JP2004247174A - 固体電解質型燃料電池 - Google Patents

固体電解質型燃料電池 Download PDF

Info

Publication number
JP2004247174A
JP2004247174A JP2003035718A JP2003035718A JP2004247174A JP 2004247174 A JP2004247174 A JP 2004247174A JP 2003035718 A JP2003035718 A JP 2003035718A JP 2003035718 A JP2003035718 A JP 2003035718A JP 2004247174 A JP2004247174 A JP 2004247174A
Authority
JP
Japan
Prior art keywords
cell
separator
current collector
inter
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003035718A
Other languages
English (en)
Inventor
Yoshihiro Funahashi
佳宏 舟橋
Hiroya Ishikawa
浩也 石川
Masaaki Hattori
昌晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003035718A priority Critical patent/JP2004247174A/ja
Publication of JP2004247174A publication Critical patent/JP2004247174A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】空気極の側において集電体とセル間セパレータとがろう付けされており、安定した出力が維持される固体電解質型燃料電池を提供する。
【解決手段】本発明の固体電解質型燃料電池(平板型SOFCスタック100)は、複数の単セルがセル間セパレータ(SUS430等の耐熱合金など)211、212を介して積層された構造を備え、各々の単セルは、固体電解質層11(ScSZ等の安定化ジルコニアなど)、固体電解質層の一面に設けられた燃料極12(Ni及びScSZ等)、及び他面に設けられた空気極13(La1−xSrMnO等)を有する発電層と、セル間セパレータと空気極との間に介装された集電体5(インコネル繊維メッシュ等)とを備え、セル間セパレータと集電体とは、セル間セパレータと集電体とが接触する面の少なくとも一部においてろう付け(Agを主成分とするろう材等)されている。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池に関する。更に詳しくは、複数の単セルが積層されてなる燃料電池において、各々の単セルにおける空気極とセル間セパレータとの間に介装された集電体と、セル間セパレータとの間の接触抵抗を低減させることにより、長期に渡って安定した出力が維持される固体電解質型燃料電池に関する。
本発明は、各種の構造を備える固体電解質型燃料電池において広く利用することができる。
【0002】
【従来の技術】
平板型の固体電解質型燃料電池(以下、「平板型SOFCスタック」ということもある。)は、複数の単セルがセパレータを介して積層され、形成されている。この平板型SOFCスタックは、1000℃を越える高温で動作させることが多いが、近年、Y等により安定化されたジルコニアなどの固体電解質層をできるだけ薄くして内部抵抗を低減し、900℃以下、特に800℃以下の比較的低温域で動作させる研究が活発化している。この場合、従来から使用されている耐熱性の高いセラミックセパレータに代えて、金属製の安価なセパレータを使用することができ、特に、より安価なステンレス鋼を用いることができれば、大幅にコストを引き下げることができる。
【0003】
このように金属製のセパレータを使用し、各々の単セルの燃料極及び空気極とセパレータとを、それぞれ集電体により電気的に接続した平板型SOFCスタックでは、各々の電極とセパレータとの間の接触抵抗が高いと、出力が低下して大きな問題となる。特に、空気極の側では、常に酸素ガスが存在し、セパレータが酸化され易く、生成する絶縁性の酸化皮膜により接触抵抗が高くなる傾向にある。このような問題に対処するため、優れた導電性を有するAgを用いた集電体が提案されている(例えば、特許文献1参照。)。また、耐熱合金からなる母材の表面にクロム酸化物層を介して銀メッキ層が形成された導電性に優れるセパレータも知られている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開2002−280026号公報
【特許文献2】
特開2002−289215号公報
【0005】
【発明が解決しようとする課題】
特許文献1に記載の集電体、及び特許文献2に記載のセパレータを使用すれば、低温で動作させても出力密度の高い固体電解質型燃料電池とすることができると記載されている。しかし、これらの集電体及びセパレータは非常に高価であり、より安価であって、且つ接触抵抗を十分に低下させることができる接触手段が必要とされている。
本発明は上記の状況に鑑みてなされたものであり、空気極の側において集電体とセル間セパレータとがろう付けされており、安定した出力が維持される固体電解質型燃料電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は以下の通りである。
