JP2004245117A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2004245117A
JP2004245117A JP2003035039A JP2003035039A JP2004245117A JP 2004245117 A JP2004245117 A JP 2004245117A JP 2003035039 A JP2003035039 A JP 2003035039A JP 2003035039 A JP2003035039 A JP 2003035039A JP 2004245117 A JP2004245117 A JP 2004245117A
Authority
JP
Japan
Prior art keywords
engine
internal combustion
compressor
combustion engine
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003035039A
Other languages
Japanese (ja)
Inventor
Kiyohiro Shimokawa
清広 下川
Noboru Uchida
登 内田
Masaru Nakajima
大 中島
Nobuhiro Funayama
悦弘 舩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003035039A priority Critical patent/JP2004245117A/en
Publication of JP2004245117A publication Critical patent/JP2004245117A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger where EGR effect is obtained in all operating ranges. <P>SOLUTION: The internal combustion engine with the supercharger has an engine 1 and a turbocharger 2, operates a turbine 3 of the turbocharger 2 with exhaust gas 15, and feeds intake gas 16 compressed by a compressor 4 of the turbocharger 2 to the engine 1 via an inter-cooler 17. An exhaust manifold 6 of the engine 1 is connected to the upstream side of a suction port of the compressor 4 through an EGR conduit 19 to prevent backflow from occurring in the exhaust gas 15 and intake gas 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はEGR装置を装備した過給機付内燃機関に関するものである。
【0002】
【従来の技術】
従来、エンジン排気経路から分流した排気ガスをエンジン吸気経路へ送給し、シリンダ内における燃料の燃焼を抑制して燃焼温度の低下を図り、NOxの発生を低減する、排気ガス再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関が提案されている(例えば、特許文献1参照)。
【0003】
この過給機付内燃機関は図3に示すように、エンジン1とターボチャージャ2を備えている。
【0004】
ターボチャージャ2は、タービン3、コンプレッサ4、及びタービンホイールの回転をコンプレッサインペラに伝達する中間軸5とで構成されている。
【0005】
タービン3の流入口は、エンジン1の排気マニホールド6に連通し、タービン3の流出口は、排気管7の上流端に接続されている。
【0006】
コンプレッサ4の吸入口は、吸気管8の下流端に接続され、コンプレッサ4の吐出口は、中間部にインタクーラ9を組み込んだ吸気管10の上流端に接続されている。
【0007】
上記インタクーラ9には、空冷方式のフィン付形熱交換器を用いている。
【0008】
また、吸気管10の下流端は、エンジン1の吸気マニホールド11に接続されている。
【0009】
更に、排気マニホールド6に、EGR管路12の上流端を接続し、当該EGR管路12の下流端を、吸気マニホールド11に連通させている。
【0010】
EGR管路12の中間部には、EGRクーラ13とEGRバルブ14が上流側から下流側ヘ向けて直列に組み込まれている。
【0011】
上記EGRクーラ13には、液冷方式の管形熱交換器を用いている。
【0012】
図3に示す過給機付内燃機関では、エンジン1を運転すると、排気ガス15の大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動した後、排気管7や排気浄化装置(図示せず)を経て大気中に放出される。
【0013】
また、エアクリーナ(図示せず)及び吸気管8からコンプレッサ4に流入して圧縮された吸気16が、吸気管10及びインタクーラ9を経て吸気マニホールド11へ送給される。
