JP2004250501A - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP2004250501A
JP2004250501A JP2003040075A JP2003040075A JP2004250501A JP 2004250501 A JP2004250501 A JP 2004250501A JP 2003040075 A JP2003040075 A JP 2003040075A JP 2003040075 A JP2003040075 A JP 2003040075A JP 2004250501 A JP2004250501 A JP 2004250501A
Authority
JP
Japan
Prior art keywords
rubber composition
carbon dioxide
test
weight
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040075A
Other languages
Japanese (ja)
Inventor
Akikazu Nagano
朗一 長野
Takaaki Oba
太賀彰 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arai Seisakusho Co Ltd
Original Assignee
Arai Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arai Seisakusho Co Ltd filed Critical Arai Seisakusho Co Ltd
Priority to JP2003040075A priority Critical patent/JP2004250501A/en
Publication of JP2004250501A publication Critical patent/JP2004250501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition which exhibits physical properties excellent particularly in resistance to permeation of carbon dioxide and is used for a sealing device for sealing carbon dioxide. <P>SOLUTION: The rubber composition is used for a sealing device for sealing carbon dioxide or a fluid containing carbon dioxide. The composition contains at least one of a chlorinated polyethylene rubber, a hydrogenated nitrile rubber, a fluoro-rubber and a butyl rubber as its main ingredient, and a quartz filler added to the main ingredient. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素または二酸化炭素を含む流体を密封対象とする密封装置に使用されるゴム組成物に関し、特に、冷媒として二酸化炭素を用いる冷凍機用コンプレッサにおける冷媒漏れ防止用のパッキン、Oリングなどの密封装置に使用されるゴム組成物に関する。
【0002】
【従来の技術】
冷媒として二酸化炭素を用いる冷凍機用コンプレッサにおける冷媒漏れ防止用の密封装置としては、冷媒に浸漬された状態での使用において、冷媒の浸漬を原因とする重量変化が少なく、発泡が生じず、さらに二酸化炭素の透過量が少ないことのほか、圧縮永久歪みが小さいことなどの種々の機能が要求されている。
【0003】
これらの二酸化炭素を冷媒とする冷凍機用コンプレッサにおける冷媒漏れ防止用の密封容器に要求される機能を満たすため、密封装置に使用されるゴム組成物としては、例えば特開2002−146342号公報に示されているように、有機過酸化物で架橋された水素化ニトリルゴムを主体とすることで二酸化炭素に対する耐性を備えたゴム組成物が提案されている。
【0004】
【特許文献1】
特開2002−146342号公報
【0005】
【発明が解決しようとする課題】
しかし、前記有機過酸化物で架橋された水素化ニトリルゴムを主体とする二酸化炭素を密封対象とする密封装置に使用されるゴム組成物の物性は、二酸化炭素に対しての透過性などにおいて、必ずしも十分なものではないことが認識された。
【0006】
本発明は前記した点に鑑みなされたもので、特に、二酸化炭素に対しての透過性に優れた物性を示す、二酸化炭素を密封対象とする密封装置に使用されるゴム組成物を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
前記目的を達成するため本発明の請求項1に係るゴム組成物の特徴は、二酸化炭素または二酸化炭素を含む流体を密封対象とする密封装置に使用されるゴム組成物において、当該ゴム組成物の主原料として、塩素化ポリエチレンゴム、水素化ニトリルゴム、フッ素ゴム、およびブチルゴムのうちの何れか1つを有し、当該主原料に少なくとも石英質充填剤を添加してなる点にある。そして、このような構成を採用したことにより、二酸化炭素に対しての透過性に優れた物性を示す二酸化炭素を密封対象とする密封装置に使用されるゴム組成物を容易に得ることができる。
【0008】
【発明の実施の形態】
本発明のゴム組成物は、ゴム組成物の主原料として、塩素化ポリエチレンゴム、水素化ニトリルゴム、フッ素ゴム、およびブチルゴムのうちの何れか1つを有し、当該主原料に少なくとも石英質充填剤を添加することを要旨とするものである。このような配合のゴム組成物は、二酸化炭素または二酸化炭素を含む流体を密封対象とする密封装置に使用されるゴム組成物として、特に、二酸化炭素に対しての透過性の面で好適なものとなる。
【0009】
以下、本発明の、ゴム組成物の主原料としての水素化ニトリルゴムに石英質充填剤を添加したゴム組成物(第1試験参照)、同じく塩素化ポリエチレンゴムに石英質充填剤を添加したゴム組成物(第2試験参照)、同じくブチルゴムに石英質充填剤を添加したゴム組成物(第3試験参照)、および、同じくフッ素ゴムに石英質充填剤を添加したゴム組成物(第4試験参照)のそれぞれについて、実施例および比較例を用いて説明する。
【0010】
第1試験:
本試験は、ゴム組成物の主原料としての水素化ニトリルゴムに石英質充填剤を添加した本発明のゴム組成物(実施例1)と、ゴム組成物の主原料としての水素化ニトリルゴムに石英質充填剤を添加しない従来のゴム組成物(比較例1)との比較試験である。
【0011】
【表1】

Figure 2004250501
【0012】
表1には、実施例1と比較例1について、それぞれ、ゴム組成物の配合、二酸化炭素透過試験結果、常態物性の評価、二酸化炭素浸漬試験結果および圧縮永久歪み試験結果を示している。
【0013】
ここで、前記評価および試験について、簡単に説明する。
【0014】
前述の二酸化炭素透過試験は、JIS K 7126 A法に準拠し、試験片によって隔てられた一方(低圧側)を真空に保ち、他方(高圧側)に試験気体としての二酸化炭素を導入し、低圧側の圧力の増加によって気体透過度を測定した。
【0015】
前述の常態物性は、JIS K 6253に準拠して硬さを評価し、JIS K 6251に準拠して引張強さおよび伸びを評価した。
【0016】
それぞれの試験についてさらに説明すれば、前記硬さの試験においては、バネを介して試験片表面に押し付けられた押針の押し込み深さから硬さを求めるデュロメータを用いた。なお、表1において、Hはデュロメータ硬さ(タイプA)を示す。
【0017】
前記引張強さの試験においては、ダンベル状試験片を引張試験装置を用いて500±50mm/minの規定速度で破断するまで引張り、その破断させる際に要した最大の引張力を測定し、引張強さを算出した。なお、表1において、Tは引張強さを示す。