1.複数の単セルが金属製のセル間セパレータを介して積層された構造を備える固体電解質型燃料電池において、各々の単セルは、固体電解質層、該固体電解質層の一面に設けられた燃料極、及び他面に設けられた空気極を有する発電層と、該セル間セパレータと該空気極との間に介装された集電体とを備え、該セル間セパレータと該集電体とが接触する面の少なくとも一部がろう付けされていることを特徴とする固体電解質型燃料電池。
2.上記ろう付けに用いるろう材はAgを主成分とする上記1.に記載の固体電解質型燃料電池。
3.上記集電体は上記セル間セパレータと同等以上の耐酸化性を有する上記1.又は2.に記載の固体電解質型燃料電池。
4.上記集電体の少なくとも一部に上記空気極を構成する元素と同じ元素が含まれている上記1.乃至3.のいずれかに記載の固体電解質型燃料電池。
5.上記集電体の少なくとも一部が上記空気極と同じ組成を有する上記1.乃至4.のいずれかに記載の固体電解質型燃料電池。
【0007】
【発明の効果】
本発明の固体電解質型燃料電池では、集電体とセル間セパレータとの接触抵抗が低減され、長期に渡って安定した出力が維持される。
また、ろう付けに用いるろう材がAgを主成分とする場合は、集電体とセル間セパレータとの接触抵抗をより安定して低減させることができる。
更に、集電体がセル間セパレータと同等以上の耐酸化性を有する場合は、セル間セパレータに比べて電流密度が高くなる集電体の発熱等を原因とする酸化による抵抗の上昇を抑えることができる。
また、集電体の少なくとも一部に空気極を構成する元素と同じ元素が含まれている場合は、集電体とセル間セパレータとの界面における反応による接触抵抗の上昇が抑えられる。
更に、集電体の少なくとも一部が空気極と同じ組成を有する場合は、集電体とセル間セパレータとの界面における反応がより抑制される。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
固体電解質型燃料電池には、各種の構造のものがあり、複数の単セルが金属製のセル間セパレータを介して積層され、形成されているものがある。この燃料電池において各々の単セルは発電層を備え、それぞれの発電層は、固体電解質層と、この固体電解質層の一面に設けられた燃料極と、他面に設けられた空気極とを有する。更に、各々の発電層の燃料極及び空気極とセル間セパレータとは、それぞれ集電体により電気的に接続されている。また、各々の単セルは、燃料電池の構造にもよるが、燃料ガスの流路と支燃性ガスの流路とを隔離するための隔離セパレータを備え、この隔離セパレータも金属により形成することができる。更に、それぞれの単セル間を電気的に絶縁するため、絶縁性セラミックからなる枠体が、積層方向の所定部分に配設されることもある。
【0009】
上記「セル間セパレータ」は金属からなり、特に、ステンレス鋼、ニッケル基合金、クロム基合金等の耐熱合金により形成される。尚、セル間セパレータの上面に更に他の単セルが積層されない場合は、蓋部材として機能し、セル間セパレータの下面に更に他の単セルが積層されない場合は底部材として機能する。
更に、平板型SOFCスタックの構造によっては、燃料ガス又は支燃性ガスの流路が形成されたセル間セパレータが用いられることもある。
【0010】
また、上記「固体電解質層」はScにより安定化されたジルコニア(ScSZ)等により形成することができる。この固体電解質層は、電池の動作時に燃料極に導入される燃料ガス又は空気極に導入される支燃性ガスのうち一方の少なくとも一部をイオンとして移動させることができるイオン伝導性を有する。どのようなイオンを伝導することができるかは特に限定されないが、イオンとしては、例えば、酸素イオン及び水素イオン等が挙げられる。更に、上記「燃料極」はNi及びScSZ等により形成することができる。この燃料極は、水素源となる燃料ガスと接触し、平板型SOFCスタックにおける負電極として機能する。また、上記「空気極」はLa1−xSrMnO系複合酸化物等により形成することができる。この空気極は、酸素源となる支燃性ガスと接触し、平板型SOFCスタックにおける正電極として機能する。
【0011】
上記「集電体」はNi又はNi基合金等により形成することができる。この集電体の形状は特に限定されず、緻密な板状体、多孔体、金属繊維からなるフェルト又はメッシュ等とすることができる。集電体は1種の材料のみからなっていてもよく、2種以上の材料からなっていてもよい。また、異なる材料からなるブロックの集合体であってもよいが、その場合は各々のブロック間をろう付けし、接触抵抗を低下させることが好ましい。
【0012】
更に、集電体は、セル間セパレータと同等以上の耐酸化性を有することが好ましい。この酸化の難易は、集電体を形成する金属からなる試験片を500時間程度燃料電池の運転温度にて熱処理し、その後、試験片の断面を鏡面研磨し、この断面を電子顕微鏡により観察し、酸化被膜の厚さ、及びこの酸化被膜が剥離していないか、剥離している場合は剥離の程度等を確認することで評価することができる。尚、集電体はセル間セパレータより酸化し難いことが特に好ましく、この場合、電流集中によって集電体が発熱したとき、集電体がより酸化し難く、電気特性が悪化し難いため好ましい。
【0013】
また、集電体の少なくとも一部に空気極を構成する元素と同じ元素が含まれていることが好ましい。同じ元素が含まれていることにより、空気極と集電体との間の反応が抑えられ、これらが変質せず、接触抵抗の増加が抑制されて安定した出力が維持される。更に、集電体の少なくとも一部が空気極と同じ組成を有することがより好ましい。同じ元素が含まれていても、組成が異なる場合は、濃度の高い側から低い側へと元素等がマイグレーションすることがあり、変質及び接触抵抗の増加を十分に抑えることができない場合がある。一方、組成が同じであれば、空気極と集電体との間の反応及び元素等のマイグレーションが十分に抑制され、出力をより安定させることができる。
