JP2004239228A - Intake valve driving control device for internal combustion engine - Google Patents

Intake valve driving control device for internal combustion engine Download PDF

Info

Publication number
JP2004239228A
JP2004239228A JP2003031831A JP2003031831A JP2004239228A JP 2004239228 A JP2004239228 A JP 2004239228A JP 2003031831 A JP2003031831 A JP 2003031831A JP 2003031831 A JP2003031831 A JP 2003031831A JP 2004239228 A JP2004239228 A JP 2004239228A
Authority
JP
Japan
Prior art keywords
angle
target value
operating angle
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003031831A
Other languages
Japanese (ja)
Other versions
JP4254261B2 (en
Inventor
Hiroshi Oba
大羽  拓
Hiroshi Iwano
岩野  浩
Yutaro Minami
南  雄太郎
Hisanori Onoda
尚徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003031831A priority Critical patent/JP4254261B2/en
Publication of JP2004239228A publication Critical patent/JP2004239228A/en
Application granted granted Critical
Publication of JP4254261B2 publication Critical patent/JP4254261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid deterioration of torque response by a transient operating lag of a first and a second adjustable valve mechanisms. <P>SOLUTION: When an accelerator opening increases, an operation angle is expanded mainly by the first adjustable valve mechanism in a first region in which intake air amount is relatively low, and a central angle is retarded mainly by the second adjustable valve mechanism in a second region in which the intake air amount is relatively high. If a changing rate of an operation angle static target value B1 determined by the accelerator opening and engine rotational speed is not more than a predetermined value, it is determined as a transient operation. A central angle static target value (C1) is made a central angle dynamic target value (C11) by adding a fixed correction amount to retarded side. Though an actual value (B2) of the operation angle changes with a delay, the actual value (C12) of the central angle is retarded by correction of the center angle target value, thus the intake air amount is much secured. An engine torque which decreases like D1 without the correction becomes like D2, thus the deterioration of the torque response is avoided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の吸気弁の動弁機構として、吸気弁の作動角を変更する第1可変動弁機構と作動角の中心角を変更する第2可変動弁機構とを備えてなる内燃機関の吸気弁駆動制御装置に関する。
【0002】
【従来の技術】
内燃機関の低速低負荷時における燃費の改善や安定した運転性並びに高速高負荷時における吸気充填効率の向上による十分な出力の確保、などのために、吸気弁の作動角やその中心角を機関運転状態に応じて変えることができる吸気弁駆動制御装置が従来から種々提案されている。
【0003】
特許文献1は、本出願人が先に提案したものであるが、吸気弁の可変動弁機構として、吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小可能な第1可変動弁機構(リフト・作動角可変機構)と、リフトの中心角の位置を連続的に遅進させる第2可変動弁機構(位相可変機構)と、を備え、機関運転状態に応じて、吸気弁の作動角とその中心角とを、互いに独立して適切に可変制御することにより、燃費の改善や出力の向上を図った技術が開示されている。
【0004】
このように2つの可変動弁機構を備えた吸気弁駆動制御装置では、運転状態に応じて、それぞれの目標値が与えられ、これに沿って各可変動弁機構が制御されることになる。
【0005】
【特許文献1】
特開2001−263105号公報
【0006】
【発明が解決しようとする課題】
しかしながら、このように機関運転状態に応じて、吸気弁の作動角およびその中心角を互いに独立して可変制御する構成においては、運転状態が急に変化するとき、例えば、要求負荷が低負荷域から高負荷域へ比較的速い速度で変化する過渡状態においては、2つの可変動弁機構がそれぞれ目標値に対しある程度の遅れをもって作動し、かつそれぞれの作動遅れが同時に発生し得ることから、吸入空気量が目標値からずれてしまい、トルク応答性が悪化する可能性がある。
【0007】
また、低〜中負荷域で、過渡時に主に第1可変動弁機構のみが作動して作動角を変更することにより吸入空気量を調整するような場合にも、やはり第1可変動弁機構の作動遅れによって、同様にトルク応答性の悪化が生じる。
【0008】
【課題を解決するための手段】
本発明に係る内燃機関の吸気弁駆動制御装置は、吸気弁の作動角を連続的に変更可能な第1可変動弁機構と、上記作動角の中心角を連続的に変更可能な第2可変動弁機構と、を備え、機関の吸入空気量が相対的に少ない第1領域では主に上記作動角を変更して吸入空気量を調整するとともに吸入空気量が相対的に多い第2領域では主に上記中心角を変更して吸入空気量を調整するように構成されている。
【0009】
そして、本発明では、内燃機関の運転状態に基づいて作動角および中心角の目標値を算出する目標値算出手段と、上記作動角の目標値と該作動角の実際値との間に偏差が生じる過渡運転時に、上記中心角の目標値を補正する補正手段と、を備えている。上記の過渡運転の判定は、実際の偏差の大きさに基づいて判定してもよく、あるいは、アクセル開度やこれに関連した目標吸入空気量等の変化率から判定することもできる。
【0010】
上記第1領域では、負荷の変化に対し主に作動角の変更によって吸入空気量が調整されることになり、中心角は基本的に変化しないが、過渡運転であると判定したときには、作動角の作動遅れを補うように、中心角の目標値が補正される。これにより、トルク応答性の悪化が抑制される。
【0011】
【発明の効果】
この発明によれば、作動角の目標値と実際値との間の偏差が大きくなるような内燃機関の過渡運転時に、作動角の作動遅れを補うように中心角の目標値が補正されるので、実際の吸入空気量の変化の遅れが小さくなり、過渡時のトルク応答性の悪化を抑制できる。
【0012】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0013】