【0014】
更に、排気ガス15の一部が、排気マニホールド6からEGR管路12へ流入し、EGRクーラ13で冷却され且つEGRバルブ14で流量調整が行なわれた排気ガス15が吸気マニホールド11へ送給される。
【0015】
これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、その結果、NOxの発生が低減することになる。
【0016】
【特許文献1】
特開平9−256915号公報
【0017】
【発明が解決しようとする課題】
図3に示すような従来の過給機付内燃機関では、エンジン1の多くの運転領域において、ターボチャージャ2の各部分の圧力が下記のような関係になる。
【0018】
【数1】
P1<P4<P2<P3
P1:コンプレッサ入口圧力
P2:コンプレッサ出口圧力
P3:タービン入口圧力
P4:タービン出口圧力
【0019】
ところが、ターボチャージャ2が効率よく働くエンジン1の運転領域においては、ターボチャージャ2の各部分の圧力が下記のような関係になる。
【0020】
【数2】
P1<P4<P3<P2
【0021】
このため、吸気管10から吸気マニホールド11へ送給すべき吸気16の一部がEGR管路12に逆流し、当該EGR管路12によって排気ガス15の一部を吸気マニホールド11へ送給することができず、EGRの効用がなくなる。
【0022】
本発明は上述した実情に鑑みてなしたもので、全ての運転領域でEGRの効用が得られる過給機付内燃機関を提供することを目的としている。
【0023】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気ガスで作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側の箇所からエンジン吸気経路のコンプレッサよりも上流側の箇所へ至るEGR管路を設けている。
【0024】
請求項2に記載の発明は、インタクーラに管形熱交換器を用いている。
【0025】
請求項3に記載の発明は、ターボチャージャのコンプレッサを駆動可能な補助電動機を設けている。
【0026】
請求項4に記載の発明は、タービンホイールの回転をコンプレッサインペラに伝達する中間軸に補助電動機のロータを組み付け、該ロータを回転方向に取り囲むように補助電動機のステータを配置している。
【0027】
請求項1に記載の発明では、エンジン排気経路のタービンよりも上流側の箇所から排気ガスの一部をEGR管路へ分流して、エンジン吸気経路のコンプレッサよりも上流側の箇所へ送給し、EGR管路に導いた排気ガスの逆流を抑止する。
【0028】
請求項2に記載の発明では、エンジン排気経路、EGR管路、コンプレッサを経由した排気ガスを含んだ吸気が通過するインタクーラを管形熱交換器として、インタクーラの目詰りを防止する。
【0029】
また、請求項3に記載の発明では、補助電動機によりコンプレッサを駆動して、エンジン吸気経路への排気ガスの送給量を増大する。
【0030】
請求項4の記載の発明では、ターボチャージャの中間軸に組み付けたロータ、及びその周囲のステータによってコンプレッサを直接駆動する。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態を、図示例とともに説明する。
【0032】
図1は本発明の過給機付内燃機関の実施の形態の第1の例を示すものであり、図中、図3と同一の符号を付した部分は同一物を表わしている。
【0033】
この過給機付内燃機関では、コンプレッサ4の吐出口に、インタクーラ17を中間部に組み込んだ吸気管18の上流端を接続し、当該吸気管18の下流端を、エンジン1の吸気マニホールド11に接続している。
【0034】
上記インタクーラ17には、液冷方式の管形熱交換器を用いている。
【0035】
更に、排気マニホールド6に、EGR管路19の上流端を接続し、当該EGR管路19の下流端を、コンプレッサ4の吸入口に連なる吸気管8に接続している。
【0036】
EGR管路19の中間部には、EGRクーラ13とEGRバルブ14が上流側から下流側ヘ向けて直列に組み込まれている。
【0037】
図1に示す過給機付内燃機関では、エンジン1を運転すると、排気ガス15の大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動した後、排気管7などを経て大気中に放出される。
【0038】
また、吸気管8からコンプレッサ4に流入して圧縮された吸気16が、吸気管18及びインタクーラ17を経て吸気マニホールド11へ送給される。
【0039】
更に、排気ガス15の一部が、排気マニホールド6からEGR管路19へ流入し、EGRクーラ13で冷却され且つEGRバルブ14で流量調整が行なわれた排気ガス15が吸気管8へ送給される。
【0040】
この排気ガス15は、吸気16としてコンプレッサ4に流入して圧縮された後、吸気管18及びインタクーラ17を経て吸気マニホールド11へ送給される。
【0041】
これにより、エンジン1のシリンダ内における酸素濃度が抑制されて燃焼温度の低下が図られ、その結果、NOxの発生が低減することになる。
【0042】
エンジン1運転中のタービン入口圧力P3は、常にコンプレッサ入口圧力P1よりも高い値を呈するので、排気ガス15及び吸気16のいずれにも逆流が発生せず、全ての運転領域でEGRの効用を得ることが可能になる。