【0014】
集電体は一面で空気極と接触し、他面でセル間セパレータと接触しており、セル間セパレータと接触する面の少なくとも一部において、集電体とセル間セパレータとがろう付けされている。ろう付けに用いるろう材は、集電体とセル間セパレータとを密着させ、安定して接触させることができる限り特に限定されない。このろう材としては、特に、平板型SOFCスタックの動作温度を650〜900℃と想定した場合、耐熱性、耐酸化性、耐食性等の観点からAgを主成分とするものが好ましい。また、Agを主成分とし、Pd、Ti等を含有するものがより好ましい。Agを主成分とするとは、ろう材を100質量%とした場合に、Agが50質量%以上であることを意味し、このAgは70〜98質量%、特に90〜98質量%、更には93〜97質量%含有されていることが特に好ましい。Agが70〜98質量%、特に90〜98質量%含有されるろう材であれば、ろう付け時にろう材が十分に流動し、接触抵抗を低下させることができる。更に、酸化され難く、十分な耐久性を有するろう付け部を形成することができる。
【0015】
ろう材を用いて集電体とセル間セパレータとをろう付けする際の温度は特に限定されないが、ろう材の固相点温度以上で、且つ液相点温度を50℃越える温度以下とすることが好ましい。Agの融点は約962℃であるが、ろう材の固相点温度以上の温度でろう付けすれば、Agを含有するろう材成分が融解し、展延性に富むAgが集電体とセル間セパレータとの間に十分に流動し、これらを密着させることができる。また、特にろう材の液相点温度を越える温度でろう付けした場合は、より安定した十分な密着性及び接合強度が維持され、容易に剥離することがない。一方、このろう付けの温度は液相点温度を50℃を越えて高い温度とする必要はなく、固相点温度以上、且つ液相点温度を50℃越える温度以下でろう付けすれば、十分な密着性及び接合強度が得られる。
【0016】
ろう付けの際の雰囲気は不活性雰囲気であれば特に限定されず、真空、及びアルゴン、窒素等の不活性ガス雰囲気とすることができる。ろう付けの際の雰囲気は特に真空であることが好ましく、真空雰囲気であれば接合強度を大きく向上させることができる。この真空の程度は10Pa以下、特に1×10−2〜1Paとすることが好ましい。
尚、平板型SOFCスタックでは、集電体とセル間セパレータの他、同様にAgを含有する接合材等により気密にシールする必要のある部分が多くあり、これらの接合操作の際に同時にろう付けすることができる。従って、集電体とセル間セパレータとをろう付けしても、平板型SOFCスタック製造のための操作、工程の増加は僅かである。
【0017】
【実施例】
以下、実施例により本発明を具体的に説明する。
実験例1〜6及び比較実験例1〜6
下記(1)の試片を使用し、実験例の場合は、下記(2)のようにしてSUS製円板と▲1▼〜▲6▼の円板とをろう付けし、図4のような試験体を作製して下記(3)のようにして総抵抗を測定した。
(1)試片
試片としては、平板型SOFCスタックにおいて、セル間セパレータ等として使用されるSUS430からなる直径20mm、厚さ0.3mmのSUS製円板(s1)と、集電体として用いられる▲1▼SUS430板、▲2▼Pt板、▲3▼インコネル610板、▲4▼La0.6Sr0.4CoO(後記の表1では「LSC64」と表記する。)緻密体、▲5▼La0.6Sr0.4Co0.2Fe0.8(後記の表1では「LSCF6428」と表記する。)緻密体、▲6▼LSCF6428多孔体(気孔率40%)(以上▲1▼〜▲6▼のいずれも形状は直径15mm、厚さ1mmの円板(s2)とを使用した。
【0018】
(2)ろう付け(実験例1〜6)
SUS製円板(s1)と、上記▲1▼〜▲6▼の集電体材料からなる円板(s2)とを、95質量%のAgと5質量%のPdとからなり、直径15mm、厚さ50μmのろう材シートを介在させて積層した。この際、各々の中心が同じくなるようにして積層した。その後、真空熱処理炉に導入し、1050℃で30分保持してろう付けし、SUS製円板と集電体材料からなる円板とが接合部(c)を介して接合されてなる積層体を形成した。昇降温速度はいずれも500℃/時間とした。
【0019】
(3)総抵抗の評価
外径15mm、長さ500mmのアルミナ管(a)の先端にPt網(p)を被せたものを2本用意し、そのうちの1本をPt網を被せた側を上方として垂直に立て、先端のPt網上に、実験例1〜6では(2)でろう付けした積層体をSUS製円板を下にして載せた。また、比較実験例1〜6では(1)におけるSUS製円板(s1)を載せ、更にこのSUS製円板上に(1)における▲1▼〜▲6▼の円板(s2)を載置した。その後、これら▲1▼〜▲6▼の円板上に更に他のアルミナ管をPt網が円板と接触するようにして立設させ、試験体(e)を作製した。次いで、大気圧下、700℃でSUS製円板側から▲1▼〜▲6▼の円板側へと通電し(電流500mA)、その際の電圧変化により、SUS製円板の抵抗、▲1▼〜▲6▼の円板の抵抗及びこれらの接触抵抗からなる総抵抗を測定した。この抵抗は、700℃の温度に1時間保持した後、及び30時間保持した後に測定し、経時後の抵抗変化により接触状態の安定性も併せて評価した。結果を表1に示す。
【0020】
【表1】
Figure 2004247174
【0021】
表1の結果によれば、ろう付けされている実験例1〜6の総抵抗は、接触のみの比較実験例1〜6の総抵抗より非常に低いことが分かる。また、ろう付けした場合は経時による総抵抗の変化率も小さく、安定して密着していることが推察される。また、30時間後に抵抗を測定した試料について断面をX線マイクロアナライザーにより調査した結果、実験例及び比較実験例のいずれにおいても、SUS430円板の▲1▼〜▲6▼の円板と接触する側の表面に約3μmの厚さの酸化クロム層が生成しているのが観察された。従って、実験例及び比較実験例のいずれの試料においても接触抵抗の増加が予想されるが、実験例1〜6では、酸化クロム層にろう材であるAg及びPdが拡散しており、酸化クロム層の抵抗が低下し、その結果、総抵抗が低くなったものと考えられる。
【0022】
更に、経時による抵抗増加率は実験例でも比較実験例でも▲1▼〜▲6▼の円板の種類により変化するが、実験例1〜6では、比較実験例1、3、4〜5、特に比較実験例4〜5のように総抵抗が大きく増加することはない。また、比較実験例5、6によれば多孔体の場合は緻密体に比べて総抵抗が高く、多孔体では接触抵抗が大きい。一方、ろう付けをした実験例5、6によれば多孔体と緻密体とで総抵抗はほぼ同じであり、多孔体であってもろう付けにより接触抵抗が十分に低下することが裏付けられている。
【0023】
実施例1(積層された3個の単セルを有し、燃料極を基板とする内部マニホールド型の平板型SOFCスタック)
(1)構造
▲1▼発電層及び各種セパレータ
3個の発電層等が積層された平板型SOFCスタック100の外観を図1に斜視図により示す。また、図2は、図1におけるA−A断面の模式図であり、図3は、図1におけるB−B断面の模式図である。
この平板型SOFCスタック100では、3個の単セルがセル間セパレータ211、212を介して積層されている。各々の単セルが備える発電層は、それぞれNiとScSZとからなり、平面形状が正方形であり、厚さが1000μmの燃料極12を基板としている。この燃料極12の表面にはそれぞれScSZからなり、平面方向の形状、寸法が燃料極12と同じであり、厚さが30μmの固体電解質層11が形成されている。更に、この固体電解質層11の表面にはそれぞれLa1−xSrMnOからなり、平面方向の形状が固体電解質層11と同じであり、寸法が固体電解質層11より小さく、厚さが30μmの空気極13が形成されている。
【0024】
上部単セルは、セル間セパレータ211の上面に配設されたニッケルフェルトからなる集電体4、基板となる燃料極12、固体電解質層11、空気極13、インコネル繊維メッシュからなる集電体5及び蓋部材22をこの順に備える。この集電体5と蓋部材22とは、これらが接触する面の全面において、95質量%のAgと5質量%のPdとからなるろう材によりろう付けされ、ろう付け部6が形成されている。また、上部単セルは、下面が固体電解質層11及び金属製枠体82と接合され、上面が絶縁性セラミックであるMgO−MgAl焼結体からなる枠体7及び金属製枠体81を介して蓋部材22と接合されている上部単セル用隔離セパレータ23を更に有する。
【0025】
中間部単セルは、セル間セパレータ212の上面に配設されたニッケルフェルトからなる集電体4、基板となる燃料極12、固体電解質層11、空気極13及びインコネル繊維メッシュからなる集電体5をこの順に備える。この集電体5は、セル間セパレータ211の下面と上部単セルの場合と同様にしてろう付けされ、ろう付け部6が形成されている。また、中間部単セルは、下面が固体電解質層11及び金属製枠体84と接合され、上面が絶縁性セラミックであるMgO−MgAl焼結体からなる枠体7及び金属製枠体83を介してセル間セパレータ211と接合されている中間単セル用隔離セパレータ24を更に有する。
【0026】
下部単セルは、底部材26の上面に配設されたニッケルフェルトからなる集電体4、基板となる燃料極12、固体電解質層11、空気極13及びインコネル繊維メッシュからなる集電体5をこの順に備える。この集電体5は、セル間セパレータ212の下面と上部単セルの場合と同様にしてろう付けされ、ろう付け部6が形成されている。また、下部単セルは、下面が固体電解質層11及び金属製枠体86と接合され、上面が枠体7及び金属製枠体85を介してセル間セパレータ212と接合されている下部単セル用隔離セパレータ25を更に有する。
【0027】
セル間セパレータ211、212、蓋部材22、上部単セル用隔離セパレータ23、中間単セル用隔離セパレータ24、下部単セル用隔離セパレータ25、底部材26、金属製枠体81、82、83、84、85、86は、いずれもSUS430により形成されている。更に、蓋部材22と金属製枠体81、上部単セル用隔離セパレータ23と金属製枠体82、金属製枠体82とセル間セパレータ211、セル間セパレータ211と金属製枠体83、中間単セル用隔離セパレータ24と金属製枠体84、金属製枠体84とセル間セパレータ212、セル間セパレータ212と金属製枠体85、下部単セル用隔離セパレータ25と金属製枠体86、及び金属製枠体86と底部材26、はそれぞれAg、Pd及び少量のTiを含有する接合材により接合され、接合層10が形成されている。
【0028】
▲2▼燃料ガス導入管又は排出管、及び支燃性ガス導入管又は排出管
上部単セルにおいて、上部単セル用隔離セパレータ23とセル間セパレータ211との間に形成された空間には、上部単セルの燃料極12に燃料ガスを導入するための燃料ガス導入管91が開口している(図2参照)。また、この空間の燃料ガス導入管91の開口部と対向する側には、上部単セルの燃料極12から燃料ガスを排出するための燃料ガス排出管92が開口している(図2参照)。更に、蓋部材22と上部単セル用隔離セパレータ23との間に形成された空間には、上部単セルの空気極13に支燃性ガスを導入するための支燃性ガス導入管93が開口している(図3参照)。また、この空間の支燃性ガス導入管93の開口部と対向する側には、上部単セルの空気極13から支燃性ガスを排出するための支燃性ガス排出管94が開口している(図3参照)。