図1は、この発明に係る内燃機関の吸気弁駆動制御装置のシステム構成を示す構成説明図であって、内燃機関1は、吸気弁3と排気弁4とを有し、かつ吸気弁3の動弁機構として、吸気弁3のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構(VEL)5および作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構(VTC)6を備えている。また、吸気通路7には、モータ等のアクチュエータにより開度が制御される電子制御スロットル弁2が設けられている。ここで、上記スロットル弁2は、吸気通路7内に、ブローバイガスの処理などのために必要な僅かな負圧(例えば−50mmHg)を発生させるためだけに用いられており、吸入空気量の調整は、上記第1,第2可変動弁機構5,6により吸気弁3のリフト特性を変更することで行われる。すなわち、吸入空気量の調整をスロットル弁開度に依存しない実質的なスロットルレス運転が実現される。これらの第1,第2可変動弁機構5,6および電子制御スロットル弁2は、コントロールユニット10によって制御されているが、基本的には、内燃機関1の燃焼安定性と燃費を最良にする観点から、吸入空気量が相対的に少ない所定領域(VEL領域:第1領域)では、中心角を所定の進角位置に固定し、作動角を変更することで吸入空気量の調整を行い、また、吸入空気量が相対的に多い所定領域(VTC領域:第2領域)では、作動角を所定の大作動角に固定し、中心角を変更することで吸入空気量の調整を行う。
【0014】
また、燃料噴射弁8が吸気通路7に配設されており、上記のように吸気弁3により調整された吸入空気量に応じた量の燃料が、この燃料噴射弁8から噴射される。従って、内燃機関1の出力は、第1,第2可変動弁機構5,6により吸入空気量を調整することによって制御される。
【0015】
上記のコントロールユニット10は、運転者により操作されるアクセルペダルに設けられたアクセル開度センサ11からのアクセル開度信号APOと、エンジン回転速度センサ12からのエンジン回転速度信号Neと、吸入空気量センサ13からの吸入空気量信号と、を受け取り、これらの信号に基づいて、燃料噴射量、点火時期、目標作動角、目標中心角をそれぞれ演算する。そして、要求の燃料噴射量および点火時期を実現するように燃料噴射弁8および点火プラグ9を制御するとともに、目標作動角および目標中心角を実現するための制御信号を、第1可変動弁機構5のアクチュエータおよび第2可変動弁機構6のアクチュエータへそれぞれ出力する。なお、上記第1可変動弁機構5および第2可変動弁機構6は、その機械的な構成は公知であり、例えば、上述した特許文献1に記載の装置と同様の構成を有している。従って、その詳細な説明は省略する。
【0016】
初めに、本発明に係る中心角目標値の補正を行わない場合のトルク応答性の悪化について詳しく説明する。
【0017】
図2は、内燃機関がある回転速度で一定のときに、負荷に対する目標作動角および目標中心角の設定例を示している。これは、定常状態を前提とした静的な目標値であって、図の低〜中負荷域Aが本発明の第1領域に相当し、高負荷域Bが本発明の第2領域に相当する。図示するように、第1領域では、中心角はほぼ一定であり、負荷変化に対し主に作動角が変更される。また、第2領域では、作動角はほぼ一定であり、負荷変化に対し主に中心角が変更される。ここで、第1領域内で、低負荷域にあるトルクT1から中負荷域にあるトルクT2へと急激に変化する過渡運転を考えると、図3に示すように、アクセル開度の増加に伴って作動角目標値がB1のように拡大し、かつ中心角目標値はほぼ一定に保持される。実際の作動角は、目標値B1の変化に対し、応答遅れを伴った形でB2のように変化していく。従って、過渡の途中では、要求の作動角よりも実際の作動角が小さくなり、その結果、要求されるエンジントルクD2に比較して、実際のエンジントルクはD1のように低下し、トルク応答性が悪化する。
【0018】
また、図4および図5は、同様に、第1領域から第2領域へと移行する過渡時、つまり低負荷域にあるトルクT1から高負荷域にあるトルクT3へと急激に移行した場合の挙動を示している。この場合は、アクセル開度の増加に伴って、まず作動角目標値B1が拡大し、次に、第2領域において、中心角目標値C1が遅角側へ変化していく。実際の作動角および中心角は、これらの目標値に対し、B2およびC2として示すように、それぞれ応答遅れを伴った形で変化していく。従って、T1からT3へ変化する過渡の途中では、第1可変動弁機構5および第2可変動弁機構6の双方が作動遅れを有し、それぞれ静的目標値からずれてしまう。その結果、エンジントルクD1は、やはり要求よりも低くなり、トルク応答性が悪化する。
【0019】
本発明は、このようなトルク応答性の悪化を抑制するために、中心角目標値の補正を行う。
【0020】
図6は、本発明に係る補正制御の第1実施例を示すフローチャートであり、(a)が作動角目標値算出のフローチャート、(b)が中心角目標値算出のフローチャートを示す。
【0021】
作動角目標値算出については、アクセル開度APOおよびエンジン回転速度Neを逐次読み込み(ステップ11)、かつこのアクセル開度APOおよびエンジン回転速度Neから作動角の静的目標値を算出する(ステップ12)。
【0022】
一方、中心角目標値算出については、同様に、アクセル開度APOおよびエンジン回転速度Neを逐次読み込み(ステップ21)、かつこのアクセル開度APOおよびエンジン回転速度Neから中心角の静的目標値を算出する(ステップ22)。
【0023】
なお、上記アクセル開度APOに代えて、目標吸入空気量、目標トルク、目標充填空気量などのアクセル操作に応じた負荷を表す他のパラメータを用いることができる。
【0024】
次にステップ23で、上記の作動角静的目標値の変化率が所定値以上か否かに基づき、現在の運転状態が、中心角補正の必要な過渡であるか否かを判定する。上記変化率が所定値以上の場合、つまり所定の過渡運転であると判定した場合には、中心角静的目標値に対して遅角側に補正を行い、これを中心角目標値とする(ステップ24)。ステップ23でNOつまり過渡でない場合は、中心角目標値の補正は行わずに、上記の静的目標値をそのまま中心角目標値とする。
【0025】
なお、過渡判定に際して、上記実施例は作動角目標値の変化率から判定しているが、アクセル開度、該アクセル開度に関連する目標吸入空気量、目標トルク、目標充填空気量などの負荷を表すパラメータを用い、これらの値が変化前は所定値以下で、かつその変化率が所定値以上の場合に、過渡と判定するようにしても良い。
【0026】
図7は、この第1実施例の制御の内容を機能ブロック図として示したものである。ここで、APOはアクセル開度、Neはエンジン回転速度、であり、これらに基づいて、VTC静的目標角度演算部21において第2可変動弁機構6の中心角静的目標値tVTC0が求められ、かつVEL静的目標角度演算部22において第1可変動弁機構5の作動角静的目標値tVELが求められる。上記中心角静的目標値tVTC0は、VTC目標角度補正部23において、過渡時にのみ補正され、最終的な中心角目標値tVTCが出力される。過渡判定部24は、前述したように、作動角静的目標値tVELの変化率に基づいて過渡判定を行い、過渡と判定したときに、フラグ25の切換を介して、中心角静的目標値tVTC0に補正を加えることになる。VTC静的目標角度演算部21およびVEL静的目標角度演算部22は、定常運転状態で燃焼安定性を保ちつつ燃費が最良になるような中心角および作動角の静的目標値をそれぞれ算出するブロックである。また、中心角目標値の補正としては、例えば一定の遅角補正量26を、加算点27において中心角静的目標値tVTC0に加え、最終的な中心角目標値tVTCを算出する。
【0027】
図8は、上記第1実施例による過渡時の作用を示すタイムチャートであり、図2、図3と同じく、内燃機関の回転速度がある回転速度で一定に保たれていると仮定して、低負荷域のトルクT1からアクセルペダルを踏み込み第1領域内の中負荷域であるトルクT2まで過渡走行を行った際のアクセル開度APO、作動角、中心角およびエンジントルクの変化を示している。(a)のように時間t1から時間t2までアクセルペダルを踏み込んだとすると、アクセル開度に対応して符号B1で示すように作動角静的目標値が変化していくが、中心角静的目標値は符号C1で示すようにほぼ一定である。図3で説明したように、仮にこれらがそのまま最終的な目標値として与えられると、符号B2で示す線のように、実際の作動角が応答遅れを伴って変化することから、エンジントルクは、(d)のD1のように応答性の低いものとなる。
【0028】
本実施例では、作動角静的目標値の変化率が所定値以上となる過渡判定区間の間、中心角静的目標値に対して、所定の補正量を加えて中心角目標値を算出する。つまり符号C11で示す線のように、中心角目標値が遅角側に補正される。この結果、第2可変動弁機構6の応答遅れを伴う実際の中心角は、符号C12で示す線のように変化する。これにより、エンジントルクは、(d)のD2の線のように、より高く得られる。