【0043】
また、EGR管路19及びコンプレッサ4を経由した排気ガス15である吸気16が通過するインタクーラ17を管形熱交換器としているので、インタクーラ17の目詰りを防止することができる。
【0044】
図2は本発明の過給機付内燃機関の実施の形態の第2の例を示すものであり、図中、図1及び図3と同一の符号を付した部分は同一物を表わしている。
【0045】
この過給機付内燃機関では、ターボチャージャ2の中間軸5に同軸に装着したロータ20と、該ロータ20を回転方向に取り囲むように配置したステータ21とによって、コンプレッサ4を駆動可能な補助電動機を構成している。
【0046】
図2に示す過給機付き内燃機関では、エンジン1の運転時に、主にロータ20及びステータ21によりコンプレッサ4を駆動してタービン3の負荷を低減し、排気マニホールド6、EGR管路19、吸気管8からコンプレッサ4へ吸気16として流入すべき排気ガス15の送給量を増大させ、これにより、EGRの効用を高める。
【0047】
また、補助電動機がコンプレッサ4を直接駆動する構造であるので、当該補助電動機の保守点検作業を容易に行なうことができる。
【0048】
なお、本発明の過給機付内燃機関は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。
【0049】
【発明の効果】
以上述べたように、本発明の過給機付内燃機関によれば、下記のような優れた効果を奏し得る。
【0050】
(1)請求項1に記載の過給機付内燃機関では、エンジン排気経路のタービンよりも上流側の箇所から排気ガスの一部をEGR管路へ分流して、エンジン吸気経路のコンプレッサよりも上流側の箇所へ送給するので、排気ガス並びに吸気のいずれにも逆流が発生せず、よって、エンジンの全ての運転領域でEGRの効用を発揮することが可能になる。
【0051】
(2)請求項2に記載の過給機付内燃機関では、EGR管路及びコンプレッサを経由した排気ガスが通過するインタクーラに管形熱交換器を用いているので、インタクーラの目詰りを防止することができる。
【0052】
(3)請求項3に記載の過給機付内燃機関では、補助電動機でコンプレッサを駆動して、エンジン吸気経路への排気ガスの送給量を増大させるので、EGRの効用を高めることができる。
【0053】
(4)請求項4の記載の過給機付内燃機関では、ターボチャージャの中間軸に組み付けたロータとその周囲のステータによってコンプレッサを直接駆動する構造であるので、補助電動機の保守点検作業を容易に行なうことができる。
【図面の簡単な説明】
【図1】本発明の過給機付内燃機関の実施の形態の第1の例を示す概念図である。
【図2】本発明の過給機付内燃機関の実施の形態の第2の例を示す概念図である。
【図3】従来の過給機付内燃機関の一例を示す概念図である。
【符号の説明】
1 エンジン
2 ターボチャージャ
3 タービン
4 コンプレッサ
5 中間軸
6 排気マニホールド(エンジン排気経路)
8 吸気管(エンジン吸気経路)
15 排気ガス
16 吸気
17 インタクーラ
19 EGR管路
20 ロータ(補助電動機)
21 ステータ(補助電動機)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a supercharged internal combustion engine equipped with an EGR device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, exhaust gas recirculation (EGR) that supplies exhaust gas diverted from an engine exhaust path to an engine intake path to suppress combustion of fuel in a cylinder to lower a combustion temperature and reduce NOx generation An internal combustion engine with a supercharger to which Exhaust Gas Recirculation is applied has been proposed (for example, see Patent Document 1).
[0003]
This supercharged internal combustion engine includes an engine 1 and a turbocharger 2, as shown in FIG.
[0004]
The turbocharger 2 includes a turbine 3, a compressor 4, and an intermediate shaft 5 that transmits rotation of a turbine wheel to a compressor impeller.
[0005]
An inlet of the turbine 3 communicates with an exhaust manifold 6 of the engine 1, and an outlet of the turbine 3 is connected to an upstream end of an exhaust pipe 7.