【0029】
また、中間部単セルにおいて、中間部単セル用隔離セパレータ24とセル間セパレータ212との間に形成された空間には、中間部単セルの燃料極12に燃料ガスを導入するための燃料ガス導入管91が開口している(図2参照)。更に、この空間の燃料ガス導入管91の開口部と対向する側には、中間部単セルの燃料極12から燃料ガスを排出するための燃料ガス排出管92が開口している(図2参照)。また、セル間セパレータ211と中間部単セル用隔離セパレータ24との間に形成された空間には、中間部単セルの空気極13に支燃性ガスを導入するための支燃性ガス導入管93が開口している(図3参照)。更に、この空間の支燃性ガス導入管93の開口部と対向する側には、中間部単セルの空気極13から支燃性ガスを排出するための支燃性ガス排出管94が開口している(図3参照)。
【0030】
更に、下部単セルにおいて、下部単セル用隔離セパレータ25と底部材26との間に形成された空間には、下部単セルの燃料極12に燃料ガスを導入するための燃料ガス導入管91が開口している(図2参照)。また、この空間の燃料ガス導入管91の開口部と対向する側には、下部単セルの燃料極12から燃料ガスを排出するための燃料ガス排出管92が開口している(図2参照)。更に、セル間セパレータ212と下部単セル用隔離セパレータ25との間に形成された空間には、下部単セルの空気極13に支燃性ガスを導入するための支燃性ガス導入管93が開口している(図3参照)。また、この空間の支燃性ガス導入管93の開口部と対向する側には、下部単セルの空気極13から支燃性ガスを排出するための支燃性ガス排出管94が開口している(図3参照)。
【0031】
また、上部単セル、中間部単セル及び下部単セルの各々に燃料ガス又は支燃性ガスを導入し、又は排出するためのそれぞれの管は、本管に側管が取り付けられた構造であり、上部単セル、中間部単セル及び下部単セルの各々の発電層に燃料ガス及び支燃性ガスが同時に導入され、且つ排出される。更に、燃料ガス導入管と燃料ガス排出管、及び支燃性ガス導入管と支燃性ガス排出管は、この実施例1の場合は、燃料ガス及び支燃性ガスがそれぞれ対向方向に流通するような位置に取り付けられている。これにより、上部単セル、中間部単セル及び下部単セルのそれぞれの発電層の各々の燃料極と燃料ガス、及び空気極と支燃性ガスをそれぞれ効率よく接触させることができる。
【0032】
(2)燃料電池からの電力の取り出し
この平板型SOFCスタック100では、上部単セルの燃料極12は、ニッケルフェルトからなる集電体4を介してセル間セパレータ211と電気的に接続されている。また、セル間セパレータ211は、インコネル繊維メッシュからなる集電体5を介して中間部単セルの空気極13と電気的に接続されている。更に、中間部単セルの燃料極12は、集電体4を介してセル間セパレータ212と電気的に接続されている。また、セル間セパレータ212は、集電体5を介して下部単セルの空気極13と電気的に接続されている。このように上部単セル、中間部単セル及び下部単セルは各々直列に接続されている。また、スタックを所定の動作温度に昇温させ、燃料ガス導入管91に水素等の燃料ガスを導入して燃料極12と接触させ、支燃性ガス導入管93に空気等の支燃性ガスを導入して空気極13と接触させることにより、燃料極12と空気極13との間に起電力が生じ、この電力を外部に取り出すことにより発電装置として機能させることができる。
【0033】
電力は、燃料極側においては下部単セルの発電層の下面に配設された集電体4を介して底部材26に取り出され、空気極側においては上部単セルの発電層の上面に配設された集電体5を介して蓋部材22に取り出され、蓋部材22と底部材26との間でスタック全体の電力を取り出すことができる。この平板型SOFCスタック100では、3個の発電層がそれぞれ燃料極支持型であり、この構造の場合、600℃程度の動作温度でも電流を取り出すことができ、蓋部材、各種セパレータ、金属製枠体及び底部材を、セラミックではなくSUS430等のステンレス鋼により形成することができるものである。
【0034】
(3)燃料ガス及び支燃性ガス
実施例1の固体電解質型燃料電池を用いて発電させる場合、燃料極側には燃料ガスを導入し、空気極側には支燃性ガスを導入する。燃料ガスとしては、水素、水素源となる炭化水素、水素と炭化水素との混合ガス、及びこれらのガスを所定温度の水中を通過させ加湿した燃料ガス、これらのガスに水蒸気を混合させた燃料ガス等が挙げられる。炭化水素は特に限定されず、例えば、天然ガス、ナフサ、石炭ガス化ガス等が挙げられる。更に、メタン、エタン、プロパン、ブタン及びペンタン等の炭素数が1〜10、好ましくは1〜7、より好ましくは1〜4の飽和炭化水素、並びにエチレン及びプロピレン等の不飽和炭化水素を主成分とするものが好ましく、飽和炭化水素を主成分とするものが更に好ましい。これらの燃料ガスは1種のみを用いてもよいし、2種以上を併用することもできる。また、50体積%以下の窒素及びアルゴン等の不活性ガスを含有していてもよい。
【0035】
支燃性ガスとしては、酸素と他の気体との混合ガス等が挙げられる。また、この混合ガスには80体積%以下の窒素及びアルゴン等の不活性ガスが含有されていてもよい。これらの支燃性ガスのうちでは安全であって、且つ安価であるため空気(約80体積%の窒素が含まれている。)が好ましい。
【0036】
