JPH06139848A - Manufacture of oxide high-temperature superconducting wire rod - Google Patents

Manufacture of oxide high-temperature superconducting wire rod

Info

Publication number
JPH06139848A
JPH06139848A JP4288735A JP28873592A JPH06139848A JP H06139848 A JPH06139848 A JP H06139848A JP 4288735 A JP4288735 A JP 4288735A JP 28873592 A JP28873592 A JP 28873592A JP H06139848 A JPH06139848 A JP H06139848A
Authority
JP
Japan
Prior art keywords
wire
silver
alloy
wire rod
silver alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4288735A
Other languages
Japanese (ja)
Other versions
JP3369225B2 (en
Inventor
Takeshi Hikata
威 日方
Kenichi Sato
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Research Development Corp of Japan
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Sumitomo Electric Industries Ltd filed Critical Research Development Corp of Japan
Priority to JP28873592A priority Critical patent/JP3369225B2/en
Publication of JPH06139848A publication Critical patent/JPH06139848A/en
Application granted granted Critical
Publication of JP3369225B2 publication Critical patent/JP3369225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture an oxide high-temperature superconducting wire having the rigidity suitable for bending in forming a coil. CONSTITUTION:A wire closely stuck with an oxide high-temperature superconductor to a stabilizer 1 made of silver or silver alloy is formed, then a layer 3 made of Cu is formed on the surface of the stabilizer 1. Cu is reacted with the stabilizer 1 by a heat treatment, and Ag-Cu alloy is formed at the portion 4 of the surface of the wire. The wire formed with the alloy is oxidized to form an oxide film 5 on the surface as an insulating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物高温超電導線材
の製造方法に関し、特に、ケーブルやマグネット等への
使用に適した長尺の酸化物高温超電導線材を製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide high temperature superconducting wire, and more particularly to a method for producing a long oxide high temperature superconducting wire suitable for use in cables, magnets and the like.

【0002】[0002]

【従来の技術】液体窒素温度(77.3K)よりも高い
臨界温度(Tc)を示すY系(Tc:90K)、Bi系
(Tc:108K)、Tl系(Tc:125K)酸化物
高温超電導材料の発見により、そのエネルギ分野および
エレクトロニクス分野への応用が期待されるようになっ
た。この中で、エネルギ分野への応用を目指した酸化物
高温超電導体の線材化は、この材料の発見当初から精力
的に進められてきた。
2. Description of the Related Art Y-based (Tc: 90K), Bi-based (Tc: 108K), Tl-based (Tc: 125K) oxide high temperature superconductivity exhibiting a critical temperature (Tc) higher than liquid nitrogen temperature (77.3K). The discovery of materials has led to expectations for their application in the energy and electronics fields. Among them, making oxide high-temperature superconductors into wires for application to the energy field has been vigorously promoted since the discovery of this material.

【0003】この線材化について、種々の方法が検討さ
れてきているが、その1つには、酸化物高温超電導体を
金属で被覆し、線材化する方法がある。この方法では、
たとえば、酸化物高温超電導体を銀シース内に充填した
ものについて、伸線および圧延等の塑性加工を施した
後、焼結処理して線材が得られる。このプロセスでは、
塑性加工と焼結処理の組合せにより、銀被覆内の超電導
体に高い配向性を持たせ、高い臨界電流値を実現させる
ようになったきた。
Various methods have been studied for forming the wire rod, and one of them is a method of coating the high temperature oxide superconductor with a metal to form the wire rod. in this way,
For example, a wire in which a high-temperature oxide superconductor is filled in a silver sheath is subjected to plastic processing such as wire drawing and rolling, and then subjected to a sintering treatment to obtain a wire. In this process,
The combination of plastic working and sintering has made the superconductor in the silver coating highly oriented and has realized a high critical current value.

【0004】また、線材化に関する他の方法として、酸
化物高温超電導体の原料をペースト状にし、これを金属
シート上に塗布した状態で熱処理を施すことにより、長
尺の金属シート上に酸化物高温超電導体が形成された線
材を得る方法を挙げることができる。
As another method for forming a wire, a raw material for an oxide high-temperature superconductor is made into a paste, and the paste is applied on a metal sheet and heat-treated to form an oxide on a long metal sheet. There can be mentioned a method for obtaining a wire rod on which a high temperature superconductor is formed.

【0005】[0005]

【発明が解決しようとする課題】上記方法により形成さ
れる線材をケーブルやマグネットに応用しようとする場
合、その通電方向に沿って均一に高い臨界電流密度が保
持されるよう、加工が施されなければならない。
When the wire formed by the above method is to be applied to a cable or a magnet, it must be processed so that a high critical current density can be uniformly maintained along the current-carrying direction. I have to.

【0006】しかしながら、銀の被覆や銀シートは柔ら
かいため、線材に対する加工、特に曲げ加工を施すに際
し、曲げ過ぎ等によって超電導部を損傷させ、臨界電流
密度を低下させてしまうことがしばしばあった。このよ
うに、酸化物高温超電導体が銀で被覆された線材や、超
電導体が銀シート上に形成された線材は、加工に際して
取扱いにくく、加工時に臨界電流密度を低下させやすい
という問題があった。
However, since the silver coating and the silver sheet are soft, the superconducting portion is often damaged due to overbending or the like during the processing of the wire, especially the bending work, and the critical current density is often lowered. As described above, the wire material in which the oxide high-temperature superconductor is coated with silver and the wire material in which the superconductor is formed on the silver sheet are difficult to handle during processing, and there is a problem that the critical current density is likely to decrease during processing. .