[0006]
The suction port of the compressor 4 is connected to a downstream end of the intake pipe 8, and the discharge port of the compressor 4 is connected to an upstream end of an intake pipe 10 in which an intercooler 9 is incorporated in an intermediate portion.
[0007]
As the intercooler 9, an air-cooled finned heat exchanger is used.
[0008]
The downstream end of the intake pipe 10 is connected to the intake manifold 11 of the engine 1.
[0009]
Further, the upstream end of the EGR pipe 12 is connected to the exhaust manifold 6, and the downstream end of the EGR pipe 12 is connected to the intake manifold 11.
[0010]
An EGR cooler 13 and an EGR valve 14 are incorporated in series at an intermediate portion of the EGR pipe 12 from the upstream side to the downstream side.
[0011]
The EGR cooler 13 uses a liquid-cooled tubular heat exchanger.
[0012]
In the internal combustion engine with a supercharger shown in FIG. 3, when the engine 1 is operated, most of the exhaust gas 15 flows into the turbine 3 from the exhaust manifold 6 to drive the compressor 4, and then the exhaust pipe 7 and the exhaust gas purification device. (Not shown) and is released into the atmosphere.
[0013]
Further, the intake air 16 which has flowed into the compressor 4 from an air cleaner (not shown) and the intake pipe 8 and is compressed is sent to the intake manifold 11 via the intake pipe 10 and the intercooler 9.
[0014]
Further, a part of the exhaust gas 15 flows into the EGR pipe 12 from the exhaust manifold 6, and the exhaust gas 15 cooled by the EGR cooler 13 and having the flow rate adjusted by the EGR valve 14 is supplied to the intake manifold 11. You.
[0015]
As a result, the oxygen concentration in the cylinder of the engine 1 is suppressed, and the combustion temperature is reduced. As a result, the generation of NOx is reduced.
[0016]
[Patent Document 1]
JP-A-9-256915
[Problems to be solved by the invention]
In a conventional internal combustion engine with a supercharger as shown in FIG. 3, in many operating regions of the engine 1, the pressure of each part of the turbocharger 2 has the following relationship.
[0018]
(Equation 1)
P1 <P4 <P2 <P3
P1: compressor inlet pressure P2: compressor outlet pressure P3: turbine inlet pressure P4: turbine outlet pressure
However, in the operating region of the engine 1 in which the turbocharger 2 works efficiently, the pressure of each part of the turbocharger 2 has the following relationship.
[0020]
(Equation 2)
P1 <P4 <P3 <P2
[0021]
Therefore, a part of the intake air 16 to be supplied from the intake pipe 10 to the intake manifold 11 flows back to the EGR pipe 12, and a part of the exhaust gas 15 is supplied to the intake manifold 11 by the EGR pipe 12. And EGR is no longer useful.
[0022]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a supercharged internal combustion engine capable of obtaining the effect of EGR in all operation regions.
[0023]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes an engine and a turbocharger, wherein a turbine of the turbocharger is operated with exhaust gas of the engine, and intake air compressed by a compressor of the turbocharger is supplied via an intercooler. In a supercharged internal combustion engine that feeds an engine, an EGR pipe is provided from a location upstream of the turbine in the engine exhaust path to a location upstream of the compressor in the engine intake path.
[0024]
The invention according to claim 2 uses a tubular heat exchanger for the intercooler.
[0025]
The invention according to claim 3 is provided with an auxiliary motor capable of driving a compressor of a turbocharger.
[0026]
According to a fourth aspect of the invention, the rotor of the auxiliary motor is mounted on an intermediate shaft that transmits the rotation of the turbine wheel to the compressor impeller, and the stator of the auxiliary motor is arranged so as to surround the rotor in the rotation direction.
[0027]
According to the first aspect of the present invention, a part of the exhaust gas is diverted to the EGR pipe from a portion of the engine exhaust path upstream of the turbine and is supplied to a portion of the engine intake path upstream of the compressor. In addition, the backflow of the exhaust gas led to the EGR pipeline is suppressed.