【0029】
図9は、上記のような過渡時の負荷変化に伴う最大リフト点(換言すれば中心角におけるリフト)の変化に着目したもので、縦軸をリフト量、横軸をクランク角として、上記最大リフト点の移動軌跡を矢印でもって示している。中心角目標値の補正をしない場合には、矢印C1として示すように、最大リフト点のクランク角が変化せずに、そのリフト量のみが直線的に増加する。これに対し、上記実施例のように中心角目標値を遅角側に補正すれば、最大リフト点が矢印C2のように過渡途中で一旦遅角しつつ高リフトとなる。なお、L1は、補正をしない場合の過渡途中のリフト特性の一例を、L2は、補正した場合の過渡途中のリフト特性の一例を、それぞれ示す。同一トルクを実現するための作動角と中心角の組み合わせは多数存在し、図中に等トルク線として示しているが、図の右上側が相対的に高いトルクとなるので、矢印C2のように遅角しつつ高リフトとなることで、過渡途中のトルクが高くなる。つまり、トルク応答性が向上する。
【0030】
これを、吸気弁の開閉時期の観点から説明すると、図10に示すようになる。図10は、上記のリフト特性L1とL2とを対比したものであり、作動角が同じであっても、中心角が遅角することにより、吸気弁閉時期IVCが下死点BDCに近付き、吸入空気量が増加することになる。なお、第1領域内では作動角は比較的小さいので、遅角によっても、吸気弁閉時期IVCが下死点BDC後となることはない。また吸気弁開時期IVOは、遅角によって上死点TDCに近付く。したがって、過渡時のトルク応答性が向上する。
【0031】
次に、図11は、上記第1実施例による過渡時の作用を示すタイムチャートであるが、特に、図4、図5と同じく、内燃機関の回転速度がある回転速度で一定に保たれていると仮定して、低負荷域のトルクT1からアクセルペダルを踏み込み高負荷域のトルクT3まで過渡走行を行った際のアクセル開度APO、作動角、中心角およびエンジントルクの変化を示している。(a)のように時間t1から時間t3までアクセルペダルを踏み込んだとすると、アクセル開度に対応して、図5のB1,C1のように作動角静的目標値および中心角静的目標値が算出されることになるが、本実施例では、作動角静的目標値の変化率が所定値以上となる過渡初期の間、中心角静的目標値に対して、所定の補正量を加えて中心角目標値を算出する。つまり符号C11で示す線のように、中心角目標値が遅角側に補正される。この結果、第2可変動弁機構6の応答遅れを伴う実際の中心角は、符号C12で示す線のように変化する。これにより、やはり過渡途中のエンジントルクが、(d)のD2の線のように、より高く得られる。
【0032】
次に、図12は、過渡判定の方法を変更した第2実施例を示す機能ブロック図である。前述した第1実施例と同じく、アクセル開度APOおよびエンジン回転速度Neに基づいて、VTC静的目標角度演算部21において第2可変動弁機構6の中心角静的目標値tVTC0が求められ、かつVEL静的目標角度演算部22において第1可変動弁機構5の作動角静的目標値tVELが求められる。上記中心角静的目標値tVTC0は、VTC目標角度補正部23において、過渡時にのみ補正され、最終的な中心角目標値tVTCが出力される。この実施例では、過渡判定部31は、加算点32において算出される作動角目標値tVELと作動角の現在値(実際値)rVELとの偏差(tVEL−rVEL)を、所定値VELERR♯と比較し、所定値以上の場合に過渡と判定する。なお、ハンチング防止のために、判定に際し適宜なヒステリシスを設けてもよい。そして、過渡と判定したときには、フラグ25の切換を介して、中心角静的目標値tVTC0に補正を加えることになる。中心角目標値の補正としては、例えば一定の遅角補正量26を、加算点27において中心角静的目標値tVTC0に加え、最終的な中心角目標値tVTCを算出する。このように実際の偏差に基づき過渡判定を行えば、第1可変動弁機構5の応答性が条件によって異なっても、妥当な過渡判定が可能となる。
【0033】
図13は、上記第2実施例の作用を示す過渡時のタイムチャートであり、前述した図3、図8と同様に、第1領域内のトルクT1からトルクT2までの過渡運転の際の作用を示している。(a)のように時間t1から時間t2までアクセルペダルを踏み込んだとすると、アクセル開度に対応して符号B1で示すように作動角静的目標値が変化していくため、実際の作動角B2との間で、図示するように、比較的大きな偏差が発生する。
【0034】
本実施例では、この偏差が所定値以上となる間、中心角静的目標値に対して、所定の補正量を加えて中心角目標値を算出する。つまり符号C21で示す線のように、中心角目標値が遅角側に補正される。この結果、第2可変動弁機構6の応答遅れを伴う実際の中心角は、符号C22で示す線のように変化する。これにより、エンジントルクは、(d)のD22の線のように、より一層高く得られる。
【0035】
次に、図14は、第1実施例に対し補正量を変更した第3実施例を示す機能ブロック図である。前述した第1実施例と同じく、アクセル開度APOおよびエンジン回転速度Neに基づいて、VTC静的目標角度演算部21において第2可変動弁機構6の中心角静的目標値tVTC0が求められ、かつVEL静的目標角度演算部22において第1可変動弁機構5の作動角静的目標値tVELが求められる。上記中心角静的目標値tVTC0は、VTC目標角度補正部23において、過渡時にのみ補正され、最終的な中心角目標値tVTCが出力される。過渡判定部24は、第1実施例と同じく、作動角静的目標値tVELの変化率に基づいて過渡判定を行い、過渡と判定したときに、フラグ25の切換を介して、中心角静的目標値tVTC0に補正を加えることになる。ここで、本実施例では、中心角目標値の補正として、加算点32において作動角目標値tVELと作動角の現在値(実際値)rVELとの偏差(tVEL−rVEL)を求めるとともに、これに所定のゲイン(補正係数♯VTC)33を乗じて遅角補正量を求め、該遅角補正量を加算点27において中心角静的目標値tVTC0に加えるようにしている。つまり、偏差に比例した補正が加えられる。なお、単に偏差に補正係数♯VTCを乗じるのではなく、偏差に応じたテーブル検索や、補正量の上限の制限、などを行ってもよい。この実施例によれば、第1可変動弁機構5の応答性に応じて遅角補正量が与えられるため、アクセルペダルの踏み込み速度の違い等による補正量の要求の相違に対し、容易に対応することができる。
【0036】
図15は、上記第3実施例の作用を示す過渡時のタイムチャートであり、前述した図3、図8、図13と同様に、第1領域内のトルクT1からトルクT2までの過渡運転の際の作用を示している。(a)のように時間t1から時間t2までアクセルペダルを踏み込んだとすると、アクセル開度に対応して符号B1で示すように作動角静的目標値が変化していくため、実際の作動角B2との間で、図示するように、比較的大きな偏差が発生する。
【0037】
本実施例では、作動角静的目標値の変化率から過渡と判定した期間、上記の偏差に応じた大きさの補正量を中心角静的目標値に加えて、中心角目標値を算出する。つまり符号C31で示す線のように、中心角目標値が遅角側に補正される。この結果、第2可変動弁機構6の応答遅れを伴う実際の中心角は、符号C32で示す線のように変化する。これにより、エンジントルクは、(d)のD32の線のように、より一層高く得られる。
【0038】
次に、図16は、第1実施例に対し過渡判定の方法と補正量とを変更した第4実施例を示す機能ブロック図である。なお、これは、第2実施例と第3実施例とを組み合わせた形となる。すなわち、前述した第1実施例と同じく、アクセル開度APOおよびエンジン回転速度Neに基づいて、VTC静的目標角度演算部21において第2可変動弁機構6の中心角静的目標値tVTC0が求められ、かつVEL静的目標角度演算部22において第1可変動弁機構5の作動角静的目標値tVELが求められる。上記中心角静的目標値tVTC0は、VTC目標角度補正部23において、過渡時にのみ補正され、最終的な中心角目標値tVTCが出力される。過渡判定部31は、加算点32において算出される作動角目標値tVELと作動角の現在値rVELとの偏差(tVEL−rVEL)を、所定値VELERR♯と比較し、所定値以上の場合に過渡と判定する。そして、過渡と判定したときには、フラグ25の切換を介して、中心角静的目標値tVTC0に補正を加えることになる。中心角目標値の補正としては、上記の偏差に所定のゲイン(補正係数♯VTC)33を乗じて遅角補正量を求め、該遅角補正量を加算点27において中心角静的目標値tVTC0に加えるようにしている。つまり、偏差に基づいて過渡判定が行われるとともに、該偏差に比例した補正が加えられる。
【0039】
この実施例によれば、第1可変動弁機構5の応答性に応じて過渡判定がなされるとともに遅角補正量が与えられるため、アクセルペダルの踏み込み速度の違いやアクチュエータの応答性の違い等による補正量の要求の相違に対し、容易に対応することができる。
【0040】