【0007】本発明の目的は、上述した酸化物高温超電
導線材の製造方法を改良することによって、加工、特に
曲げ加工に適した物理的特性を備える高Jcの酸化物高
温超電導線材を製造できる方法を提供することにある。
An object of the present invention is to improve the method for producing an oxide high temperature superconducting wire as described above, thereby producing a high Jc oxide high temperature superconducting wire having physical properties suitable for working, particularly bending. To provide.

【0008】[0008]

【課題を解決するための手段】本発明に従う酸化物高温
超電導線材の製造方法は、銀または銀合金からなる安定
化材に酸化物高温超電導体が密着してなる線材を形成す
る工程と、次いで、安定化材の外表面に、銀と異なる金
属からなる層を形成する工程と、熱処理を行ない、上記
金属と安定化材とを反応させることによって安定化材よ
りも剛性の高い銀合金を線材の長手方向に沿って形成す
る工程とを備える。
A method of manufacturing an oxide high temperature superconducting wire according to the present invention comprises a step of forming a wire in which an oxide high temperature superconductor is closely adhered to a stabilizing material made of silver or a silver alloy, and , A step of forming a layer made of a metal different from silver on the outer surface of the stabilizing material and a heat treatment to react the above metal with the stabilizing material to form a silver alloy having a rigidity higher than that of the stabilizing material. Forming along the longitudinal direction of.

【0009】本発明では、まず、銀または銀合金からな
る安定化材に酸化物高温超電導体が密着してなる線材を
形成する。この工程は、常法に従って行なうことができ
る。
In the present invention, first, a wire is formed by closely adhering a high-temperature oxide superconductor to a stabilizer made of silver or a silver alloy. This step can be performed according to a conventional method.

【0010】たとえば、酸化物高温超電導体が銀または
銀合金からなる安定化材で被覆された線材、特にテープ
状線材を形成する場合、銀または銀合金からなるシース
内に、酸化物高温超電導体の粉末またはその原料粉末を
充填した後、塑性加工および熱処理を施して線材を形成
することができる。
For example, in the case of forming a wire, particularly a tape-shaped wire, in which an oxide high-temperature superconductor is coated with a stabilizer made of silver or a silver alloy, a high-temperature oxide superconductor is placed in a sheath made of silver or a silver alloy. After being filled with the powder or the raw material powder thereof, plastic working and heat treatment can be performed to form a wire.

【0011】一方、銀または銀合金からなるシート上に
酸化物高温超電導体が形成された線材を得たい場合、酸
化物高温超電導体の粉末または原料粉末をペースト状に
して長尺のシート上に塗布した後、熱処理を施すことに
よって線材を形成することができる。
On the other hand, when it is desired to obtain a wire having an oxide high-temperature superconductor formed on a sheet made of silver or a silver alloy, the oxide high-temperature superconductor powder or the raw material powder is made into a paste and placed on a long sheet. After applying, a wire can be formed by applying heat treatment.

【0012】このような線材の製造工程において、酸化
物高温超電導体には、たとえば、Bi−Sr−Ca−C
u−O系および(Bi,Pb)−Sr−Ca−Cu−O
系等のいわゆるビスマス系、Y−Ba−Cu−O系等の
いわゆるイットリウム系、ならびにTl−Ca−Ba−
Cu−O系および(Tl,Pb)−Ca−Ba−Cu−
O系等のいわゆるタリウム系等の酸化物高温超電導体を
使用することができる。特に、ビスマス系酸化物高温超
電導体は、臨界温度が高い点、高い臨界電流密度が得ら
れやすい点、および毒性の低い点等で好ましい。
In the manufacturing process of such a wire rod, the oxide high temperature superconductor is made of, for example, Bi-Sr-Ca-C.
u-O system and (Bi, Pb) -Sr-Ca-Cu-O
So-called bismuth-based materials, Y-Ba-Cu-O-based yttrium-based materials, and Tl-Ca-Ba-
Cu-O system and (Tl, Pb) -Ca-Ba-Cu-
Oxide-based so-called thallium-based oxide high-temperature superconductors can be used. In particular, the bismuth oxide high temperature superconductor is preferable in that the critical temperature is high, a high critical current density is easily obtained, and the toxicity is low.

【0013】本発明では、上述したように常法に従って
線材を形成した後、安定化材の外表面に銀と異なる金属
からなる層を形成する。この金属層は、たとえば、蒸
着、メッキ、金属ペーストの塗布等の方法によって形成
することができる。
In the present invention, after the wire is formed by the conventional method as described above, a layer made of a metal different from silver is formed on the outer surface of the stabilizing material. This metal layer can be formed by a method such as vapor deposition, plating, application of a metal paste, or the like.

【0014】この金属層形成工程において、銀と異なる
金属には、たとえば、CuまたはPd等を好ましく用い
ることができる。形成される金属層の厚みは、安定化材
の厚みおよび次工程で形成したい銀合金の厚み等を考慮
して適宜設定することができる。
In the metal layer forming step, for example, Cu or Pd can be preferably used as the metal different from silver. The thickness of the metal layer formed can be appropriately set in consideration of the thickness of the stabilizer and the thickness of the silver alloy to be formed in the next step.