[0028]
According to the second aspect of the invention, clogging of the intercooler is prevented by using an intercooler through which intake air containing exhaust gas passing through the engine exhaust path, the EGR pipeline, and the compressor passes as a tubular heat exchanger.
[0029]
According to the third aspect of the invention, the compressor is driven by the auxiliary motor to increase the amount of exhaust gas supplied to the engine intake path.
[0030]
According to the fourth aspect of the present invention, the compressor is directly driven by the rotor mounted on the intermediate shaft of the turbocharger and the stator around the rotor.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0032]
FIG. 1 shows a first example of an embodiment of a supercharged internal combustion engine according to the present invention. In the drawing, portions denoted by the same reference numerals as those in FIG. 3 represent the same components.
[0033]
In this supercharger-equipped internal combustion engine, the upstream end of an intake pipe 18 in which an intercooler 17 is incorporated in the middle is connected to the discharge port of the compressor 4, and the downstream end of the intake pipe 18 is connected to the intake manifold 11 of the engine 1. Connected.
[0034]
As the intercooler 17, a liquid-cooled tubular heat exchanger is used.
[0035]
Further, the upstream end of the EGR pipe 19 is connected to the exhaust manifold 6, and the downstream end of the EGR pipe 19 is connected to the intake pipe 8 connected to the suction port of the compressor 4.
[0036]
An EGR cooler 13 and an EGR valve 14 are incorporated in series in an intermediate portion of the EGR pipe 19 from the upstream side to the downstream side.
[0037]
In the internal combustion engine with a supercharger shown in FIG. 1, when the engine 1 is operated, most of the exhaust gas 15 flows into the turbine 3 from the exhaust manifold 6 to drive the compressor 4 and then passes through the exhaust pipe 7 and the like. Released during.
[0038]
Further, the intake air 16 flowing into the compressor 4 from the intake pipe 8 and being compressed is supplied to the intake manifold 11 via the intake pipe 18 and the intercooler 17.
[0039]
Further, a part of the exhaust gas 15 flows from the exhaust manifold 6 into the EGR pipe 19, and the exhaust gas 15 cooled by the EGR cooler 13 and the flow rate adjusted by the EGR valve 14 is supplied to the intake pipe 8. You.
[0040]
The exhaust gas 15 flows into the compressor 4 as intake air 16 and is compressed, and then is sent to the intake manifold 11 via the intake pipe 18 and the intercooler 17.
[0041]
As a result, the oxygen concentration in the cylinder of the engine 1 is suppressed, and the combustion temperature is reduced. As a result, the generation of NOx is reduced.
[0042]
Since the turbine inlet pressure P3 during the operation of the engine 1 always exhibits a higher value than the compressor inlet pressure P1, backflow does not occur in any of the exhaust gas 15 and the intake air 16, and the EGR utility is obtained in all operating regions. It becomes possible.
[0043]
Further, since the intercooler 17 through which the intake gas 16 as the exhaust gas 15 passes through the EGR pipe 19 and the compressor 4 is a tubular heat exchanger, clogging of the intercooler 17 can be prevented.
[0044]
FIG. 2 shows a second example of the embodiment of the supercharged internal combustion engine according to the present invention. In the drawing, the portions denoted by the same reference numerals as those in FIGS. 1 and 3 represent the same components. .
[0045]
In this internal combustion engine with a supercharger, an auxiliary electric motor capable of driving the compressor 4 by a rotor 20 coaxially mounted on the intermediate shaft 5 of the turbocharger 2 and a stator 21 arranged so as to surround the rotor 20 in the rotational direction. Is composed.
[0046]
In the internal combustion engine with a supercharger shown in FIG. 2, during operation of the engine 1, the compressor 4 is driven mainly by the rotor 20 and the stator 21 to reduce the load on the turbine 3, and the exhaust manifold 6, the EGR line 19, the intake air The amount of exhaust gas 15 to be supplied as intake air 16 from the pipe 8 to the compressor 4 is increased, thereby increasing the utility of EGR.