【0018】
前記伸びの試験においては、前述の引張強さの試験の際、その破断時における最大の伸び率を測定した。なお、表1において、Eは伸びを示す。
【0019】
前記二酸化炭素浸漬試験においては、50mm(長さ)×20mm(幅)×2mm(厚さ)の試験片について、温度を室温とし圧力を6MPaとする300mlの密封容器内に充填された二酸化炭素に浸漬させて70時間保持した後における重量を測定し、当該試験前後における前記試験片の重量変化率を求め、単位体積当たりの二酸化炭素吸収重量を算出するとともに、試験片の表面状態の発泡を目視観察した。
【0020】
また、前記圧縮永久歪み試験はJIS K 6262に準拠し、試料としての16.8mm(内径)×2.4mm(線径)のOリングに25%の圧縮を与えた状態で150℃の空気中に24時間放置した後における歪み率を評価した。
【0021】
実施例1:
本実施例においては、ゴム組成物の主原料としての水素化ニトリルゴム(Zetpol 2020:日本ゼオン株式会社製商品名)の100重量部に対して、ステアリン酸(椿印ステアリン酸:日本油脂株式会社製商品名)を0.5重量部、酸化亜鉛(酸化亜鉛2種:堺化学工業株式会社製商品名)を3重量部、老化防止剤(Naugard 445:Uniroyal Chemical社製商品名)を3重量部、可塑剤TOTM(アデカサイザーC−8:旭電化工業株式会社製商品名)を8重量部、共架橋剤(バルノックPM:大内新興化学工業株式会社製商品名)を2重量部、架橋剤(ペロキシモンF:日本油脂株式会社製商品名)を2.8重量部、FEFカーボン(旭60:旭カーボン株式会社製商品名 )を22重量部、および石英質充填剤としての粒径1.6μmの石英粉(MIN−U−SIL 5:U. S. Silica Company 製商品名)を60重量部の割合で計量し(合計201.3重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0022】
この実施例1のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0023】
その結果、実施例1のゴム組成物の二酸化炭素の透過係数は9.80であった。
【0024】
比較例1:
本比較例においては、ゴム組成物の主原料としての水素化ニトリルゴム(Zetpol 2020:日本ゼオン株式会社製商品名)の100重量部に対して、ステアリン酸(椿印ステアリン酸:日本油脂株式会社製商品名)を0.5重量部、酸化亜鉛(酸化亜鉛2種:堺化学工業株式会社製商品名)を3重量部、老化防止剤(Naugard 445:Uniroyal Chemical社製商品名)を3重量部、可塑剤としての可塑剤TOTM(アデカサイザーC−8:旭電化工業株式会社製商品名)を8重量部、共架橋剤(バルノックPM:大内新興化学工業株式会社製商品名)を2重量部、架橋剤(ペロキシモンF:日本油脂株式会社製商品名)を2.8重量部、およびFEFカーボン(旭60:旭カーボン株式会社製商品名 )を53重量部の割合で計量し(合計172.3重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0025】
この比較例1のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0026】
その結果、比較例1のゴム組成物の二酸化炭素の透過係数は14.10であった。
【0027】
このように、水素化ニトリルゴムを主原料とするゴム組成物においては、石英粉を含有させたゴム組成物(実施例1)の方が、石英粉を含有しないゴム組成物(比較例1)に比べて二酸化炭素に対しての透過性に優れた物性を示すことがわかった。
【0028】
また、本試験の主原料の水素化ニトリルゴムに石英粉を添加したゴム組成物(実施例1)の二酸化炭素浸漬試験においては、主原料の水素化ニトリルゴムに石英粉を添加しないゴム組成物(比較例1)の二酸化炭素浸漬試験においてその試験片の表面に視認された大きい発泡は視認されなかった。
【0029】
第2試験:
本試験は、ゴム組成物の主原料としての塩素化ポリエチレンゴムに石英粉を添加した本発明の3種のゴム組成物(実施例2乃至4)と、ゴム組成物の主原料としての塩素化ポリエチレンゴムに石英粉を添加しない従来のゴム組成物(比較例2)との比較試験である。
【0030】
【表2】
Figure 2004250501
【0031】
表2には、実施例2乃至4と比較例2について、それぞれ、ゴム組成物の配合、二酸化炭素透過試験結果、常態物性の評価、二酸化炭素浸漬試験結果および圧縮永久歪み試験結果を示している。なお、前記各試験および評価については、前記第1試験と同様であり、その説明は省略する。
【0032】
実施例2:
本実施例においては、ゴム組成物の主原料としての塩素化ポリエチレンゴム(ダイソラックMR104:ダイソー株式会社製商品名)の100重量部に対して、酸化マグネシウム(キョーワマグ150:協和化学工業株式会社製商品名)を10重量部、共架橋剤(TAIC:日本化成株式会社製商品名)を3重量部、架橋剤(パーヘキサ25B:日本油脂株式会社製商品名)を4重量部、FEFカーボン(旭60:旭カーボン株式会社製商品名 )を20重量部および石英質充填剤としての粒径1.6μmの石英粉(MIN−U−SIL 5:U. S. Silica Company 製商品名)を28重量部の割合で計量し(合計165重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0033】
この実施例2のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0034】
その結果、実施例2のゴム組成物の二酸化炭素の透過係数は1.60であった。
【0035】
実施例3:
本実施例においては、ゴム組成物の主原料としての塩素化ポリエチレンゴム(ダイソラックMR104:ダイソー株式会社製商品名)の100重量部に対して、酸化マグネシウム(キョーワマグ150:協和化学工業株式会社製商品名)を10重量部、共架橋剤(TAIC:日本化成株式会社製商品名)を3重量部、架橋剤(パーヘキサ25B:日本油脂株式会社製商品名)を4重量部、FEFカーボン(旭60:旭カーボン株式会社製商品名 )を10重量部、および石英質充填剤としての粒径1.6μmの石英粉(MIN−U−SIL 5:U. S. Silica Company 製商品名)を56重量部の割合で計量し(合計183重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0036】
この実施例3のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0037】
その結果、実施例3のゴム組成物の二酸化炭素の透過係数は0.88であった。
【0038】
実施例4:
本実施例においては、ゴム組成物の主原料としての塩素化ポリエチレンゴム(ダイソラックMR104:ダイソー株式会社製商品名)の100重量部に対して、酸化マグネシウム(キョーワマグ150:協和化学工業株式会社製商品名)を10重量部、共架橋剤(TAIC:日本化成株式会社製商品名)を3重量部、架橋剤(パーヘキサ25B:日本油脂株式会社製商品名)を4重量部、FEFカーボン(旭60:旭カーボン株式会社製商品名 )を20重量部、および石英質充填剤としての粒径8μmの石英粉(MIN−U−SIL 30:U. S. Silica Company 製商品名)を28重量部の割合で計量し(合計165重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0039】
この実施例4のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0040】
その結果、実施例4のゴム組成物の二酸化炭素の透過係数は1.44であった。
【0041】
比較例2:
