with water, centrifugally filtered using a filter cloth, and dried by a hot air drier or a vacuum drier (reduced pressure drier). Highly decolorized 6-hydroxy-2-naphthoic acid can be obtained.
[0032]
The purified product of 6-hydroxy-2-naphthoic acid obtained by the decolorizing method of the present invention can be suitably used as a raw material for various industrial raw materials, particularly dyes, pigments, resins (liquid crystal polymers and the like) and the like.
[0033]
【The invention's effect】
According to the method for decolorizing 6-hydroxy-2-naphthoic acid of the present invention, as described above, when 6-hydroxy-2-naphthoic acid is decolorized by a decolorizing treatment, 6-hydroxy-2-naphthoic acid is dissolved. Since the pH of the solution system is controlled, 6-hydroxy-2-naphthoic acid can be effectively decolorized.
[0034]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Note that the hue was evaluated using the following evaluation method.
(Hue evaluation method)
Acetic acid was added to 0.1 g of the sample until the total amount became 10 ml, and the sample was dissolved in acetic acid. The acetic acid solution (measurement sample) was placed in a measurement vessel, and the absorbance (ABS) of the acetic acid solution at a wavelength (λ) of 400 nm was measured. Is measured using a device name “UV-visible recording spectrophotometer” (manufactured by Shimadzu Corporation), and the degree of coloring is defined using the following equation.
Coloring degree = [absorbance at λ = 400 nm (ABS)] / [amount of sample in measurement sample (g)]
[0035]
(Example 1)
As a crudely purified product of 6-hydroxy-2-naphthoic acid (crude 6-hydroxy-2-naphthoic acid), a crudely purified product produced by the Kolbe-Schmidt method and roughly purified was used. Specifically, the crudely purified product of 6-hydroxy-2-naphthoic acid is obtained as follows. After cooling 220 parts by weight of the reaction mixture obtained by the production reaction utilizing the Kolbe-Schmidt reaction from a reaction temperature of 280 ° C. to 85 ° C., 200 parts by weight of water was added under a nitrogen atmosphere, and the mixture was stirred to form an aqueous layer. And the reaction medium layer were separated. Further, under a nitrogen atmosphere, 11 parts by weight of sulfuric acid was added to the obtained aqueous layer, the pH was adjusted to 7.0, unreacted potassium 2-naphthol was released as 2-naphthol, and toluene 170 was added. By adding 2 parts by weight and extracting and separating 2-naphthol, a crude product (aqueous layer) of 6-hydroxy-2-naphthoic acid can be obtained.
[0036]
Sulfuric acid is added to the crudely purified 6-hydroxy-2-naphthoic acid, which is the aqueous layer after extraction and separation of 2-naphthol, while heating to 80 ° C. under a nitrogen atmosphere to adjust the pH to 5.5. After the adjustment, while maintaining at 80 ° C., 1 part by weight of activated carbon (trade name “Carbofin” manufactured by Takeda Pharmaceutical Co., Ltd.) as a decolorizing agent was added with stirring, and the mixture was further stirred for 10 minutes, and then filtered. Then, decolorization treatment was performed.
[0037]
Thereafter, under a nitrogen atmosphere, the aqueous layer was cooled to 25 ° C., and an appropriate amount of sulfuric acid was added to the resulting suspension to adjust the pH to 5.0, and 3-hydroxy-2-naphthoic acid or 3-hydroxy by-product was added. Naphthalene-2,7-dicarboxylic acid was separated and removed, and dried to obtain crude crystals of 6-hydroxy-2-naphthoic acid. The degree of coloration of the crude crystals of 6-hydroxy-2-naphthoic acid was 0.43 as determined by the above-mentioned method of evaluating hue.
[0038]
(Comparative Example 1)
Activated carbon as a decolorizing agent (trade name: "aqueous layer") was obtained under the same conditions as in Example 1 except that the crude product of 6-hydroxy-2-naphthoic acid (aqueous layer) was heated to 80 ° C under a nitrogen atmosphere. 1 part by weight of carbofin (manufactured by Takeda Pharmaceutical Co., Ltd.) was added thereto with stirring, and the mixture was further stirred for 10 minutes, followed by filtration and decolorization treatment. At this time, the pH of the aqueous layer was 7.88.
[0039]
Then, in the same manner as in Example 1, an appropriate amount of sulfuric acid was added to a suspension obtained by cooling the aqueous layer to 25 ° C. under a nitrogen atmosphere to adjust the pH to 5.0, and the by-produced 3-hydroxy- 2-Naphthoic acid and 3-hydroxynaphthalene-2,7-dicarboxylic acid were separated and removed, followed by drying to obtain crude crystals of 6-hydroxy-2-naphthoic acid. The degree of coloration of the crude crystals of 6-hydroxy-2-naphthoic acid was determined in the same manner as in Example 1 by the above-described hue evaluation method, and was 2.40.