[0047]
In addition, since the auxiliary motor has a structure for directly driving the compressor 4, maintenance work of the auxiliary motor can be easily performed.
[0048]
It should be noted that the supercharged internal combustion engine of the present invention is not limited to the above-described embodiment, but may be modified without departing from the spirit of the present invention.
[0049]
【The invention's effect】
As described above, according to the internal combustion engine with a supercharger of the present invention, the following excellent effects can be obtained.
[0050]
(1) In the internal combustion engine with a supercharger according to the first aspect, a part of the exhaust gas is diverted to the EGR pipe from a portion of the engine exhaust path upstream of the turbine, and the divided exhaust gas is separated from the compressor in the engine intake path. Since the air is supplied to the upstream side, no backflow occurs in either the exhaust gas or the intake air, and thus, the EGR can be used in all operating regions of the engine.
[0051]
(2) In the internal combustion engine with a supercharger according to the second aspect, since the tubular heat exchanger is used for the intercooler through which the exhaust gas passes through the EGR pipeline and the compressor, clogging of the intercooler is prevented. be able to.
[0052]
(3) In the internal combustion engine with a supercharger according to the third aspect, the compressor is driven by the auxiliary motor to increase the amount of exhaust gas supplied to the engine intake path, so that the utility of EGR can be enhanced. .
[0053]
(4) In the internal combustion engine with a supercharger according to the fourth aspect, since the compressor is directly driven by the rotor mounted on the intermediate shaft of the turbocharger and the stator surrounding the rotor, the maintenance and inspection work of the auxiliary motor is facilitated. Can be performed.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a first example of an embodiment of a supercharged internal combustion engine of the present invention.
FIG. 2 is a conceptual diagram showing a second example of the embodiment of the supercharged internal combustion engine of the present invention.
FIG. 3 is a conceptual diagram showing an example of a conventional supercharged internal combustion engine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 2 Turbocharger 3 Turbine 4 Compressor 5 Intermediate shaft 6 Exhaust manifold (engine exhaust path)
8. Intake pipe (engine intake path)
15 Exhaust gas 16 Intake 17 Intercooler 19 EGR pipeline 20 Rotor (auxiliary motor)
21 Stator (auxiliary motor)

Claims (4)

エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気ガスで作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側の箇所からエンジン吸気経路のコンプレッサよりも上流側の箇所へ至るEGR管路を設けたことを特徴とする過給機付内燃機関。An internal combustion engine with a supercharger, comprising: an engine and a turbocharger, wherein a turbine of the turbocharger is operated by exhaust gas of the engine and intake air compressed by a compressor of the turbocharger is supplied to the engine via an intercooler. An internal combustion engine with a supercharger, wherein an EGR conduit is provided from a location upstream of the turbine to a location upstream of the compressor in the engine intake path. インタクーラが管形熱交換器である請求項1に記載の過給機付内燃機関。The supercharged internal combustion engine according to claim 1, wherein the intercooler is a tubular heat exchanger. ターボチャージャのコンプレッサを駆動可能な補助電動機を設けた請求項1あるいは請求項2のいずれかに記載の過給機付内燃機関。3. The supercharged internal combustion engine according to claim 1, further comprising an auxiliary motor capable of driving a compressor of the turbocharger. タービンホイールの回転をコンプレッサインペラに伝達する中間軸に補助電動機のロータを組み付け、該ロータを回転方向に取り囲むように補助電動機のステータを配置した請求項3に記載の過給機付内燃機関。4. The internal combustion engine with a supercharger according to claim 3, wherein a rotor of the auxiliary motor is mounted on an intermediate shaft that transmits the rotation of the turbine wheel to the compressor impeller, and a stator of the auxiliary motor is arranged so as to surround the rotor in the rotation direction.
