JP2004241132A - Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member - Google Patents

Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member Download PDF

Info

Publication number
JP2004241132A
JP2004241132A JP2003025776A JP2003025776A JP2004241132A JP 2004241132 A JP2004241132 A JP 2004241132A JP 2003025776 A JP2003025776 A JP 2003025776A JP 2003025776 A JP2003025776 A JP 2003025776A JP 2004241132 A JP2004241132 A JP 2004241132A
Authority
JP
Japan
Prior art keywords
conductive
resin emulsion
derivative
resin
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003025776A
Other languages
Japanese (ja)
Inventor
Kenji Ebihara
健治 海老原
Daisuke Matsunaga
大輔 松永
Katsuyuki Kito
克征 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2003025776A priority Critical patent/JP2004241132A/en
Publication of JP2004241132A publication Critical patent/JP2004241132A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that although the paint with metal powder such as nickel and copper dispersed in the solvent is mainly used as an antistatic conductive paint, it tends to have deterioration of performance due to corrosion and oxidation of the metal powder by water-based medium, and accordingly an organic solvent is used as a medium, which in turn necessitates fire protection measure bad smell measure, and environmental protection measure. <P>SOLUTION: In the conductive particulate and conductive resin emulsion, a polypyrrole (derivative) layer in which pyrrole (derivative) is polymerized is provided on the surface of the sheet particulate and the resin emulsion particles. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は導電性微粒子及び導電性エマルジョン及びその製造方法並びに導電性微粒子若しくは導電性エマルジョンを含有する導電性塗料、導電性シート体に関するものであつて、
更に詳しくは樹脂粒子(シード)表面にピロール(誘導体)を重合による表面修飾を行うことにより得られる導電性微粒子及び導電性樹脂エマルジョン及びその製造方法並びに該導電性微粒子、該導電性樹脂エマルジョンを含有する導電性塗料、導電性シート体に関するものである。
【0002】
【特許文献】特開2000−186218
【従来技術】
従来、導電性塗料などはニッケルや銅などの金属粉をトルエンなどの有機溶媒に分散させ構成されている溶剤型が主に使用されていた。しかし、近年溶剤型接着剤は有機溶剤による環境汚染、健康管理上の毒性、火気危険性等の問題があり、脱溶剤型への要求が強まっている。
このため脱溶剤化のために水系塗料の要求が強くなつている。ところが水性媒体を使用すると金属粉が腐食或いは酸化して塗膜性能或いは導電性能が劣化するという問題が残され、種々の検討がなされている。
【0003】
水性化の一つの方法としてポリピロールの水溶液化(特許公開2000−186218)として水溶性導電性高分子と親水性基含有ポリエステル樹脂変性物の混合物等の検討がなされたが、電気抵抗値が絶縁樹脂であるバインダーに左右され、バインダーの添加工程として2次加工が必要等の欠点を有し、溶剤系と比較して成膜状態や基材密着性が悪い等の物性面での課題があった。
【0004】
【発明が解決しようとする課題】
本発明は上記のような状況、即ち有機溶剤による人体への有害性、引火等の危険性、作業環境、低温接着力、耐熱性の問題、並びに水性媒体を使用した場合の導電性素材の性能劣化などの問題を解決できる導電性微粒子、導電性樹脂エマルジョンを開発するとともに、その用途開発品たる導電性塗料、導電性シート体を提供することにある。
【0005】
【課題を解決するための手段】
前記のような課題を解決すために、本発明ではシード粒子表面にピロール(誘導体)を重合してポリピロール(誘導体)層を設けることにより得られる導電性微粒子及び樹脂エマルジョン粒子の表面にポリピロール(誘導体)層を設けることにより得られる導電性樹脂エマルジョンの調製方法について検討してその製造方法を確立するとともに、その用途例としての導電性塗料、導電性シート体を開発したものである。以下本発明について詳細に説明する。
【0006】
シード微粒子には素材として高分子化合物、ガラス、セラミックス等からなるものが使用できる。その具体例として、各種アクリル系共重合樹脂、エチレン酢酸ビニル共重合樹脂、酢酸ビニル樹脂、ベオバ−酢酸ビニル共重合樹脂、ベオバ−アクリル共重樹脂、アクリル−酢酸ビニル共重合樹脂、ウレタン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、スチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリプロピレン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ナイロン樹脂、クロロプレンゴム、スチレンブタジエンゴム、メタクリル酸メチルブタジエンゴム、アクリルニトリルブタジエンゴムなどからなるシード微粒子のほか、軟質ガラス、硬質ガラスなどのガラス、ポリケイ酸、シリカ、アルミナ、ジルコニア、マグネシア、チタニアなどの無機系素材或いはセラミックスからなるシード微粒子などが使用できる。これらは単独ないし混合して使用できる。
【0007】
これらのシード微粒子の形状は球状、楕円状、フレーク状、円柱状、不定形状など各種の形状のものが適用できる。また、中空体であつても構わない。
サイズとしては平均粒子径は5nm〜50μm以下が好ましい。50μm以上では、塗料組成物に調整した場合、塗布膜厚制御が困難であったり、分散性が不安定になるなどの原因になるため適さない。5nm以下では余りに微細であるために粒子間の接触箇所が過大になつて所定の接触性を確保することが難しくなり適さない。
また、シード微粒子の形状は球状であると導電性塗料として塗布した際にレベリング性が得られ均一厚みの塗膜が得られやすく好ましく、更に粒子径の分布が狭いとスペーサー効果が高くなり均一な導電性塗膜が得られる。
更に、球状中空体であると前記のレベリング性或いは更にスペーサー効果に加えて、塗料中に浮遊しやすい素材並びにサイズを選定することにより導電性微粒子が沈殿するという問題を回避できる。
【0008】
樹脂エマルジョンには、アニオン系界面活性剤単独、ノニオン系界面活性剤単独若しくはアニオン系界面活性剤とノニオン系界面活性剤の併用にて重合され調製された各種の樹脂エマルジョンが使用され、具体例として、各種アクリル系共重合樹脂エマルジョン、エチレン酢酸ビニル樹脂エマルジョン、酢酸ビニル樹脂エマルジョン、ベオバ−酢酸ビニル共重合樹脂エマルジョン、ベオバ−アクリル共重合樹脂エマルジョン、アクリル−酢酸ビニル共重合樹脂エマルジョン、ウレタン樹脂エマルジョン、クロロプレンゴム、スチレンブタジエンゴム、メタクリル酸メチルブタジエンゴム、アクリルニトリルブタジエンゴムなどが挙げられる。
【0009】
樹脂エマルジョン粒子の平均粒子径のサイズは動的光散乱法(レーザードップラー法)による粒子径で5nm〜5μmが適合している。5nm以下では、乳化重合時に多量の界面活性剤を必要として密着性、耐水性等の物性面で劣るため適さない。また5μm以上ではポリピロール層形成後のエマルジョン自体の分散性が悪くなり、沈降、ゲル化等の原因となるため好ましくない。
【0010】
これらシード微粒子或いは樹脂エマルジョン粒子の表面にピロール(誘導体)を酸化物を重合触媒として重合させてポリピロール(誘導体)層を形成することにより導電性被膜が形成される。
ピロール(誘導体)の重合を円滑に進行させるための手段してゼータ電位の絶対値を10mV以上に保持される必要がある。此れ以下であつては、ピロール(誘導体)の重合が進行と共に粒子間で凝集するため好ましくない。
【0011】
ピロール(誘導体)には、N−メチルピロール、N−エチルピロール、N−n−プロピルピロール、N−n−ブチルピロール、3−メチルピロ−ル、3−エチルピロール、3―n―プロピルピロール、3−n−ブチルピロール、3−n−ペンチルピロール、3−n−ヘキシルピロールなどが挙げられる。
【0012】
ピロール(誘導体)をシード微粒子の表面に重合させる方法は水、アルコールなどの媒体中にシード微粒子を分散させ、ピロール(誘導体)と重合触媒の酸化剤の存在下、−30〜100℃の温度下で好ましくは−10〜40℃の温度下で1〜100分程度攪拌することによりシード微粒子の表面にポリピロール(誘導体)で被覆された導電性微粒子を得ることができる。
【0013】
シード微粒子の表面とポリピロール(誘導体)層との密着を良好にするために、シランカップリング剤が使用されることが望ましい。
シランカップリング剤としては例えばビニル基、アクリロイル基、水酸基、チオール基、アミノ基、エポキシ基またはエポキシシクロヘキシル基を持つものが用いられる。具体的にはビニル基を持つものとしてはビニルトリクロルシラン、ビニルメトキシシラン、ビニルトリエトキシシラン等、アクリロイル基としてはγ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン等、水酸基を持つものとしてはβ−ヒドロキシエトキシエチルトリエトキシシラン、γ−ヒドロキシプロピルトリメトキシシラン等、チオール基を持つものとしてはγ−メルカプトプロピルトリメトキシシラン、β−メルカプトエチルメチルジメトキシシラン等、アミノ基を持つものとしてはγ−アミノプロピルトリエトキシシラン、β−アミノエチルトリメトキシシラン、γ−アミノプロポキシプロピルトリメトキシシラン等、エポキシ基を持つものとしてはγ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン等、エポキシシクロヘキシル基を持つものとしてはβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
【0014】
アニオン系界面活性剤を単独使用又はアニオン系界面活性剤とノニオン界面活性剤と併用して重合して調製された樹脂エマルジョン粒子表面へのピロール(誘導体)の重合は、経時的にpHが低下してゲル化しやすくなるため、調製済みの樹脂エマルジョンの粒子をシードとして、フラスコ中に配合しのたち、アルカリ成分及び/又は緩衝溶液によりpHを3〜8に調整しながら、ゼータ電位を−10mV以下の状態でピロール(誘導体)、酸化物を添加しつつ進行させることが望ましい。 好ましいpH域である3〜8の範囲に調整する手段のアルカリ成分についてはナトリウム、カリウム、マグネシウム、アルミニウムなどの水酸化物、塩化物、炭酸化合物のほか、アンモニア、トリエタノールアミンなどが使用され、緩衝溶液としては公知のものが使用できる。
【0015】
ノニオン系界面活性剤を単独使用して重合した樹脂エマルジョン粒子表面へのピロール(誘導体)の重合は、経時的なpHの低下と共に樹脂エマルジョンの安定性が低下し難い為、調製済みの樹脂エマルジョン粒子をシードとして、フラスコ中に配合しのたち、アルカリ成分及び/又は緩衝溶液によるpH調整しなくてもピロール(誘導体)、酸化物を添加しつつ進行させることができる。
【0016】
樹脂エマルジョンの濃度は5〜70重量%が適しており、5重量%以下では導電性塗料や導電性シートに加工する際に水分量が多く、乾燥工程が長くなるため好ましくない。一方70重量%以上ではピロール(誘導体)を重合する過程で樹脂エマルジョン粒子が破壊し凝集するため適さない。なお、樹脂エマルジョンに対するピロール(誘導体)の配合比率は樹脂エマルジョン100重量部に対して0.2〜10重量部が適している。0.2重量部以下では所定の導電性が得られない。10重量部以上ではピロール(誘導体)の重合過程においてゲル化する傾向があり好ましくない。
【0017】
重合触媒として使用される酸化剤としては、無機酸、金属化合物などが有効であり、硫酸、塩酸などの無機酸、アルミ、チタン、銅、クロム、マンガン、鉄などの金属の塩化物、硫酸塩、硝酸塩、アセチルアセテート化合物などの金属化合物、ニ酸化マンガン、二酸化鉛などの酸化物、過硫酸アンモニュウム、過硫酸カリウム、過酸化水素などのパーオキソ酸などが使用できる。これらの酸化剤は無機酸、有機酸と組み合わせて使用することもできる。また、2種類以上の併用も構わない。これら酸化剤はピロール(誘導体)1モルに対して0.5〜5モルで使用される。
【0018】
該導電性微粒子を使用して導電性塗料に調製するには、樹脂バインダーが使用される。該樹脂バインダーとしては、主に水性の樹脂バインダーが使用され、具体的には各種アクリル系共重合樹脂、エチレン酢酸ビニル樹脂、酢酸ビニル樹脂、ベオバ−酢酸ビニル共重合樹脂、ベオバ−アクリル系共重合樹脂、アクリル−酢酸ビニル共重合樹脂、ウレタン樹脂、クロロプレンゴム、スチレンブタジエンゴム、メタクリル酸メチルブタジエンゴム、アクリルニトリルブタジエンゴム等の樹脂エマルジョン、ラテックスなどの乳化分散体のほか、エポキシ樹脂、ウレタン樹脂、ホツトメルト配合物などが使用される。また、有機溶剤に樹脂成分を溶解させたものをバインダーとして使用されても構わない。更に、樹脂粉末など固形のバインダーが使用されても構わない。
樹脂バインダー中の導電性微粒子の配合比率は30重量%、好ましくは50重量%以上であることが望ましい。配合比率が低いと導電性微粒子相互の接続を確保できないために目標とする電気抵抗値が得られない。
導電性樹脂エマルジョンを使用して導電性塗料に調製するには、導電性樹脂エマルジョンのまま、もしくは前記のような乳化分散体等の樹脂バインダーと組み合わされて調製される。樹脂バインダー中の導電性樹脂エマルジョンの配合比率は導電性微粒子と同様な理由で30重量%、好ましくは50重量%以上であることが望ましい。
【0019】
導電性微粒子若しくは導電性樹脂エマルジョンを使用して導電性シート体を調製するには、上記のような導電性塗料等として仕上られたものを樹脂フィルム、紙、繊維などの基材表面に塗布して仕上る方法などが採用される。
【0020】
なお、導電性塗料或いは導電性シート体として各種の基材等に対する密着性を確保するために、適宜粘着付与樹脂(以下TFという)が配合される。該TFは導電性塗料、導電性シート体の形態によつて樹脂エマルジョン状又は固形状態で使用することができる。
【0021】
TFには変成ロジン、重合ロジン、フェノール樹脂、アルキルフェノール樹脂等のフェノール系、クマロンインデン系、脂肪族炭化水素系、テルペン樹脂等の芳香族石油系等の樹脂エマルジョンが使用できる。これらのTFは粉末状態ないし粉末状で乳化されたもの、水溶性高分子等で表面処理したのち乳化されたもの等があり、使用状況に照らして採用される。カルボキシル変性や水酸基変性をさせたものも使用できる。
【0022】
その他、配合材料として、老化防止を向上させる目的で酸化亜鉛、酸化カルシウム、酸化マグネシウム等の金属酸化物が配合される。
更に着色のために適宜、公知な染料や顔料が適宜配合される。
【0023】
その他、これら以外に導電性樹脂エマルジョンの安定化の為に配するアンモニア、トリエタノールアミン、モルホリン等の塩基性化合物、炭酸カルシウム、シリカ、タルク等の充填材、防腐剤、防かび剤、消泡剤、増粘剤または粘度調整剤等が必要により添加されて調製されてもよい。
【0024】
以下に実施例、比較例により説明する。以下重量部を部として表示する。
実施例1
ノニオン系界面活性剤を使用して重合されたアクリル樹脂エマルジョン(アイカ工業(株) RAX−170 固形分46% 平均粒子径136nm)100部を1Lセパラブルフラスコに仕込む。触媒として過硫酸アンモニウム(70%水溶液)を2部、ピロールをモノマーを1.3部滴下ロートに計量し、過硫酸アンモニウム、ピロールを2時間かけて滴下ロートより滴下しながら重合を開始した。20℃で3時間重合した後、エイジングとして50℃で1時間処理し実施例1の導電性樹脂エマルジョン(固形分45%、pH=5.0、平均粒子径205nm、ゼーター電位−14mV)を得た。
【0025】
実施例2
アニオン系界面活性剤を使用して重合されたアクリル樹脂エマルジョン(アイカ工業(株) RAX−175 固形分55% 平均粒子径178nm)100部を1Lセパラブルフラスコに仕込む。触媒として過硫酸アンモニウム(70%水溶液)を3.2部、ピロールモノマーを1部、アルカリ成分としてアンモニア水(28%水溶液)を3.3部、滴下ロートに計量し、過硫酸アンモニウム、ピロールを0.5時間、アンモニア水を2時間かけて滴下ロートより滴下してpHを5.5付近に維持しながらゼーター電位を−10mV以下の状態で重合を進めた。20℃で3時間重合した後3mol/l−酢酸ナトリウム緩衝液(pH 5.2)を1ml添加し、実施例2の導電性樹脂エマルジョン(固形分54%、pH=5.5、平均粒子径360nm、ゼーター電位−93mV)を得た。
【0026】
実施例3
アニオン系界面活性剤とノニオン系界面活性剤とを併用して重合されたアクリル樹脂エマルジョン(アイカ工業(株) RAX−173 固形分43% 平均粒子径235nm)100部を1Lセパラブルフラスコに仕込む。触媒として過硫酸アンモニウム(70%水溶液)を3.2部、ピロールモノマーを1部を3.3部、滴下ロートに計量し、過硫酸アンモニウム、ピロールを0.5時間、アンモニア水を2時間かけて滴下ロートより滴下してPHを4.8付近に維持しながら、ゼータ電位を−10mV以下の状態で重合を進めた。20℃で2時間重合した後、実施例3の導電性樹脂エマルジョン(固形分50%、pH=4.8、平均粒子径290nm、ゼーター電位−33mV)を得た。
【0027】
実施例4
ウレタン樹脂エマルジョン(住友バイエルウレタン(株) ディスパコールU54 固形分50% 平均粒子径189nm)100部を1Lセパラブルフラスコに仕込む。触媒として過硫酸アンモニウム(70%水溶液)を2部、ピロールをモノマーを1.3部、アルカリ成分として水酸化ナトリウム(6.3N)を3.8部、滴下ロートに計量し、過硫酸アンモニウム、ピロールを0.5時間、水酸化ナトリウムを2時間かけて滴下ロートより滴下しながら重合を開始した。20℃で3時間重合した後、エイジングとして50℃で1時間処理し実施例1の導電性樹脂エマルジョン(固形分50%、pH=7.5、平均粒子径211nm、ゼーター電位−18mV)を得た。
【0028】
実施例5
実施例1におけるアクリル樹脂エマルジョン(アイカ工業株 RAX−170 固形分46% 平均粒子径136nm)に代えて、ポリスチレン粒子ファインパール(松浦(株)製 PB3011W 平均粒子径0.5μm)50部とイオン交換水50部を配合して、実施例1に準じて導電性微粒子(固形分50%、平均粒子径0.52μm、ゼータ電位−21mV)を調製した。この導電性微粒子100部とアクリル樹脂エマルジョン(アイカ工業(株) RAX−175 固形分55% 平均粒子径178nm)100部を混合し導電性樹脂エマルジョン(固形分53%)を得た。
【0029】
実施例6
コロイダルシリカ粒子(日産化学工業(株) スノーテックスDMAC 不揮発分30% 溶媒メチルエチルケトン 平均粒子径15nm)100部とシランカップリング剤γ−メタクリロキシプロピルトリエトキシシラン(信越化学工業(株) KBE503)3部を配合しジブチルスズジラウラート0.05部添加し、室温8時間撹拌反応した。この系に触媒として過硫酸アンモニウム(70%水溶液)を3.2部、ピロールモノマーを1部滴下ロートに計量し、室温2時間かけて滴下して重合を開始した。重合後、エバポレーターにてメチルエチルケトンを除去し導電性微粒子を得た。この導電性微粒子50部とアクリル樹脂エマルジョン(アイカ工業(株) RAX−175 固形分55% 平均粒子径178nm)50部及びイオン交換水50部を混合し導電性樹脂エマルジョン(固形分34.6%)を得た。
【0030】
比較例1
実施例1に使用したアクリル樹脂エマルジョン(アイカ工業(株)RAX−170 固形分46%、平均粒子径136nm)を比較例1の樹脂エマルジョンとした。
【0031】
比較例2
実施例2においてピロールの配合量を0.1部とした以外は全て同一の条件で比較例2の導電性樹脂エマルジョン(固形分54%、pH5.5、平均粒子径360nm、ゼータ電位−93mV)を得た。
【0032】
比較例3
実施例5において、導電性微粒子の配合量を20部として以外は全て同一にして比較例3の導電性樹脂エマルジョン(固形分54%)を得た。
【0033】
比較例4
実施例6において、導電性微粒子の配合量を20部とした以外は全て同一にして比較例4の導電性樹脂エマルジョン(固形分27.6%)を得た。
【0034】
実施例、比較例の導電性微粒子や導電性樹脂エマルジョンなどを使用して電気抵抗値、付着性試験、耐磨耗性試験、耐久性試験により測定した結果は表1の通りであつた。
詳細な試験方法を下記に示す。
なお、実施例1の導電性樹脂エマルジョンを厚み100μmのポリエステル樹脂フィルム上に塗布し、造膜させたのち、ポリエステル樹脂フィルム裏面と造膜面の両面にエポキシ樹脂を塗布・硬化させたのち、断面をマイクロトームで切断したサンプルの透過型電子顕微鏡(倍率6万倍)の写真を図1に示しているが、樹脂膜の断面層に網目状のポリピロールが黒く観察され、この網目状のポリピロールの存在により導電性が得らることが確認できる。また、造膜された表面にも当然、このような網目状のポリピロールが存在している。
【0035】
<試験片作製条件>
実施例及び比較例のサンプルを使用し50μmのドクターブレードでPETに塗布し、23℃×24時間乾燥し試験片を作製する。
▲1▼電気抵抗試験:絶縁抵抗計(JIS K−6911)
規定の円盤電極の表面並びに裏面に実施例、比較例の試験片を温度20±2℃、相対湿度65±5%の室内で体積抵抗率を測定する。
▲2▼付着性試験:付着性(クロスカット法)(JIS K−5600−5−6)試験片をABS板に50μm塗布・乾燥したのち、16時間、温度23±2℃、相対湿度50±5%の室内で養生し、1mm間隔の縦横10本のカットを施し、セロテープ(登録商標)試験して剥がれの状態を測定する。評価0は剥がれがない。評価1は剥がれが5%以内の場合。評価2は剥がれが15%以内の場合。評価3は剥がれが35%以内の場合。
▲3▼耐久性試験:耐熱老化試験 試験片を60℃×1000時間下に静置後、上記試験に供する
▲4▼耐湿熱老化試験 試験片を40℃・95%RH×1000時間下に静置後、上記試験に供する。
▲5▼耐寒老化試験 試験片を−20℃1000時間下に静置後、上記試験に供する。
【0036】
【表1】

Figure 2004241132
【0037】
【発明の効果】
本発明になる導電性微粒子、導電性樹脂エマルジョンはシード微粒子若しくは微細な樹脂エマルジョン粒子の表面に導電性のポリピロール(誘導体)層が形成されてなるものであって、実施例に見られるような電気抵抗値が低い特性をもつものであるため、導電性のコーテイング剤、コーキング剤などのほか、帯電防止材料、電子機器材料、センサー、メモリー、電池等の各種の電子機器類などの用途として活用できる。
また、本発明になる導電性微粒子、導電性樹脂エマルジョンを使用した導電性塗料は、樹脂エマルジョンなどの水性バインダーを問題なく採用できるため、火気安全対策、環境対策なくして簡便に使用でき前記のような分野に利便性を提供できる。
更に、本発明になる導電性シート体は各種機器類の内部若しくは外部或いは接続部などに貼設するだけで、手軽に帯電防止効果が得られるため各種分野できる。
【図面の簡単な説明】
【図1】実施例1の導電性樹脂エマルジョンを厚み100μmのポリエステル樹脂フィルムに塗布し造膜させたサンプルのポリエステル樹脂フィルムの裏面と造膜させた表面との両側をエポキシ樹脂でサンドイッチ状に硬化させたのち、ミクロトームで切断した断面を透過型電子顕微鏡(倍率6万倍)で観測した写真の断面図。[0001]
[Industrial applications]
The present invention relates to a conductive fine particle, a conductive emulsion, a method for producing the same, and a conductive paint and a conductive sheet containing the conductive fine particle or the conductive emulsion.
More specifically, conductive fine particles and a conductive resin emulsion obtained by performing surface modification of pyrrole (derivative) on the surface of resin particles (seed) by polymerization, a method for producing the same, and the conductive fine particles and the conductive resin emulsion are contained. The present invention relates to a conductive paint and a conductive sheet.
[0002]
[Patent Document] JP-A-2000-186218
[Prior art]
Conventionally, as a conductive paint, a solvent type in which a metal powder such as nickel or copper is dispersed in an organic solvent such as toluene has been mainly used. However, in recent years, solvent-based adhesives have problems such as environmental pollution due to organic solvents, toxicity for health care, and danger of fire, and the demand for solvent-free adhesives is increasing.
For this reason, the demand for water-based paints for solvent removal is increasing. However, when an aqueous medium is used, the problem that the metal powder is corroded or oxidized to deteriorate the coating film performance or the conductive performance remains, and various studies have been made.
[0003]
As one method of water-based conversion, a mixture of a water-soluble conductive polymer and a modified polyester resin having a hydrophilic group has been studied as an aqueous solution of polypyrrole (Patent Publication 2000-186218). Dependent on the binder, there is a drawback such as the necessity of secondary processing as a binder addition step, there were problems in physical properties such as poor film formation state and substrate adhesion compared with the solvent system. .
[0004]
[Problems to be solved by the invention]
The present invention is as described above, namely the harm to the human body by the organic solvent, the danger of ignition, etc., the working environment, low-temperature adhesion, heat resistance problems, and the performance of the conductive material when using an aqueous medium It is an object of the present invention to develop conductive fine particles and a conductive resin emulsion that can solve problems such as deterioration, and to provide a conductive paint and a conductive sheet that are developed products of the conductive particles.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, polypyrrole (derivative) is obtained by polymerizing pyrrole (derivative) on the surface of seed particles to provide a polypyrrole (derivative) layer and polypyrrole (derivative) on the surface of resin emulsion particles. ) A method for preparing a conductive resin emulsion obtained by providing a layer was studied to establish a manufacturing method thereof, and a conductive paint and a conductive sheet were developed as application examples thereof. Hereinafter, the present invention will be described in detail.
[0006]
As the seed fine particles, those made of a polymer compound, glass, ceramics, or the like can be used as a material. Specific examples thereof include various acrylic copolymer resins, ethylene-vinyl acetate copolymer resins, vinyl acetate resins, Beova-vinyl acetate copolymer resins, Beova-acryl copolymer resins, acryl-vinyl acetate copolymer resins, urethane resins, and chloride resins. From vinyl resin, vinylidene chloride resin, styrene resin, polycarbonate resin, polyester resin, polypropylene resin, acrylic resin, phenol resin, melamine resin, nylon resin, chloroprene rubber, styrene butadiene rubber, methyl methacrylate butadiene rubber, acrylonitrile butadiene rubber, etc. In addition to the seed fine particles, glass such as soft glass and hard glass, inorganic fine material such as polysilicic acid, silica, alumina, zirconia, magnesia, and titania, or seed fine particles made of ceramics can be used. These can be used alone or in combination.
[0007]
These seed fine particles may have various shapes such as a spherical shape, an elliptical shape, a flake shape, a columnar shape, and an irregular shape. Further, it may be a hollow body.
As the size, the average particle diameter is preferably 5 nm to 50 μm or less. If the thickness is 50 μm or more, it is not suitable because it causes difficulties in controlling the coating film thickness and instability of dispersibility when adjusted to a coating composition. If it is less than 5 nm, it is too fine, so that the contact portion between the particles becomes excessively large and it is difficult to secure a predetermined contact property.
In addition, when the shape of the seed fine particles is spherical, a leveling property is obtained when applied as a conductive paint, and a coating film having a uniform thickness is easily obtained, which is preferable. A conductive coating is obtained.
Further, in the case of a spherical hollow body, in addition to the above-mentioned leveling property or the spacer effect, it is possible to avoid a problem that conductive fine particles are precipitated by selecting a material and a size that easily float in the paint.
[0008]
As the resin emulsion, various resin emulsions prepared by polymerization using an anionic surfactant alone, a nonionic surfactant alone, or a combination of an anionic surfactant and a nonionic surfactant are used. , Various acrylic copolymer resin emulsions, ethylene vinyl acetate resin emulsions, vinyl acetate resin emulsions, veova-vinyl acetate copolymer resin emulsions, veova-acrylic copolymer resin emulsions, acryl-vinyl acetate copolymer resin emulsions, urethane resin emulsions, Examples thereof include chloroprene rubber, styrene butadiene rubber, methyl methacrylate butadiene rubber, and acrylonitrile butadiene rubber.
[0009]
The average particle size of the resin emulsion particles is 5 nm to 5 μm as a particle size determined by a dynamic light scattering method (laser Doppler method). If the thickness is 5 nm or less, a large amount of a surfactant is required at the time of emulsion polymerization and physical properties such as adhesion and water resistance are inferior. On the other hand, when the thickness is 5 μm or more, the dispersibility of the emulsion itself after the formation of the polypyrrole layer is deteriorated, which causes sedimentation and gelation, which is not preferable.
[0010]
A conductive film is formed by forming a polypyrrole (derivative) layer on the surface of these seed fine particles or resin emulsion particles by polymerizing pyrrole (derivative) with an oxide as a polymerization catalyst.
It is necessary to maintain the absolute value of the zeta potential at 10 mV or more as a means for smoothly proceeding the polymerization of pyrrole (derivative). Below this, it is not preferable because the polymerization of pyrrole (derivative) is agglomerated between particles as the polymerization proceeds.
[0011]
Pyrroles (derivatives) include N-methylpyrrole, N-ethylpyrrole, Nn-propylpyrrole, Nn-butylpyrrole, 3-methylpyrrol, 3-ethylpyrrole, 3-n-propylpyrrole, 3 -N-butylpyrrole, 3-n-pentylpyrrole, 3-n-hexylpyrrole and the like.
[0012]
The method of polymerizing pyrrole (derivative) on the surface of the seed fine particles is to disperse the seed fine particles in a medium such as water or alcohol, and in the presence of pyrrole (derivative) and an oxidizing agent for the polymerization catalyst, at a temperature of -30 to 100 ° C. The stirring is preferably performed at a temperature of -10 to 40 ° C for about 1 to 100 minutes to obtain conductive fine particles in which the surface of the seed fine particles is coated with polypyrrole (derivative).
[0013]
In order to improve the adhesion between the surface of the seed fine particles and the polypyrrole (derivative) layer, it is desirable to use a silane coupling agent.
Examples of the silane coupling agent include those having a vinyl group, an acryloyl group, a hydroxyl group, a thiol group, an amino group, an epoxy group, or an epoxycyclohexyl group. Specifically, those having a vinyl group include vinyltrichlorosilane, vinylmethoxysilane, vinyltriethoxysilane, and the like, and acryloyl groups include γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, and γ-methacrylate. Roxypropyltrimethoxysilane and the like having a hydroxyl group are β-hydroxyethoxyethyltriethoxysilane and γ-hydroxypropyltrimethoxysilane, and those having a thiol group are γ-mercaptopropyltrimethoxysilane and β-mercaptoethyl. Those having an amino group such as methyldimethoxysilane have epoxy groups such as γ-aminopropyltriethoxysilane, β-aminoethyltrimethoxysilane, γ-aminopropoxypropyltrimethoxysilane, etc. Examples of those having an epoxycyclohexyl group include β- (3,4-epoxycyclohexyl) ethyl, such as γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropylmethyldimethoxysilane, and γ-glycidyloxypropyltriethoxysilane. Trimethoxysilane and the like.
[0014]
Polymerization of pyrrole (derivative) on the surface of resin emulsion particles prepared by using an anionic surfactant alone or in combination with an anionic surfactant and a nonionic surfactant causes pH to decrease over time. As it becomes easy to gel, the particles of the prepared resin emulsion are used as seeds, mixed in a flask, and adjusted to a pH of 3 to 8 with an alkali component and / or a buffer solution, and the zeta potential is adjusted to -10 mV or less. In this state, it is desirable to proceed while adding pyrrole (derivative) and oxide. As the alkali component of the means for adjusting to a preferable pH range of 3 to 8, hydroxides such as sodium, potassium, magnesium and aluminum, chlorides, carbonate compounds, ammonia, triethanolamine and the like are used. Known buffer solutions can be used.
[0015]
The polymerization of pyrrole (derivative) onto the surface of resin emulsion particles polymerized by using a nonionic surfactant alone is difficult to reduce the stability of the resin emulsion as the pH decreases over time. Is used as a seed, and the mixture can be allowed to proceed while adding pyrrole (derivative) and oxide without adjusting the pH with an alkali component and / or a buffer solution.
[0016]
The concentration of the resin emulsion is suitably from 5 to 70% by weight, and if it is 5% by weight or less, the amount of water is large when processed into a conductive paint or a conductive sheet, which is not preferable because the drying step becomes long. On the other hand, if the content is more than 70% by weight, the resin emulsion particles are broken and coagulated in the process of polymerizing pyrrole (derivative), which is not suitable. The mixing ratio of pyrrole (derivative) to the resin emulsion is preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of the resin emulsion. If the amount is less than 0.2 parts by weight, predetermined conductivity cannot be obtained. If it is more than 10 parts by weight, it tends to gel during the polymerization of pyrrole (derivative), which is not preferable.
[0017]
As an oxidizing agent used as a polymerization catalyst, inorganic acids and metal compounds are effective, inorganic acids such as sulfuric acid and hydrochloric acid, and chlorides and sulfates of metals such as aluminum, titanium, copper, chromium, manganese, and iron. And metal compounds such as nitrates and acetylacetate compounds; oxides such as manganese dioxide and lead dioxide; and peroxo acids such as ammonium persulfate, potassium persulfate and hydrogen peroxide. These oxidizing agents can be used in combination with inorganic acids and organic acids. Further, two or more kinds may be used in combination. These oxidizing agents are used in an amount of 0.5 to 5 mol per 1 mol of pyrrole (derivative).
[0018]
To prepare a conductive paint using the conductive fine particles, a resin binder is used. As the resin binder, an aqueous resin binder is mainly used. Specifically, various acrylic copolymer resins, ethylene vinyl acetate resin, vinyl acetate resin, Veovar-vinyl acetate copolymer resin, Veovar-acrylic copolymer are used. Resin emulsion such as resin, acrylic-vinyl acetate copolymer resin, urethane resin, chloroprene rubber, styrene butadiene rubber, methyl methacrylate butadiene rubber, acrylonitrile butadiene rubber, latex, epoxy resin, urethane resin, Hot melt formulations and the like are used. Moreover, what melt | dissolved the resin component in the organic solvent may be used as a binder. Further, a solid binder such as a resin powder may be used.
The mixing ratio of the conductive fine particles in the resin binder is desirably 30% by weight, preferably 50% by weight or more. If the compounding ratio is low, the connection between the conductive fine particles cannot be secured, so that the target electric resistance value cannot be obtained.
In order to prepare a conductive paint using a conductive resin emulsion, the conductive paint is prepared as it is or in combination with a resin binder such as the emulsified dispersion described above. The mixing ratio of the conductive resin emulsion in the resin binder is desirably 30% by weight, preferably 50% by weight or more for the same reason as the conductive fine particles.
[0019]
To prepare a conductive sheet body using conductive fine particles or a conductive resin emulsion, a material finished as a conductive paint as described above is applied to the surface of a base material such as a resin film, paper, or fiber. A method of finishing is adopted.
[0020]
In addition, a tackifying resin (hereinafter, referred to as TF) is appropriately blended with the conductive paint or the conductive sheet body in order to secure adhesion to various substrates and the like. The TF can be used in the form of a resin emulsion or solid depending on the form of the conductive paint or conductive sheet.
[0021]
As the TF, a resin emulsion such as a modified rosin, a polymerized rosin, a phenol resin such as a phenol resin, an alkylphenol resin, or an aromatic petroleum resin such as a coumarone indene resin, an aliphatic hydrocarbon resin, or a terpene resin can be used. These TFs include those emulsified in a powder state or a powder form, and those emulsified after being surface-treated with a water-soluble polymer or the like, and are employed depending on the usage conditions. Carboxyl-modified or hydroxyl-modified ones can also be used.
[0022]
In addition, metal oxides such as zinc oxide, calcium oxide, and magnesium oxide are compounded as a compounding material for the purpose of improving aging prevention.
Further, a known dye or pigment is appropriately blended for coloring.
[0023]
In addition, basic compounds such as ammonia, triethanolamine, morpholine, etc., which are provided for stabilizing the conductive resin emulsion, fillers such as calcium carbonate, silica, talc, preservatives, fungicides, defoaming It may be prepared by adding an agent, a thickener, a viscosity modifier and the like as needed.
[0024]
Hereinafter, an example and a comparative example will be described. Hereinafter, parts by weight are indicated as parts.
Example 1
100 parts of an acrylic resin emulsion polymerized using a nonionic surfactant (RAI-170, Aika Kogyo Co., Ltd., solid content 46%, average particle diameter 136 nm) is charged into a 1 L separable flask. As a catalyst, 2 parts of ammonium persulfate (70% aqueous solution) and 1.3 parts of pyrrole were weighed in a dropping funnel, and polymerization was started while ammonium persulfate and pyrrole were dropped from the dropping funnel over 2 hours. After polymerization at 20 ° C. for 3 hours, aging was performed at 50 ° C. for 1 hour to obtain a conductive resin emulsion of Example 1 (solid content: 45%, pH = 5.0, average particle diameter: 205 nm, zeta potential: −14 mV). Was.
[0025]
Example 2
A 1 L separable flask is charged with 100 parts of an acrylic resin emulsion (Aika Kogyo Co., Ltd., RAX-175, solid content 55%, average particle diameter 178 nm) polymerized using an anionic surfactant. 3.2 parts of ammonium persulfate (70% aqueous solution) as a catalyst, 1 part of a pyrrole monomer, and 3.3 parts of aqueous ammonia (28% aqueous solution) as an alkali component were weighed in a dropping funnel. Aqueous ammonia was dropped from the dropping funnel over 5 hours and the dropping funnel over 2 hours, and the polymerization was proceeded with the zeta potential at -10 mV or less while maintaining the pH at around 5.5. After polymerization at 20 ° C. for 3 hours, 1 ml of a 3 mol / l sodium acetate buffer (pH 5.2) was added, and the conductive resin emulsion of Example 2 (solid content: 54%, pH = 5.5, average particle size) (360 nm, zeta potential -93 mV).
[0026]
Example 3
100 parts of an acrylic resin emulsion (Aika Kogyo Co., Ltd., RAX-173, solid content: 43%, average particle diameter: 235 nm) polymerized by using an anionic surfactant and a nonionic surfactant in a 1-L separable flask are charged. As a catalyst, 3.2 parts of ammonium persulfate (70% aqueous solution), 3.3 parts of pyrrole monomer and 3.3 parts of pyrrole monomer are weighed in a dropping funnel, and ammonium persulfate and pyrrole are added dropwise for 0.5 hour and ammonia water is added dropwise over 2 hours. While maintaining the pH at about 4.8 by dropping from a funnel, polymerization was proceeded with the zeta potential at -10 mV or less. After polymerization at 20 ° C. for 2 hours, a conductive resin emulsion of Example 3 (solid content 50%, pH = 4.8, average particle diameter 290 nm, zeta potential −33 mV) was obtained.
[0027]
Example 4
100 parts of a urethane resin emulsion (Sumitomo Bayer Urethane K.K., Dispacoll U54, solid content 50%, average particle diameter 189 nm) is charged into a 1 L separable flask. As a catalyst, 2 parts of ammonium persulfate (70% aqueous solution), 1.3 parts of pyrrole as a monomer, 3.8 parts of sodium hydroxide (6.3N) as an alkali component were weighed in a dropping funnel, and ammonium persulfate and pyrrole were weighed. The polymerization was started for 0.5 hours while sodium hydroxide was dropped from the dropping funnel over 2 hours. After polymerization at 20 ° C. for 3 hours, aging was performed at 50 ° C. for 1 hour to obtain the conductive resin emulsion of Example 1 (solid content: 50%, pH = 7.5, average particle diameter: 211 nm, zeta potential: −18 mV). Was.
[0028]
Example 5
Instead of the acrylic resin emulsion in Example 1 (Aika Kogyo Co., Ltd., RAX-170, solid content 46%, average particle size 136 nm), ion exchange with 50 parts of polystyrene fine particles (Matsuura Co., Ltd., PB3011W, average particle size 0.5 μm) 50 parts of water was blended, and conductive fine particles (solid content: 50%, average particle size: 0.52 μm, zeta potential: −21 mV) were prepared according to Example 1. 100 parts of these conductive fine particles and 100 parts of an acrylic resin emulsion (RAI-175, solid content 55%, average particle size 178 nm) were mixed to obtain a conductive resin emulsion (solid content 53%).
[0029]
Example 6
100 parts of colloidal silica particles (Nissan Chemical Industries, Ltd., Snowtex DMAC, non-volatile content 30%, solvent methyl ethyl ketone, average particle size 15 nm) and 3 parts of a silane coupling agent γ-methacryloxypropyltriethoxysilane (Shin-Etsu Chemical KBE503) Was added, and 0.05 parts of dibutyltin dilaurate was added, followed by a stirring reaction at room temperature for 8 hours. To this system, 3.2 parts of ammonium persulfate (70% aqueous solution) and 1 part of a pyrrole monomer were weighed into a dropping funnel as a catalyst, and the mixture was added dropwise over 2 hours at room temperature to initiate polymerization. After the polymerization, methyl ethyl ketone was removed by an evaporator to obtain conductive fine particles. 50 parts of the conductive fine particles, 50 parts of an acrylic resin emulsion (RAI-175, solid content of 55%, average particle diameter of 178 nm) and 50 parts of ion-exchanged water are mixed with a conductive resin emulsion (34.6% solid content). ) Got.
[0030]
Comparative Example 1
The acrylic resin emulsion used in Example 1 (Aika Kogyo Co., Ltd., RAX-170, solid content 46%, average particle diameter 136 nm) was used as the resin emulsion of Comparative Example 1.
[0031]
Comparative Example 2
The conductive resin emulsion of Comparative Example 2 (solid content 54%, pH 5.5, average particle diameter 360 nm, zeta potential -93 mV) under the same conditions except that the amount of pyrrole was changed to 0.1 part in Example 2. Got.
[0032]
Comparative Example 3
A conductive resin emulsion of Comparative Example 3 (solid content: 54%) was obtained in the same manner as in Example 5 except that the amount of the conductive fine particles was changed to 20 parts.
[0033]
Comparative Example 4
A conductive resin emulsion of Comparative Example 4 (solid content: 27.6%) was obtained in the same manner as in Example 6, except that the amount of the conductive fine particles was changed to 20 parts.
[0034]
Table 1 shows the results of electrical resistance values, adhesion tests, abrasion resistance tests, and durability tests using the conductive fine particles and conductive resin emulsions of Examples and Comparative Examples.
The detailed test method is shown below.
The conductive resin emulsion of Example 1 was applied on a 100 μm-thick polyester resin film to form a film, and then an epoxy resin was applied and cured on both sides of the polyester resin film back surface and the film forming surface. FIG. 1 shows a transmission electron microscope (magnification: 60,000-fold) photograph of a sample obtained by cutting the sample with a microtome. The network-like polypyrrole was observed to be black in the cross-sectional layer of the resin film. It can be confirmed that conductivity is obtained by the presence. In addition, such a network-like polypyrrole naturally exists on the formed surface.
[0035]
<Test specimen preparation conditions>
The samples of Examples and Comparative Examples were applied to PET with a 50 μm doctor blade and dried at 23 ° C. for 24 hours to produce test pieces.
(1) Electric resistance test: Insulation resistance meter (JIS K-6911)
The test pieces of Examples and Comparative Examples are measured on the front and back surfaces of the prescribed disk electrode in a room at a temperature of 20 ± 2 ° C. and a relative humidity of 65 ± 5%, and the volume resistivity is measured.
{Circle around (2)} Adhesion test: Adhesion (cross cut method) (JIS K-5600-5-6) After applying a test piece to an ABS plate at 50 µm and drying, 16 hours, temperature 23 ± 2 ° C, relative humidity 50 ± Cured in a 5% room, cut 10 times vertically and horizontally at 1 mm intervals, and measured the state of peeling by cellotape (registered trademark) test. In the evaluation 0, there is no peeling. Evaluation 1 is when peeling is within 5%. Evaluation 2 is a case where the peeling is within 15%. Evaluation 3 is a case where peeling is within 35%.
{Circle around (3)} Durability test: heat aging test A test piece is allowed to stand at 60 ° C x 1000 hours, and then subjected to the above test. 4) Moist heat aging test The test piece is set at 40 ° C and 95% RH x 1000 hours. After placing, it is subjected to the above test.
{Circle around (5)} Cold aging test A test piece is left at −20 ° C. for 1000 hours and then subjected to the above test.
[0036]
[Table 1]
Figure 2004241132
[0037]
【The invention's effect】
The conductive fine particles and conductive resin emulsion according to the present invention are formed by forming a conductive polypyrrole (derivative) layer on the surface of seed fine particles or fine resin emulsion particles. Because of its low resistance, it can be used as a conductive coating agent and caulking agent, as well as antistatic materials, electronic equipment materials, sensors, memories, batteries, and various other electronic equipment. .
Also, the conductive fine particles according to the present invention, the conductive paint using the conductive resin emulsion, since the aqueous binder such as a resin emulsion can be employed without any problem, fire safety measures, without environmental measures can be easily used without the above. It can provide convenience in various fields.
Further, the conductive sheet body according to the present invention can be easily applied to the inside or outside of various devices or a connection portion, etc., so that an antistatic effect can be easily obtained, so that it can be used in various fields.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a sample formed by applying the conductive resin emulsion of Example 1 to a 100 μm-thick polyester resin film and forming the film. FIG. 4 is a cross-sectional view of a photograph obtained by observing a cross section cut by a microtome after transmission with a transmission electron microscope (magnification: 60,000).

Claims (10)

シード微粒子表面にポリピロール(誘導体)層が設けられていることを特徴とする導電性微粒子。Conductive fine particles, wherein a polypyrrole (derivative) layer is provided on the surface of the seed fine particles. 樹脂エマルジョン粒子の表面にポリピロール(誘導体)層が設けられていることを特徴とする導電性樹脂エマルジョン。A conductive resin emulsion, wherein a polypyrrole (derivative) layer is provided on the surface of the resin emulsion particles. シランカップリング剤でシード微粒子を表面処理し、ピロール(誘導体)を重合してポリピロール(誘導体)層を設けることを特徴とする導電性微粒子の製造方法。A method for producing conductive fine particles, comprising subjecting seed fine particles to a surface treatment with a silane coupling agent, polymerizing pyrrole (derivative), and providing a polypyrrole (derivative) layer. アニオン系界面活性剤の単独使用若しくはアニオン系界面活性剤とノニオン系界面活性剤の併用で重合された樹脂エマルジョン粒子の表面にポリピロール(誘導体)層が設けられている請求項2記載の導電性樹脂エマルジョン。The conductive resin according to claim 2, wherein a polypyrrole (derivative) layer is provided on the surface of the resin emulsion particles polymerized by using the anionic surfactant alone or in combination with the anionic surfactant and the nonionic surfactant. Emulsion. アニオン系界面活性剤の単独使用若しくはアニオン系界面活性剤とノニオン系界面活性剤の併用で重合された樹脂エマルジョン粒子の表面に、pHを3〜8に調製しながら、ゼーター電位が−10mV以下の状態でピロール(誘導体)を重合してポリピロール(誘導体)層を設けることを特徴とする導電性樹脂エマルジョンの製造方法。While adjusting the pH to 3 to 8 on the surface of the resin emulsion particles polymerized by using an anionic surfactant alone or in combination of an anionic surfactant and a nonionic surfactant, the zeta potential is -10 mV or less. A method for producing a conductive resin emulsion, comprising forming a polypyrrole (derivative) layer by polymerizing pyrrole (derivative) in a state. ノニオン系界面活性剤が使用されて重合してなる樹脂エマルジョン粒子の表面にポリピロール(誘導体)層が設けられている請求項2記載の導電性樹脂エマルジョン。The conductive resin emulsion according to claim 2, wherein a polypyrrole (derivative) layer is provided on the surface of the resin emulsion particles obtained by polymerization using a nonionic surfactant. ノニオン系界面活性剤を使用して重合して得られた樹脂エマルジョン粒子の表面にピロール(誘導体)を重合してポリピロール(誘導体)層を設けることを特徴とする導電性樹脂エマルジョンの製造方法。A method for producing a conductive resin emulsion, comprising: forming a polypyrrole (derivative) layer by polymerizing pyrrole (derivative) on the surface of resin emulsion particles obtained by polymerization using a nonionic surfactant. 請求項1の導電性微粒子が樹脂バインダーに分散されて仕上げられている導電性塗料。A conductive paint, wherein the conductive fine particles according to claim 1 are dispersed in a resin binder and finished. 請求項2又は請求項4若しくは請求項6の導電性樹脂エマルジョンを含有してなる導電性塗料。A conductive paint comprising the conductive resin emulsion according to claim 2 or claim 4 or claim 6. 請求項1の導電性微粒子若しくは請求項2又は請求項4或いは請求項6の導電性樹脂エマルジョンを含有する導電性材料が基材にコートされて仕上られている導電性シート体。A conductive sheet comprising a base material coated with a conductive material containing the conductive fine particles according to claim 1 or the conductive resin emulsion according to claim 2 or claim 4 or claim 6.
JP2003025776A 2003-02-03 2003-02-03 Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member Pending JP2004241132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025776A JP2004241132A (en) 2003-02-03 2003-02-03 Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025776A JP2004241132A (en) 2003-02-03 2003-02-03 Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member

Publications (1)

Publication Number Publication Date
JP2004241132A true JP2004241132A (en) 2004-08-26

Family

ID=32953976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025776A Pending JP2004241132A (en) 2003-02-03 2003-02-03 Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member

Country Status (1)

Country Link
JP (1) JP2004241132A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182959A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP2006182958A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
JP2012072261A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Production method for coloring resin particles, and coloring resin particles obtained by the production method
WO2012132533A1 (en) * 2011-03-31 2012-10-04 積水化成品工業株式会社 Colored resin particle, method for producing same, and use thereof
WO2014142133A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion
WO2014163202A1 (en) * 2013-04-05 2014-10-09 昭和電工株式会社 Method for manufacturing solid electrolytic capacitor
WO2018061374A1 (en) * 2016-09-30 2018-04-05 積水化成品工業株式会社 Conductive resin particles and use of same
WO2019176521A1 (en) * 2018-03-16 2019-09-19 積水化成品工業株式会社 Colored organic resin particle and method for producing same
JP2020013768A (en) * 2018-07-10 2020-01-23 ニホンハンダ株式会社 Pasty silver particle composition, manufacturing method of metal-made member conjugate, and manufacturing method of silver particle sintered article and composite of resin cured article

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182959A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP2006182958A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP4501031B2 (en) * 2004-12-28 2010-07-14 アキレス株式会社 Conductive fine particles and method for producing the same
JP4501030B2 (en) * 2004-12-28 2010-07-14 アキレス株式会社 Conductive fine particles and method for producing the same
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
JP2012072261A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Production method for coloring resin particles, and coloring resin particles obtained by the production method
CN103119088A (en) * 2010-09-28 2013-05-22 积水化成品工业株式会社 Coloring resin particles, and production method and uses therefor
WO2012132533A1 (en) * 2011-03-31 2012-10-04 積水化成品工業株式会社 Colored resin particle, method for producing same, and use thereof
EP2692779A1 (en) * 2011-03-31 2014-02-05 Sekisui Plastics Co., Ltd. Colored resin particle, method for producing same, and use thereof
EP2692779A4 (en) * 2011-03-31 2014-10-15 Sekisui Plastics Colored resin particle, method for producing same, and use thereof
JP5722434B2 (en) * 2011-03-31 2015-05-20 積水化成品工業株式会社 Colored resin particles, production method thereof, and use thereof
WO2014142133A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion
WO2014141367A1 (en) * 2013-03-11 2014-09-18 昭和電工株式会社 Method for producing conductive polymer-containing dispersion
US10563071B2 (en) 2013-03-11 2020-02-18 Showa Denko K.K. Method for producing conductive polymer-containing dispersion
JPWO2014142133A1 (en) * 2013-03-11 2017-02-16 昭和電工株式会社 Process for producing conductive polymer-containing dispersion
WO2014163202A1 (en) * 2013-04-05 2014-10-09 昭和電工株式会社 Method for manufacturing solid electrolytic capacitor
US9640325B2 (en) 2013-04-05 2017-05-02 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
JPWO2014163202A1 (en) * 2013-04-05 2017-02-16 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
WO2018061374A1 (en) * 2016-09-30 2018-04-05 積水化成品工業株式会社 Conductive resin particles and use of same
KR20190029656A (en) * 2016-09-30 2019-03-20 세키스이가세이힝코교가부시키가이샤 Conductive resin particles and uses thereof
JPWO2018061374A1 (en) * 2016-09-30 2019-08-29 積水化成品工業株式会社 Conductive resin particles and uses thereof
KR102248989B1 (en) 2016-09-30 2021-05-06 세키스이가세이힝코교가부시키가이샤 Conductive resin particles and their uses
WO2019176521A1 (en) * 2018-03-16 2019-09-19 積水化成品工業株式会社 Colored organic resin particle and method for producing same
JPWO2019176521A1 (en) * 2018-03-16 2021-03-11 積水化成品工業株式会社 Colored organic resin particles and their manufacturing method
JP7254766B2 (en) 2018-03-16 2023-04-10 積水化成品工業株式会社 Colored organic resin particles and method for producing the same
JP2020013768A (en) * 2018-07-10 2020-01-23 ニホンハンダ株式会社 Pasty silver particle composition, manufacturing method of metal-made member conjugate, and manufacturing method of silver particle sintered article and composite of resin cured article

Similar Documents

Publication Publication Date Title
Zhang et al. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride
CA1051284A (en) Process for coating pigment particles with organic polymers
EP3289026B1 (en) Aqueous stain resistant coating composition
JP2004241132A (en) Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member
JPH0687967B2 (en) Method for producing a dispersion of composite particles
WO2007055498A1 (en) Organo clay containing anticorrosive coating composition and preparation method thereof
WO2009084849A2 (en) Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same
CN102245718B (en) Self-precipitating aqueous particulate composition comprising pigment-binder particles
Yan et al. A strong underwater adhesive that totally cured in water
JP2637955B2 (en) Aqueous coating composition
CN1632015A (en) Nano self-crosslinked acrylate paint for external wall and method for making same
JP5286879B2 (en) Oval or acicular polymer particles containing fine particles and method for producing the same
US11873419B2 (en) Polyurethane-silica composite-based coating composition, polyurethane-silica composite film, and method of preparing the same
EP1669408B1 (en) Spherical composite composition and process for producing spherical composite composition
JP5229843B2 (en) Hydrophobized metal compound particle powder and method for producing the same
JPH08302270A (en) Pigment composition
DE102010032780A1 (en) Coating composition, useful for producing hydrophilic layer, which is used as anti-fog coating to prevent calcium deposits, protein- or fat-containing dirt and adhering of bacteria, comprises polyanion, polycation and a solvent
EP2352789B1 (en) Anti-corrosive paintings and coatings containing nanoparticles
CN108962432A (en) A kind of graphene conductive film
EP0780411B1 (en) Hydrophilic crosslinked polymer fine particles and process for production thereof
JPH06220428A (en) Surface-modified antifogging film
TW203086B (en)
Atta et al. Effect of inorganic nanomaterials types functionalized with smart nanogel on anti-corrosion and mechanical performances of epoxy coatings
JP5403213B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
Bisht et al. Evaluation of an advanced self healing and highly durable corrosion protective epoxy coating modified with poly (Aniline-co-Pentafluoroaniline)/ZrO2 nanocomposite on mild steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20091119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091204