JP2004234782A - Vertical conduction type magnetoresistive effective head and magnetic disk device - Google Patents

Vertical conduction type magnetoresistive effective head and magnetic disk device Download PDF

Info

Publication number
JP2004234782A
JP2004234782A JP2003024156A JP2003024156A JP2004234782A JP 2004234782 A JP2004234782 A JP 2004234782A JP 2003024156 A JP2003024156 A JP 2003024156A JP 2003024156 A JP2003024156 A JP 2003024156A JP 2004234782 A JP2004234782 A JP 2004234782A
Authority
JP
Japan
Prior art keywords
magnetoresistive
reset
current
magnetic shield
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024156A
Other languages
Japanese (ja)
Inventor
Kazuhiro Saito
和浩 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003024156A priority Critical patent/JP2004234782A/en
Publication of JP2004234782A publication Critical patent/JP2004234782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical energization type magnetoresistive effective head in which magnetization of a magnetization fixed layer can be magnetized again in the desired direction when a magnetization direction of the magnetization fixed layer is deviated. <P>SOLUTION: This vertical energization type magnetoresistive effective head has a magnetoresistive effective element including a lamination body of a magnetization free layer, a non-magnetic intermediate layer, a magnetization fixed layer and a non-ferromagnetic layer, a lower part magnetic shield and an upper part magnetic shield arranged respectively at an upper part and lower part of the magnetoresistive effective element, a lower part electrode and an upper part electrode provided respectively between the lower part magnetic shield, the upper part magnetic shield and the magnetoresistive effective element, and a reset electrode for causing a reset current to flow in the magnetoresistive effective element in the direction being substantially orthogonal to a sense current made to flow vertically to a film plane of the magnetoresistive effective element. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、垂直通電型磁気抵抗効果ヘッドおよび磁気ディスク装置に関し、特に磁化固着層における磁化方向を安定化させる技術に関する。
【0002】
【従来の技術】
近年、磁気ディスク装置の高密度化に対応して高感度の再生を実現し得る磁気抵抗効果ヘッドとして、垂直通電型(CPP)の磁気抵抗効果ヘッドが着目されている。
【0003】
図6に従来の垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図を示す。基板1上に、軟磁性膜からなり磁気抵抗効果素子にセンス電流を通電する電極を兼ねる下部磁気シールド2が形成されている。下部磁気シールド2上に、再生磁気ギャップを構成する下部電極3を介して、磁気抵抗効果素子4が形成されている。磁気抵抗効果素子4は、磁化自由層4a、非磁性中間層4b、磁化固着層4cおよび反強磁性層4dを含む。磁気抵抗効果素子4上に、再生磁気ギャップを構成する上部電極5を介して、軟磁性膜からなり磁気抵抗効果素子4にセンス電流を通電する電極を兼ねる上部磁気シールド6が形成されている。磁気抵抗効果素子4のトラック幅方向における両端にはハードバイアス膜8、8が形成されている。磁化固着層4cの磁化は一般的に媒体対向面に向かう方向に固着される。磁化自由層4aの磁化はハードバイアス膜8、8によって媒体対向面と平行になるようにバイアスされている。下部磁気シールド2と上部磁気シールド6はヘッドアンプなどの定電流または定電圧電源に接続される。このように垂直通電型磁気抵抗効果ヘッドでは、センス電流が下部磁気シールド2(および下部電極3)と上部磁気シールド6(および上部電極5)を通して、磁気抵抗効果素子4の成膜面に対してほぼ垂直に通電される。
【0004】
上述したように磁化固着層4cの磁化を所望の方向に固着するには、ウエハの段階で磁界中での高温熱処理を施して、反強磁性層4dと磁化固着層4cとを交換結合させる。
【0005】
ところが、磁気ディスクドライブの製造時にミスにより磁気抵抗効果素子にパルス電流が流れたり、ドライブ動作時に衝撃などが加わって磁気ディスクと磁気ヘッドとが接触して磁気抵抗効果素子に電流が流れたりすると、磁化固着層の磁化が着磁した本来の方向からずれることがある。このような磁化固着層の磁化方向のずれは、出力の低下や波形対称性の乱れの原因となる。
【0006】
従来の面内通電型磁気抵抗効果ヘッドで上記のような不具合が生じた場合、それを回復する技術は知られている。
【0007】
例えば、磁気抵抗効果ヘッドの製造時に、外部から加熱するとともに磁気抵抗効果ヘッドにセンス電流と同一方向の電流を通電して磁化固着層に電流磁界を印加することにより、磁化固着層の磁化を所望の方向に固着する技術が知られている(特許文献1参照)。この技術を応用すれば、磁化固着層の磁化方向がずれた場合に、磁化固着層の磁化を所望の方向(媒体対向面方向)にリセットして、出力または波形対称性の乱れを回復することができる。