本比較例においては、ゴム組成物の主原料としての塩素化ポリエチレンゴム(ダイソラックMR104:ダイソー株式会社製商品名)の100重量部に対して、酸化マグネシウム(キョーワマグ150:協和化学工業株式会社製商品名)を10重量部、共架橋剤(TAIC:日本化成株式会社製商品名)を3重量部、架橋剤(パーヘキサ25B:日本油脂株式会社製商品名)を4重量部、およびFEFカーボン(旭60:旭カーボン株式会社製商品名 )を30重量部の割合で計量し(合計147重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0042】
この比較例2のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0043】
その結果、比較例2のゴム組成物の二酸化炭素の透過係数は3.20であった。
【0044】
このように、塩素化ポリエチレンゴムを主原料とするゴム組成物においては、石英粉を含有させたゴム組成物(実施例2乃至実施例4)の方が、石英粉を含有しないゴム組成物(比較例2)に比べて二酸化炭素に対しての透過性に優れた物性を示すことがわかった。
【0045】
特に、塩素化ポリエチレンゴム100重量部に対して粒径を1.6μmとする石英粉28重量部を添加したゴム組成物(実施例2)は、石英粉を全く添加しないゴム組成物(比較例2)の1/2の二酸化炭素の透過係数を示し、さらには、塩素化ポリエチレンゴム100重量部に対して添加される石英粉の重量部を前記実施例2のゴム組成物の倍の添加量である56重量部としたゴム組成物(実施例3)は、石英粉を全く添加しない比較例2のゴム組成物の約1/4の二酸化炭素の透過係数を示したことで、二酸化炭素の透過性に関しては、その添加量と比例して優れた物性を示すことを確認した。
【0046】
また、塩素化ポリエチレンゴム100重量部に対して粒径を1.6μmとする石英粉28重量部を添加したゴム組成物(実施例2)と塩素化ポリエチレンゴム100重量部に対して粒径を8μmとする石英粉28重量部を添加したゴム組成物(実施例4)とを比較してみると、二酸化炭素透過試験において、大きな粒径の石英粉を添加したゴム組成物(実施例4)の方が0.16程小さい数値を示しており、二酸化炭素の透過性に関して優れた物性を示すことをがわかった。
【0047】
第3試験:
本試験は、ゴム組成物の主原料としてのブチルゴムに石英粉を添加した本発明のゴム組成物(実施例5)と、ゴム組成物の主原料としてのブチルゴムに石英粉を添加しない従来のゴム組成物(比較例3)との比較試験である。
【0048】
【表3】
Figure 2004250501
【0049】
表3には、実施例5と比較例3について、それぞれ、ゴム組成物の配合、二酸化炭素透過試験結果、常態物性の評価、二酸化炭素浸漬試験結果および圧縮永久歪み試験結果を示している。なお、前記各試験および評価については、前記第1試験と同様であり、その説明は省略する。
【0050】
実施例5:
本実施例においては、ゴム組成物の主原料としてのブチルゴム(JSRクロロブチル1066:JSR株式会社製商品名)の100重量部に対して、ステアリン酸(椿印ステアリン酸:日本油脂株式会社製商品名)を1重量部、酸化マグネシウム(キョーワマグ150:協和化学工業株式会社製商品名)を0.25重量部、酸化亜鉛(酸化亜鉛2種:堺化学工業株式会社製商品名)を5重量部、老化防止剤(Naugard 445:Uniroyal Chemical社製商品名)を1重量部、架橋剤(アクセルPZ:川口化学工業株式会社製商品名)を1.5重量部、FEFカーボン(旭60:旭カーボン株式会社製商品名 )を60重量部、および石英質充填剤としての粒径1.6μmの石英粉(MIN−U−SIL 5:U. S. Silica Company 製商品名)を90重量部の割合で計量し(合計258.75重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0051】
この実施例5のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0052】
その結果、実施例5のゴム組成物の二酸化炭素の透過係数は3.25であった。
【0053】
比較例3:
本比較例においては、ゴム組成物の主原料としてのブチルゴム(JSRクロロブチル1066:JSR株式会社製商品名)の100重量部に対して、ステアリン酸(椿印ステアリン酸:日本油脂株式会社製商品名)を1重量部、酸化マグネシウム(キョーワマグ150:協和化学工業株式会社製商品名)を0.25重量部、酸化亜鉛(酸化亜鉛2種:堺化学工業株式会社製商品名)を5重量部、老化防止剤(Naugard 445:Uniroyal Chemical社製商品名)を1重量部、架橋剤(アクセルPZ:川口化学工業株式会社製商品名)を1.5重量部、およびFEFカーボン(旭60:旭カーボン株式会社製商品名 )を95重量部の割合で計量し(合計203.75重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0054】
この比較例3のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0055】
その結果、比較例3のゴム組成物の二酸化炭素の透過係数は5.24であった。
【0056】
このように、ブチルゴムを主原料とするゴム組成物においては、石英粉を含有させたゴム組成物(実施例5)の方が、石英粉を含有しないゴム組成物(比較例3)に比べて二酸化炭素に対しての透過性に優れた物性を示すことがわかった。
【0057】
第4試験:
本試験は、ゴム組成物の主原料としてのフッ素ゴムに石英粉を添加した本発明のゴム組成物(実施例6)と、ゴム組成物の主原料としてのフッ素ゴムに石英粉を添加しない従来のゴム組成物(比較例4)との比較試験である。
【0058】
【表4】
Figure 2004250501
【0059】
表4には、実施例6と比較例4について、それぞれ、ゴム組成物の配合、二酸化炭素透過試験結果、常態物性の評価、二酸化炭素浸漬試験結果および圧縮永久歪み試験結果を示している。なお、前記各試験および評価については、前記第1試験と同様であり、その説明は省略する。
【0060】
実施例6:
本実施例においては、ゴム組成物の主原料としてのフッ素ゴム(ダイエルG902:ダイキン工業株式会社製商品名)の100重量部に対して、共架橋剤(TAIC:日本化成株式会社製商品名)を4重量部、架橋剤(パーヘキサ25B:日本油脂株式会社製商品名)を0.6重量部、および石英質充填剤としての粒径1.6μmの石英粉(MIN−U−SIL 5:U. S. Silica Company 製商品名)を40重量部の割合で計量し(合計144.6重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0061】
この実施例6のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0062】
その結果、実施例6のゴム組成物の二酸化炭素の透過係数は4.31であった。
【0063】
比較例4:
本比較例においては、ゴム組成物の主原料としてのフッ素ゴム(ダイエルG902:ダイキン工業株式会社製商品名)の100重量部に対して、共架橋剤(TAIC:日本化成株式会社製商品名)を4重量部、架橋剤(パーヘキサ25B:日本油脂株式会社製商品名)を0.6重量部、およびFEFカーボン(旭60:旭カーボン株式会社製商品名 )を20重量部の割合で計量し(合計124.6重量部)、これらを周知の方法で添加・混練してゴム組成物を得た。
【0064】
この比較例4のゴム組成物の性能試験として、前述した二酸化炭素透過試験、常態物性の評価、二酸化炭素浸漬試験、および圧縮永久歪み試験の4種の試験を行った。
【0065】
その結果、比較例4のゴム組成物の二酸化炭素の透過係数は7.61であった。
【0066】
このように、フッ素ゴムを主原料とするゴム組成物においては、石英粉を含有させたゴム組成物(実施例6)の方が、石英粉を含有しないゴム組成物(比較例4)に比べて二酸化炭素に対しての透過性に優れた物性を示すことがわかった。
【0067】
前記第1試験乃至第4試験における実施例および比較例の試験結果に示すように、石英質充填剤としての石英粉を含有させた本発明の全実施例は、いずれも、石英粉を含有しない比較例との比較で明らかなように、二酸化炭素の透過試験において良好な数値を示すものとなっている。
【0068】
よって、塩素化ポリエチレンゴム、水素化ニトリルゴム、フッ素ゴム、およびブチルゴムのいずれかのゴム組成物の主原料に石英質充填剤を添加することで、二酸化炭素に対しての透過性に優れた物性を示す二酸化炭素を密封対象とする密封装置に使用されるゴム組成物を容易に得ることができる。
【0069】
なお、本発明のゴム組成物は前記実施例のものに限定されるものではなく、必要に応じて種々変更することが可能である。
【0070】
【発明の効果】
以上述べたように、本発明に係るゴム組成物は、特に、二酸化炭素に対しての透過性に優れた物性を示すものとなり、二酸化炭素または二酸化炭素を含む流体を密封対象とする密封装置に使用されるゴム組成物として好適なものとなるなどの効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rubber composition used for a sealing device for sealing carbon dioxide or a fluid containing carbon dioxide, and in particular, a packing and an O-ring for preventing refrigerant leakage in a compressor for a refrigerator using carbon dioxide as a refrigerant. The present invention relates to a rubber composition used in a sealing device such as a rubber composition.
[0002]
[Prior art]
As a sealing device for preventing refrigerant leakage in a refrigerator compressor using carbon dioxide as a refrigerant, in use in a state of being immersed in the refrigerant, the weight change due to the immersion of the refrigerant is small, foaming does not occur, and Various functions are required, such as a small amount of carbon dioxide permeation and a small compression set.
[0003]
In order to satisfy the function required for a sealed container for preventing refrigerant leakage in a refrigerator compressor using carbon dioxide as a refrigerant, a rubber composition used for a sealing device is disclosed in, for example, JP-A-2002-146342. As shown, there has been proposed a rubber composition having resistance to carbon dioxide by mainly comprising a hydrogenated nitrile rubber crosslinked with an organic peroxide.
[0004]
[Patent Document 1]
JP, 2002-146342, A
[Problems to be solved by the invention]
However, the physical properties of the rubber composition used in the sealing device for sealing the carbon dioxide mainly composed of hydrogenated nitrile rubber cross-linked with the organic peroxide, such as permeability to carbon dioxide, It was recognized that this was not always enough.
[0006]
The present invention has been made in view of the above points, and in particular, to provide a rubber composition used in a sealing device for sealing carbon dioxide, which exhibits excellent properties for permeability to carbon dioxide. The purpose is.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the rubber composition according to claim 1 of the present invention is characterized in that the rubber composition used in a sealing device for sealing a carbon dioxide or a fluid containing carbon dioxide is a rubber composition. The main raw material has any one of chlorinated polyethylene rubber, hydrogenated nitrile rubber, fluorine rubber, and butyl rubber, and is characterized in that at least a quartz filler is added to the main raw material. By adopting such a configuration, it is possible to easily obtain a rubber composition to be used for a sealing device for sealing carbon dioxide, which exhibits physical properties with excellent permeability to carbon dioxide.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The rubber composition of the present invention has, as a main raw material of the rubber composition, any one of chlorinated polyethylene rubber, hydrogenated nitrile rubber, fluorine rubber, and butyl rubber, and the main raw material is filled with at least quartz. The point is to add an agent. The rubber composition having such a composition is suitable as a rubber composition used in a sealing device for sealing carbon dioxide or a fluid containing carbon dioxide, particularly, in terms of permeability to carbon dioxide. It becomes.
[0009]
Hereinafter, a rubber composition obtained by adding a quartz filler to hydrogenated nitrile rubber as a main raw material of the rubber composition of the present invention (see the first test), and a rubber obtained by adding a quartz filler to chlorinated polyethylene rubber Composition (see second test), rubber composition in which butyl rubber is added with a quartz filler (see third test), and rubber composition in which fluorinated rubber is also added with a quartz filler (see fourth test) ) Will be described using examples and comparative examples.
[0010]
First test:
In this test, a rubber composition of the present invention (Example 1) in which a quartz filler was added to a hydrogenated nitrile rubber as a main raw material of a rubber composition, and a hydrogenated nitrile rubber as a main raw material of the rubber composition were used. It is a comparative test with a conventional rubber composition (Comparative Example 1) to which no quartz filler is added.
[0011]
[Table 1]
Figure 2004250501
[0012]
Table 1 shows the composition of the rubber composition, the results of the carbon dioxide permeation test, the evaluation of the properties in the normal state, the results of the carbon dioxide immersion test, and the results of the compression set test for Example 1 and Comparative Example 1, respectively.
[0013]
Here, the evaluation and the test will be briefly described.
[0014]
The carbon dioxide permeation test described above conforms to JIS K 7126 A method, and one side (low pressure side) separated by a test piece is kept in a vacuum, and the other (high pressure side) is supplied with carbon dioxide as a test gas, and Gas permeability was measured by increasing side pressure.
[0015]
Regarding the above-mentioned normal physical properties, hardness was evaluated according to JIS K6253, and tensile strength and elongation were evaluated according to JIS K6251.
[0016]
Each test will be further described. In the hardness test, a durometer for obtaining hardness from a pressing depth of a pressing needle pressed against a surface of a test piece via a spring was used. In Table 1, H S denotes durometer hardness (type A).
[0017]
In the test of the tensile strength, the dumbbell-shaped test piece was pulled using a tensile tester at a specified speed of 500 ± 50 mm / min until the sample was broken, and the maximum tensile force required for breaking the sample was measured. The strength was calculated. In Table 1, T B indicates the tensile strength.
[0018]
In the elongation test, the maximum elongation at break was measured in the tensile strength test described above. In Table 1, E B represents the elongation.
[0019]
In the carbon dioxide immersion test, a test piece of 50 mm (length) × 20 mm (width) × 2 mm (thickness) was subjected to carbon dioxide filled in a 300 ml sealed container having a temperature of room temperature and a pressure of 6 MPa. After immersion and holding for 70 hours, the weight was measured, the weight change rate of the test piece before and after the test was determined, the carbon dioxide absorption weight per unit volume was calculated, and the foaming of the surface state of the test piece was visually observed. Observed.
[0020]
In addition, the compression set test is based on JIS K 6262, and is performed at 150 ° C. in air with a 16.8 mm (inner diameter) × 2.4 mm (wire diameter) O-ring as a sample compressed at 25%. After 24 hours, the strain rate was evaluated.
[0021]
Example 1
In this example, 100 parts by weight of hydrogenated nitrile rubber (Zetpol 2020: trade name of Nippon Zeon Co., Ltd.) as a main raw material of the rubber composition was added to stearic acid (camellia-stearic acid: Nippon Yushi Co., Ltd.). 0.5 parts by weight of zinc oxide (2 types of zinc oxide: trade name of Sakai Chemical Industry Co., Ltd.) and 3 parts by weight of antioxidant (Naugard 445: trade name of Uniroyal Chemical Company) Parts, 8 parts by weight of plasticizer TOTM (ADEKA SIZER C-8: trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) and 2 parts by weight of co-crosslinking agent (Valnock PM: trade name, manufactured by Ouchi Shinko Chemical Co., Ltd.) 2.8 parts by weight of an agent (Peroximon F: trade name of Nippon Yushi Co., Ltd.), 22 parts by weight of FEF carbon (Asahi 60: trade name of Asahi Carbon Co., Ltd.), and quartz filler Quartz powder (MIN-U-SIL 5: trade name, manufactured by US Silica Company) having a particle size of 1.6 μm as a filler was weighed at a ratio of 60 parts by weight (total 201.3 parts by weight), and these were weighed. A rubber composition was obtained by adding and kneading by a known method.
[0022]
As a performance test of the rubber composition of Example 1, the above-described four tests of a carbon dioxide permeation test, an evaluation of physical properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0023]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Example 1 was 9.80.
[0024]
Comparative Example 1:
In this comparative example, 100 parts by weight of hydrogenated nitrile rubber (Zetpol 2020: trade name of Nippon Zeon Co., Ltd.) as a main raw material of the rubber composition was added to stearic acid (camellia-stearic acid: Nippon Oil & Fats Co., Ltd.). 0.5 parts by weight of zinc oxide (2 types of zinc oxide: trade name of Sakai Chemical Industry Co., Ltd.) and 3 parts by weight of antioxidant (Naugard 445: trade name of Uniroyal Chemical Company) Parts, 8 parts by weight of a plasticizer TOTM (ADEKA SIZER C-8: trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) as a plasticizer, and 2 parts of a co-crosslinking agent (Barnock PM: trade name, manufactured by Ouchi Shinko Chemical Co., Ltd.) Parts by weight, 2.8 parts by weight of a cross-linking agent (Peroximon F: trade name, manufactured by NOF CORPORATION), and 53 layers of FEF carbon (Asahi 60: trade name, manufactured by Asahi Carbon Co., Ltd.) Parts were weighed (total 172.3 parts by weight), and these were added and kneaded by a known method to obtain a rubber composition.
[0025]
As a performance test of the rubber composition of Comparative Example 1, the above-described four tests, namely, the above-described carbon dioxide permeation test, evaluation of physical properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0026]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Comparative Example 1 was 14.10.
[0027]
As described above, in the rubber composition containing hydrogenated nitrile rubber as a main raw material, the rubber composition containing quartz powder (Example 1) is better than the rubber composition containing no quartz powder (Comparative Example 1). As a result, it was found that the material exhibited properties superior in permeability to carbon dioxide.