【0015】本発明において安定化材の該表面に金属層
を形成した後、熱処理によって金属と安定化材とを反応
させて安定化材よりも剛性の高い銀合金を形成させる。
In the present invention, after the metal layer is formed on the surface of the stabilizing material, the metal and the stabilizing material are reacted by heat treatment to form a silver alloy having higher rigidity than the stabilizing material.

【0016】この銀合金を形成させるため、たとえばA
g−Cu合金を形成する場合、200℃〜800℃の温
度で、Ag−Pd合金を形成する場合、300℃〜85
0℃の温度で熱処理を行なうことが好ましい。また、銀
合金の形成は、窒素等の不活性ガス雰囲気下で行なうこ
とが好ましい。
To form this silver alloy, for example, A
When forming a g-Cu alloy, the temperature is 200 ° C to 800 ° C, and when forming an Ag-Pd alloy, 300 ° C to 85 ° C.
It is preferable to perform the heat treatment at a temperature of 0 ° C. The silver alloy is preferably formed under an atmosphere of an inert gas such as nitrogen.

【0017】この銀合金は、金属層と安定化材とが反応
して形成されるため、銀合金の形成される領域の範囲
は、反応条件や前の工程で形成される金属層の厚み等に
よって変えることができる。したがって、線材の表面か
ら超電導体に至る間の任意の深さまで剛性の高い銀合金
を形成することができる。
Since this silver alloy is formed by the reaction between the metal layer and the stabilizer, the range of the region where the silver alloy is formed depends on the reaction conditions and the thickness of the metal layer formed in the previous step. Can be changed by Therefore, it is possible to form a highly rigid silver alloy up to an arbitrary depth between the surface of the wire and the superconductor.

【0018】なお、金属層を形成する工程と銀合金を形
成する工程とは、1本の線材について金属層形成工程が
完全に終了した後、銀合金形成工程を行なうこともでき
るし、1本の線材を金属層形成工程と銀合金形成工程に
順次送り出していき、1本の線材について金属層を形成
しながら銀合金を形成することもできる。
In the step of forming the metal layer and the step of forming the silver alloy, the silver alloy forming step may be carried out after the metal layer forming step is completely completed for one wire, or one wire may be formed. It is also possible to sequentially send the wire material of (1) to the metal layer forming step and the silver alloy forming step and form the silver alloy while forming the metal layer for one wire material.

【0019】また、本発明に従う製造方法において、銀
合金を形成した後、線材を酸素を含む雰囲気中で加熱し
て線材の表面に酸化被膜を形成することができる。酸化
被膜を形成するための温度は、たとえば100℃〜80
0℃とすることができる。この工程により、酸化被膜に
よる絶縁被覆を線材に施すことができる。
Further, in the manufacturing method according to the present invention, after forming the silver alloy, the wire can be heated in an atmosphere containing oxygen to form an oxide film on the surface of the wire. The temperature for forming the oxide film is, for example, 100 ° C. to 80 ° C.
It can be 0 ° C. By this step, the insulating coating of the oxide film can be applied to the wire.

【0020】[0020]

【発明の作用効果】本発明に従って、銀または銀合金か
らなる安定化材に超電導体が密着してなる線材を先に作
製した後、安定化材の表面に金属層を形成して反応によ
り剛性の高い銀合金を形成すれば、超電導体との反応に
より超電導相を劣化させるおそれのある元素でも合金化
のために用いることができ、より広範囲の金属元素を用
いて安定化材より剛性の高い銀合金を線材に形成するこ
とができる。
According to the present invention, a wire comprising a superconductor in close contact with a stabilizing material made of silver or a silver alloy is first prepared, and then a metal layer is formed on the surface of the stabilizing material to make the material rigid by reaction. If a high-alloy silver alloy is formed, even elements that may deteriorate the superconducting phase due to reaction with the superconductor can be used for alloying, and a wider range of metal elements can be used to provide higher rigidity than the stabilizer. The silver alloy can be formed into a wire.

【0021】このように、本発明に従ってまず線材を形
成した後に線材の外表面から剛性の高い銀合金を形成し
ていけば、予め形成された線材の超電導相を劣化させる
ことなく、剛性の高められた銀合金からなる部分を線材
の長手方向に沿って形成することができる。このような
銀合金からなる部分は、超電導線材の外力に対する変形
抵抗(剛性)を高める。
As described above, according to the present invention, when the wire rod is first formed and then the highly rigid silver alloy is formed from the outer surface of the wire rod, the rigidity is improved without deteriorating the superconducting phase of the wire rod formed in advance. The part made of the silver alloy can be formed along the longitudinal direction of the wire. The portion made of such a silver alloy enhances the deformation resistance (rigidity) of the superconducting wire rod against an external force.

【0022】したがって、本発明によれば、加工時に、
特に曲げ加工時の取扱いがより容易になり、曲げ過ぎ等
が起こりにくい超電導線材を超電導相の劣化を起こすこ
となく製造することができる。
Therefore, according to the present invention, during processing,
In particular, handling at the time of bending becomes easier, and a superconducting wire that is less likely to be overbent can be manufactured without causing deterioration of the superconducting phase.

【0023】以上説明したように、本発明に従って製造
される超電導線材は、特に、ケーブルやマグネットに応
用するに際して、加工による臨界電流密度の低下が効果
的に抑えられるため、非常に有用である。
As described above, the superconducting wire manufactured according to the present invention is very useful, especially when applied to a cable or a magnet, since the reduction of the critical current density due to processing can be effectively suppressed.

【0024】さらに、本発明に従って線材の表面に酸化
被膜を形成すれば、この酸化被膜は高い誘電率を有する
ため、これを絶縁被覆とすることができる。
Furthermore, when an oxide film is formed on the surface of the wire according to the present invention, this oxide film has a high dielectric constant, and therefore can be used as an insulating coating.

【0025】従来、絶縁被覆されていない酸化物高温超
電導線材をコイル状またはスパイラル状に加工する場
合、加工された線材の隣接する部分同士が接触しないよ
う別途準備した絶縁テープを隣接する部分の間に挟んで
加工を行なう必要があった。
Conventionally, when an oxide high-temperature superconducting wire which is not insulation-coated is processed into a coil or a spiral, an insulating tape separately prepared so that adjacent parts of the processed wire do not come into contact with each other is provided between the adjacent parts. It had to be sandwiched between and processed.

【0026】一方、本発明により酸化被膜が設けられた
線材をコイル状またはスパイラル状に加工する場合、絶
縁テープ等を用いなくとも、そのまま巻き加工を行なっ
て隣接する部分同士を電気的に絶縁することができる。
このように絶縁被覆として酸化被膜が形成された線材
を、超電導コイル等の製造に用いれば、別途絶縁材を準
備する必要もなく、コイル製造の作業性はより向上され
る。
On the other hand, when the wire material provided with the oxide film according to the present invention is processed into a coil shape or a spiral shape, winding is performed as it is to electrically insulate adjacent portions without using an insulating tape or the like. be able to.
When the wire material having the oxide film formed as the insulating coating is used for manufacturing a superconducting coil or the like, it is not necessary to separately prepare an insulating material, and workability of coil manufacturing is further improved.

【0027】[0027]

【実施例】【Example】

実施例1 Bi2 3 、PbO、SrCO3 、CuOを用いてB
i:Pb:Sr:Ca:Cu=1.8:0.4:2:
2.2:3の組成比の粉末を準備した。
Example 1 Using Bi 2 O 3 , PbO, SrCO 3 and CuO, B
i: Pb: Sr: Ca: Cu = 1.8: 0.4: 2:
A powder having a composition ratio of 2.2: 3 was prepared.

【0028】この粉末を800℃で8時間熱処理した
後、得られた焼結体を粉末状にするため、自動乳鉢を用
いて2時間粉砕を行なった。次に、粉砕して得られた粉
末を860℃で8時間熱処理した後、再び自動乳鉢を用
いて焼結物を同様に粉砕した。
The powder was heat-treated at 800 ° C. for 8 hours, and then, the obtained sintered body was pulverized for 2 hours using an automatic mortar in order to make it into a powder form. Next, the powder obtained by crushing was heat-treated at 860 ° C. for 8 hours, and then the sinter was similarly crushed using an automatic mortar.

【0029】粉砕して得られた粉末を外径6mm、内径
4.5mmの銀パイプに充填した後、粉末を充填した銀
パイプについて伸線加工を施し、1mmφの線材を得
た。
The powder obtained by crushing was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4.5 mm, and then the powder-filled silver pipe was subjected to wire drawing to obtain a wire rod of 1 mmφ.

【0030】次に、得られた線材を61本、外径10m
m、内径8mmの銀パイプに束ねて挿入し、さらに伸線
および圧延加工を実施した。伸線加工は、線材の外径が
1mmφとなるまで行ない、その後の圧延加工は、線材
の厚さが0.25mmとなるまで行なった。
Next, 61 wire rods having an outer diameter of 10 m were obtained.
m, the bundle was inserted into a silver pipe having an inner diameter of 8 mm, and wire drawing and rolling were further performed. The wire drawing process was performed until the outer diameter of the wire rod reached 1 mmφ, and the subsequent rolling process was performed until the thickness of the wire rod reached 0.25 mm.

【0031】次に、得られた線材について、845℃、
50時間、大気中において熱処理を施した後、徐冷を行
なった。その後、得られた線材についてさらに0.20
mmの厚さまで圧延加工を施した後、840℃、50時
間熱処理を行なった。
Next, with respect to the obtained wire,
After heat treatment in the atmosphere for 50 hours, slow cooling was performed. After that, the obtained wire rod is further 0.20.
After rolling to a thickness of mm, heat treatment was performed at 840 ° C. for 50 hours.

【0032】次に、得られた線材の表面にCuを10μ
mの厚さで蒸着した。Cuを蒸着した線材の断面を図1
(a)に示す。図に示すように、銀からなる安定化材1
中に超電導層2が分散された線材の外表面には、Cu層
3が形成されている。
Next, 10 μm of Cu is applied to the surface of the obtained wire.
It was deposited to a thickness of m. Figure 1 shows a cross section of a wire rod with Cu vapor deposition.
It shows in (a). As shown in the figure, stabilizer 1 made of silver
A Cu layer 3 is formed on the outer surface of the wire in which the superconducting layer 2 is dispersed.

【0033】次に、Cuを蒸着した線材を窒素雰囲気中
で、700℃で熱処理した。この処理により、線材の表
面よりAg−Cu合金が形成された。このような合金が
形成された状態を、図1(b)に模式的に示す。図に示
すように、線材の表面から超電導層2に至るまでに、C
uとAgとの反応により、少なくとも斜線で示される部
分4には、Ag−Cu合金が形成されている。
Then, the Cu-deposited wire was heat-treated at 700 ° C. in a nitrogen atmosphere. By this treatment, an Ag-Cu alloy was formed on the surface of the wire. A state in which such an alloy is formed is schematically shown in FIG. As shown in the figure, from the surface of the wire to the superconducting layer 2, C
Due to the reaction between u and Ag, an Ag—Cu alloy is formed at least in the shaded portion 4.

【0034】このような合金を形成した結果、線材の剛
性に関し、破断応力で従来の合金を形成しないものが1
0kg/mm2 であったのに対し、上述したように銀合
金を形成した線材は20kg/mm2 であった。このよ
うに線材の表面から銀合金を形成することによって、線
材の剛性を高めることができた。
As a result of forming such an alloy, with respect to the rigidity of the wire rod, one that does not form a conventional alloy due to breaking stress is 1
While it was 0 kg / mm 2 , the wire material on which the silver alloy was formed as described above was 20 kg / mm 2 . By thus forming the silver alloy on the surface of the wire, the rigidity of the wire could be increased.

【0035】次に、銀合金を形成した線材について、大
気中で500℃で熱処理を施した。その結果、図1
(c)に示すように、線材の表面に酸化膜5が形成され
た。
Next, the wire formed with the silver alloy was heat-treated at 500 ° C. in the atmosphere. As a result,
As shown in (c), the oxide film 5 was formed on the surface of the wire.

【0036】以上の工程により得られた線材を、超電導
コイルの製造に供した。コイル製造にあたり、線材同士
を絶縁する絶縁テープを用いる必要はなく、得られた線
材をそのままパンケーキ状にコイリングすることによっ
て、超電導コイルを形成することができた。このよう
に、コイルの形成において絶縁テープと共巻きする作業
がなくなるとともに、従来のコイルで存在していた絶縁
テープの厚み(通常0.1mm厚の絶縁テープを用いて
いた)がなくなったため、コイルにおける超電導線材の
比率が大幅に向上した。
The wire rod obtained by the above steps was used for manufacturing a superconducting coil. In manufacturing the coil, it is not necessary to use an insulating tape that insulates the wire materials from each other, and the superconducting coil can be formed by directly coiling the obtained wire material into a pancake shape. In this way, the work of winding the insulating tape together with the insulating tape is eliminated in the formation of the coil, and the thickness of the insulating tape existing in the conventional coil (usually, the insulating tape having a thickness of 0.1 mm) is eliminated. The ratio of superconducting wire rods in was greatly improved.

【0037】実施例1においては、従来法に従って合金
層を設けずにコイルを形成した場合、臨界電流密度は1
0,000A/cm2 であったのに対し、本発明に従っ
て銀合金を形成した線材についてコイルを形成した場
合、臨界電流密度は15,500A/cm2 であった。
その結果、コイルに発生する磁場を約1.5倍に増加さ
せることができた。 実施例2 Bi2 3 、PbO、SrCO3 、CuOを用いてB
i:Pb:Sr:Ca:Cu=1.8:0.4:2:
2.2:3の組成比の粉末を準備した。
In Example 1, when the coil was formed according to the conventional method without providing the alloy layer, the critical current density was 1
While it was 10,000 A / cm 2 , the critical current density was 15,500 A / cm 2 when the coil was formed for the wire formed with the silver alloy according to the present invention.
As a result, the magnetic field generated in the coil could be increased about 1.5 times. Example 2 Using Bi 2 O 3 , PbO, SrCO 3 and CuO, B
i: Pb: Sr: Ca: Cu = 1.8: 0.4: 2:
A powder having a composition ratio of 2.2: 3 was prepared.

【0038】この粉末を800℃で8時間熱処理した
後、得られた焼結体を粉末状にするため、自動乳鉢を用
いて2時間粉砕を行なった。次に、粉砕して得られた粉
末を860℃で8時間熱処理した後、再び自動乳鉢を用
いて焼結物を同様に粉砕した。
This powder was heat-treated at 800 ° C. for 8 hours, and then, the obtained sintered body was pulverized for 2 hours using an automatic mortar in order to make it a powder. Next, the powder obtained by crushing was heat-treated at 860 ° C. for 8 hours, and then the sinter was similarly crushed using an automatic mortar.

【0039】得られた微粉末を、外径6mm、内径4m
mの銀パイプに充填した後、粉末を充填した銀パイプに
ついて伸線加工を施し、1mmφの線材を得た。
The fine powder thus obtained was treated with an outer diameter of 6 mm and an inner diameter of 4 m.
After filling the silver pipe of m, the silver pipe filled with the powder was subjected to wire drawing to obtain a wire rod of 1 mmφ.

【0040】次に、得られた線材を61本束ねて外径1
2mm、内径8mmの銀パイプに挿入し、さらに、伸線
および圧延加工を実施した。伸線加工は、線材の外径が
1mmφとなるまで行ない、その後の圧延加工は線材の
厚さが0.25mmとなるまで実施した。
Next, 61 pieces of the obtained wire rods are bundled to have an outer diameter of 1
It was inserted into a silver pipe having a diameter of 2 mm and an inner diameter of 8 mm, and was further subjected to wire drawing and rolling. The wire drawing process was performed until the outer diameter of the wire rod reached 1 mmφ, and the subsequent rolling process was performed until the thickness of the wire rod reached 0.25 mm.

【0041】次に、得られた線材を845℃、50時間
大気中において加熱処理した後、徐冷した。その後、線
材の厚みが0.20mmとなるまでさらに圧延加工を実
施した後、840℃で50時間熱処理を行なった。
Next, the obtained wire was heat-treated in the atmosphere at 845 ° C. for 50 hours and then gradually cooled. After that, rolling was further performed until the thickness of the wire rod became 0.20 mm, and then heat treatment was performed at 840 ° C. for 50 hours.

【0042】次に、得られた線材の表面にパラジウム
(Pd)を5μmの厚さで蒸着した。その後、線材を窒
素雰囲気中で700℃において熱処理し、線材の表面よ
りAg−Pd合金を形成した。
Next, palladium (Pd) having a thickness of 5 μm was vapor-deposited on the surface of the obtained wire. Then, the wire was heat-treated at 700 ° C. in a nitrogen atmosphere to form an Ag—Pd alloy on the surface of the wire.

【0043】このような合金を形成した結果、線材の剛
性に関して、破断応力で、従来法により合金を形成して
いないものは10kg/mm2 であったのに対し、本発
明に従って合金を形成した線材は25kg/mm2 であ
った。
As a result of forming such an alloy, regarding the rigidity of the wire rod, the breaking stress was 10 kg / mm 2 which was not formed by the conventional method, whereas the alloy was formed according to the present invention. The wire rod had a weight of 25 kg / mm 2 .

【0044】得られた線材を用いてコイルを形成した結
果、曲げ加工における操作性が向上し、20,000A
/cm2 の臨界電流密度を得ることができた。一方、従
来法に従って銀合金を形成していない線材を用いてコイ
ルを形成した結果、臨界電流密度は10,000A/c
2 であった。このように、本発明に従って銀合金を形
成して線材の剛性を高めることにより、より高い臨界電
流密度を示すコイルを形成することができ、コイルに発
生する磁場を2倍に増加させることができた。
As a result of forming a coil using the obtained wire rod, the operability in bending is improved, and 20,000 A is obtained.
A critical current density of / cm 2 could be obtained. On the other hand, as a result of forming a coil using a wire material not forming a silver alloy according to the conventional method, the critical current density is 10,000 A / c.
It was m 2 . As described above, by forming the silver alloy according to the present invention to increase the rigidity of the wire, a coil having a higher critical current density can be formed, and the magnetic field generated in the coil can be doubled. It was

【0045】また、EPMAで線材の断面を観察した結
果、シース部分から超電導体部へのPdの拡散は観察さ
れなかった。 実施例3 Bi2 3 、PbO、SrCO3 、CuOを用いてB
i:Pb:Sr:Ca:Cu=1.8:0.4:2:
2.2:3の組成比の粉末を準備した。
As a result of observing the cross section of the wire with EPMA, diffusion of Pd from the sheath portion to the superconductor portion was not observed. Example 3 Using Bi 2 O 3 , PbO, SrCO 3 and CuO, B
i: Pb: Sr: Ca: Cu = 1.8: 0.4: 2:
A powder having a composition ratio of 2.2: 3 was prepared.

【0046】この粉末を800℃で8時間熱処理した
後、得られた焼結体を粉末状にするため自動乳鉢を用い
て2時間粉砕を行なった。次に、粉砕して得られた粉末
を860℃で8時間熱処理した後、再び自動乳鉢を用い
て焼結物を同様に粉砕した。
After heat-treating this powder at 800 ° C. for 8 hours, the obtained sintered body was pulverized for 2 hours by using an automatic mortar to make it into a powder form. Next, the powder obtained by crushing was heat-treated at 860 ° C. for 8 hours, and then the sinter was similarly crushed using an automatic mortar.

【0047】得られた微粉末を、外径6mm、内径4m
mの銀パイプに充填し、粉末が充填された銀パイプにつ
いて伸線および圧延加工を施した。伸線加工は線材の外
径が1mmφまで行ない、その後の圧延加工は線材の厚
さが約0.18mmとなるまで行なった。
The obtained fine powder was used, with an outer diameter of 6 mm and an inner diameter of 4 m.
m silver pipe, and the powder-filled silver pipe was subjected to wire drawing and rolling. The wire drawing process was performed until the outer diameter of the wire rod was 1 mmφ, and the subsequent rolling process was performed until the thickness of the wire rod became about 0.18 mm.

【0048】次に、得られた線材を845℃、50時
間、大気中において熱処理した後、徐冷した。その後、
さらに線材の厚みが0.15mmとなるまで圧延加工を
施した後、840℃、50時間熱処理を行なった。
Next, the obtained wire was heat-treated in the air at 845 ° C. for 50 hours and then gradually cooled. afterwards,
Further, the wire rod was rolled to a thickness of 0.15 mm, and then heat treated at 840 ° C. for 50 hours.

【0049】次に、得られた線材の表面にCuペースト
を50μmの厚さで塗布した。その後、Cuペーストが
塗布された線材を窒素雰囲気中において500℃で熱処
理し、線材の表面よりAg−Cu合金を形成していっ
た。
Next, a Cu paste was applied to the surface of the obtained wire rod in a thickness of 50 μm. Then, the wire material coated with the Cu paste was heat-treated at 500 ° C. in a nitrogen atmosphere to form an Ag—Cu alloy from the surface of the wire material.