【0008】
また、パルス生成回路から磁気抵抗効果ヘッドにセンス電流と同一方向のパルス電流を流して、反強磁性層を加熱し、かつ磁化固着層に電流磁界を印加することにより、磁化固着層の磁化を所望の方向(媒体対向面方向)にリセットする技術が知られている(特許文献2参照)。
【0009】
これらのいずれの技術も、磁気抵抗効果ヘッドに通電した電流による電流磁界が磁化固着層に対して適切な方向に印加されることを前提としている。
【0010】
しかし、垂直通電型磁気抵抗効果ヘッドの場合、センス電流と同一の方向すなわち膜面垂直方向に電流を流すと、膜面内を周回するように電流磁界が発生するため、磁化固着層の磁化を所望の方向(媒体対向面方向)に再着磁させることができない。
【0011】
このため、垂直通電型磁気抵抗効果ヘッドにおいて、磁化固着層の磁化方向がずれた場合に、磁化固着層の磁化を所望の方向への再着磁を可能にする技術が要望されていた。
【0012】
【特許文献1】
特開2002−56512号公報
【0013】
【特許文献2】
米国特許第5650887号明細書
【0014】
【発明が解決しようとする課題】
本発明の目的は、磁化固着層の磁化方向がずれた場合に、磁化固着層の磁化を所望の方向に再着磁させることができる垂直通電型磁気抵抗効果ヘッド、およびこのような垂直通電型磁気抵抗効果ヘッドを有する磁気ディスク装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明の一態様に係る垂直通電型磁気抵抗効果ヘッドは、磁化自由層、非磁性中間層、磁化固着層および反強磁性層の積層体を含む磁気抵抗効果素子と、前記磁気抵抗効果素子の上下にそれぞれ配置された下部磁気シールドおよび上部磁気シールドと、前記下部磁気シールドおよび上部磁気シールドと前記磁気抵抗効果素子との間にそれぞれ設けられた下部電極および上部電極と、前記磁気抵抗効果素子の膜面に垂直に通電されるセンス電流と実質的に直交する方向に前記磁気抵抗効果素子にリセット電流を通電するためのリセット電極と、磁気ディスクとを有することを特徴とする。
【0016】
本発明の他の態様に係る磁気ディスク装置は、上述した磁気抵抗効果ヘッドと、前記磁気抵抗効果ヘッドにセンス電流およびリセット電流を通電するための電源と、前記電源と前記磁気抵抗効果ヘッドとを結ぶ配線間に設けられ、センス電流とリセット電流の通電を切り替えるスイッチとを有することを特徴とする。
【0017】
【発明の実施の形態】
本発明の実施形態に係る垂直通電型磁気抵抗効果ヘッドにおいて、磁気抵抗効果素子は磁化自由層、非磁性中間層、磁化固着層および反強磁性層を含む。なお、これらの積層体の積層順序は、上記と逆でもよい。また、必要に応じて、下地層や保護層なども形成される。磁気抵抗効果素子の上下には、下部磁気シールド・下部電極と上部電極・上部磁気シールドが設けられており、通常動作時には磁気抵抗効果素子の膜面にほぼ垂直にセンス電流が通電される。
【0018】
次に、磁気抵抗効果素子を構成する各層には以下のような材料が用いられる。磁化自由層にはCo90Fe10やCo90Fe10/Ni80Fe20など、FeCo系、Co系、Fe系の強磁性材料が用いられる。磁化固着層は単層の強磁性層で形成してもよいし、強磁性層/交換結合層/強磁性層の積層構造としてもよい。磁化固着層を構成する強磁性層には、Co90Fe10やCo90Fe10/Ni80Fe20など、FeCo系、Co系、Fe系の強磁性材料が用いられる。また、交換結合層を用いる場合にはRu、Crなど上下の強磁性層を反強磁性的に結合させる材料を用い、上下の強磁性層の磁化が互いに逆向きになるように設計する。反強磁性層にはPtMn、IrMnなど、Mn系の反強磁性体が用いられ、磁化固着層を構成する強磁性層を固定する役割を果たす。
【0019】
本発明の実施形態に係る垂直通電型磁気抵抗効果ヘッドによれば、磁気抵抗効果素子の膜面に垂直に通電されるセンス電流と実質的に直交する方向に磁気抵抗効果素子にリセット電流を通電するためのリセット電極を設けたことにより、出力劣化や異常波形が見られた場合にリセット電流を通電して、磁気抵抗効果素子に対して所望の方向に電流磁界を印加して磁化固着層を再着磁させ、異常を回復することができる。
【0020】
本発明の実施形態に係る垂直通電型磁気抵抗効果ヘッドにおいては、磁気抵抗効果素子の幅方向の両端部上に1対のリセット電極を設けてもよい。また、磁気抵抗効果素子の幅方向の両端部とほぼ同一平面に1対のリセット電極を設けてもよい。このように、リセット電極を磁気抵抗効果素子とほぼ同一平面に配置するようにすれば、製造プロセスを簡略化できる。また、磁気抵抗効果素子の幅方向の一端部に接続された1つのリセット電極を設けてもよい。この場合、リセット電流は1つのリセット電極と上部磁気シールド(または下部磁気シールド)との間で通電される。この構成では、リセット電極を1つ追加するだけなので、プロセスが容易である。
【0021】
本発明の実施形態に係る磁気ディスク装置によれば、出力劣化や異常波形が見られた場合に切り替えスイッチを動作させ、センス電流の通電を停止しリセット電流を通電することにより、磁気抵抗効果素子に対して所望の方向に電流磁界を印加して磁化固着層を再着磁させ、異常を回復することができるので、信頼性を高めることができる。
【0022】
本発明の実施形態に係る磁気ディスク装置においては、記録ヘッドへの書き込み電流の通電中にリセット電流を通電するようにしてもよい。この場合、書き込み電流の通電による磁気抵抗効果素子の加熱が期待できる。
【0023】
【実施例】
以下、図面を参照しながら、本発明の実施例を説明する。
図1に本発明の第1の実施例に係る垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図を示す。Al・TiCなどからなる基板1上に、軟磁性膜からなり磁気抵抗効果素子へセンス電流を通電する電極を兼ねる下部磁気シールド2が形成されている。下部磁気シールド2上に、再生磁気ギャップを構成する下部電極3を介して、磁気抵抗効果素子4が形成されている。磁気抵抗効果素子4は、磁化自由層4a、非磁性中間層4b、磁化固着層4cおよび反強磁性層4dを含む。非磁性中間層4bにはCuを用いている。磁気抵抗効果素子4上に、再生磁気ギャップを構成する上部電極5を介して、軟磁性膜からなり磁気抵抗効果素子4へセンス電流を通電する電極を兼ねる上部磁気シールド6が形成されている。上部磁気シールド6上に、絶縁層を介して記録磁極7が形成されている。磁気抵抗効果素子4のトラック幅方向における両端にはハードバイアス膜8が形成されている。磁気抵抗効果素子4のトラック幅方向における両端部上およびハードバイアス膜8上には1対のリセット電極11a、11bが形成されている。
【0024】
図2に、本実施例に係る磁気ディスク装置において、上記の垂直通電型磁気抵抗効果ヘッドと電源とを接続する回路の一構成例を示す。電源(ヘッドアンプ)13は定電流電源または定電圧電源であり、媒体磁界に応答して発生する磁気抵抗効果素子4の抵抗変化を定電流電源の場合には電圧変化として、定電圧電源の場合には電流変化として検出する。電源13と磁気抵抗効果ヘッドの下部磁気シールド2および上部磁気シールド6とを結ぶ配線間、ならびに電源13と磁気抵抗効果ヘッドのリセット電極11a、11bとを結ぶ配線間には切り替えスイッチ12が設けられている。
【0025】
本実施例の垂直通電型磁気抵抗効果ヘッドおよび磁気ディスク装置の動作を説明する。
通常動作時には、下部磁気シールド2と上部磁気シールド6を電源13に接続して、磁気抵抗効果素子4にセンス電流を通電する。そして、サーボ情報など磁気ディスク上の磁気信号を用いて波形の確認が行われるが、出力が小さくシーク動作ができない場合または波形対称性に異常が生じるなど異常が発見された場合には、磁気抵抗効果素子4の磁化固着層4cの磁化方向が本来の方向(一般的には媒体対向面に向かう方向)からずれたと判定され、リセット動作に移行する。リセット動作は、磁気ディスク上で行ってもよいし、磁気ディスク外のヘッド退避位置において行ってもよい。リセット動作時には、切り替えスイッチ12を切り替えることによりリセット電極11a、11bを電源13に接続して磁気抵抗効果素子4にリセット電流を通電する。このリセット電流はセンス電流の通電方向(膜面にほぼ垂直な方向)と実質的に直交する方向(膜面にほぼ平行な方向)に通電されるので、磁気抵抗効果素子4の磁化固着層4cの磁化を所望の方向に再着磁することができる。
【0026】
ここで、リセット電流の電流値はセンス電流の電流値よりも大きく設定することができる。リセット電流の保持時間は数マイクロ秒から数分以上まで様々に設定することができ、適切な選択が可能である。
【0027】
リセット動作が終了した時点で、切り替えスイッチ12を切り替え、再び下部磁気シールド2と上部磁気シールド6を電源13に接続して磁気抵抗効果素子4にセンス電流を通電する。再び波形、出力を確認し、問題がなければドライブの他の調整に移行する。問題があれば再び上記のリセット動作を実行することもできる。
【0028】
以上のように、リセット電極11a、11bを設けてリセット電流の通電により電流磁界を印加できるようにし、磁化固着層の磁化方向を所望の方向に再着磁できるようになったので、製造プロセス中または磁気ディスク装置の動作中に衝撃などにより生じた磁化固着層の磁気モーメントのずれに伴う出力の低下や波形対称性の乱れを回復させることができる。
【0029】
なお、本実施例においては、磁気抵抗効果素子4の非磁性中間層4bにCuを用いているが、図1に示したように、リセット電極11a、11bは磁気抵抗効果素子4(およびハードバイアス膜8)の上面に接した構造になっているため、磁化自由層と磁化固着層が電気的に接続されることがない。このため、非磁性中間層4bにアルミナなどの絶縁層を用いたTMR素子でも上記効果を得ることができる。
【0030】
また、図2では単独の電源13を設けているが、下部磁気シールド2および上部磁気シールド6に接続される電源と、リセット電極11a、11bに接続される電源とを別個に設けてもよい。この場合、リセット電極11a、11bに接続される電源をパルス電源としてもよい。このように、下部磁気シールドおよび上部磁気シールドに接続される通常動作用電源とは別にリセット電極11a、11bにパルス電源を接続した場合、リセット電流をパルスで通電することもできる。リセット電極11a、11bは通常開放状態であるが、回路に高抵抗を介して接地してもよい。
【0031】
また、記録ヘッドへの書き込み電流の通電中にリセット電流を通電してもよい。この場合、記録ヘッドへの書き込み電流の通電によって磁気抵抗効果素子の加熱が期待できる。
【0032】
図3に本発明の第2の実施例に係る垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図を示す。図1では1対のリセット電極11a、11bを磁気抵抗効果素子4(およびハードバイアス膜8、8)のトラック幅方向に沿う両端部上に設けたのに対し、図3ではハードバイアス膜8、8を省略し、1対のリセット電極11a、11bを磁気抵抗効果素子4のトラック幅方向の両端部とほぼ同一平面で接するように設けている。
【0033】
図3の構造では、リセット電極11a、11bはハードバイアス膜を兼ねており、低抵抗の硬磁性膜が用いられる。また、磁気抵抗効果素子4とリセット電極11a、11bとの接合構造は、いわゆるアバッテッド・ジャンクション構造としてもよい。なお、図3の構造を採用する場合、磁気抵抗効果素子4は非磁性中間層4bがCuであるGMR素子であることが望ましい。
【0034】
図4に本発明の第3の実施例に係る垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図を示す。図1では1対のリセット電極11a、11bを磁気抵抗効果素子4(およびハードバイアス膜8、8)のトラック幅方向に沿う両端部上に設けたのに対し、図4では磁気抵抗効果素子4のトラック幅方向に沿う一端部に接続された1つのリセット電極11aのみが設けられている。
【0035】
図5に、本実施例に係る磁気ディスク装置において、上記の垂直通電型磁気抵抗効果ヘッドと電源とを接続する回路の一構成例を示す。電源13と磁気抵抗効果ヘッドの下部磁気シールド2および上部磁気シールド6とを結ぶ配線間、ならびに電源13と磁気抵抗効果ヘッドのリセット電極11aとを結ぶ配線間には切り替えスイッチ12が設けられている。
【0036】
本実施例の垂直通電型磁気抵抗効果ヘッドおよび磁気ディスク装置の動作を説明する。
通常動作時には、下部磁気シールド2と下部磁気シールド6を電源13に接続して、磁気抵抗効果素子4にセンス電流を通電する。しかし、波形や出力に異常が生じて正常動作が困難になった場合には、切り替えスイッチ12を切り替えることにより、下部磁気シールド2の回路を切断して、上部磁気シールド6とリセット電極11aを電源13に接続して磁気抵抗効果素子4にリセット電流を通電する。このリセット電流はセンス電流の通電方向と直交する成分を含むので、磁気抵抗効果素子4の磁化固着層4cの磁化を所望の方向に再着磁することができる。このとき、上述したように、リセット電流をパルスで通電してもよいし、記録ヘッドへの書き込み電流の通電中にリセット電流を通電してもよい。
【0037】
【発明の効果】
以上詳述したように本発明によれば、磁化固着層の磁化方向がずれた場合に、磁化固着層の磁化を所望の方向に再着磁させることができる垂直通電型磁気抵抗効果ヘッド、およびこのような垂直通電型磁気抵抗効果ヘッドを有する磁気ディスク装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図。
【図2】本発明の第1の実施例に係る磁気ディスク装置における垂直通電型磁気抵抗効果ヘッドと電源とを接続する回路の一構成例を示す図。
【図3】本発明の第2の実施例に係る垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図。
【図4】本発明の第3の実施例に係る垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図。
【図5】本発明の第3の実施例に係る磁気ディスク装置における垂直通電型磁気抵抗効果ヘッドと電源とを接続する回路の一構成例を示す図。
【図6】従来の垂直通電型磁気抵抗効果ヘッドを媒体対向面から見た平面図。
【符号の説明】
1…基板、2…下部磁気シールド、3…下部電極、4…磁気抵抗効果素子、4a…磁化自由層、4b…非磁性中間層、4c…磁化固着層、4d…反強磁性層、5…上部電極、6…上部磁気シールド、7…記録磁極、8…ハードバイアス膜、11a、11b…リセット電極、12…切り替えスイッチ、13…電源。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a perpendicular current supply type magnetoresistive head and a magnetic disk drive, and more particularly to a technique for stabilizing a magnetization direction in a magnetization fixed layer.
[0002]
[Prior art]
In recent years, a perpendicular conduction type (CPP) magnetoresistive head has attracted attention as a magnetoresistive head capable of realizing high-sensitivity reproduction in response to an increase in the density of a magnetic disk drive.
[0003]
FIG. 6 shows a plan view of a conventional perpendicular conduction type magnetoresistive head viewed from the medium facing surface. A lower magnetic shield 2 made of a soft magnetic film and also serving as an electrode for supplying a sense current to a magnetoresistive element is formed on a substrate 1. On the lower magnetic shield 2, a magnetoresistive element 4 is formed via a lower electrode 3 constituting a reproducing magnetic gap. The magnetoresistive element 4 includes a magnetization free layer 4a, a non-magnetic intermediate layer 4b, a pinned layer 4c, and an antiferromagnetic layer 4d. An upper magnetic shield 6 made of a soft magnetic film and also serving as an electrode for supplying a sense current to the magnetoresistive element 4 is formed on the magnetoresistive element 4 via an upper electrode 5 constituting a reproducing magnetic gap. Hard bias films 8 are formed on both ends of the magnetoresistive element 4 in the track width direction. The magnetization of the magnetization fixed layer 4c is generally fixed in a direction toward the medium facing surface. The magnetization of the magnetization free layer 4a is biased by the hard bias films 8 and 8 so as to be parallel to the medium facing surface. The lower magnetic shield 2 and the upper magnetic shield 6 are connected to a constant current or constant voltage power supply such as a head amplifier. As described above, in the perpendicular conduction type magnetoresistive effect head, the sense current passes through the lower magnetic shield 2 (and the lower electrode 3) and the upper magnetic shield 6 (and the upper electrode 5) to the film formation surface of the magnetoresistive effect element 4. Power is supplied almost vertically.
[0004]
As described above, in order to fix the magnetization of the magnetization fixed layer 4c in a desired direction, high-temperature heat treatment is performed in a magnetic field at the wafer stage to exchange-couple the antiferromagnetic layer 4d and the magnetization fixed layer 4c.
[0005]
However, if a pulse current flows through the magnetoresistive element due to a mistake during the manufacture of a magnetic disk drive, or if a shock or the like is applied during the drive operation, the magnetic disk comes into contact with the magnetic head and a current flows through the magnetoresistive element, The magnetization of the magnetization fixed layer may deviate from the original direction of magnetization. Such a shift in the magnetization direction of the magnetization fixed layer causes a decrease in output and a disturbance in waveform symmetry.
[0006]
When the above-described problem occurs in the conventional in-plane current-carrying magnetoresistive head, a technique for recovering the problem is known.
[0007]
For example, at the time of manufacturing the magnetoresistive effect head, the magnetization of the magnetization fixed layer is desirably heated by applying a current in the same direction as the sense current to the magnetoresistive head and applying a current magnetic field to the magnetization fixed layer. (See Patent Document 1). If this technique is applied, when the magnetization direction of the pinned layer shifts, the magnetization of the pinned layer is reset to a desired direction (toward the medium facing surface) to recover the output or the disturbance of the waveform symmetry. Can be.
[0008]
In addition, a pulse current in the same direction as the sense current is passed from the pulse generation circuit to the magnetoresistive head to heat the antiferromagnetic layer and apply a current magnetic field to the magnetization fixed layer, thereby changing the magnetization of the magnetization fixed layer. There is known a technique of resetting a desired direction (a medium facing surface direction) (see Patent Document 2).
[0009]
Each of these techniques is based on the premise that a current magnetic field due to a current passed through the magnetoresistive head is applied to the magnetization fixed layer in an appropriate direction.
[0010]
However, in the case of a perpendicular conduction type magnetoresistive head, when a current flows in the same direction as the sense current, that is, in a direction perpendicular to the film surface, a current magnetic field is generated so as to orbit the film surface. It cannot be re-magnetized in a desired direction (the direction facing the medium).
[0011]
For this reason, there has been a demand for a technology that enables the magnetization of the magnetization fixed layer to be re-magnetized in a desired direction when the magnetization direction of the magnetization fixed layer is shifted in the perpendicular conduction type magnetoresistance effect head.
[0012]
[Patent Document 1]
JP-A-2002-56512
[Patent Document 2]
US Pat. No. 5,650,887
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a perpendicular conduction type magnetoresistive head capable of re-magnetizing the magnetization of the magnetization fixed layer in a desired direction when the magnetization direction of the magnetization fixed layer shifts, and such a perpendicular conduction type magnetic head. An object of the present invention is to provide a magnetic disk drive having a magnetoresistive head.
[0015]
[Means for Solving the Problems]
A perpendicular conduction type magnetoresistive head according to one embodiment of the present invention includes a magnetoresistive element including a stack of a magnetization free layer, a nonmagnetic intermediate layer, a magnetization fixed layer, and an antiferromagnetic layer; A lower magnetic shield and an upper magnetic shield disposed respectively above and below, a lower electrode and an upper electrode provided between the lower magnetic shield and the upper magnetic shield, and the magnetoresistive element, respectively, The magnetic disk includes a reset electrode for supplying a reset current to the magnetoresistive element in a direction substantially perpendicular to a sense current perpendicular to the film surface, and a magnetic disk.
[0016]
A magnetic disk drive according to another aspect of the present invention includes the above-described magnetoresistive head, a power supply for supplying a sense current and a reset current to the magnetoresistive head, and the power supply and the magnetoresistive head. A switch provided between the interconnecting wires to switch between the supply of the sense current and the reset current.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In the perpendicular conduction type magnetoresistive head according to the embodiment of the present invention, the magnetoresistive element includes a magnetization free layer, a non-magnetic intermediate layer, a magnetization fixed layer, and an antiferromagnetic layer. Note that the stacking order of these stacked bodies may be reversed. Further, an underlayer, a protective layer, and the like are formed as necessary. A lower magnetic shield / lower electrode and an upper electrode / upper magnetic shield are provided above and below the magnetoresistive element, and a sense current is supplied substantially perpendicularly to the film surface of the magnetoresistive element during normal operation.
[0018]
Next, the following materials are used for each layer constituting the magnetoresistive element. For the magnetization free layer, a FeCo-based, Co-based, or Fe-based ferromagnetic material such as Co 90 Fe 10 or Co 90 Fe 10 / Ni 80 Fe 20 is used. The magnetization fixed layer may be formed of a single ferromagnetic layer, or may have a laminated structure of ferromagnetic layer / exchange coupling layer / ferromagnetic layer. For the ferromagnetic layer constituting the magnetization fixed layer, an FeCo-based, Co-based, or Fe-based ferromagnetic material such as Co 90 Fe 10 or Co 90 Fe 10 / Ni 80 Fe 20 is used. When an exchange coupling layer is used, a material such as Ru or Cr that couples the upper and lower ferromagnetic layers antiferromagnetically is designed so that the magnetizations of the upper and lower ferromagnetic layers are opposite to each other. As the antiferromagnetic layer, a Mn-based antiferromagnetic material such as PtMn or IrMn is used, and plays a role of fixing the ferromagnetic layer constituting the magnetization fixed layer.
[0019]
According to the perpendicular conduction type magnetoresistive effect head according to the embodiment of the present invention, the reset current is applied to the magnetoresistive element in a direction substantially orthogonal to the sense current perpendicularly applied to the film surface of the magnetoresistive element. Is provided, a reset current is applied when output deterioration or an abnormal waveform is observed, and a current magnetic field is applied in a desired direction to the magnetoresistive element to form the magnetization fixed layer. Abnormality can be recovered by re-magnetization.
[0020]
In the perpendicular conduction type magnetoresistive head according to the embodiment of the present invention, a pair of reset electrodes may be provided on both ends in the width direction of the magnetoresistive element. Further, a pair of reset electrodes may be provided on substantially the same plane as both ends in the width direction of the magnetoresistive element. By arranging the reset electrode substantially on the same plane as the magnetoresistive element, the manufacturing process can be simplified. Further, one reset electrode connected to one end of the magnetoresistive element in the width direction may be provided. In this case, the reset current flows between one reset electrode and the upper magnetic shield (or lower magnetic shield). In this configuration, the process is easy because only one reset electrode is added.
[0021]
According to the magnetic disk device of the embodiment of the present invention, when the output deterioration or abnormal waveform is observed, the changeover switch is operated, the supply of the sense current is stopped, and the reset current is supplied, so that the magnetoresistive effect element is provided. In this case, a current magnetic field is applied in a desired direction to re-magnetize the magnetization fixed layer, and the abnormality can be recovered, so that the reliability can be improved.
[0022]
In the magnetic disk drive according to the embodiment of the present invention, the reset current may be supplied while the write current is supplied to the recording head. In this case, heating of the magnetoresistive effect element by applying a write current can be expected.
[0023]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view of a perpendicular conduction type magnetoresistive head according to a first embodiment of the present invention as viewed from a medium facing surface. On a substrate 1 made of Al 2 O 3 .TiC or the like, a lower magnetic shield 2 made of a soft magnetic film and also serving as an electrode for supplying a sense current to a magnetoresistive element is formed. On the lower magnetic shield 2, a magnetoresistive element 4 is formed via a lower electrode 3 constituting a reproducing magnetic gap. The magnetoresistive element 4 includes a magnetization free layer 4a, a non-magnetic intermediate layer 4b, a pinned layer 4c, and an antiferromagnetic layer 4d. Cu is used for the non-magnetic intermediate layer 4b. An upper magnetic shield 6 made of a soft magnetic film and also serving as an electrode for passing a sense current to the magnetoresistive element 4 is formed on the magnetoresistive element 4 via an upper electrode 5 constituting a reproducing magnetic gap. On the upper magnetic shield 6, a recording magnetic pole 7 is formed via an insulating layer. Hard bias films 8 are formed on both ends of the magnetoresistive element 4 in the track width direction. A pair of reset electrodes 11 a and 11 b are formed on both ends of the magnetoresistive element 4 in the track width direction and on the hard bias film 8.
[0024]
FIG. 2 shows a configuration example of a circuit for connecting the above-described current-perpendicular-to-type magnetoresistive head and a power supply in the magnetic disk drive according to this embodiment. The power supply (head amplifier) 13 is a constant current power supply or a constant voltage power supply. The resistance change of the magnetoresistive element 4 generated in response to the medium magnetic field is regarded as a voltage change in the case of a constant current power supply. Is detected as a current change. A switch 12 is provided between the wires connecting the power supply 13 and the lower magnetic shield 2 and the upper magnetic shield 6 of the magnetoresistive head, and between the wires connecting the power supply 13 and the reset electrodes 11a and 11b of the magnetoresistive head. ing.
[0025]
The operation of the perpendicular conduction type magnetoresistive head and the magnetic disk drive of this embodiment will be described.
At the time of normal operation, the lower magnetic shield 2 and the upper magnetic shield 6 are connected to the power supply 13 to supply a sense current to the magnetoresistive element 4. Then, the waveform is confirmed using a magnetic signal on the magnetic disk such as servo information.If the output is too small to perform a seek operation or if an abnormality such as abnormal waveform symmetry is found, the magnetoresistive It is determined that the magnetization direction of the magnetization fixed layer 4c of the effect element 4 has deviated from the original direction (generally the direction toward the medium facing surface), and the operation shifts to the reset operation. The reset operation may be performed on the magnetic disk, or may be performed at a head retreat position outside the magnetic disk. At the time of the reset operation, the reset electrodes 11 a and 11 b are connected to the power supply 13 by switching the changeover switch 12 to supply a reset current to the magnetoresistive element 4. Since the reset current is applied in a direction substantially perpendicular to the direction in which the sense current is applied (direction substantially perpendicular to the film surface) (direction substantially parallel to the film surface), the magnetization fixed layer 4c of the magnetoresistive element 4 is Can be re-magnetized in a desired direction.
[0026]
Here, the current value of the reset current can be set larger than the current value of the sense current. The retention time of the reset current can be set variously from several microseconds to several minutes or more, and an appropriate selection can be made.
[0027]
When the reset operation is completed, the changeover switch 12 is switched, the lower magnetic shield 2 and the upper magnetic shield 6 are connected to the power supply 13 again, and a sense current is supplied to the magnetoresistive element 4. Check the waveform and output again, and if there are no problems, move on to other adjustments of the drive. If there is a problem, the above reset operation can be executed again.
[0028]
As described above, the reset electrodes 11a and 11b are provided so that a current magnetic field can be applied by applying a reset current, and the magnetization direction of the magnetization fixed layer can be re-magnetized in a desired direction. Alternatively, it is possible to recover a decrease in output and a disturbance in waveform symmetry due to a shift in the magnetic moment of the magnetization fixed layer caused by an impact or the like during the operation of the magnetic disk device.
[0029]
In this embodiment, Cu is used for the nonmagnetic intermediate layer 4b of the magnetoresistive element 4, but as shown in FIG. 1, the reset electrodes 11a and 11b are connected to the magnetoresistive element 4 (and hard bias). Since the structure is in contact with the upper surface of the film 8), the magnetization free layer and the magnetization fixed layer are not electrically connected. Therefore, the above effect can be obtained even with a TMR element using an insulating layer such as alumina for the non-magnetic intermediate layer 4b.
[0030]
Although a single power supply 13 is provided in FIG. 2, a power supply connected to the lower magnetic shield 2 and the upper magnetic shield 6 and a power supply connected to the reset electrodes 11a and 11b may be provided separately. In this case, the power supply connected to the reset electrodes 11a and 11b may be a pulse power supply. As described above, when a pulse power supply is connected to the reset electrodes 11a and 11b separately from the power supply for normal operation connected to the lower magnetic shield and the upper magnetic shield, a reset current can be supplied in pulses. The reset electrodes 11a and 11b are normally open, but may be grounded via a high resistance to the circuit.
[0031]
Further, the reset current may be supplied while the write current is supplied to the recording head. In this case, heating of the magnetoresistive element can be expected by applying a write current to the recording head.
[0032]
FIG. 3 is a plan view of a perpendicular conduction type magnetoresistive head according to a second embodiment of the present invention as viewed from the medium facing surface. In FIG. 1, a pair of reset electrodes 11a and 11b are provided on both ends of the magnetoresistive effect element 4 (and the hard bias films 8 and 8) along the track width direction. 8 is omitted, and a pair of reset electrodes 11a and 11b are provided so as to be substantially flush with both ends of the magnetoresistive element 4 in the track width direction.
[0033]
In the structure of FIG. 3, the reset electrodes 11a and 11b also serve as hard bias films, and use a low-resistance hard magnetic film. Further, the junction structure between the magnetoresistive element 4 and the reset electrodes 11a and 11b may be a so-called abutted junction structure. When the structure shown in FIG. 3 is adopted, it is desirable that the magnetoresistance effect element 4 is a GMR element in which the nonmagnetic intermediate layer 4b is made of Cu.
[0034]
FIG. 4 is a plan view of a perpendicular conduction type magnetoresistive head according to a third embodiment of the present invention as viewed from the medium facing surface. In FIG. 1, a pair of reset electrodes 11a and 11b are provided on both ends of the magnetoresistive element 4 (and the hard bias films 8 and 8) along the track width direction, whereas in FIG. Only one reset electrode 11a connected to one end along the track width direction is provided.
[0035]
FIG. 5 shows an example of the configuration of a circuit for connecting the above-described perpendicularly conducting magnetoresistive head and a power supply in the magnetic disk drive according to this embodiment. A switch 12 is provided between the wires connecting the power supply 13 and the lower magnetic shield 2 and the upper magnetic shield 6 of the magnetoresistive head, and between the wires connecting the power supply 13 and the reset electrode 11a of the magnetoresistive head. .
[0036]
The operation of the perpendicular conduction type magnetoresistive head and the magnetic disk drive of this embodiment will be described.
At the time of normal operation, the lower magnetic shield 2 and the lower magnetic shield 6 are connected to the power supply 13 to supply a sense current to the magnetoresistive element 4. However, when abnormalities occur in the waveform or output and normal operation becomes difficult, the switch of the lower magnetic shield 2 is disconnected by switching the changeover switch 12 so that the upper magnetic shield 6 and the reset electrode 11a are connected to the power supply. 13 to supply a reset current to the magnetoresistive element 4. Since the reset current includes a component orthogonal to the direction in which the sense current flows, the magnetization of the magnetization fixed layer 4c of the magnetoresistive element 4 can be re-magnetized in a desired direction. At this time, as described above, the reset current may be supplied by a pulse, or the reset current may be supplied while the write current is supplied to the recording head.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, when the magnetization direction of the magnetization pinned layer is shifted, the magnetization of the magnetization fixed layer can be re-magnetized in a desired direction, and It is possible to provide a magnetic disk drive having such a perpendicular conduction type magnetoresistive head.
[Brief description of the drawings]
FIG. 1 is a plan view of a perpendicular conduction type magnetoresistive head according to a first embodiment of the present invention as viewed from a medium facing surface.
FIG. 2 is a diagram showing an example of a configuration of a circuit for connecting a power supply to a perpendicularly energized magnetoresistive head and a power supply in the magnetic disk drive according to the first embodiment of the present invention;
FIG. 3 is a plan view of a perpendicular conduction type magnetoresistive head according to a second embodiment of the present invention as viewed from a medium facing surface.
FIG. 4 is a plan view of a perpendicular conduction type magnetoresistive head according to a third embodiment of the present invention as viewed from a medium facing surface.
FIG. 5 is a diagram showing a configuration example of a circuit for connecting a power supply to a perpendicularly energized magnetoresistive head and a power supply in a magnetic disk drive according to a third embodiment of the present invention.
FIG. 6 is a plan view of a conventional perpendicular conduction type magnetoresistive head viewed from a medium facing surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Lower magnetic shield, 3 ... Lower electrode, 4 ... Magnetoresistance effect element, 4a ... Magnetization free layer, 4b ... Non-magnetic intermediate layer, 4c ... Magnetization fixed layer, 4d ... Antiferromagnetic layer, 5 ... Upper electrode, 6: upper magnetic shield, 7: recording magnetic pole, 8: hard bias film, 11a, 11b: reset electrode, 12: switch, 13: power supply.

Claims (6)

磁化自由層、非磁性中間層、磁化固着層および反強磁性層の積層体を含む磁気抵抗効果素子と、前記磁気抵抗効果素子の上下にそれぞれ配置された下部磁気シールドおよび上部磁気シールドと、前記下部磁気シールドおよび上部磁気シールドと前記磁気抵抗効果素子との間にそれぞれ設けられた下部電極および上部電極と、前記磁気抵抗効果素子の膜面に垂直に通電されるセンス電流と実質的に直交する方向に前記磁気抵抗効果素子にリセット電流を通電するためのリセット電極とを有することを特徴とする垂直通電型磁気抵抗効果ヘッド。A magnetoresistive element including a stack of a magnetization free layer, a nonmagnetic intermediate layer, a magnetization fixed layer, and an antiferromagnetic layer; a lower magnetic shield and an upper magnetic shield disposed above and below the magnetoresistive element, respectively; A lower electrode and an upper electrode provided between the lower magnetic shield and the upper magnetic shield and the magnetoresistive element, respectively, and substantially orthogonal to a sense current which is perpendicularly applied to a film surface of the magnetoresistive element; A reset electrode for supplying a reset current to the magnetoresistive element in a direction. 前記磁気抵抗効果素子の幅方向の両端部上に1対のリセット電極を有することを特徴とする請求項1に記載の垂直通電型磁気抵抗効果ヘッド。2. The perpendicular conduction type magnetoresistive effect head according to claim 1, wherein a pair of reset electrodes are provided on both ends of the magnetoresistive effect element in the width direction. 前記磁気抵抗効果素子の幅方向の両端部とほぼ同一平面に1対のリセット電極を有することを特徴とする請求項1に記載の垂直通電型磁気抵抗効果ヘッド。2. The magneto-resistive head according to claim 1, wherein a pair of reset electrodes are provided on substantially the same plane as both ends of the magneto-resistive element in the width direction. 前記磁気抵抗効果素子の幅方向の一端部に接続された1つのリセット電極を有することを特徴とする請求項1に記載の垂直通電型磁気抵抗効果ヘッド。2. The current-perpendicular-to-parallel magnetoresistive head according to claim 1, further comprising one reset electrode connected to one end of the magnetoresistive element in the width direction. 請求項1ないし4のいずれか1項に記載の垂直通電型磁気抵抗効果ヘッドと、前記磁気抵抗効果ヘッドにセンス電流およびリセット電流を通電するための電源と、前記電源と前記磁気抵抗効果ヘッドとを結ぶ配線間に設けられ、センス電流とリセット電流の通電を切り替えるスイッチと、磁気ディスクとを有することを特徴とする磁気ディスク装置。5. The perpendicular conduction type magnetoresistive head according to claim 1, a power supply for supplying a sense current and a reset current to the magnetoresistive head, the power supply and the magnetoresistive head. And a switch for switching the supply of sense current and reset current, and a magnetic disk. 記録ヘッドへの書き込み電流の通電中にリセット電流を通電することを特徴とする請求項5に記載の磁気ディスク装置。6. The magnetic disk drive according to claim 5, wherein a reset current is supplied while a write current is supplied to the recording head.
JP2003024156A 2003-01-31 2003-01-31 Vertical conduction type magnetoresistive effective head and magnetic disk device Pending JP2004234782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024156A JP2004234782A (en) 2003-01-31 2003-01-31 Vertical conduction type magnetoresistive effective head and magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024156A JP2004234782A (en) 2003-01-31 2003-01-31 Vertical conduction type magnetoresistive effective head and magnetic disk device

Publications (1)

Publication Number Publication Date
JP2004234782A true JP2004234782A (en) 2004-08-19

Family

ID=32952767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024156A Pending JP2004234782A (en) 2003-01-31 2003-01-31 Vertical conduction type magnetoresistive effective head and magnetic disk device

Country Status (1)

Country Link
JP (1) JP2004234782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036770A (en) * 2007-08-02 2009-02-19 Magic Technologies Inc Magnetic sensor and its manufacturing method
JP2009192429A (en) * 2008-02-15 2009-08-27 Tdk Corp Magnetic sensor and magnetic field strength measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036770A (en) * 2007-08-02 2009-02-19 Magic Technologies Inc Magnetic sensor and its manufacturing method
JP4677018B2 (en) * 2007-08-02 2011-04-27 マグアイシー テクノロジーズ インコーポレイテッド Magnetic sensor and manufacturing method thereof
JP2009192429A (en) * 2008-02-15 2009-08-27 Tdk Corp Magnetic sensor and magnetic field strength measurement method

Similar Documents

Publication Publication Date Title
US7116529B2 (en) Magnetoresistive element in which pinned magnetization layers have antiparallel pinned directions, magnetic head and magnetic recording/reproducing apparatus
JPH11134616A (en) Magnetic reluctance type reading sensor, magnetic storage device and manufacture of magnetic reluctance type sensor
JP2005203063A (en) Magnetic head and magnetic recording/reproducing device
JP4147118B2 (en) Three-terminal magnetic head and magnetic recording / reproducing apparatus equipped with the same
JP2004289100A (en) Cpp type giant magnetoresistive element, and magnetic component and magnetic device using it
US6256863B1 (en) Yoke type magnetoresistance head and manufacturing method of the same
JP5338264B2 (en) Magnetic sensor
JP2006139886A (en) Magnetoresistive effect magnetic head and its manufacturing method
JP2001118217A (en) Spin valve type thin-film magnetic device, thin-film magnetic head, and manufacturing method of spin valve thin-film magnetic device
US7805828B2 (en) Method of manufacturing thin-film magnetic head
US7206174B2 (en) Magnetoresistance effect element comprising nano-contact portion not more than a fermi length, method of manufacturing same and magnetic head utilizing same
JP4596753B2 (en) Magnetic head and magnetic recording / reproducing apparatus
JP2008243920A (en) Magnetoresistance-effect reproducing element, magnetic head and magnetic reproducing apparatus
JP2000057538A (en) Magnetic head using magnetic reluctance sensor and magnetic recording and reproducing device
JP2004259363A (en) Magneto-resistance effect head and magnetic recording and reproducing device
JPH1091920A (en) Magneto-resistance effect type head
JP2001052315A (en) Spin valve-type thin-film magnetic element, thin-film magnetic head and manufacture of the spin valve-type thin-film magnetic element
JP2004234782A (en) Vertical conduction type magnetoresistive effective head and magnetic disk device
JP2001229515A (en) Magneto-resistive magnetic head and magnetic reproducing device using the same
JP4018464B2 (en) Magnetic field sensor and magnetic disk device
JP2002015407A (en) Thin film magnetic head and method of manufacture
JP2004128026A (en) Magnetoresistive effect element, magnetic head, magnetic recording device
JP2006261259A (en) Magnetoresistive element, manufacturing method thereof, magnetic head, and magneticd information reproducing apparatus
JPH10320721A (en) Magneto-resistance effect head
JPH1125428A (en) Magneto-resistance effect type head and its initialization method