図17は、上記第3実施例の作用を示す過渡時のタイムチャートであり、前述した図3、図8、図13、図15と同様に、第1領域内のトルクT1からトルクT2までの過渡運転の際の作用を示している。(a)のように時間t1から時間t2までアクセルペダルを踏み込んだとすると、アクセル開度に対応して符号B1で示すように作動角静的目標値が変化していくため、実際の作動角B2との間で、図示するように、比較的大きな偏差が発生する。
【0041】
本実施例では、この偏差が所定値以上であれば過渡と判定し、この過渡の間、上記の偏差に応じた大きさの補正量を中心角静的目標値に加えて、中心角目標値を算出する。つまり符号C41で示す線のように、中心角目標値が遅角側に補正される。この結果、第2可変動弁機構6の応答遅れを伴う実際の中心角は、符号C42で示す線のように変化する。これにより、エンジントルクは、(d)のD42の線のように、より一層高く得られる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の吸気弁駆動制御装置のシステム構成図。
【図2】機関回転速度一定の下での負荷に対する作動角および中心角の設定の一例を示す特性図。
【図3】図2の設定による過渡時の作動角、中心角等の変化を示すタイムチャート。
【図4】低負荷から高負荷までの過渡範囲を示した図2と同様の特性図。
【図5】低負荷から高負荷までの過渡の際の作動角、中心角等の変化を示すタイムチャート。
【図6】本発明に係る補正制御の第1実施例を示すフローチャート。
【図7】第1実施例のブロック図。
【図8】第1実施例による中心角の補正を行った場合の過渡時のタイムチャート。
【図9】この第1実施例による過渡時における最大リフト点の移動軌跡を示す特性図。
【図10】補正により遅角した吸気弁開閉時期を示すグラフ。
【図11】低負荷から高負荷までの過渡の際の第1実施例によるタイムチャート。
【図12】第2実施例のブロック図。
【図13】第2実施例による中心角の補正を行った場合の過渡時のタイムチャート。
【図14】第3実施例のブロック図。
【図15】第3実施例による中心角の補正を行った場合の過渡時のタイムチャート。
【図16】第4実施例のブロック図。
【図17】第4実施例による中心角の補正を行った場合の過渡時のタイムチャート。
【符号の説明】
2…電子制御スロットル弁
5…第1可変動弁機構
6…第2可変動弁機構
10…コントロールユニット
11…アクセル開度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an internal combustion engine having a first variable valve mechanism for changing the operating angle of an intake valve and a second variable valve mechanism for changing a central angle of the operating angle as a valve mechanism for an intake valve of an internal combustion engine. The present invention relates to an intake valve drive control device for an engine.
[0002]
[Prior art]
The operating angle of the intake valve and the central angle of the engine are used to improve fuel efficiency at low speed and low load of the internal combustion engine and to secure sufficient output by improving the stable driving performance and at the time of high speed and high load by improving the intake filling efficiency. Conventionally, various intake valve drive control devices that can be changed according to the operation state have been proposed.
[0003]
Patent Literature 1, which has been previously proposed by the present applicant, employs a first variable valve that can simultaneously and continuously increase and decrease the lift and operating angle of an intake valve as a variable valve mechanism for an intake valve. A mechanism (variable lift / operating angle mechanism) and a second variable valve mechanism (variable phase mechanism) that continuously delays the position of the central angle of the lift are provided. A technique has been disclosed in which the operating angle and the central angle thereof are appropriately variably controlled independently of each other to improve fuel efficiency and output.
[0004]
As described above, in the intake valve drive control device including the two variable valve mechanisms, each target value is given according to the operating state, and each variable valve mechanism is controlled in accordance with the target value.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-263105
[Problems to be solved by the invention]
However, in the configuration in which the operating angle of the intake valve and the central angle thereof are variably controlled independently of each other according to the engine operating state, when the operating state changes suddenly, for example, when the required load is in a low load region. In a transient state in which the speed changes from a relatively high speed to a high load region, the two variable valve mechanisms operate with a certain delay with respect to the target value, and the respective operating delays can occur simultaneously. The air amount may deviate from the target value, and the torque responsiveness may deteriorate.
[0007]
Also, in the low to medium load range, when the first variable valve mechanism is mainly operated during transition to adjust the intake air amount by changing the operating angle, the first variable valve mechanism is also used. The operation delay similarly causes the deterioration of the torque response.