Claims (6)

6−ヒドロキシ−2−ナフトエ酸を脱色処理により脱色する方法であって、6−ヒドロキシ−2−ナフトエ酸が溶解した溶液系のpHを6以下に維持しながら脱色処理を行うことを特徴とする6−ヒドロキシ−2−ナフトエ酸の脱色方法。A method for decolorizing 6-hydroxy-2-naphthoic acid by a decolorizing treatment, wherein the decolorizing treatment is performed while maintaining the pH of a solution in which 6-hydroxy-2-naphthoic acid is dissolved at 6 or less. A method for decolorizing 6-hydroxy-2-naphthoic acid. 脱色処理が活性炭処理である請求項1記載の6−ヒドロキシ−2−ナフトエ酸の脱色方法。The method for decolorizing 6-hydroxy-2-naphthoic acid according to claim 1, wherein the decolorization treatment is an activated carbon treatment. 6−ヒドロキシ−2−ナフトエ酸の粗精製物を脱色処理に付す請求項1又は2記載の6−ヒドロキシ−2−ナフトエ酸の脱色方法。The method for decolorizing 6-hydroxy-2-naphthoic acid according to claim 1 or 2, wherein the crudely purified 6-hydroxy-2-naphthoic acid is subjected to a decolorizing treatment. 6−ヒドロキシ−2−ナフトエ酸の粗精製物が、コルベ・シュミット反応を利用した反応により得られた反応混合物又は該反応混合物の粗精製物である請求項3記載の6−ヒドロキシ−2−ナフトエ酸の脱色方法。The 6-hydroxy-2-naphthoic acid according to claim 3, wherein the crudely purified 6-hydroxy-2-naphthoic acid is a reaction mixture obtained by a reaction utilizing the Kolbe-Schmidt reaction or a crudely purified product of the reaction mixture. Acid decolorization method. 硫酸または塩酸を用いて、6−ヒドロキシ−2−ナフトエ酸を含む溶液系のpHを6以下に調整する請求項1〜4の何れかの項に記載の6−ヒドロキシ−2−ナフトエ酸の脱色方法。The decolorization of 6-hydroxy-2-naphthoic acid according to any one of claims 1 to 4, wherein the pH of the solution system containing 6-hydroxy-2-naphthoic acid is adjusted to 6 or less using sulfuric acid or hydrochloric acid. Method. 不活性ガスの雰囲気下で脱色処理を行う請求項1〜5の何れかの項に記載の6−ヒドロキシ−2−ナフトエ酸の脱色方法。The method for decolorizing 6-hydroxy-2-naphthoic acid according to any one of claims 1 to 5, wherein the decolorizing treatment is performed in an atmosphere of an inert gas.
JP2003049503A 2003-02-26 2003-02-26 Method for decoloring 6-hydroxy-2-naphthoic acid Withdrawn JP2004256448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049503A JP2004256448A (en) 2003-02-26 2003-02-26 Method for decoloring 6-hydroxy-2-naphthoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049503A JP2004256448A (en) 2003-02-26 2003-02-26 Method for decoloring 6-hydroxy-2-naphthoic acid

Publications (1)

Publication Number Publication Date
JP2004256448A true JP2004256448A (en) 2004-09-16

Family

ID=33115208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049503A Withdrawn JP2004256448A (en) 2003-02-26 2003-02-26 Method for decoloring 6-hydroxy-2-naphthoic acid

Country Status (1)