尚、本発明では上記の実施例に限られず、目的、用途等によって本発明の範囲内において種々変更した実施例とすることができる。例えば、蓋部材、各種セパレータ、底部材を形成するステンレス鋼としては、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼が挙げられる。フェライト系ステンレス鋼としては、SUS430以外に、SUS434、SUS405等が挙げられる。マルテンサイト系ステンレス鋼としては、SUS403、SUS410、SUS431等が挙げられる。オーステナイト系ステンレス鋼としては、SUS201、SUS301、SUS305等が挙げられる。更に、ニッケル基合金としては、インコネル600、インコネル718、インコロイ802等が挙げられる。クロム基合金としては、Ducrlloy CRF(94Cr5Fe1Y)等が挙げられる。これらの各種の耐熱合金は、それぞれ積層体の用途等によって選択することができる。
【0037】
発電層等の平面形状は、長方形、円形及び楕円形等とすることができ、同様の平面形状を有する固体電解質型燃料電池とすることができる。また、平板型SOFCスタックでは、各種セパレータ等の金属成形体の間は溶接などの方法によっても接合することができる。しかし、実施例1の内部マニホールド型のスタックにおけるセパレータの周縁の貫通孔の内部は溶接では接合することができない。この場合、Agを含有する特定の接合材を使用すれば、展延性に優れるAgによって貫通孔の周縁を十分に気密に密着させることができる。
【0038】
更に、固体電解質層の形成に用いる材料はScSZに限定されず、平板型SOFCスタックの使用条件等により適宜選択することができる。この材料としては、例えば、ZrO系セラミック、LaGaO系セラミック、BaCeO系セラミック、SrCeO系セラミック、SrZrO系セラミック及びCaZrO系セラミック等が挙げられる。これらのセラミック系材料のうちでは、ZrO系セラミックが好ましく、Y及び希土類元素のうちの少なくとも1種により安定化されたZrO系セラミックが好ましい。こられの安定化ジルコニアもScSZと同様に優れたイオン伝導性及び機械的強度を有する。
尚、この固体電解質層の厚さは電気抵抗と強度とを勘案し、5〜100μm、特に5〜50μm、更には5〜30μmとすることができる。
【0039】
また、燃料極の形成に用いる材料もNi及びScSZに限定されず、平板型SOFCスタックの使用条件等により適宜選択することができる。この材料としては、例えば、Pt、Au、Ag、Pd、Ir、Ru、Rh、Ni及びFe等の金属が挙げられる。これらの金属は1種のみでもよいし、2種以上の金属の合金でもよい。また、これらの金属及び/又は合金と、Y及び希土類元素のうちの少なくとも1種により安定化されたジルコニア等のジルコニア系セラミック、セリア系セラミック及び酸化マンガン等のセラミックとの混合物(サーメットを含む。)が挙げられる。更に、Ni及びFe等の金属の酸化物と、上記セラミックのうちの少なくとも1種との混合物などが挙げられる。
また、燃料極の平面形状は特に限定されないが、固体電解質層及び空気極と同じ形状であることが好ましい。更に、燃料極と固体電解質層とは各々の全面で積層されていることが好ましい。
【0040】
固体電解質型燃料電池において、各々の単セルが有する発電層は、強度の観点から過度に薄くすることは好ましくないが、発電性能の観点では前記のように固体電解質層を厚くすることは好ましくない。そのため、実施例1のように燃料極支持型とすることができ、この燃料極支持型では、燃料極は固体電解質層の20倍以上の厚さであることが好ましい。20倍未満であると発電層の機械的強度が不十分となる傾向にある。この燃料極の厚さは200〜3000μm、特に500〜2000μmであることが好ましい。200μm未満であると基板として有効に機能せず、3000μmを越えると、体積当たりの発電効率が低下する傾向にある。一方、空気極支持型とすることもでき、この場合は、燃料極の厚さは、10〜50μm、特に20〜40μmであることが好ましい。この厚さが10〜50μmであれば、電極として十分に機能し、50μmを越えて厚くする必要はない。
【0041】
また、空気極の形成に用いる材料はLa1−xSrMnO系複合酸化物に限定されず、平板型SOFCスタックの使用条件等により適宜選択することができる。この材料としては、例えば、Pt、Au、Ag、Pd、Ir、Ru及びRh等の金属が挙げられる。これらの金属は1種のみでもよいし、2種以上の金属の合金でもよい。更に、La、Sr、Ce、Co及びMn等の酸化物(例えば、La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。また、La、Sr、Ce、Co及びMn等のうちの少なくとも1種を含有する各種の複合酸化物(例えば、La1−xSrCoO系複合酸化物、La1−xSrFeO系複合酸化物、La1−xSrCo1−yFe系複合酸化物、Pr1−xBaCoO系複合酸化物及びSm1−xSrCoO系複合酸化物等)が挙げられる。
【0042】
また、この空気極の平面形状は特に限定されないが、固体電解質層及び燃料極と同じ形状であることが好ましい。更に、その平面方向の寸法は、特に、隔離セパレータが固体電解質層の一表面の周縁に接合されない場合等、燃料電池の構造によっては、固体電解質層及び燃料極と同じにすることもできる。これら空気極と固体電解質層とは各々の全面で積層されていることが好ましい。
【0043】
空気極は、発電層の強度を支持する基板として形成することもできる。空気極支持型である場合は、空気極の厚さは固体電解質層の20倍以上の厚さであることが好ましい。20倍未満であると発電層の機械的強度が不十分となる傾向にある。この空気極の厚さは200〜3000μm、特に500〜2000μmであることが好ましい。200μm未満であると基板として有効に機能せず、3000μmを越えると、体積当たりの発電効率が低下する傾向にある。一方、燃料極支持型である場合は、空気極の厚さは10〜100μm、特に20〜50μmであることが好ましい。10μm未満であると電極として十分に機能しないことがあり、100μmを越えると固体電解質層から剥離することがある。