[0008]
[Means for Solving the Problems]
An intake valve drive control device for an internal combustion engine according to the present invention includes a first variable valve mechanism capable of continuously changing an operating angle of an intake valve and a second variable valve mechanism capable of continuously changing a central angle of the operating angle. A variable valve mechanism, in the first region where the intake air amount of the engine is relatively small, the operation angle is mainly changed to adjust the intake air amount, and in the second region where the intake air amount is relatively large. It is configured to adjust the intake air amount mainly by changing the center angle.
[0009]
In the present invention, the target value calculating means for calculating the target values of the operating angle and the central angle based on the operating state of the internal combustion engine, and a deviation between the target value of the operating angle and the actual value of the operating angle is provided. Correction means for correcting the target value of the central angle at the time of the occurring transient operation. The above-mentioned determination of the transient operation may be made based on the magnitude of the actual deviation, or may be made from the rate of change of the accelerator opening degree and the target intake air amount related thereto.
[0010]
In the first region, the intake air amount is adjusted mainly by changing the operating angle in response to a change in load, and the center angle basically does not change. The target value of the central angle is corrected so as to compensate for the operation delay of. Thereby, deterioration of the torque responsiveness is suppressed.
[0011]
【The invention's effect】
According to the present invention, during the transient operation of the internal combustion engine in which the deviation between the target value and the actual value of the operating angle becomes large, the target value of the central angle is corrected so as to compensate for the operation delay of the operating angle. In addition, the delay in the change of the actual intake air amount is reduced, and the deterioration of the torque responsiveness during the transition can be suppressed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is an explanatory diagram showing a system configuration of an intake valve drive control device for an internal combustion engine according to the present invention. The internal combustion engine 1 has an intake valve 3 and an exhaust valve 4, and As a valve operating mechanism, a first variable valve operating mechanism (VEL) 5 capable of continuously increasing / decreasing a lift / operating angle of the intake valve 3 and a central angle of the operating angle being continuously retarded. A possible second variable valve mechanism (VTC) 6 is provided. The intake passage 7 is provided with an electronically controlled throttle valve 2 whose opening is controlled by an actuator such as a motor. Here, the throttle valve 2 is used only to generate a slight negative pressure (for example, −50 mmHg) required for processing the blow-by gas in the intake passage 7, and adjusts the amount of intake air. Is performed by changing the lift characteristic of the intake valve 3 by the first and second variable valve mechanisms 5 and 6. That is, a substantial throttleless operation is achieved in which the adjustment of the intake air amount does not depend on the throttle valve opening. The first and second variable valve mechanisms 5, 6 and the electronically controlled throttle valve 2 are controlled by the control unit 10, but basically optimize the combustion stability and fuel efficiency of the internal combustion engine 1. From a viewpoint, in a predetermined area where the intake air amount is relatively small (VEL area: first area), the center angle is fixed at a predetermined advance position, and the intake angle is adjusted by changing the operating angle. In a predetermined region where the amount of intake air is relatively large (VTC region: second region), the operation angle is fixed at a predetermined large operation angle and the center angle is changed to adjust the amount of intake air.
[0014]
Further, a fuel injection valve 8 is provided in the intake passage 7, and a fuel of an amount corresponding to the intake air amount adjusted by the intake valve 3 as described above is injected from the fuel injection valve 8. Therefore, the output of the internal combustion engine 1 is controlled by adjusting the intake air amount by the first and second variable valve mechanisms 5, 6.
[0015]
The control unit 10 includes an accelerator opening signal APO from an accelerator opening sensor 11 provided on an accelerator pedal operated by a driver, an engine rotation speed signal Ne from an engine rotation speed sensor 12, and an intake air amount. The intake air amount signal from the sensor 13 is received, and the fuel injection amount, the ignition timing, the target operating angle, and the target central angle are respectively calculated based on these signals. The fuel injection valve 8 and the ignition plug 9 are controlled so as to realize the required fuel injection amount and ignition timing, and a control signal for realizing the target operating angle and the target central angle is transmitted to the first variable valve mechanism. 5 and the actuator of the second variable valve mechanism 6. Note that the first variable valve mechanism 5 and the second variable valve mechanism 6 have a known mechanical configuration, and have, for example, the same configuration as the device described in Patent Document 1 described above. . Therefore, the detailed description is omitted.
[0016]
First, the deterioration of the torque responsiveness when the correction of the center angle target value according to the present invention is not performed will be described in detail.
[0017]
FIG. 2 shows an example of setting the target operating angle and the target central angle with respect to the load when the internal combustion engine is constant at a certain rotational speed. This is a static target value assuming a steady state, and the low to medium load region A in the figure corresponds to the first region of the present invention, and the high load region B corresponds to the second region of the present invention. I do. As shown in the drawing, in the first region, the central angle is substantially constant, and the operating angle is mainly changed with a change in load. Further, in the second region, the operating angle is substantially constant, and the central angle is mainly changed with a change in load. Here, in the first region, considering a transient operation in which the torque T1 in the low load region rapidly changes from the torque T1 in the medium load region to the torque T2, as shown in FIG. As a result, the target operating angle is expanded as indicated by B1, and the target central angle is maintained substantially constant. The actual operating angle changes with a response delay with respect to the change in the target value B1, as shown by B2. Accordingly, during the transition, the actual operating angle becomes smaller than the required operating angle, and as a result, the actual engine torque decreases as indicated by D1 as compared with the required engine torque D2, and the torque responsiveness is reduced. Worsens.
[0018]
Similarly, FIGS. 4 and 5 show the case of a transition from the first region to the second region, that is, the case where the torque T1 in the low load region suddenly changes to the torque T3 in the high load region. The behavior is shown. In this case, the operating angle target value B1 first increases with an increase in the accelerator opening, and then the central angle target value C1 changes to the retard side in the second region. The actual operating angle and the central angle change with respect to these target values, as shown by B2 and C2, respectively, with a response delay. Therefore, during the transition from T1 to T3, both the first variable valve mechanism 5 and the second variable valve mechanism 6 have an operation delay, and each deviates from the static target value. As a result, the engine torque D1 also becomes lower than required, and the torque responsiveness deteriorates.
[0019]
The present invention corrects the center angle target value in order to suppress such deterioration of the torque response.
[0020]
FIGS. 6A and 6B are flowcharts showing a first embodiment of the correction control according to the present invention, wherein FIG. 6A is a flowchart for calculating an operating angle target value, and FIG. 6B is a flowchart for calculating a central angle target value.
[0021]
Regarding the calculation of the target operating angle, the accelerator opening APO and the engine speed Ne are sequentially read (step 11), and a static target value of the operating angle is calculated from the accelerator opening APO and the engine speed Ne (step 12). ).
[0022]
On the other hand, regarding the calculation of the center angle target value, similarly, the accelerator opening APO and the engine rotation speed Ne are sequentially read (step 21), and the static target value of the center angle is calculated from the accelerator opening APO and the engine rotation speed Ne. It is calculated (step 22).
[0023]
Note that, instead of the accelerator opening APO, other parameters representing a load corresponding to the accelerator operation, such as a target intake air amount, a target torque, and a target filling air amount, can be used.