[0028]
Also, in the carbon dioxide immersion test of the rubber composition (Example 1) in which quartz powder was added to the hydrogenated nitrile rubber as the main raw material in this test, the rubber composition in which quartz powder was not added to the hydrogenated nitrile rubber as the main raw material was used. In the carbon dioxide immersion test of (Comparative Example 1), no large foam was visually recognized on the surface of the test piece.
[0029]
Second test:
In this test, three kinds of rubber compositions of the present invention (Examples 2 to 4) in which quartz powder was added to chlorinated polyethylene rubber as a main raw material of a rubber composition, and chlorination as a main raw material of a rubber composition It is a comparative test with a conventional rubber composition in which quartz powder is not added to polyethylene rubber (Comparative Example 2).
[0030]
[Table 2]
Figure 2004250501
[0031]
Table 2 shows the composition of the rubber composition, the results of the carbon dioxide permeation test, the evaluation of the physical properties in the normal state, the results of the carbon dioxide immersion test, and the results of the compression set test for Examples 2 to 4 and Comparative Example 2, respectively. . In addition, about each said test and evaluation, it is the same as that of the said 1st test, and the description is abbreviate | omitted.
[0032]
Example 2:
In this example, magnesium oxide (Kyowa Mag 150: a product manufactured by Kyowa Chemical Industry Co., Ltd.) was used with respect to 100 parts by weight of a chlorinated polyethylene rubber (Daisolac MR104: a product name manufactured by Daiso Corporation) as a main raw material of the rubber composition. 10 parts by weight), 3 parts by weight of a co-crosslinking agent (TAIC: trade name of Nippon Kasei Co., Ltd.), 4 parts by weight of cross-linking agent (Perhexa 25B: trade name of Nippon Oil & Fat Co., Ltd.), and FEF carbon (Asahi 60 : 20 parts by weight of Asahi Carbon Co., Ltd.) and 28 parts by weight of quartz powder (MIN-U-SIL 5: trade name of US Silica Company) having a particle size of 1.6 μm as a quartz filler. (Total 165 parts by weight), and these were added and kneaded by a known method to obtain a rubber composition.
[0033]
As a performance test of the rubber composition of Example 2, the above-described four tests of a carbon dioxide permeation test, evaluation of properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0034]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Example 2 was 1.60.
[0035]
Example 3
In this example, magnesium oxide (Kyowa Mag 150: a product manufactured by Kyowa Chemical Industry Co., Ltd.) was used with respect to 100 parts by weight of a chlorinated polyethylene rubber (Daisolac MR104: a product name manufactured by Daiso Corporation) as a main raw material of the rubber composition. 10 parts by weight), 3 parts by weight of a co-crosslinking agent (TAIC: trade name of Nippon Kasei Co., Ltd.), 4 parts by weight of cross-linking agent (Perhexa 25B: trade name of Nippon Oil & Fat Co., Ltd.), and FEF carbon (Asahi 60 : 10 parts by weight of Asahi Carbon Co., Ltd.) and 56 parts by weight of quartz powder (MIN-U-SIL 5: trade name of US Silica Company) having a particle size of 1.6 μm as a quartz filler. Parts were weighed (183 parts by weight in total), and these were added and kneaded by a known method to obtain a rubber composition.
[0036]
As a performance test of the rubber composition of Example 3, the above-described four tests of the carbon dioxide permeation test, evaluation of physical properties in a normal state, carbon dioxide immersion test, and compression set test were performed.
[0037]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Example 3 was 0.88.
[0038]
Example 4:
In this example, magnesium oxide (Kyowa Mag 150: a product manufactured by Kyowa Chemical Industry Co., Ltd.) was used with respect to 100 parts by weight of a chlorinated polyethylene rubber (Daisolac MR104: a product name manufactured by Daiso Corporation) as a main raw material of the rubber composition. 10 parts by weight), 3 parts by weight of a co-crosslinking agent (TAIC: trade name of Nippon Kasei Co., Ltd.), 4 parts by weight of cross-linking agent (Perhexa 25B: trade name of Nippon Oil & Fat Co., Ltd.), and FEF carbon (Asahi 60 : 20 parts by weight of Asahi Carbon Co., Ltd.) and 28 parts by weight of quartz powder (MIN-U-SIL 30: trade name of US Silica Company) having a particle size of 8 μm as a quartz filler. The rubber composition was weighed at a ratio (total of 165 parts by weight) and added and kneaded by a known method to obtain a rubber composition.
[0039]
As the performance test of the rubber composition of Example 4, the above-described four tests of the carbon dioxide permeation test, the evaluation of physical properties in a normal state, the carbon dioxide immersion test, and the compression set test were performed.
[0040]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Example 4 was 1.44.
[0041]
Comparative Example 2:
In this comparative example, magnesium oxide (Kyowa Mag 150: a product manufactured by Kyowa Chemical Industry Co., Ltd.) was used with respect to 100 parts by weight of a chlorinated polyethylene rubber (Daisolac MR104: a product name manufactured by Daiso Corporation) as a main material of the rubber composition. 10 parts by weight), 3 parts by weight of a co-crosslinking agent (TAIC: trade name, manufactured by Nippon Kasei Co., Ltd.), 4 parts by weight of a crosslinking agent (Perhexa 25B: trade name, manufactured by Nippon Oil & Fats Co., Ltd.), and FEF carbon (Asahi 60: trade name, manufactured by Asahi Carbon Co., Ltd.) at a ratio of 30 parts by weight (total 147 parts by weight), and these were added and kneaded by a known method to obtain a rubber composition.
[0042]
As a performance test of the rubber composition of Comparative Example 2, the above-described four tests of a carbon dioxide permeation test, evaluation of properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0043]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Comparative Example 2 was 3.20.
[0044]
As described above, in the rubber composition containing chlorinated polyethylene rubber as the main raw material, the rubber composition containing quartz powder (Examples 2 to 4) is better than the rubber composition containing no quartz powder ( It was found that it exhibited physical properties superior in permeability to carbon dioxide as compared with Comparative Example 2).