【0044】
ろう材には、Cuが含有されていてもよい。Cuが含有されている場合のAg、Pd及びCuの各々の含有量は特に限定されないが、Ag、Pd及びCuの合計を100質量%とした場合に、Agの含有量は45〜65質量%、特に50〜60質量%、Pdの含有量は15〜35質量%、特に20〜30質量%、Cuの含有量は10〜30質量%、特に15〜25質量%であることが好ましい。Cuが含有されている場合、含有されていないろう材に比べてより多量のPdを含有していても、十分な流動性を有し、優れた密着性が維持される。一方、AgとCuの合計が65質量%未満、即ち、Pdの含有量が35質量%を越えると、流動性が低下し、密着性が不十分になる傾向にある。
【0045】
ろう材にTiが含有されていることにより、接合温度が比較的低い場合でも、特に大きな接合強度が得られる。このTiの含有量は、Ag、Pd及びTiの合計を100質量%とした場合に、又はCuが含有されているときは、Ag、Pd、Cu及びTiの合計を100質量%とした場合に、0.05〜10質量%であることが好ましく、特に0.05〜8質量%、更には0.05〜6質量%であることがより好ましい。Tiの含有量が0.05〜10質量%であれば、ろう付けの雰囲気が真空ではなく、アルゴン等の不活性雰囲気であっても、実用上、十分な強度を有するろう付け部を形成することができる。また、ろう付けの雰囲気が真空である場合は、Tiの含有量は、0.05〜20質量%、特に0.05〜15質量%とすることもでき、更に、Tiの含有量が0.08〜10質量%であれば、接合強度が大きく向上する。
【0046】
ろう材には、接合強度及び密着性等が低下しない範囲で更に他の成分が含有されていてもよい。この他の成分としてはSn、In、Ni、Nb等が挙げられる。これらの他の成分は、AgとPdとの合計、更にCuを含有する場合はAg、Pd及びCuの合計、更にTiを含有する場合はAg、Pd及びTiの合計、又はAg、Pd、Cu及びTiの合計を100質量部とした場合に、10質量部以下、特に0.1〜10質量部、更には0.5〜5質量部含有させることができる。
【0047】
また、セル間セパレータと燃料極との間に介装される集電体としては、ニッケルフェルトに限られず前記の空気極の場合と同様のものを用いることができる。この燃料極側の集電体はセル間セパレータとの接触面において空気極側と同様にしてろう付けされていてもよいが、燃料極側ではセル間セパレータは酸化され難いため、ろう付けされていなくてもよい。
【図面の簡単な説明】
【図1】本発明の燃料電池の外観を示す斜視図である。
【図2】図1の燃料電池のA−A断面を示す模式図である。
【図3】図1の燃料電池のB−B断面を示す模式図である。
【図4】総抵抗の評価に用いた試験体を模式的に示す説明図である。
【符号の説明】
100;平板型SOFCスタック、11;固体電解質層、12;燃料極、13;空気極、211、212;セル間セパレータ、22;蓋部材、23;上部単セル用隔離セパレータ、231、232;貫通孔、24;中間単セル用隔離セパレータ、25;下部単セル用隔離セパレータ、26;底部材、251、252;貫通孔、31;燃料ガスの流路、32;支燃性ガスの流路、4;ニッケルフェルトからなる集電体、5;インコネル繊維メッシュからなる集電体、6;ろう付け部、7;枠体、81、82、83、84、85、86;金属製枠体、91;燃料ガス導入管、92;燃料ガス排気管、93;支燃性ガス導入管、94;支燃性ガス排気管、10;接合層。

Claims (5)

  1. 複数の単セルが金属製のセル間セパレータを介して積層された構造を備える固体電解質型燃料電池において、各々の単セルは、固体電解質層、該固体電解質層の一面に設けられた燃料極、及び他面に設けられた空気極を有する発電層と、該セル間セパレータと該空気極との間に介装された集電体とを備え、該セル間セパレータと該集電体とが接触する面の少なくとも一部がろう付けされていることを特徴とする固体電解質型燃料電池。
  2. 上記ろう付けに用いるろう材はAgを主成分とする請求項1に記載の固体電解質型燃料電池。
  3. 上記集電体は上記セル間セパレータと同等以上の耐酸化性を有する請求項1又は2に記載の固体電解質型燃料電池。
  4. 上記集電体の少なくとも一部に上記空気極を構成する元素と同じ元素が含まれている請求項1乃至3のうちのいずれか1項に記載の固体電解質型燃料電池。
  5. 上記集電体の少なくとも一部が上記空気極と同じ組成を有する請求項1乃至4のうちのいずれか1項に記載の固体電解質型燃料電池。
JP2003035718A 2003-02-13 2003-02-13 固体電解質型燃料電池 Pending JP2004247174A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035718A JP2004247174A (ja) 2003-02-13 2003-02-13 固体電解質型燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035718A JP2004247174A (ja) 2003-02-13 2003-02-13 固体電解質型燃料電池

Publications (1)

Publication Number Publication Date
JP2004247174A true JP2004247174A (ja) 2004-09-02

Family