[0024]
Next, in step 23, it is determined whether or not the current operating state is a transition requiring the central angle correction based on whether or not the rate of change of the operating angle static target value is equal to or greater than a predetermined value. If the rate of change is equal to or greater than a predetermined value, that is, if it is determined that the operation is a predetermined transient operation, the central angle static target value is corrected to the retard side, and this is set as the central angle target value ( Step 24). If NO in step 23, that is, if it is not a transition, the central angle target value is not corrected and the above static target value is used as the central angle target value as it is.
[0025]
In the above-described embodiment, the transient determination is performed based on the change rate of the target operating angle. However, the load such as the accelerator opening, the target intake air amount, the target torque, and the target filling air amount related to the accelerator opening is determined. May be determined as transient if these values are equal to or less than a predetermined value before the change and the rate of change is equal to or more than the predetermined value.
[0026]
FIG. 7 is a functional block diagram showing the contents of the control of the first embodiment. Here, APO is the accelerator opening and Ne is the engine speed. Based on these, the VTC static target angle calculation unit 21 calculates the static central angle target value tVTC0 of the second variable valve mechanism 6. In addition, the VEL static target angle calculation unit 22 obtains an operating angle static target value tVEL of the first variable valve mechanism 5. The center angle static target value tVTC0 is corrected only by the VTC target angle correction unit 23 during the transition, and the final center angle target value tVTC is output. As described above, the transient determination unit 24 performs a transient determination based on the rate of change of the operating angle static target value tVEL. A correction will be added to tVTC0. The VTC static target angle calculation unit 21 and the VEL static target angle calculation unit 22 calculate the static target values of the center angle and the operating angle, respectively, which optimize the fuel consumption while maintaining the combustion stability in the steady operation state. It is a block. Further, as the correction of the center angle target value, for example, a constant retard correction amount 26 is added to the center angle static target value tVTC0 at the addition point 27, and the final center angle target value tVTC is calculated.
[0027]
FIG. 8 is a time chart showing the transient operation according to the first embodiment. As in FIGS. 2 and 3, assuming that the rotation speed of the internal combustion engine is kept constant at a certain rotation speed, The graph shows changes in the accelerator opening APO, the operating angle, the central angle, and the engine torque when the accelerator pedal is depressed and the accelerator pedal is depressed and the vehicle travels transiently from the torque T2 in the first region to the torque T2 in the first region. . Assuming that the accelerator pedal is depressed from time t1 to time t2 as in (a), the operating angle static target value changes as indicated by reference numeral B1 in accordance with the accelerator opening, but the central angle static target value Is substantially constant as shown by reference numeral C1. As described with reference to FIG. 3, if these are given as final target values as they are, the actual operating angle changes with a response delay, as indicated by the line indicated by the reference numeral B2. The response is low like D1 in (d).
[0028]
In the present embodiment, the central angle target value is calculated by adding a predetermined correction amount to the central angle static target value during the transient determination section in which the rate of change of the operating angle static target value is equal to or more than the predetermined value. . In other words, the central angle target value is corrected to the retard side, as indicated by the line indicated by reference numeral C11. As a result, the actual center angle accompanied by the response delay of the second variable valve mechanism 6 changes as indicated by the line indicated by the symbol C12. Thereby, the engine torque can be obtained higher as indicated by the line D2 in (d).
[0029]
FIG. 9 focuses on the change in the maximum lift point (in other words, the lift at the central angle) due to the load change during the transition as described above. The vertical axis represents the lift amount, and the horizontal axis represents the crank angle. The movement locus of the lift point is indicated by an arrow. When the central angle target value is not corrected, as shown by an arrow C1, the crank angle at the maximum lift point does not change, and only the lift amount linearly increases. On the other hand, if the central angle target value is corrected to the retard side as in the above embodiment, the maximum lift point becomes a high lift while temporarily retarding during the transition as shown by the arrow C2. Note that L1 indicates an example of a lift characteristic during transition when no correction is performed, and L2 indicates an example of a lift characteristic during transition when correction is performed. There are many combinations of the operating angle and the central angle for realizing the same torque, which are shown as iso-torque lines in the figure. However, since the upper right side of the figure has a relatively high torque, it is delayed as shown by arrow C2. The high lift while cornering increases the torque during the transition. That is, the torque response is improved.
[0030]
This will be described with reference to FIG. 10 from the viewpoint of the opening / closing timing of the intake valve. FIG. 10 compares the above-described lift characteristics L1 and L2. Even if the operating angles are the same, the center angle is retarded, so that the intake valve closing timing IVC approaches the bottom dead center BDC, The amount of intake air will increase. In addition, since the operating angle is relatively small in the first region, the intake valve closing timing IVC does not become later than the bottom dead center BDC even by retarding. In addition, the intake valve opening timing IVO approaches the top dead center TDC due to the retard angle. Therefore, the torque response at the time of transition is improved.
[0031]
Next, FIG. 11 is a time chart showing the operation during the transition according to the first embodiment. In particular, as in FIGS. 4 and 5, the rotation speed of the internal combustion engine is kept constant at a certain rotation speed. The graph shows changes in the accelerator opening APO, the operating angle, the central angle, and the engine torque when the accelerator pedal is depressed and the accelerator pedal is depressed to perform the transient running from the torque T3 in the high load region. . Assuming that the accelerator pedal is depressed from time t1 to time t3 as shown in (a), an operating angle static target value and a central angle static target value are calculated as shown in B1 and C1 in FIG. However, in the present embodiment, a predetermined correction amount is added to the center angle static target value during the initial stage of the transition when the rate of change of the operating angle static target value is equal to or more than the predetermined value, and the center is adjusted. Calculate the angle target value. In other words, the central angle target value is corrected to the retard side, as indicated by the line indicated by reference numeral C11. As a result, the actual center angle accompanied by the response delay of the second variable valve mechanism 6 changes as indicated by the line indicated by the symbol C12. As a result, the engine torque during the transition is also higher as shown by the line D2 in (d).
[0032]
Next, FIG. 12 is a functional block diagram showing a second embodiment in which the method of transient determination is changed. As in the first embodiment described above, the VTC static target angle calculation unit 21 calculates the center angle static target value tVTC0 of the second variable valve mechanism 6 based on the accelerator opening APO and the engine rotation speed Ne. In addition, the VEL static target angle calculation unit 22 obtains an operating angle static target value tVEL of the first variable valve mechanism 5. The center angle static target value tVTC0 is corrected only by the VTC target angle correction unit 23 during the transition, and the final center angle target value tVTC is output. In this embodiment, the transient determination unit 31 compares the deviation (tVEL-rVEL) between the target operating angle tVEL calculated at the addition point 32 and the current value (actual value) rVEL of the operating angle with a predetermined value VELERR #. Then, when the value is equal to or more than the predetermined value, it is determined that a transition occurs. In order to prevent hunting, an appropriate hysteresis may be provided in the determination. When it is determined that the transition is in a transient state, the central angle static target value tVTC0 is corrected through the switching of the flag 25. As the correction of the center angle target value, for example, a constant retard correction amount 26 is added to the center angle static target value tVTC0 at the addition point 27, and the final center angle target value tVTC is calculated. If the transient determination is performed on the basis of the actual deviation in this way, a reasonable transient determination can be performed even if the response of the first variable valve mechanism 5 varies depending on conditions.