JP2003035039A 2003-02-13 2003-02-13 Internal combustion engine with supercharger Pending JP2004245117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035039A JP2004245117A (en) 2003-02-13 2003-02-13 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035039A JP2004245117A (en) 2003-02-13 2003-02-13 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2004245117A true JP2004245117A (en) 2004-09-02

Family

ID=33020567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035039A Pending JP2004245117A (en) 2003-02-13 2003-02-13 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP2004245117A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009790A1 (en) * 2006-07-21 2008-01-24 Valeo Systemes De Controle Moteur Combustion engine with hybrid recirculation circuit
WO2008009789A1 (en) * 2006-07-21 2008-01-24 Valeo Systemes De Controle Moteur Combustion engine supply circuit with swirling of the gases and corresponding combustion engine
CN102767449A (en) * 2012-07-31 2012-11-07 上海交通大学 Cross gas intake and exhaust system
CN102808699A (en) * 2012-08-09 2012-12-05 上海交通大学 Disconnecting and connecting shifter for two gas circuits
CN102817724A (en) * 2012-08-09 2012-12-12 上海交通大学 High-low pressure level gas circuit series system
CN103291503A (en) * 2013-05-24 2013-09-11 上海交通大学 Rotary exhaust gas flow rate regulating system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009790A1 (en) * 2006-07-21 2008-01-24 Valeo Systemes De Controle Moteur Combustion engine with hybrid recirculation circuit
WO2008009789A1 (en) * 2006-07-21 2008-01-24 Valeo Systemes De Controle Moteur Combustion engine supply circuit with swirling of the gases and corresponding combustion engine
FR2904056A1 (en) * 2006-07-21 2008-01-25 Valeo Sys Controle Moteur Sas THERMAL MOTOR WITH MIXED RECIRCULATION CIRCUIT
FR2904057A1 (en) * 2006-07-21 2008-01-25 Valeo Sys Controle Moteur Sas HEATER SUPPLY CIRCUIT FOR A THERMAL MOTOR WITH ROTATION OF GASES AND THERMAL MOTOR CORRESPONDING THERMAL MOTOR
CN102767449A (en) * 2012-07-31 2012-11-07 上海交通大学 Cross gas intake and exhaust system
CN102808699A (en) * 2012-08-09 2012-12-05 上海交通大学 Disconnecting and connecting shifter for two gas circuits
CN102817724A (en) * 2012-08-09 2012-12-12 上海交通大学 High-low pressure level gas circuit series system
CN103291503A (en) * 2013-05-24 2013-09-11 上海交通大学 Rotary exhaust gas flow rate regulating system

Similar Documents

Publication Publication Date Title
JP2007154675A (en) Internal combustion engine
JP2009024692A (en) Exhaust gas recirculation device of internal combustion engine
JP2011038525A (en) Hybrid intake system for superatmospheric charging of engine intake manifold using low-pressure egr/fresh air blending
JP2012107551A (en) Low-pressure-loop egr device
JP2009270508A (en) Internal combustion engine with intercooler
JP2011033033A (en) System using supplemental compressor for egr
JP2013108479A (en) Diesel engine
JP2005299615A (en) Egr system for turbocharged engine
JP5313981B2 (en) Exhaust gas turbocharger structure, drive system equipped with the exhaust gas turbocharger structure, and setting method of the drive system
JP2007077900A (en) Two-stage supercharging system
JP4511845B2 (en) Internal combustion engine with a supercharger
JP2008309125A (en) Exhaust gas recirculation system for internal combustion engine
JP2004245117A (en) Internal combustion engine with supercharger
JP2007127070A (en) Internal combustion engine with supercharger
JP2007071179A (en) Two stage supercharging system
JP2007224801A (en) Exhaust recirculating device of engine
JP2012197716A (en) Exhaust loss recovery device
JP2007224802A (en) Exhaust recirculating device of turbo-compound engine
JP4616707B2 (en) Exhaust gas recirculation structure for turbocharged engines
JP2005054620A (en) Internal combustion engine with supercharger
JP2011007051A (en) Diesel engine
JP2007077899A (en) Two-stage supercharging system
JP2005090349A (en) Internal combustion engine with supercharger
JP2005054710A (en) Exhaust gas recirculation device for turbo compound engine
JP2005188359A (en) Internal combustion engine with supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023