ID=33021063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035718A Pending JP2004247174A (ja) 2003-02-13 2003-02-13 固体電解質型燃料電池

Country Status (1)

Country Link
JP (1) JP2004247174A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107936A (ja) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd 平板形固体酸化物燃料電池用インターコネクタ
JP2009099308A (ja) * 2007-10-15 2009-05-07 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
US7556878B2 (en) 2005-04-22 2009-07-07 Nissan Motor Co. Ltd. Fuel cell with separator and porous support member including high density portion
JP2010501971A (ja) * 2006-08-23 2010-01-21 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 電気化学セルのスタックの繰り返しユニット、スタック配置、および繰り返しユニットの製造方法
JP2020087792A (ja) * 2018-11-28 2020-06-04 太陽誘電株式会社 燃料電池スタックおよびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107936A (ja) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd 平板形固体酸化物燃料電池用インターコネクタ
US7556878B2 (en) 2005-04-22 2009-07-07 Nissan Motor Co. Ltd. Fuel cell with separator and porous support member including high density portion
JP2010501971A (ja) * 2006-08-23 2010-01-21 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 電気化学セルのスタックの繰り返しユニット、スタック配置、および繰り返しユニットの製造方法
JP2009099308A (ja) * 2007-10-15 2009-05-07 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2020087792A (ja) * 2018-11-28 2020-06-04 太陽誘電株式会社 燃料電池スタックおよびその製造方法
JP7245036B2 (ja) 2018-11-28 2023-03-23 太陽誘電株式会社 燃料電池スタックおよびその製造方法

Similar Documents

Publication Publication Date Title
JP5242952B2 (ja) 固体電解質形燃料電池及びその製造方法
JP5242985B2 (ja) 固体酸化物形燃料電池
US7232626B2 (en) Planar electrochemical device assembly
JP4646102B2 (ja) 固体電解質型燃料電池
JP2006202727A (ja) 固体電解質形燃料電池
JP5198799B2 (ja) 固体電解質形燃料電池
JP2008293741A (ja) 固体電解質形燃料電池
JP4737935B2 (ja) 固体電解質形燃料電池
JP2002334706A (ja) 電池要素層支持体及び固体電解質型燃料電池用セル板
JP5170815B2 (ja) 固体電解質型燃料電池ユニット及びスタック
WO2002093671A1 (fr) Structure stratifiee d'une pile a combustible oxyde solide de type a plaque plate
JP4995463B2 (ja) 固体酸化物型燃料電池及びその製造方法
JP2012190725A (ja) 固体酸化物形燃料電池
JP4995411B2 (ja) セラミックス接合体及びそれを用いた固体電解質形燃料電池
JP2004247174A (ja) 固体電解質型燃料電池
JP5432231B2 (ja) 固体電解質形燃料電池用接合部材
JP4658524B2 (ja) 固体電解質形燃料電池
JP2007134133A (ja) 固体電解質型燃料電池
JP2004039574A (ja) 低温作動固体酸化物形燃料電池用シール材
JP2006172989A (ja) 固体電解質形燃料電池セル並びにそれを用いた固体電解質形燃料電池及びその製造方法
JP4279584B2 (ja) 固体電解質型燃料電池及びその製造方法
JP4640906B2 (ja) 積層体及び固体電解質型燃料電池
JP6917182B2 (ja) 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP5890244B2 (ja) 接合体及びそれを用いた固体酸化物形燃料電池
JP2006024436A (ja) 固体電解質形燃料電池

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106