Country Link
JP (1) JP2004256448A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280127A (en) * 2005-03-30 2006-10-12 Fuji Electric Device Technology Co Ltd Micro power conversion apparatus
JP2011214030A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method for manufacturing hot-dip galvanized steel sheet
CN112707808A (en) * 2020-12-25 2021-04-27 宿迁思睿屹新材料有限公司 Preparation process of 2-hydroxy-6-naphthoic acid
CN113880709A (en) * 2021-11-15 2022-01-04 宁夏清研高分子新材料有限公司 Preparation method of high-purity 2-hydroxy-6-naphthoic acid
CN114057566A (en) * 2021-12-09 2022-02-18 宁夏清研高分子新材料有限公司 Preparation method of 2-hydroxy-6-naphthoic acid
CN115536515A (en) * 2022-10-13 2022-12-30 衢州英特高分子材料有限公司 Preparation method of 2-hydroxy-6-naphthoic acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280127A (en) * 2005-03-30 2006-10-12 Fuji Electric Device Technology Co Ltd Micro power conversion apparatus
JP4609152B2 (en) * 2005-03-30 2011-01-12 富士電機システムズ株式会社 Ultra-compact power converter
JP2011214030A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method for manufacturing hot-dip galvanized steel sheet
CN112707808A (en) * 2020-12-25 2021-04-27 宿迁思睿屹新材料有限公司 Preparation process of 2-hydroxy-6-naphthoic acid
CN113880709A (en) * 2021-11-15 2022-01-04 宁夏清研高分子新材料有限公司 Preparation method of high-purity 2-hydroxy-6-naphthoic acid
CN114057566A (en) * 2021-12-09 2022-02-18 宁夏清研高分子新材料有限公司 Preparation method of 2-hydroxy-6-naphthoic acid
CN115536515A (en) * 2022-10-13 2022-12-30 衢州英特高分子材料有限公司 Preparation method of 2-hydroxy-6-naphthoic acid

Similar Documents

Publication Publication Date Title
JP6829304B2 (en) Improved process for the preparation of Sugamadex
JP3854765B2 (en) Method for purifying long-chain dicarboxylic acids
CH647523A5 (en) SOLVATES OF ALICYCLIC ETHERS AND CEPHEM-4-CARBOXYLIC ACID, THEIR PREPARATION AND THEIR USE FOR OBTAINING THE ACID AND ITS SALTS.
JP2003286287A (en) Method for producing high melting crystal of epinastine hydrochloride
JP2004256448A (en) Method for decoloring 6-hydroxy-2-naphthoic acid
JPH08134055A (en) Production of 3-o-substituted-ascorbic acid
JP3913329B2 (en) Optical resolution method of (±) -chromancarboxylic acid
JP2007238596A (en) Direct process for forming amino acid dihydrochloride
JP5827684B2 (en) Method for preparing crystalline form A of 2- [3-cyano-4- (2-i-butoxy) phenyl] -4-methyl-5-thiazole-carboxylic acid (febuxostat)
JP4954421B2 (en) Purification method of clavulanate
CN108658777A (en) A kind of synthetic method of paranitrobenzoic acid
JP6670744B2 (en) Polymorphic forms of sodium hyodeoxycholate (NaHDC) and methods for their preparation
KR20140006092A (en) Crystallization of epirubicin hydrochloride
US4970336A (en) Method of purifying α-substituted acetic acids
JPWO2016035405A1 (en) Azo dye composition and method for producing the same
IL146548A (en) Anhydrous mirtazapine and process for preparing the same
JP2004520427A (en) Preparation of warfarin sodium from warfaric acid
JP4826132B2 (en) 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid and process for producing the same
JP2006306809A (en) S-(-)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid and method for manufacturing the same
JP2004256449A (en) Method for preventing discoloration of 6-hydroxy-2-naphthoic acid
JP2004231632A (en) Method of purifying 6-hydroxy-2-naphthoic acid
US20050272802A1 (en) Process for preparing form I of tegaserod maleate
JP4321983B2 (en) Anhydrous mirtazapine and its production method
RU2192470C2 (en) Method of fusidic acid preparing
JP2005023081A (en) Crystal of arbutin and method for preparation of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807