【0050】Ag−Cu合金を形成した線材について、
その剛性は、破断応力で30kg/mm2 であった。一
方、従来法による合金を形成させなかった線材につい
て、剛性は、破断応力で10kg/mm2 であった。
Regarding the wire formed with Ag-Cu alloy,
Its rigidity was 30 kg / mm 2 in terms of breaking stress. On the other hand, with respect to the wire rod on which the alloy by the conventional method was not formed, the rigidity was 10 kg / mm 2 in terms of breaking stress.

【0051】次に、得られた線材を大気中で300℃に
おいて熱処理することにより、表面に酸化膜を形成し
た。その結果、線材の表面に電気絶縁被膜を形成するこ
とができた。この絶縁被膜が形成された線材を用いれ
ば、コイルの形成において絶縁テープと共巻きする必要
もなく、そのままコイリングを行なうことによって超電
導コイルを製造することができた。また、得られたコイ
ルは、従来のような絶縁テープの部分がなくなったた
め、コイルにおける線材の比率は従来に比べて大幅に向
上した。
Next, the obtained wire was heat-treated in the air at 300 ° C. to form an oxide film on the surface. As a result, an electrically insulating coating could be formed on the surface of the wire. By using the wire having the insulating coating, it was not necessary to wind the wire together with the insulating tape in forming the coil, and it was possible to manufacture the superconducting coil by performing coiling as it was. Moreover, since the obtained coil does not have the insulating tape portion as in the conventional case, the ratio of the wire material in the coil is significantly improved as compared with the conventional case.

【0052】さらに、コイリングによる作業性の向上に
よって、得られたコイルの臨界電流密度も従来法による
コイルでは9,000A/cm2 であったのに対し、1
7,500A/cm2 に向上させることができた。その
結果、コイルに発生する磁場を約2倍に増加させること
ができた。 実施例4 Bi2 3 、PbO、SrCO3 、CuOを用いてB
i:Pb:Sr:Ca:Cu=1.8:0.4:2:
2.2:3の組成比の粉末を準備した。
Further, due to the improvement of workability by coiling, the critical current density of the obtained coil was 9,000 A / cm 2 as compared with the conventional coil, which was 1
It could be improved to 7,500 A / cm 2 . As a result, the magnetic field generated in the coil could be increased about twice. Example 4 B using Bi 2 O 3 , PbO, SrCO 3 and CuO
i: Pb: Sr: Ca: Cu = 1.8: 0.4: 2:
A powder having a composition ratio of 2.2: 3 was prepared.

【0053】この粉末を、800℃で8時間熱処理した
後、得られた焼結体を粉末状にするため自動乳鉢を用い
て2時間粉砕を行なった。次に、粉砕して得られた粉末
を860℃で8時間熱処理した後、再び自動乳鉢を用い
て焼結物を同様に粉砕した。
This powder was heat-treated at 800 ° C. for 8 hours, and then pulverized for 2 hours using an automatic mortar to make the obtained sintered body into a powder. Next, the powder obtained by crushing was heat-treated at 860 ° C. for 8 hours, and then the sinter was similarly crushed using an automatic mortar.

【0054】次に、得られた微粉末を、外径6mm、内
径4mmの銀パイプに充填し、伸線および圧延加工を施
した。伸線加工は、得られる線材の外径が1mmφとな
るまで行ない、その後の圧延加工は得られる線材の厚み
が0.18mmとなるまで行なった。
Next, the obtained fine powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, and was drawn and rolled. The wire drawing process was performed until the outer diameter of the obtained wire rod reached 1 mmφ, and the subsequent rolling process was performed until the thickness of the obtained wire rod reached 0.18 mm.

【0055】次に、得られた線材を845℃、50時
間、大気中において熱処理した後、徐冷した。その後、
さらに線材の厚みが0.15mmとなるまで圧延加工を
行なった後、840℃、50時間熱処理を行なった。
Next, the obtained wire was heat-treated in the air at 845 ° C. for 50 hours and then gradually cooled. afterwards,
Further, the wire was rolled until the thickness of the wire became 0.15 mm, and then heat treated at 840 ° C. for 50 hours.

【0056】次に、得られた線材の表面にPdペースト
を20μmの厚さで塗布した。その後、窒素雰囲気中で
800℃における熱処理を行ない、線材表面よりAg−
Pd合金を形成した。
Next, a Pd paste was applied to the surface of the obtained wire rod in a thickness of 20 μm. After that, heat treatment is performed at 800 ° C in a nitrogen atmosphere, and Ag-
A Pd alloy was formed.

【0057】その結果、剛性について、破断応力で、従
来の銀合金を形成させなかったものが10kg/mm2
であったのに対し、本発明に従いAg−Pd合金を形成
したものは20kg/mm2 であった。
As a result, regarding the rigidity, the breaking stress was 10 kg / mm 2 when the conventional silver alloy was not formed.
On the other hand, the amount of Ag-Pd alloy formed according to the present invention was 20 kg / mm 2 .