[0033]
FIG. 13 is a transient time chart showing the operation of the second embodiment, and similarly to FIGS. 3 and 8, the operation at the time of the transient operation from the torque T1 to the torque T2 in the first region. Is shown. Assuming that the accelerator pedal is depressed from time t1 to time t2 as shown in (a), the operating angle static target value changes as indicated by reference numeral B1 in accordance with the accelerator opening. , A relatively large deviation occurs as shown in FIG.
[0034]
In the present embodiment, while the deviation is equal to or larger than the predetermined value, the central angle target value is calculated by adding a predetermined correction amount to the central angle static target value. In other words, the central angle target value is corrected to the retard side, as indicated by the line indicated by reference numeral C21. As a result, the actual center angle accompanied by the response delay of the second variable valve mechanism 6 changes as indicated by the line indicated by reference sign C22. As a result, the engine torque can be further increased as indicated by the line D22 in (d).
[0035]
Next, FIG. 14 is a functional block diagram showing a third embodiment in which the correction amount is changed from the first embodiment. As in the first embodiment described above, the VTC static target angle calculation unit 21 calculates the center angle static target value tVTC0 of the second variable valve mechanism 6 based on the accelerator opening APO and the engine rotation speed Ne. In addition, the VEL static target angle calculation unit 22 obtains an operating angle static target value tVEL of the first variable valve mechanism 5. The center angle static target value tVTC0 is corrected only by the VTC target angle correction unit 23 during the transition, and the final center angle target value tVTC is output. The transient determination unit 24 performs a transient determination based on the rate of change of the operating angle static target value tVEL as in the first embodiment. Correction is made to the target value tVTC0. Here, in the present embodiment, as a correction of the center angle target value, a deviation (tVEL-rVEL) between the operating angle target value tVEL and the current value (actual value) rVEL of the operating angle at the addition point 32 is calculated, and A predetermined gain (correction coefficient ♯VTC) 33 is multiplied to obtain a retard correction amount, and the retard correction amount is added to the center angle static target value tVTC0 at the addition point 27. That is, a correction proportional to the deviation is made. Instead of simply multiplying the deviation by the correction coefficient ♯VTC, a table search according to the deviation or a limitation on the upper limit of the correction amount may be performed. According to this embodiment, since the retard correction amount is given according to the response of the first variable valve mechanism 5, it is possible to easily cope with a difference in correction amount requirement due to a difference in accelerator pedal depression speed or the like. can do.
[0036]
FIG. 15 is a transient time chart showing the operation of the third embodiment, and the transient operation from the torque T1 to the torque T2 in the first region is performed similarly to FIGS. 3, 8, and 13 described above. The operation at the time is shown. Assuming that the accelerator pedal is depressed from time t1 to time t2 as shown in (a), the operating angle static target value changes as indicated by reference numeral B1 in accordance with the accelerator opening. , A relatively large deviation occurs as shown in FIG.
[0037]
In the present embodiment, the central angle target value is calculated by adding a correction amount of a magnitude corresponding to the above-described deviation to the central angle static target value during a period in which it is determined that the operation angle is transient from the rate of change of the operating angle static target value. . In other words, the central angle target value is corrected to the retard side, as indicated by the line indicated by reference numeral C31. As a result, the actual center angle accompanied by the response delay of the second variable valve mechanism 6 changes as indicated by the line indicated by the symbol C32. As a result, the engine torque can be further increased as indicated by the line D32 in (d).
[0038]
Next, FIG. 16 is a functional block diagram showing a fourth embodiment in which the method of transient determination and the correction amount are changed from the first embodiment. This is a combination of the second embodiment and the third embodiment. That is, similarly to the above-described first embodiment, the VTC static target angle calculation unit 21 determines the central target static target value tVTC0 of the second variable valve mechanism 6 based on the accelerator opening APO and the engine rotation speed Ne. In addition, the VEL static target angle calculation unit 22 obtains an operating angle static target value tVEL of the first variable valve mechanism 5. The center angle static target value tVTC0 is corrected only by the VTC target angle correction unit 23 during the transition, and the final center angle target value tVTC is output. The transient determination unit 31 compares a deviation (tVEL-rVEL) between the target operating angle value tVEL calculated at the addition point 32 and the current operating angle value rVEL with a predetermined value VELERR #. Is determined. When it is determined that the transition is in the transient state, the central angle static target value tVTC0 is corrected through the switching of the flag 25. As the correction of the central angle target value, the deviation is multiplied by a predetermined gain (correction coefficient ♯VTC) 33 to obtain a retardation correction amount, and the retardation correction amount is calculated at the addition point 27 by the central angle static target value tVTC0. To be added. That is, a transient determination is made based on the deviation, and a correction proportional to the deviation is made.
[0039]
According to this embodiment, the transient determination is made in accordance with the responsiveness of the first variable valve mechanism 5 and the retard correction amount is given, so that the difference in accelerator pedal depression speed, the difference in actuator responsiveness, etc. , It is possible to easily cope with the difference in the correction amount requirement.
[0040]
FIG. 17 is a transient time chart showing the operation of the third embodiment, and similarly to FIGS. 3, 8, 13, and 15 described above, the range from the torque T1 to the torque T2 in the first region. The operation at the time of transient operation is shown. Assuming that the accelerator pedal is depressed from time t1 to time t2 as shown in (a), the operating angle static target value changes as indicated by reference numeral B1 in accordance with the accelerator opening. , A relatively large deviation occurs as shown in FIG.
[0041]
In this embodiment, if the deviation is equal to or larger than a predetermined value, it is determined that the current is a transient. During this transient, a correction amount of a magnitude corresponding to the deviation is added to the central angle static target value, and the central angle target value is calculated. Is calculated. That is, the central angle target value is corrected to the retard side as indicated by the line indicated by reference numeral C41. As a result, the actual center angle accompanied by the response delay of the second variable valve mechanism 6 changes as indicated by a line indicated by reference numeral C42. As a result, the engine torque can be further increased as indicated by the line D42 in (d).
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an intake valve drive control device for an internal combustion engine according to the present invention.
FIG. 2 is a characteristic diagram showing an example of setting of an operating angle and a central angle with respect to a load under a constant engine speed.
FIG. 3 is a time chart showing changes in an operating angle, a central angle, and the like during a transition according to the settings in FIG. 2;
FIG. 4 is a characteristic diagram similar to FIG. 2, showing a transition range from a low load to a high load.
FIG. 5 is a time chart showing changes in an operating angle, a central angle, and the like during a transition from a low load to a high load.
FIG. 6 is a flowchart showing a first embodiment of the correction control according to the present invention.
FIG. 7 is a block diagram of the first embodiment.