[0045]
In particular, the rubber composition containing 28 parts by weight of quartz powder having a particle size of 1.6 μm per 100 parts by weight of chlorinated polyethylene rubber (Example 2) is a rubber composition containing no quartz powder (Comparative Example). 2) shows a carbon dioxide permeability coefficient of 1/2, and furthermore, the amount of quartz powder added to 100 parts by weight of chlorinated polyethylene rubber is twice the amount of the rubber composition of Example 2 The rubber composition having 56 parts by weight (Example 3) showed a transmission coefficient of carbon dioxide of about 4 of that of the rubber composition of Comparative Example 2 to which no quartz powder was added. As for the permeability, it was confirmed that the material exhibited excellent physical properties in proportion to the amount of addition.
[0046]
Further, a rubber composition (Example 2) in which 28 parts by weight of quartz powder having a particle size of 1.6 μm was added to 100 parts by weight of chlorinated polyethylene rubber, and the particle diameter was set to 100 parts by weight of chlorinated polyethylene rubber Compared with a rubber composition containing 28 parts by weight of quartz powder (Example 4) having a particle size of 8 μm, a rubber composition containing quartz powder having a large particle diameter in a carbon dioxide permeation test (Example 4) Shows a numerical value smaller by about 0.16, which indicates that the carbon dioxide exhibits excellent properties with respect to carbon dioxide permeability.
[0047]
Third test:
In this test, the rubber composition of the present invention in which quartz powder was added to butyl rubber as the main raw material of the rubber composition (Example 5) and the conventional rubber in which quartz powder was not added to butyl rubber as the main raw material of the rubber composition It is a comparative test with a composition (Comparative Example 3).
[0048]
[Table 3]
Figure 2004250501
[0049]
Table 3 shows the composition of the rubber composition, the results of the carbon dioxide permeation test, the evaluation of the properties in the normal state, the results of the carbon dioxide immersion test, and the results of the compression set test for Example 5 and Comparative Example 3, respectively. In addition, about each said test and evaluation, it is the same as that of the said 1st test, and the description is abbreviate | omitted.
[0050]
Example 5:
In this example, 100 parts by weight of butyl rubber (JSR chlorobutyl 1066: trade name of JSR Corporation) as a main raw material of the rubber composition was added to stearic acid (camellia-stearic acid: trade name of Nippon Oil & Fats Co., Ltd.). ), 0.25 parts by weight of magnesium oxide (Kyowa Mag 150: trade name, manufactured by Kyowa Chemical Industry Co., Ltd.), 5 parts by weight of zinc oxide (two types of zinc oxide: trade name, manufactured by Sakai Chemical Industry Co., Ltd.), 1 part by weight of an antioxidant (Naugard 445: trade name, manufactured by Uniroyal Chemical Co.), 1.5 parts by weight of a crosslinking agent (Axel PZ: trade name, manufactured by Kawaguchi Chemical Co., Ltd.), FEF carbon (Asahi 60: Asahi Carbon Co., Ltd.) 60 parts by weight, and a quartz powder (MIN-U-SIL 5: US Si) having a particle size of 1.6 μm as a quartz filler. Weigh ica Company trade name) at a ratio of 90 parts by weight (total 258.75 parts by weight) These were added and kneaded to a well-known method to obtain a rubber composition.
[0051]
As a performance test of the rubber composition of Example 5, the above-described four tests of a carbon dioxide permeation test, evaluation of physical properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0052]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Example 5 was 3.25.
[0053]
Comparative Example 3:
In this comparative example, 100 parts by weight of butyl rubber (JSR chlorobutyl 1066: trade name of JSR Corporation) as a main raw material of the rubber composition was added to stearic acid (camellia-stearic acid: trade name of Nippon Oil & Fats Co., Ltd.). ), 0.25 parts by weight of magnesium oxide (Kyowa Mag 150: trade name, manufactured by Kyowa Chemical Industry Co., Ltd.), 5 parts by weight of zinc oxide (two types of zinc oxide: trade name, manufactured by Sakai Chemical Industry Co., Ltd.), 1 part by weight of an anti-aging agent (Naugard 445: trade name, manufactured by Uniroyal Chemical), 1.5 parts by weight of a crosslinking agent (Axel PZ: trade name, manufactured by Kawaguchi Chemical Co., Ltd.), and FEF carbon (Asahi 60: Asahi Carbon) (Trade name, manufactured by Co., Ltd.) at a ratio of 95 parts by weight (total: 203.75 parts by weight), and these are added and kneaded by a well-known method to obtain a rubber set. To obtain things.
[0054]
As a performance test of the rubber composition of Comparative Example 3, the above-described four tests of the carbon dioxide permeation test, the evaluation of physical properties in a normal state, the carbon dioxide immersion test, and the compression set test were performed.
[0055]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Comparative Example 3 was 5.24.
[0056]
Thus, in the rubber composition containing butyl rubber as a main raw material, the rubber composition containing quartz powder (Example 5) is compared with the rubber composition containing no quartz powder (Comparative Example 3). It was found that the material exhibited excellent properties for permeability to carbon dioxide.
[0057]
Fourth test:
In this test, the rubber composition of the present invention (Example 6) in which quartz powder was added to fluororubber as the main raw material of the rubber composition, and the conventional method in which quartz powder was not added to fluororubber as the main raw material of the rubber composition 5 is a comparative test with the rubber composition of Comparative Example 4 (Comparative Example 4).
[0058]
[Table 4]
Figure 2004250501
[0059]
Table 4 shows the composition of the rubber composition, the results of the carbon dioxide permeation test, the evaluation of the physical properties in the normal state, the results of the carbon dioxide immersion test, and the results of the compression set test for Example 6 and Comparative Example 4, respectively. In addition, about each said test and evaluation, it is the same as that of the said 1st test, and the description is abbreviate | omitted.
[0060]
Example 6:
In the present example, a co-crosslinking agent (TAIC: trade name, manufactured by Nippon Kasei Co., Ltd.) was added to 100 parts by weight of fluororubber (Daiel G902, trade name, manufactured by Daikin Industries, Ltd.) as a main raw material of the rubber composition. , 4 parts by weight, a crosslinking agent (Perhexa 25B: trade name, manufactured by NOF CORPORATION), 0.6 parts by weight, and quartz powder having a particle size of 1.6 μm as a quartz filler (MIN-U-SIL 5: U) S. Silica Company (trade name) was weighed at a ratio of 40 parts by weight (total 144.6 parts by weight), and these were added and kneaded by a known method to obtain a rubber composition.
[0061]
As a performance test of the rubber composition of Example 6, the above-described four tests of a carbon dioxide permeation test, evaluation of physical properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0062]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Example 6 was 4.31.
[0063]
Comparative Example 4:
In this comparative example, a co-crosslinking agent (TAIC: trade name, manufactured by Nippon Kasei Co., Ltd.) was used with respect to 100 parts by weight of fluororubber (Daiel G902, trade name, manufactured by Daikin Industries, Ltd.) as a main raw material of the rubber composition. , 4 parts by weight, 0.6 parts by weight of a crosslinking agent (Perhexa 25B: trade name, manufactured by NOF CORPORATION), and 20 parts by weight of FEF carbon (Asahi 60: trade name, manufactured by Asahi Carbon Co., Ltd.). (Total 124.6 parts by weight), and these were added and kneaded by a known method to obtain a rubber composition.
[0064]
As a performance test of the rubber composition of Comparative Example 4, the above-described four tests of a carbon dioxide permeation test, evaluation of properties in a normal state, a carbon dioxide immersion test, and a compression set test were performed.
[0065]
As a result, the transmission coefficient of carbon dioxide of the rubber composition of Comparative Example 4 was 7.61.
[0066]
Thus, in the rubber composition containing fluororubber as a main raw material, the rubber composition containing quartz powder (Example 6) is compared with the rubber composition containing no quartz powder (Comparative Example 4). As a result, it was found that the material exhibited excellent properties for permeability to carbon dioxide.
[0067]
As shown in the test results of Examples and Comparative Examples in the first to fourth tests, all Examples of the present invention containing quartz powder as a quartz filler do not contain quartz powder. As is clear from comparison with the comparative example, good values are shown in the carbon dioxide permeation test.
[0068]
Therefore, by adding a quartz filler to the main raw material of any one of the rubber compositions of chlorinated polyethylene rubber, hydrogenated nitrile rubber, fluorine rubber, and butyl rubber, physical properties excellent in permeability to carbon dioxide A rubber composition used for a sealing device that targets carbon dioxide to be sealed can be easily obtained.
[0069]
In addition, the rubber composition of the present invention is not limited to those in the above-described embodiments, and can be variously changed as needed.
[0070]
【The invention's effect】
As described above, the rubber composition according to the present invention particularly exhibits physical properties excellent in permeability to carbon dioxide, and is used in a sealing device for sealing a carbon dioxide or a fluid containing carbon dioxide. It has effects such as being suitable as a rubber composition to be used.

Claims (1)

二酸化炭素または二酸化炭素を含む流体を密封対象とする密封装置に使用されるゴム組成物において、当該ゴム組成物の主原料として、塩素化ポリエチレンゴム、水素化ニトリルゴム、フッ素ゴム、およびブチルゴムのうちの何れか1つを有し、当該主原料に少なくとも石英質充填剤を添加してなることを特徴とするゴム組成物。In a rubber composition used for a sealing device for sealing a carbon dioxide or a fluid containing carbon dioxide, as a main raw material of the rubber composition, chlorinated polyethylene rubber, hydrogenated nitrile rubber, fluorine rubber, and butyl rubber A rubber composition comprising any one of the above, wherein at least a quartz filler is added to the main raw material.
JP2003040075A 2003-02-18 2003-02-18 Rubber composition Pending JP2004250501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040075A JP2004250501A (en) 2003-02-18 2003-02-18 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040075A JP2004250501A (en) 2003-02-18 2003-02-18 Rubber composition

Publications (1)

Publication Number Publication Date
JP2004250501A true JP2004250501A (en) 2004-09-09

Family

ID=33024068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040075A Pending JP2004250501A (en) 2003-02-18 2003-02-18 Rubber composition

Country Status (1)

Country Link
JP (1) JP2004250501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155386A (en) * 2007-12-25 2009-07-16 Yokohama Rubber Co Ltd:The Rubber composition for tire inner liner
JP2016023196A (en) * 2014-07-16 2016-02-08 住友ゴム工業株式会社 Medical rubber member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155386A (en) * 2007-12-25 2009-07-16 Yokohama Rubber Co Ltd:The Rubber composition for tire inner liner
JP2016023196A (en) * 2014-07-16 2016-02-08 住友ゴム工業株式会社 Medical rubber member

Similar Documents

Publication Publication Date Title
JP4628814B2 (en) Sealant for semiconductor manufacturing equipment
JP4778782B2 (en) Sealing material
TW200535189A (en) Perfluoroelastomer composition for use in vulcanization and method for making a molded perfluoroelastomer product
WO2004065479A1 (en) Hydrogenated nitrile rubber composition
KR102448558B1 (en) Silicon-Containing Halogenated Elastomer
JP7264057B2 (en) Epihalohydrin rubber composition and rubber laminate
JP6512576B2 (en) hose
JP2004250501A (en) Rubber composition
JP3950353B2 (en) Low temperature fluorine elastomer composition
JP6034707B2 (en) Rubber composition for sealing pneumatic equipment and seal for pneumatic equipment using the same
JP5205632B2 (en) Lip type seal
JP3840230B2 (en) Rubber composition
JP2009102646A (en) HYDROGENATED NITRILE RUBBER-BASED SEAL MOLDING MATERIAL FOR R152a AND R134a
JP2005113017A (en) Fluororubber composition
JP4571579B2 (en) Rubber roll composition
TW201249913A (en) Perfluoroelastomer composition and molded product thereof
JP2004197017A (en) Rubber composition
JP7202110B2 (en) Rubber composition for sealing material and sealing material using the same
JP2007284604A (en) Fluorine rubber composition
JP2002265681A (en) Nbr composition
JP4299585B2 (en) Rubber composition and use thereof
JP2005344037A (en) Hydrogenated nbr rubber composition
JP2007284608A (en) Nonadhesive/low friction fluororubber composition
JP2011057768A (en) Acrylic rubber composition and molded article thereof
JPH11193332A (en) Molding material for use in contact with carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Effective date: 20050518

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018