【0058】このようにして線材の剛性が高められた結
果、コイルの形成において操作性が向上した。そのた
め、従来法によって銀合金を形成させないで得られた線
材をコイルにした場合、9,500A/cm2 の臨界電
流密度が得られたのに対し、上記工程により銀合金を形
成した線材をコイルにした場合、15,000A/cm
2 の臨界電流密度が得られた。その結果、コイルに発生
する磁場を約1.5倍に増加させることができた。
In this way, the wire rod with increased rigidity is formed.
As a result, operability was improved in forming the coil. That
Wire obtained without forming a silver alloy by the conventional method
When the material is a coil, 9,500 A / cm2Critical electric
While the flow density was obtained, the above process formed the silver alloy.
When the formed wire is used as a coil, 15,000 A / cm
2The critical current density of was obtained. As a result, occurs in the coil
The applied magnetic field could be increased about 1.5 times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一具体例に従って形成される線材の概
略を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a wire rod formed according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 安定化材 2 超電導層 3 Cu層 4 合金が形成された部分 5 酸化膜 1 stabilizer 2 superconducting layer 3 Cu layer 4 alloy-formed part 5 oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銀または銀合金からなる安定化材に酸化
物高温超電導体が密着してなる線材を形成する工程と、 次いで、前記安定化材の外表面に、銀と異なる金属から
なる層を形成する工程と、 熱処理を行ない、前記金属と前記安定化材とを反応させ
ることによって前記安定化材よりも剛性の高い銀合金を
前記線材の長手方向に沿って形成する工程とを備える、
酸化物高温超電導線材の製造方法。
1. A step of forming a wire in which a high-temperature oxide superconductor is in close contact with a stabilizing material made of silver or a silver alloy, and then a layer made of a metal different from silver on the outer surface of the stabilizing material. And a step of performing a heat treatment and reacting the metal with the stabilizing material to form a silver alloy having higher rigidity than the stabilizing material along the longitudinal direction of the wire.
Method for producing high-temperature oxide superconducting wire.
【請求項2】 前記銀合金を形成させた線材を、酸素を
含む雰囲気中で加熱して表面に酸化被膜を形成する工程
をさらに備える、請求項1の酸化物高温超電導線材の製
造方法。
2. The method for producing an oxide high temperature superconducting wire according to claim 1, further comprising the step of heating the wire formed with the silver alloy in an atmosphere containing oxygen to form an oxide film on the surface.
JP28873592A 1992-10-27 1992-10-27 Method for producing oxide high-temperature superconducting wire Expired - Lifetime JP3369225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28873592A JP3369225B2 (en) 1992-10-27 1992-10-27 Method for producing oxide high-temperature superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28873592A JP3369225B2 (en) 1992-10-27 1992-10-27 Method for producing oxide high-temperature superconducting wire

Publications (2)

Publication Number Publication Date
JPH06139848A true JPH06139848A (en) 1994-05-20
JP3369225B2 JP3369225B2 (en) 2003-01-20

Family

ID=17734015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28873592A Expired - Lifetime JP3369225B2 (en) 1992-10-27 1992-10-27 Method for producing oxide high-temperature superconducting wire

Country Status (1)

Country Link
JP (1) JP3369225B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032201A1 (en) * 1995-04-10 1996-10-17 Lockheed Martin Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
US6022832A (en) * 1997-09-23 2000-02-08 American Superconductor Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6027564A (en) * 1997-09-23 2000-02-22 American Superconductor Corporation Low vacuum vapor process for producing epitaxial layers
US6114287A (en) * 1998-09-30 2000-09-05 Ut-Battelle, Llc Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom
US6296701B1 (en) 1998-09-30 2001-10-02 Ut-Battelle, Llc Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032201A1 (en) * 1995-04-10 1996-10-17 Lockheed Martin Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5741377A (en) * 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5898020A (en) * 1995-04-10 1999-04-27 Goyal; Amit Structures having enhanced biaxial texture and method of fabricating same
US5958599A (en) * 1995-04-10 1999-09-28 Lockheed Martin Energy Research Corporation Structures having enhanced biaxial texture
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
US6106615A (en) * 1997-09-19 2000-08-22 Goyal; Amit Method of forming biaxially textured alloy substrates and devices thereon
US6022832A (en) * 1997-09-23 2000-02-08 American Superconductor Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6027564A (en) * 1997-09-23 2000-02-22 American Superconductor Corporation Low vacuum vapor process for producing epitaxial layers
US6426320B1 (en) 1997-09-23 2002-07-30 American Superconductors Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6114287A (en) * 1998-09-30 2000-09-05 Ut-Battelle, Llc Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom
US6296701B1 (en) 1998-09-30 2001-10-02 Ut-Battelle, Llc Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom
US6555256B1 (en) 1998-09-30 2003-04-29 Ut-Battelle, Llc Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

Also Published As

Publication number Publication date
JP3369225B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US6393690B1 (en) Structure and method of manufacture for minimizing filament coupling losses in superconducting oxide composite articles
JP3474602B2 (en) Superconducting conductor
EP0423354A1 (en) Oxide superconductor wire, method of producing the same and article produced therefrom
JP2685751B2 (en) Compound superconducting wire and method for producing compound superconducting wire
US6247225B1 (en) Method for making cabled conductors containing anisotropic superconducting compounds
US6246007B1 (en) Oxide superconductive wire and process for manufacturing the same
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
US6194352B1 (en) Multifilament composite BSCCO oxide superconductor
JPH04218215A (en) Superconductive conductor
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
EP0409150B1 (en) Superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH05211013A (en) Oxide superconductor and manufacture thereof
JPH05334921A (en) Ceramic superconductor
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH05211012A (en) Oxide superconductor and manufacture thereof
JP3350935B2 (en) Multi-core superconducting wire
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2757575B2 (en) Method for manufacturing high-temperature superconducting wire
JP2003173721A (en) Oxide superconductive cable for ac and its manufacturing method
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH06325633A (en) Multi-core oxide superconducting wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

EXPY Cancellation because of completion of term