FIG. 8 is a transient time chart when the central angle is corrected according to the first embodiment.
FIG. 9 is a characteristic diagram showing a movement locus of a maximum lift point during a transition according to the first embodiment.
FIG. 10 is a graph showing intake valve opening / closing timing retarded by correction.
FIG. 11 is a time chart according to the first embodiment during a transition from a low load to a high load.
FIG. 12 is a block diagram of a second embodiment.
FIG. 13 is a time chart at the time of transition when the central angle is corrected according to the second embodiment.
FIG. 14 is a block diagram of a third embodiment.
FIG. 15 is a time chart at the time of transition when the central angle is corrected according to the third embodiment.
FIG. 16 is a block diagram of a fourth embodiment.
FIG. 17 is a time chart at the time of transition when the central angle is corrected according to the fourth embodiment.
[Explanation of symbols]
2 Electronically controlled throttle valve 5 First variable valve mechanism 6 Second variable valve mechanism 10 Control unit 11 Accelerator opening sensor

Claims (6)

吸気弁の作動角を連続的に変更可能な第1可変動弁機構と、上記作動角の中心角を連続的に変更可能な第2可変動弁機構と、を備え、機関の吸入空気量が相対的に少ない第1領域では主に上記作動角を変更して吸入空気量を調整するとともに吸入空気量が相対的に多い第2領域では主に上記中心角を変更して吸入空気量を調整するようにした内燃機関の吸気弁駆動制御装置において、
内燃機関の運転状態に基づいて作動角および中心角の目標値を算出する目標値算出手段と、
上記作動角の目標値と該作動角の実際値との間に偏差が生じる過渡運転時に、上記中心角の目標値を補正する補正手段と、
を備えていることを特徴とする内燃機関の吸気弁駆動制御装置。
A first variable valve mechanism capable of continuously changing the operating angle of the intake valve; and a second variable valve mechanism capable of continuously changing the central angle of the operating angle. In the relatively small first region, the operating angle is mainly changed to adjust the intake air amount, and in the second region where the intake air amount is relatively large, the central angle is mainly changed to adjust the intake air amount. In the intake valve drive control device for an internal combustion engine,
Target value calculation means for calculating a target value of the operating angle and the central angle based on the operating state of the internal combustion engine,
Correction means for correcting the target value of the central angle during a transient operation in which a deviation occurs between the target value of the operating angle and the actual value of the operating angle;
An intake valve drive control device for an internal combustion engine, comprising:
上記補正手段は、上記作動角の実際値が目標値に対し小さい側にずれる場合に、上記中心角の目標値を遅角補正することを特徴とする請求項1に記載の内燃機関の吸気弁駆動制御装置。2. The intake valve of an internal combustion engine according to claim 1, wherein the correction means corrects the target value of the center angle by retarding when the actual value of the operating angle deviates from the target value. Drive control device. 上記補正手段は、上記作動角目標値の変化率が所定値以上である場合に、上記の過渡運転であると判定することを特徴とする請求項1または2に記載の内燃機関の吸気弁駆動制御装置。3. An intake valve drive for an internal combustion engine according to claim 1, wherein said correction means determines that said transient operation is performed when a rate of change of said operating angle target value is equal to or greater than a predetermined value. Control device. 上記補正手段は、アクセル開度もしくはこれに関連したパラメータが上記第1領域に対応する範囲内にあり、かつ上記アクセル開度もしくは上記パラメータの変化率が所定値以上である場合に、上記の過渡運転であると判定することを特徴とする請求項1または2に記載の内燃機関の吸気弁駆動制御装置。The correction means is configured to perform the transient when the accelerator opening or a parameter related thereto is within a range corresponding to the first region and the accelerator opening or the change rate of the parameter is equal to or greater than a predetermined value. The intake valve drive control device for an internal combustion engine according to claim 1 or 2, wherein it is determined that the operation is an operation. 上記補正手段は、上記作動角の目標値と該作動角の実際値との間の偏差が所定値以上となった場合に、上記の過渡運転であると判定することを特徴とする請求項1または2に記載の内燃機関の吸気弁駆動制御装置。2. The transient operation according to claim 1, wherein the correction unit determines that the transient operation is performed when a deviation between the target value of the operating angle and the actual value of the operating angle is equal to or larger than a predetermined value. Or an intake valve drive control device for an internal combustion engine according to item 2. 上記補正手段は、上記偏差に応じた補正量を、上記中心角の静的目標値に加えることを特徴とする請求項5に記載の内燃機関の吸気弁駆動制御装置。6. The intake valve drive control device for an internal combustion engine according to claim 5, wherein the correction means adds a correction amount corresponding to the deviation to a static target value of the central angle.
JP2003031831A 2003-02-10 2003-02-10 Intake valve drive control device for internal combustion engine Expired - Fee Related JP4254261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031831A JP4254261B2 (en) 2003-02-10 2003-02-10 Intake valve drive control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031831A JP4254261B2 (en) 2003-02-10 2003-02-10 Intake valve drive control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004239228A true JP2004239228A (en) 2004-08-26
JP4254261B2 JP4254261B2 (en) 2009-04-15

Family

ID=32958266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031831A Expired - Fee Related JP4254261B2 (en) 2003-02-10 2003-02-10 Intake valve drive control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4254261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170079A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Intake control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170079A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Intake control device for internal combustion engine
JP4506449B2 (en) * 2004-12-16 2010-07-21 日産自動車株式会社 Intake control device for internal combustion engine

Also Published As

Publication number Publication date
JP4254261B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4449429B2 (en) Intake valve drive control device for internal combustion engine
JP2004239151A (en) Control means of internal combustion engine
JP5278606B2 (en) Control device for internal combustion engine
JP4415790B2 (en) Intake control device for internal combustion engine
JP2007303344A (en) Control unit
JP2007132224A (en) Control device for internal combustion engine
JP5169876B2 (en) Control device and control method for internal combustion engine
JP4254261B2 (en) Intake valve drive control device for internal combustion engine
JP4650219B2 (en) Intake control device for internal combustion engine
JP4127075B2 (en) Intake valve drive control device for internal combustion engine
JP4412047B2 (en) Intake control device for internal combustion engine
JP4379098B2 (en) Control device for internal combustion engine
JP4556816B2 (en) Control device for internal combustion engine
JP4300359B2 (en) Control device for internal combustion engine
JP4466342B2 (en) Intake control device for internal combustion engine
JP4534705B2 (en) Intake control device for internal combustion engine
JP4506449B2 (en) Intake control device for internal combustion engine
JP4941069B2 (en) Intake control device for internal combustion engine
JP2009228481A (en) Controller of engine
JP2005090328A (en) Intake valve drive control device for internal combustion engine
JP4661530B2 (en) Intake control device for internal combustion engine
JP4110981B2 (en) Intake valve drive control device for internal combustion engine
JP4165235B2 (en) Intake valve drive control device for internal combustion engine
JP4033115B2 (en) Intake control device for internal combustion engine
JP4273950B2 (en) Intake control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20081020

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20081031

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees