JP2004226085A - 力学量検出センサ用構造体の製造方法 - Google Patents

力学量検出センサ用構造体の製造方法 Download PDF

Info

Publication number
JP2004226085A
JP2004226085A JP2003010774A JP2003010774A JP2004226085A JP 2004226085 A JP2004226085 A JP 2004226085A JP 2003010774 A JP2003010774 A JP 2003010774A JP 2003010774 A JP2003010774 A JP 2003010774A JP 2004226085 A JP2004226085 A JP 2004226085A
Authority
JP
Japan
Prior art keywords
layer
manufacturing
etching
stopper
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003010774A
Other languages
English (en)
Inventor
Kazuhiro Okada
和廣 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacoh Corp
Wako KK
Original Assignee
Wacoh Corp
Wako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacoh Corp, Wako KK filed Critical Wacoh Corp
Priority to JP2003010774A priority Critical patent/JP2004226085A/ja
Publication of JP2004226085A publication Critical patent/JP2004226085A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】量産に適し、十分な寸法精度が得られる構造体の製造方法を提供する。
【解決手段】シリコン層100/酸化シリコン層200/シリコン層300の3層構造をもったSOI基板を用意し、シリコンのみ選択除去可能なエッチングにより橋梁体第1層121,122を形成し、酸化シリコンのみ選択除去可能なエッチングにより橋梁体第2層221,222を形成する。橋梁体の両端位置に、窒化シリコンからなるストッパ壁540,550を形成し、ピエゾ抵抗素子Rx1〜Rx4を形成する。シリコン層300の下面に溝G1を形成し、更に、この溝G1の左右両端位置を垂直上方にエッチングして溝を堀り、第3層300を中央の重錘体と左右の台座に分離する。最後に、ストッパ壁540,550をエッチングストッパとして利用して、橋梁体第2層221,222をエッチング除去する。
【選択図】 図18

Description

【0001】
【発明の属する技術分野】
本発明は、力学量検出センサ用構造体の製造方法に関し、特に、小型民生用電子機器に利用される量産型の力センサ・加速度センサ・角速度センサに利用可能なセンサ用構造体の製造方法に関する。
【0002】
【従来の技術】
携帯電話、デジタルカメラ、電子ゲーム機器、PDA機器など、マイクロプロセッサを内蔵した小型民生用の電子機器の普及はめざましく、最近では、これらの電子機器あるいはその入力装置に内蔵させるための力学量検出センサ(たとえば、力センサ・加速度センサ・角速度センサ)の需要も高まってきている。このような力学量検出センサを備えた電子機器では、本体に加えられた力成分・加速度成分・角速度成分をデジタルデータとしてマイクロプロセッサに取り込むことができるため、電子機器周囲の物理的環境を把握した適切な処理が可能になる。たとえば、デジタルカメラでは、シャッターボタンを押した瞬間に作用した加速度や角速度を検出することにより、手振れに対する補正を行うことができ、電子ゲーム機器用の入力装置などでは、オペレータの操作指示を、力・加速度・角速度の形で入力することも可能になる。
【0003】
このような小型民生用電子機器に内蔵するための力学量検出センサとしては、小型で量産に適したものが望ましく、現在、半導体デバイスの製造プロセスを利用して量産が可能な半導体基板を用いたタイプのものが多く利用されている。たとえば、下記特許文献1には、半導体基板上にピエゾ抵抗素子を形成し、半導体基板に生じる撓みをピエゾ抵抗素子の電気抵抗に基づいて検出することにより、力や加速度を求める力学量検出センサが開示されている。ピエゾ抵抗素子は、機械的応力を加えることにより抵抗値が変化する性質を有する素子であり、シリコン基板などの半導体基板上の領域に不純物をドープすることにより形成することができるため、半導体基板を用いたタイプのセンサに広く利用されている。
【0004】
また、容量素子や圧電素子などを利用して、半導体基板の撓みや変位の検出を行うタイプの力学量検出センサも利用されている。たとえば、下記特許文献2には、容量素子を利用した加速度センサが開示されており、下記特許文献3には、圧電素子を利用した加速度および角速度のセンサが開示されている。
【特許文献1】
特開平4−249727号公報
【特許文献2】
特開平5−026754号公報
【特許文献3】
特開平8−094661号公報
【0005】
【発明が解決しようとする課題】
上述したように、小型で量産に適した力学量検出センサとして、シリコン基板などの半導体基板を利用した製品が利用されているが、これらのセンサの多くは、重錘体と、この重錘体の周囲を囲うように設けられた台座と、台座の上部と重錘体の上部とを連結する橋梁体と、を半導体基板によって構成したセンサ用構造体を利用している。このようなセンサ用構造体では、橋梁体が可撓性を有しているため、重錘体に力が作用すると橋梁体に撓みが生じ、重錘体が台座に対して変位することになる。したがって、重錘体に作用した力を、橋梁体に生じる撓みや、重錘体の変位に基づいて検出することが可能になる。
【0006】
このような力学量検出センサ用構造体を量産する上では、1枚の半導体基板に対して、いわゆる半導体プレーナプロセスを施すことにより、多数の構造体が同時に得られるような工程を実施するのが好ましい。しかしながら、一般的な半導体プレーナプロセスでは、主として、半導体基板に対して種々のエッチング工程を行うことにより、所望の物理的構造を得ることになるため、各部を正確な寸法に維持するのが困難であるという問題点がある。実際、エッチング工程を含む製造プロセスで量産されたセンサ用構造体には、ロットごとに寸法誤差が生じるため、検出感度にばらつきが生じる問題がある。
【0007】
そこで本発明は、量産に適し、かつ、十分な寸法精度が得られる力学量検出センサ用構造体の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
(1) 本発明の第1の態様は、重錘体と、この重錘体の周囲を囲うように設けられた台座と、台座の上部と重錘体の上部とを連結する橋梁体と、を備え、重錘体に力が作用すると橋梁体に撓みが生じ、重錘体が台座に対して変位するように構成され、生じた撓みもしくは変位に基づいて力学量を検出する用途に用いることが可能な力学量検出センサ用構造体を製造する力学量検出センサ用構造体の製造方法において、
上から順に、第1層、第2層、第3層の3層を積層してなり、第1層と第2層とが互いにエッチング特性が異なり、第3層と第2層とが互いにエッチング特性が異なるような材料基板を用意する基板準備段階と、
重錘体の上面を形成するための重錘体上面マスク領域と、台座の上面を形成するための台座上面マスク領域と、橋梁体を形成するための橋梁体マスク領域と、を有し、橋梁体マスク領域の内側端と重錘体上面マスク領域の外周との間、および、橋梁体マスク領域の外側端と台座上面マスク領域の内周との間、の少なくとも一方には、ストッパ用空隙が確保されている上面用マスクを用意する上面用マスク準備段階と、
重錘体の下面を形成するための重錘体下面マスク領域と、台座の下面を形成するための台座下面マスク領域と、を有する下面用マスクを用意する下面用マスク準備段階と、
上面用マスクを利用して、第1層に対して第2層の上面が露出するまで厚み方向へのエッチングを行い、重錘体上面マスク領域の下に残った重錘体第1層と、台座上面マスク領域の下に残った台座第1層と、橋梁体マスク領域の下に残った橋梁体第1層と、を第1層残存部として形成する第1層エッチング段階と、
第1層残存部をマスクとして利用して、第2層に対して第3層の上面が露出するまで厚み方向へのエッチングを行い、重錘体第1層の下に残った重錘体第2層と、台座第1層の下に残った台座第2層と、橋梁体第1層の下に残った橋梁体第2層と、を第2層残存部として形成する第2層エッチング段階と、
上面用マスクのストッパ用空隙の位置に対応して、第2層に形成されたストッパ用空隙部分に、第2層とはエッチング特性が異なるストッパ用材料を充填することにより、第2層残存部に対するエッチングの進行を停止させるためのストッパ壁を形成するストッパ壁形成段階と、
下面用マスクを利用して、第3層に対して厚み方向へのエッチングを行い、重錘体下面マスク領域の上に残った重錘体第3層と、台座下面マスク領域の上に残った台座第3層と、を第3層残存部として分離形成する第3層エッチング段階と、
ストッパ壁をエッチングストッパとして利用して、第2層残存部に対するエッチングを行い、橋梁体第2層を除去する第2層再エッチング段階と、
を行うようにし、重錘体第1層、重錘体第2層、重錘体第3層からなる積層体により重錘体を構成し、台座第1層、台座第2層、台座第3層からなる積層体により台座を構成し、橋梁体第1層により橋梁体を構成するようにしたものである。
【0009】
(2) 本発明の第2の態様は、上述の第1の態様に係る力学量検出センサ用構造体の製造方法において、
第1層エッチング段階を、第1層に対しては浸食性を有し、第2層および第3層に対しては浸食性を有しないエッチング方法により行うようにしたものである。
【0010】
(3) 本発明の第3の態様は、上述の第1または第2の態様に係る力学量検出センサ用構造体の製造方法において、
第2層エッチング段階を、第2層に対しては浸食性を有し、第1層および第3層に対しては浸食性を有しないエッチング方法により行うようにしたものである。
【0011】
(4) 本発明の第4の態様は、上述の第1〜第3の態様に係る力学量検出センサ用構造体の製造方法において、
第3層エッチング段階を、第3層に対しては浸食性を有し、第1層、第2層およびストッパ用材料に対しては浸食性を有しないエッチング方法により行うようにしたものである。
【0012】
(5) 本発明の第5の態様は、上述の第1〜第4の態様に係る力学量検出センサ用構造体の製造方法において、
第2層再エッチング段階を、第2層に対しては浸食性を有し、第1層、第3層およびストッパ用材料に対しては浸食性を有しないエッチング方法により行うようにしたものである。
【0013】
(6) 本発明の第6の態様は、上述の第1〜第5の態様に係る力学量検出センサ用構造体の製造方法において、
第2層再エッチング段階を、第3層エッチング段階の後に行うようにしたものである。
【0014】
(7) 本発明の第7の態様は、上述の第1〜第5の態様に係る力学量検出センサ用構造体の製造方法において、
第2層再エッチング段階を、第3層エッチング段階の前に行うようにしたものである。
【0015】
(8) 本発明の第8の態様は、上述の第1〜第7の態様に係る力学量検出センサ用構造体の製造方法において、
ストッパ壁形成段階を、
第2層エッチング段階が終了した状態の基板上に、ストッパ用材料を堆積させてストッパ用材料層を形成する段階と、
ストッパ壁を形成するためのストッパ用マスク領域を有するストッパ用マスクを用意する段階と、
ストッパ用マスクを利用して、ストッパ用材料層の不要部分をエッチングにより除去し、残存した部分をストッパ壁とする段階と、
によって行うようにしたものである。
【0016】
(9) 本発明の第9の態様は、上述の第8の態様に係る力学量検出センサ用構造体の製造方法において、
第1層エッチング段階および第2層エッチング段階において、断面V字型の溝が形成されるエッチングを行うようにし、
ストッパ用材料を堆積させる際に、CVD法を用いて、断面V字型の溝の斜面にストッパ材料層が形成されるようにしたものである。
【0017】
(10) 本発明の第10の態様は、上述の第8または第9の態様に係る力学量検出センサ用構造体の製造方法において、
ストッパ用材料層の不要部分をエッチングにより除去した後、残存した部分の上面を研磨することにより、第1層の上面と同じ高さをもつストッパ壁を形成するようにしたものである。
【0018】
(11) 本発明の第11の態様は、上述の第1〜第10の態様に係る力学量検出センサ用構造体の製造方法において、
重錘体第2層の外周を縁取りするような環状形状をもったストッパ壁を形成するようにしたものである。
【0019】
(12) 本発明の第12の態様は、上述の第1〜第11の態様に係る力学量検出センサ用構造体の製造方法において、
台座第2層の内周を縁取りするような環状形状をもったストッパ壁を形成するようにしたものである。
【0020】
(13) 本発明の第13の態様は、上述の第1〜第12の態様に係る力学量検出センサ用構造体の製造方法において、
内側端および外側端の少なくとも一方の幅が、中央部分の幅に比べて広い形状をもった橋梁体マスク領域を有する上面用マスクを用意し、内側端および外側端の少なくとも一方の幅が、中央部分の幅に比べて広い形状をもった橋梁体を形成するようにしたものである。
【0021】
(14) 本発明の第14の態様は、上述の第13の態様に係る力学量検出センサ用構造体の製造方法において、
複数本の橋梁体によって重錘体を支持する構造を有する構造体を製造するために、複数の橋梁体マスク領域を有し、かつ、隣接配置された複数の橋梁体マスク領域の内側端もしくは外側端に設けられた幅広部分が融合して庇状領域を形成している上面用マスクを用意し、庇状領域に対応した庇部を第1層の一部分により形成するようにしたものである。
【0022】
(15) 本発明の第15の態様は、上述の第1〜第14の態様に係る力学量検出センサ用構造体の製造方法において、
基板準備段階において、3層構造を有する材料基板として、SOI基板を用意するようにしたものである。
【0023】
(16) 本発明の第16の態様は、上述の第15の態様に係る力学量検出センサ用構造体の製造方法において、
第1層がシリコン、第2層が酸化シリコン、第3層がシリコンから構成されているSOI基板を用いるようにし、ストッパ用材料として、窒化シリコンを用いるようにしたものである。
【0024】
(17) 本発明の第17の態様は、上述の第1〜第16の態様に係る力学量検出センサ用構造体の製造方法を利用して加速度センサを製造する方法において、
橋梁体第1層の上面にピエゾ抵抗素子を形成する抵抗素子形成段階を更に行い、ピエゾ抵抗素子の抵抗値に基づいて、重錘体に作用した加速度を検出する機能をもった加速度センサを製造するようにしたものである。
【0025】
(18) 本発明の第18の態様は、上述の第17の態様に係る加速度センサの製造方法において、
ピエゾ抵抗素子を、ストッパ壁に接触する位置に、もしくは、ストッパ壁の近隣位置に配置するようにしたものである。
【0026】
(19) 本発明の第19の態様は、上述の第18の態様に係る加速度センサの製造方法において、
U字型の抵抗素子を、U字の底部がストッパ壁側になるように配置し、U字の上部両端位置に対して配線を施すようにしたものである。
【0027】
(20) 本発明の第20の態様は、上述の第1〜第16の態様に係る力学量検出センサ用構造体の製造方法を利用して加速度センサを製造する方法において、
基板準備段階において、第1層および第3層が導電性材料からなる材料基板を用意するようにし、
上面用マスク準備段階において、所定位置に電極層を形成するための電極層マスク領域を更に有する上面用マスクを用意し、電極層マスク領域に関して、橋梁体マスク領域と同一のエッチングプロセスを施すことにより、電極層を第1層の一部分により形成し、形成した電極層と第3層重錘体上面とによって容量素子が形成されるようにし、この容量素子の静電容量値に基づいて、重錘体に作用した加速度を検出する機能をもった加速度センサを製造するようにしたものである。
【0028】
(21) 本発明の第21の態様は、上述の第1〜第16の態様に係る力学量検出センサ用構造体の製造方法を利用して角速度センサを製造する方法において、
基板準備段階において、第1層および第3層が導電性材料からなる材料基板を用意するようにし、
上面用マスク準備段階において、所定位置に電極層を形成するための電極層マスク領域を更に有する上面用マスクを用意し、電極層マスク領域に関して、橋梁体マスク領域と同一のエッチングプロセスを施すことにより、電極層を第1層の一部分により形成し、形成した電極層と第3層重錘体上面とによって容量素子が形成されるようにし、形成された容量素子に電力供給することにより重錘体を振動させた状態において、形成された容量素子の静電容量値に基づいて、重錘体に作用した角速度を検出する機能をもった角速度センサを製造するようにしたものである。
【0029】
【発明の実施の形態】
以下、本発明を図示する実施形態に基いて説明する。
【0030】
<<< §1.センサ構造体の基本構造 >>>
本発明は力学量検出センサ用構造体の製造方法に関するものであるが、ここでは、力センサおよび加速度センサとして利用可能なセンサ本体の基本構造を述べる。
【0031】
図1は、力センサおよび角速度センサとして利用可能なセンサ本体の上面図である。ここでは説明の便宜上、図示のとおり、このセンサ本体の上面中心位置に原点Oをとり、図の右方向にX軸、図の上方向にY軸、紙面に垂直上方にZ軸をそれぞれとり、XYZ三次元座標系を定義することにする。図2は、このセンサ本体をXZ平面で切断した側断面図である。
【0032】
図1の上面図に示されているとおり、このセンサ本体は、中央の重錘体10と、この重錘体10を四方から支持するための橋梁体21〜24と、台座30と、によって構成されている。この例では、重錘体10は四角柱のブロックからなり、台座30は、この重錘体10の周囲を囲うような正方形状のフレームを構成している。また、4本の橋梁体21〜24は、図2の側断面図に明瞭に描かれているとおり、重錘体10や台座30に比べると厚みが小さなビーム状の構造体であり、重錘体10の上部と台座30の上部とを連結する機能を果たす。この橋梁体21〜24は、厚みが小さいため可撓性を有しており、重錘体10に力が作用すると撓みが生じ、重錘体10が台座30に対して変位する。このセンサ本体は、こうして生じた撓みもしくは変位に基づいて、外力、加速度、角速度などの力学量を検出する用途に用いられる。
【0033】
本発明に係る力学量検出センサ用構造体の基本構成要素は、上述した重錘体10、橋梁体21〜24、台座30であるが、この構造体を実際のセンサとして用いるためには、橋梁体21〜24に生じた撓みもしくは重錘体10に生じた変位を検出するための何らかの検出素子が必要になる。図1および図2に示すセンサ本体は、ピエゾ抵抗素子を検出素子として用いたものである。すなわち、図1の上面図に示されているとおり、X軸に沿って配置された橋梁体21,22の上には、ピエゾ抵抗素子Rx1〜Rx4が形成されており、Y軸に沿って配置された橋梁体23,24の上には、ピエゾ抵抗素子Ry1〜Ry4およびRz1〜Rz4が形成されている。これらのピエゾ抵抗素子は、以下に述べるように、橋梁体21〜24に生じた撓みに基づいて、重錘体10の台座30に対する変位を検出する機能を果たす。
【0034】
いま、重錘体10に対して、X軸正方向への外力+Fxが作用した場合を考えると、図3の側断面図に示すように、重錘体10の重心点を図の右方向へ変位させる力が加わることになり、可撓性をもった橋梁体21〜24は図示のように撓みを生じることになる。その結果、X軸に沿って配置されたピエゾ抵抗素子Rx1〜Rx4のうち、Rx2,Rx4に対してはX軸方向に伸ばす方向の応力が作用し(図では+記号で示す)、Rx1,Rx3に対してはX軸方向に縮める方向の応力が作用する(図では−記号で示す)。ピエゾ抵抗素子の抵抗値は、このような応力によって増減するので、各抵抗素子の抵抗値を測定すれば、作用した応力の大きさを求めることができ、外力+Fxの大きさを求めることができる。また、X軸負方向への外力−Fxが作用した場合は、各抵抗素子の伸縮が逆転するので、抵抗値の増減の関係も逆転することになる。したがって、ピエゾ抵抗素子Rx1〜Rx4の抵抗値の増減を測定することにより、重錘体10に対して作用した力のX軸方向成分の向きと大きさとを検出することができる。
【0035】
全く同様にして、重錘体10に対して作用した力のY軸方向成分の向きと大きさは、Y軸に沿って配置されたピエゾ抵抗素子Ry1〜Ry4の抵抗値の増減を測定することにより検出が可能になる。
【0036】
また、重錘体10に対して、Z軸正方向への外力+Fzが作用した場合を考えると、図4の側断面図に示すように、重錘体10の重心点を図の上方向へ変位させる力が加わることになり、可撓性をもった橋梁体21〜24は図示のように撓みを生じることになる。その結果、Y軸に沿って配置されたピエゾ抵抗素子Rz1〜Rz4(これらは、X軸に沿って配置するようにしてもかまわない)のうち、Rz2,Rz3に対してはY軸方向に伸ばす方向の応力が作用し(図では+記号で示す)、Rz1,Rz4に対してはY軸方向に縮める方向の応力が作用する(図では−記号で示す)。Z軸負方向への外力−Fzが作用した場合は、各抵抗素子の伸縮が逆転するので、抵抗値の増減の関係も逆転することになる。したがって、ピエゾ抵抗素子Rz1〜Rz4の抵抗値の増減を測定することにより、重錘体10に対して作用した力のZ軸方向成分の向きと大きさとを検出することができる。
【0037】
具体的には、橋梁体21〜24がシリコンから構成されており、各ピエゾ抵抗素子がP型不純物ドープ領域として形成されていた場合、その長手方向に関する抵抗値は、物理的に伸びる方向への応力が作用した場合には抵抗値が増加し、物理的に縮む方向への応力が作用した場合には抵抗値が減少する(N型不純物ドープ領域であった場合は、抵抗値の増減が逆になる)。したがって、図3または図4に示す各状態では、「+」が付された抵抗素子の抵抗値は増加し、「−」が付された抵抗素子の抵抗値は減少することになる。したがって、合計12組のピエゾ抵抗素子の抵抗値の増減を測定することにより、重錘体10に対して作用した力のX軸、Y軸、Z軸方向成分を検出することができる。
【0038】
ここに示す例では、1つの軸方向成分の力を検出するのに、それぞれ4組のピエゾ抵抗素子を用いているが、これは図5に示すような検出回路を組むことにより、より正確な検出値を得ることができるようにするための配慮である。この検出回路では、所定の座標軸方向成分を検出するために、4組のピエゾ抵抗素子からなるブリッジ回路についてのブリッジ電圧を検出するようにしている。たとえば、図の上段に示すように、4組のピエゾ抵抗素子Rx1〜Rx4についてのブリッジ回路に対して、電源51から所定の電圧を印加し、このときのブリッジ電圧を電圧計41で測定することにより、X軸方向成分の検出が行われる。同様に、図の中段に示すように、4組のピエゾ抵抗素子Ry1〜Ry4についてのブリッジ回路に対して、電源52から所定の電圧を印加し、このときのブリッジ電圧を電圧計42で測定することにより、Y軸方向成分の検出が行われる。また、図の下段に示すように、4組のピエゾ抵抗素子Rz1〜Rz4についてのブリッジ回路に対して、電源53から所定の電圧を印加し、このときのブリッジ電圧を電圧計43で測定することにより、Z軸方向成分の検出が行われる。
【0039】
この図5に示す検出回路により、上述のような各軸方向成分の検出が可能になることは、図3,図4に示す各抵抗素子の抵抗値の増減の関係に着目すれば、容易に理解できよう。また、このようなブリッジ回路による各軸方向成分の検出を行えば、1つの軸方向成分の検出値が、他の軸方向成分の検出値の干渉を受けることなく、個々の座標軸ごとにそれぞれ独立した検出値を得ることができる。
【0040】
このように、図1および図2に示す構造体を利用すれば、重錘体10に作用した外力の各座標軸方向成分を検出することが可能であるが、この構造体は、力センサのみならず、加速度センサや角速度センサなど、一般的な力学量を検出するセンサに広く利用することができる。たとえば、重錘体10をある程度の質量をもったブロックとして構成しておけば、重錘体10に作用した加速度に基づいて外力が作用することになるので、この構造体を加速度センサとして利用することができる。あるいは、何らかの駆動手段を付加して、重錘体10を所定方向に振動させるようにし、この振動状態において重錘体10に対して作用したコリオリ力を検出するようにすれば、この構造体を角速度センサとして利用することも可能である。このように、ここに示す構造体は、力学量検出センサ用構造体として広く利用可能であり、本発明は、このような構造体の製造方法を提供するものである。
【0041】
また、ここでは、ピエゾ抵抗素子により、重錘体10の変位もしくは橋梁体21〜24の撓みを検出するセンサ本体を示したが、本発明によって製造される構造体を用いて力学量検出センサを実現する上では、必ずしもピエゾ抵抗素子を検出素子として用いる必要はない。たとえば、後述するように、容量素子を検出素子として用いることも可能であり、その他にも種々の素子を検出素子として利用することが可能である。
【0042】
<<< §2.センサ構造体の理想的な構造 >>>
一般に、センサの性能を評価する上で、検出感度は重要なファクターとなり、市場においても、より高感度なセンサの開発が期待されている。そこで、§1で述べたセンサ構造体を利用した加速度センサや角速度センサの検出感度を高めることを考えると、できるだけ重錘体10の質量を大きくし、できるだけ橋梁体21〜24の可撓性を高めることが必要であることがわかる。ただ、シリコンなどの材料で橋梁体21〜24を構成することを考慮すると、可撓性を高めるためには、厚みや幅を小さくせざるを得ないので、強度の点に問題が生じるおそれがある。したがって、実用上は、重錘体10の質量を大きくするのが好ましい。
【0043】
図6および図7に示すセンサ本体は、図1および図2に示すセンサ本体を改良したものである。この改良型のセンサ本体の特徴は、重錘体の体積をより大きくした構造にある。すなわち、図2の側断面図と図7の側断面図とを比較すれば明らかなように、図7に示すセンサ本体では、重錘体は、重錘体上層部15と重錘体本体部16との2つの部分によって構成されている。図2に示すセンサ本体では、重錘体10と台座30との間に大きな空間が形成されており、センサ構造体の内部空間に無駄が生じていたが、図7に示すセンサ本体では、重錘体本体部16の体積が大きく確保されており、台座30との間には、若干の幅をもった溝Gが形成されている。この溝Gは、重錘体本体部16の変位の自由度を確保するために必要な寸法に設定されている。
【0044】
この改良型のセンサ本体の構造上の特徴は、図6の上面図にも明瞭に示されている。図示のとおり、重錘体本体部16は、フレーム状の台座30の内部空間の大部分を占める直方体状のブロックとなっており、十分な質量が確保されている。このため、加速度センサとして用いる場合、同じ大きさの加速度であっても、より大きな力が重錘体に作用することになり、検出感度を向上させることができる。なお、橋梁体21〜24の構造および寸法に関しては、特に変更はないので、強度に関する条件は、§1で述べたセンサ本体(図1,図2)と同じである。
【0045】
結局、この§2で述べる改良型のセンサ本体は、§1で述べたセンサ本体と比べて、より高い検出感度を得ることができる理想的な構造を有していることになる。しかしながら、商業的な量産を行うことを考えると、既に述べたとおり、解決すべき課題が残されている。すなわち、このようなセンサ用構造体を量産する上では、半導体基板を用いたプレーナプロセスを施すのが好ましいが、一般的な半導体プレーナプロセスでは、主として、半導体基板に対して種々のエッチング工程を行うことにより、所望の物理的構造を得ることになるため、各部を正確な寸法に維持するのが困難であるという問題が生じることになる。たとえば、図2に示す構造体であれば、半導体基板を下面側から垂直方向にエッチングする比較的単純なプロセスにより、ある程度の寸法精度をもった構造体を量産することが可能であるが、図7に示す構造体の場合、単純な垂直方向へのエッチングプロセスだけでは、対応することができない。これは、重錘体本体部16の上面と橋梁体21〜24の下面との間に空隙を形成する必要があるため、水平方向へのエッチングプロセスが必要になるためである。
【0046】
ところが、この水平方向へのエッチングプロセスは、センサ本体の測定精度を維持する上で極めて重要な工程になる。たとえば、図7において、境界位置L1〜L4は、橋梁体21,22と重錘体上層部15あるいは台座30との境界を示す位置(別言すれば、橋梁体21,22の両端位置)ということになるが、これらの位置について、ロットによるばらつきが生じてしまうと、測定精度の低下を招くことになる。
【0047】
その第1の理由は、ロットごとのエッチングプロセス(特に、水平方向へのエッチングプロセス)に変動要因があると、構造体自身の対称性が失われるためである。たとえば、図7における境界位置L2が左へずれてしまった場合、橋梁体21の長さがより長くなり、左右の対称性が失われることになる。また、重錘体上層部15による重錘体本体部16の支持位置も対称性を欠き、重錘体本体部16の重心位置を正確に支持することができなくなる。これは、X軸正方向への検出感度とX軸負方向への検出感度との間に差を生じさせる要因となり、測定精度の低下を招くことになる。
【0048】
第2の理由は、ピエゾ抵抗素子Rx1〜Rx4の配置により、検出感度が変動するためである。一般に、ピエゾ抵抗素子による検出感度をできるだけ高くするためには、橋梁体21〜24に撓みが生じたときに、最も大きな機械的応力が生じる箇所に、各ピエゾ抵抗素子を配置するようにするのが好ましい。本願発明者が行った実験によると、橋梁体の内側部分に配置されるピエゾ抵抗素子Rx2,Rx3に関しては、図示のとおり、その内側端が境界位置L2,L3に揃うように配置し、橋梁体の外側部分に配置されるピエゾ抵抗素子Rx1,Rx4に関しては、図示のとおり、その外側端が境界位置L1,L4に揃うように配置すると、最も良好な検出感度を得ることができた。これは、境界位置L1〜L4(橋梁体21〜24の両端位置)に、最も大きな機械的応力が生じるためと考えられる。ところが、たとえば、図7における境界位置L2が左へずれてしまった場合、ピエゾ抵抗素子Rx2の内側端が境界位置L2に揃わなくなるため、検出感度の低下を招くことになる。
【0049】
結局、図6および図7に示すような構造体を、エッチング工程を含む製造プロセスで量産すると、ロットごとに寸法誤差が生じるため、検出感度にばらつきが生じるという問題が生じることになる。本発明は、このような問題を解決することを目的とするものであり、本発明によれば、量産に適し、かつ、十分な寸法精度が得られる力学量検出センサ用構造体の製造方法を提供することが可能になる。
【0050】
<<< §3.本発明に係る製造方法の基本工程 >>>
ここでは、図6および図7に示すような力学量検出センサ用構造体を、エッチング工程を含む製造プロセスで製造する方法の基本工程を説明する。この基本工程の特徴は、第1層、第2層、第3層の3層を積層してなる材料基板を用い、各層ごとにエッチングを行い、かつ、第2層のエッチングを行う際にエッチングストッパとして機能するストッパ壁を形成する、という点にある。以下、図を参照しながら、この工程を順に説明する。
【0051】
<基板準備段階>
まず、図8の側断面図に示すように、上から順に、第1層100、第2層200、第3層300の3層を積層してなる材料基板を用意する。ここで、第1層100と第2層200とは、互いにエッチング特性が異なり、第3層300と第2層200とは、互いにエッチング特性が異なるような材料によって構成されている。なお、第1層100と第3層300とは、エッチング特性が同一であってもかまわない。実用上、このような材料基板としては、SOI(Silicon On Insulator)基板を用いるのが好ましい。SOI基板は、半導体装置を製造するための基板として、種々の分野で利用されており、用途に応じた様々な種類のSOI基板が入手可能である。ここでは、第1層がシリコン、第2層が酸化シリコン、第3層がシリコンから構成されているSOI基板を用いた例を説明する。
なお、この実施例で実際に用いたSOI基板は、第1層の厚みが5μm、第2層の厚みが1μm、第3層の厚みが500μm程度のものであるが、本願図面では、便宜上、各部の寸法比を無視した構造図を示すことにする。
【0052】
<上面用マスク準備段階>
続いて、図9の平面図に示すようなパターンをもった上面用マスクMUを用意する。なお、この図9におけるハッチングは、各マスク領域(エッチング工程において除去されずに残る領域)を示すためのものであり、断面を示すものではない。図示のとおり、この上面用マスクMUは、重錘体の上面を形成するための重錘体上面マスク領域M10と、橋梁体を形成するための橋梁体マスク領域M21〜M24と、台座の上面を形成するための台座上面マスク領域M30と、を有している。しかも、橋梁体マスク領域M21〜M24の内側端と重錘体上面マスク領域M10の外周との間には、ストッパ用空隙V1が形成されており、橋梁体マスク領域M21〜M24の外側端と台座上面マスク領域M30の内周との間には、ストッパ用空隙V2が形成されている。このストッパ用空隙V1,V2は、後述するように、ストッパ壁を形成するためのものである。
【0053】
なお、ここでは説明の便宜上、図8に示す材料基板の上面の輪郭は、図9に示す上面用マスクMUの輪郭に一致するものとし、この材料基板を用いて、単一の力学量検出センサ用構造体を製造するプロセスを述べることにする。もっとも、実際のプロセスでは、1枚の材料基板を用いて多数のセンサ用構造体を同時に形成するのが一般的である。その場合には、図9に示す単一のセンサ用構造体用のパターンを縦横にマトリックス状に多数配置したような上面用マスクMUを用意することになる。後述するストッパ用マスクMSや下面用マスクMLについても同様である。また、図9に示すように、上面用マスクMU上に3つの切断線a−a,b−b,c−cを定義し、この上面用マスクMUを材料基板の上面に重ねた状態において、プロセスの各段階における材料基板を、各切断線a−a,b−b,c−cの位置で切断した側断面図を、以下の図における分図(a),(b),(c)として示すことにする。
【0054】
<第1層エッチング段階>
さて、こうして、材料基板と上面用マスクMUとが用意できたら、この上面用マスクMUを利用して、材料基板の第1層100に対するエッチングを行う。すなわち、第1層100に対して、第2層200の上面が露出するまで厚み方向へのエッチングを行う。
【0055】
もちろん、実際には、このようなエッチング工程は、複数段階のプロセスを経て行われる。すなわち、まず、第1層100の上にレジスト層を形成し、このレジスト層に図9に示す上面用マスクMUを適用した状態で露光現像し、最初に形成したレジスト層のうち、図9にハッチングを施して示す各マスク領域の部分だけを残す処理を行う。図10は、この段階における材料基板の状態を示す側断面図である。前述したように、分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【0056】
図10(a) に示すように、基板中央には、重錘体上面マスク領域M10に対応して重錘体レジスト層410が残存しており、その周囲には、橋梁体マスク領域M21〜M24に対応して橋梁体レジスト層421〜424が残存しており、更にその周囲には、台座上面マスク領域M30に対応して台座レジスト層430が残存している。重錘体レジスト層410と橋梁体レジスト層421〜424との間には、ストッパ用空隙V1が形成されており、台座レジスト層430と橋梁体レジスト層421〜424との間には、ストッパ用空隙V2が形成されている。
【0057】
図10(b) を見ればわかるように、橋梁体レジスト層423は、幅の狭い橋梁状の層となっており、台座レジスト層430との間には、大きな空間が形成されている。また、図10(b),(c) に示されているとおり、台座レジスト層430は、基板の外周部分を囲うようなフレーム状の層となっている。
【0058】
続いて、これらの残存レジスト層をマスクとして用いて、第1層100に対するエッチングを行う。このとき、第1層100に対しては浸食性を有し、第2層200および第3層300に対しては浸食性を有しないエッチング方法を行うようにする。ここに示す実施例の場合、第1層100はシリコンからなる層、第2層200は酸化シリコンからなる層であるので、シリコンに対しては腐食性を有するが、酸化シリコンに対しては腐食性を有さないエッチング液(たとえば、KOHなど)を用いれば、第2層200を浸食せずに、第1層100のみを浸食するエッチングが可能である。ただ、第1層100と第3層300とはいずれもシリコンからなる層であるので、第1層100に対して腐食性を有するエッチング液は、第3層300に対しても腐食性を有する。したがって、第3層300を浸食しないエッチング方法を行うためには、エッチング液を上面に対してのみ作用させるような工夫を行えばよい。
【0059】
もっとも、第3層300の厚みが十分に大きい場合には、第3層300の下面の層が若干エッチング除去されても問題は生じない。そのような場合には、必ずしも第3層300に対しては浸食性を有しないエッチング方法を採る必要はないので、材料基板全体をエッチング液に浸すような方法を採ってもかまわない。
【0060】
図11は、このようなエッチングが完了した状態における材料基板の状態を示す側断面図である。前述したように、分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。結局、第1層残存部として、重錘体上面マスク領域M10の下に残った重錘体第1層110と、台座上面マスク領域M30の下に残った台座第1層130と、橋梁体マスク領域M21〜M24の下に残った橋梁体第1層121〜124が形成されることになり、第1層100上に、図9に示す上面用マスクMUの平面パターンが形成されたことになる。
【0061】
<第2層エッチング段階>
次に、第1層残存部をマスクとして利用して、第2層200に対して第3層300の上面が露出するまで厚み方向へのエッチングを行う。そのためには、第2層200に対しては浸食性を有し、第1層100および第3層300に対しては浸食性を有しないエッチング方法を行えばよい。具体的には、酸化シリコンに対しては腐食性を有するが、シリコンに対しては腐食性を有さないエッチング液、たとえば、バッファド弗酸(HF:NHF=1:10の混合液)を用いれば、第2層200のみを浸食するエッチングが可能である。
【0062】
図12は、このようなエッチングが完了した状態における材料基板の状態を示す側断面図である。前述したように、分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。結局、第2層残存部として、重錘体第1層110の下に残った重錘体第2層210と、台座第1層130の下に残った台座第2層230と、橋梁体第1層121〜124の下に残った橋梁体第2層221〜224と、が形成されることになり、第2層200上に、図9に示す上面用マスクMUの平面パターンが形成されたことになる。
【0063】
最後に、材料基板上に残っているレジスト層400を剥離除去する。なお、この第2層エッチング段階では、第1層残存部がマスクとして機能するため、レジスト層400は必ずしも必要ではない。したがって、レジスト層400は、この第2層エッチング段階を行う前に剥離除去してもかまわない。
【0064】
なお、バッファド弗酸は等方性のエッチング特性を有しているので、エッチング時間を長くとり過ぎると、図12における水平方向へのエッチングが進行することになり、上面用マスクMUの平面パターンが正しく形成されなくなる。そこで、実際には、第2層200の厚み方向のエッチングが完了した時点でエッチングが停止するよう、エッチング時間を調節する必要がある。
【0065】
<ストッパ壁形成段階>
図12(a) に示されているように、第1層残存部および第2層残存部には、ストッパ用空隙V1,V2が形成されている。このストッパ用空隙V1,V2は、図9の上面用マスクMUの平面図に示されているとおり、橋梁体マスク領域M21〜M24の内側端および外側端に形成された空隙である。ここでは、このストッパ用空隙V1,V2の位置にストッパ壁を形成する工程を行う。ストッパ壁は、後に行う第2層再エッチング段階において、第2層残存部に対するエッチングの進行を停止させるためのエッチングストッパとして機能する層であるので、第2層200とはエッチング特性が異なる材料によって形成する必要がある。ここでは、窒化シリコンをストッパ用材料として充填することにより、ストッパ壁の形成を行うことにする。
【0066】
ストッパ壁は、少なくとも第2層200に形成されたストッパ用空隙V1,V2に形成されていればよいが、ここでは、第1層100に形成されたストッパ用空隙V1,V2にもストッパ用材料を充填することにより、第1層100と第2層200とに跨がった構造を有するストッパ壁を形成する例を述べる。
【0067】
まず、前述した第2層エッチング段階が終了した状態の材料基板上に、ストッパ用材料となる窒化シリコンを堆積させてストッパ用材料層500を形成する。この実施例では、1μm程度の厚みをもったストッパ用材料層500を形成している。図13は、このようなストッパ用材料層500の形成が完了した状態における材料基板の状態を示す側断面図である。分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。このように、窒化シリコンを材料基板上の全面に堆積させてストッパ用材料層500を形成するには、たとえば、CVD法などの方法を用いればよい。図13(a) に示されているとおり、ストッパ用空隙V1,V2には、窒化シリコンが充填された状態となっている。なお、図13(b) に示すように、第1層残存層や第2層残存層が存在しない領域については、第3層300の上面にストッパ用材料層500が直接形成されることになる。
【0068】
こうして形成されたストッパ用材料層500は、材料基板の全面に堆積した層をなしているが、ストッパ壁として必要な部分は、その一部分だけである。そこで、ストッパ用材料層500の不要な部分を除去するためのエッチングを行う。図14は、このようなエッチングを行うために用いるストッパ用マスクMSの平面図である。この図14におけるハッチングは、各マスク領域(エッチング工程において除去されずに残る領域)を示すためのものであり、断面を示すものではない。図示のとおり、このストッパ用マスクMSは、方環状をなすストッパ壁マスク領域M40,M50を有している。
【0069】
内側のストッパ壁マスク領域M40は、図9に示す上面用マスクMUの重錘体上面マスク領域M10の外周を縁取りするような環状形状を有しており、このようなマスクを用いることにより、重錘体第2層210の外周を縁取りするような環状形状をもったストッパ壁を形成することができる。一方、外側のストッパ壁マスク領域M50は、図9に示す上面用マスクMUの台座上面マスク領域M30の内周を縁取りするような環状形状を有しており、このようなマスクを用いることにより、台座第2層230の内周を縁取りするような環状形状をもったストッパ壁を形成することができる。
【0070】
ストッパ用材料層500に対する実際のエッチング工程は、次のような複数段階のプロセスを経て行われる。まず、ストッパ用材料層500の上にレジスト層を形成し、このレジスト層に図14に示すストッパ用マスクMSを用いた露光を行った後にこれを現像し、最初に形成したレジスト層のうち、図14にハッチングを施して示す各マスク領域の部分だけを残す処理を行う。図15は、この段階における材料基板の状態を示す側断面図である。前述したように、分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【0071】
図15(a) に示すように、基板中央には、ストッパ壁マスク領域M40に対応した平面パターンを有するストッパ壁レジスト層640が残存しており、その周囲を取り囲むように、ストッパ壁マスク領域M50に対応した平面パターンを有するストッパ壁レジスト層650が残存している。なお、図15(b) に示すb−b切断面には、ストッパ壁レジスト層650のみが現れており、図15(c) に示すc−c切断面には、ストッパ壁レジスト層は現れない。
【0072】
続いて、これらの残存レジスト層をマスクとして用いて、ストッパ用材料層500に対するエッチングを行う。このとき、ストッパ用材料層500に対しては浸食性を有し、その他の各層に対しては浸食性を有しないエッチング方法を行うようにする。ここに示す実施例の場合、ストッパ用材料層500は窒化シリコンからなる層であるので、たとえば、CFを用いたプラズマエッチングを行えばよい。
【0073】
図16は、このようなエッチングを行った後、レジスト層を剥離除去した状態における材料基板の状態を示す側断面図である。分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。結局、図14に示すストッパ用マスクMSを利用して、ストッパ用材料層500の不要部分をエッチングにより除去することにより、ストッパ壁540,550が形成されたことになる。このストッパ壁540,550の平面パターンは、図14に示すストッパ用マスクMSにおけるストッパ壁マスク領域M40,M50に対応したものになる。
【0074】
図16(a),(b) に示すとおり、ストッパ壁540,550は、第1層100および第2層200の厚みを跨がり、更に、第1層100の上面から上方に若干突き出したような高さをもった方環状の壁面を形成する。前述したとおり、このストッパ壁540,550は、後の第2層再エッチング段階において、第2層200に対するエッチングの進行を停止させるためのエッチングストッパとして機能するためのものであるから、少なくとも第2層の厚みに相当する高さを有していれば足りる。ただ、上述のプロセスでストッパ壁540,550を形成すると、図示のとおり、第1層100の上面から突き出すような十分な高さをもった壁が得られることになる。また、この例では、ストッパ壁540,550は、方環状の城壁構造をなしているが、後述するプロセスにおいてエッチングストッパとしての機能を果たすことができるのであれば、必ずしも環状構造にする必要はない。
【0075】
<抵抗素子形成段階>
続いて、橋梁体第1層121〜124の上面の必要な箇所に、ピエゾ抵抗素子を形成する。既に述べたとおり、この実施例では、第1層100はシリコンからなる層であり、ここにN型もしくはP型の不純物をイオン注入法などで打ち込むことにより不純物ドープ層を形成すれば、当該不純物ドープ層がピエゾ抵抗素子として機能することになる。なお、所定の領域に不純物ドープ層を形成する手法は、半導体装置を製造する方法として種々の手法が公知であり、ここでは詳しい説明は省略する。
【0076】
図17は、橋梁体第1層121,122の上面に、ピエゾ抵抗素子Rx1〜Rx4を形成した状態を示す側断面図(図9の切断線a−aの位置で切断した側断面図)である。図示されていないが、橋梁体第1層123,124の上面にも、同様に、ピエゾ抵抗素子Ry1〜Ry4,ピエゾ抵抗素子Rz1〜Rz4が形成されることになる。こうして形成されたピエゾ抵抗素子の抵抗値に基づいて、重錘体に作用した力や加速度を検出することができる点は、既に§1で述べたとおりである。
【0077】
図7の側断面図で説明したとおり、検出感度を高める上では、各ピエゾ抵抗素子を、その両端が各橋梁体の両端位置に揃うように配置するのが好ましい。そこで、この実施例では、図17に示すとおり、各ピエゾ抵抗素子の一端が、ストッパ壁540もしくは550に接触する位置に配置するようにしている。もちろん、実用上は、完全に接触させなくても、ストッパ壁のできるだけ近隣位置に配置するようにすれば、必要な検出感度を得ることができる。
【0078】
なお、この抵抗素子形成段階は、ピエゾ抵抗素子を検出素子として用いるセンサ本体を製造する場合にのみ必要なプロセスであり、本発明に係るセンサ用構造体の製造に必須のものではない。また、実用上は、ピエゾ抵抗素子を形成した後、アルミニウムなどにより、これら抵抗素子に対する必要な配線層を形成するプロセスを続けて行うのが好ましい。
【0079】
<段差形成段階>
図7の側断面図に示されているセンサ本体を見ると、重錘体本体部16の底面は、台座30の底面よりも若干高い位置にある。このような段差は、台座30の底面を装置筐体などに接合した場合に、重錘体本体部16を若干浮き上がった状態にする役割を果たし、Z軸方向の変位の自由度を確保する働きをする。
【0080】
もちろん、このような段差は、必ずしも必要なものではないが、もし、このような段差を確保する場合には、第3層300の下面に対して所定のマスクを用いたエッチング(後述する第3層エッチング段階と同種のエッチングでよい)を行い、図18の側断面図(図9の切断線a−aの位置で切断した側断面図)に示すように、第3層300の下面中央部分に、溝G1を形成する。この溝G1により、重錘体底面と台座底面との間に段差が形成されることになる。
【0081】
<下面用マスク準備段階>
続いて、図19の平面図に示すようなパターンをもった下面用マスクMLを用意する。この図19においても、ハッチングは、各マスク領域(エッチング工程において除去されずに残る領域)を示すためのものであり、断面を示すものではない。図示のとおり、この下面用マスクMLは、重錘体の下面を形成するための重錘体下面マスク領域M60と、台座の下面を形成するための台座下面マスク領域M70と、を有している。ここで、重錘体下面マスク領域M60と台座下面マスク領域M70との間には所定幅をもった空隙部が形成されており、この空隙部が、後のプロセスにおいてエッチング除去される部分である。このエッチングにより、第3層300は、重錘体第3層310と台座第3層330とに分離されることになる。
【0082】
<第3層エッチング段階>
図19に示すような下面用マスクMLが用意できたら、この下面用マスクMLを利用して、材料基板の第3層300に対して下面側から厚み方向へのエッチングを行う。実際には、このようなエッチング工程は、複数段階のプロセスを経て行われる。すなわち、まず、第3層300の下面にレジスト層を形成し、このレジスト層に図19に示す下面用マスクMLを用いた露光を行った後にこれを現像し、最初に形成したレジスト層のうち、図19にハッチングを施して示す各マスク領域の部分だけを残す処理を行う。続いて、残存したレジスト層をマスクとして、第3層300に対するエッチングを行う。
【0083】
このとき、第3層300に対しては浸食性を有し、第1層100、第2層200およびストッパ用材料に対しては浸食性を有しないエッチング方法を行うようにする。ここに示す実施例の場合、たとえば、シリコンに対してのみ浸食性を有するKOHなどをエッチング液として用いれば、第2層200およびストッパ用材料に対しては浸食性を有しないエッチングを行うことができる。ただ、第1層100と第3層300とはいずれもシリコンからなる層であるので、第3層300に対して腐食性を有するエッチング液は、第1層100に対しても腐食性を有する。したがって、第1層100を浸食しないエッチング方法を行うためには、エッチング液を下面に対してのみ作用させるような工夫を行えばよい。
【0084】
図20は、このようなエッチングの後に、レジスト層を剥離除去した時点での材料基板の状態を示す側断面図である。前述したように、分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。第3層300と第2層200とはエッチング特性が異なるため、第3層300に対する厚み方向のエッチングは、第2層200の下面に到達したところで終了する。その結果、第3層300は、図20(a) に示すように、溝G2を隔てて、重錘体第3層310と台座第3層330とに分離されることになる。これらが第3層残存部である。ここで、重錘体第3層310は、重錘体下面マスク領域M60の上に残った部分であり、台座第3層330は、台座下面マスク領域M70の上に残った部分である。また、溝G2の幅は、重錘体の水平方向への変位の自由度を規定するパラメータとなる。
【0085】
この時点で、重錘体第3層310は、4本の橋梁体によってのみ支持されている宙づりの状態となっている。たとえば、図20(b) には、重錘体第3層310が、橋梁体第1層123および橋梁体第2層223によって支持されている状態が示されている。
【0086】
<第2層再エッチング段階>
この段階は、図20(a) に示されている橋梁体第2層221,222や、図20(b) に示されている橋梁体第2層223をエッチングにより除去するためのプロセスである。すなわち、ストッパ壁540,550をエッチングストッパとして利用して、第2層残存部に対するエッチングを行うことになる。したがって、ここでは、第2層200に対しては浸食性を有し、第1層100、第3層300およびストッパ用材料に対しては浸食性を有しないエッチング方法を実施する。具体的には、前述した第2層エッチング段階と同様に、バッファド弗酸(HF:NHF=1:10の混合液)を用いたエッチングを行えばよい。
【0087】
図21は、このようなエッチングが完了した状態における材料基板の状態を示す側断面図である。前述したように、分図(a),(b),(c)は、それぞれ図9の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。図21を図20と比べると、橋梁体第2層221〜224の部分だけが除去され、その他の部分は全く変わりがないことがわかる。これは、ストッパ壁540,550がエッチングストッパとして機能しているため、第2層200に対する水平方向へのエッチングが、両ストッパ壁540,550によって挟まれた領域だけに限定されるためである。このエッチングにより除去された橋梁体第2層221〜224の部分には、溝G3が形成されることになる。この溝G3は、橋梁体第1層121〜124と重錘体第3層310とを隔てる空隙を構成する。
【0088】
<最終的な構造体>
図22は、上述した各段階を経て、最終的に得られるセンサ用構造体(実際には、ピエゾ抵抗素子が形成されたセンサ本体)を示す上面図である。なお、図では、説明の便宜上、ストッパ壁540,550の部分にハッチングを施して示すが、このハッチングは断面を示すものではない。また、切断線a−a,b−b,c−cは、各側断面図における分図(a),(b),(c)の切断位置を示している。
【0089】
結局、図21および図22に示す構造体を、図6および図7に示す構造体と対比すれば、重錘体第1層110、重錘体第2層210、重錘体第3層310からなる積層体により重錘体が構成されており、台座第1層130、台座第2層230、台座第3層330からなる積層体によって台座が構成されており、橋梁体第1層121〜124により橋梁体が構成されていることがわかる。実際には、重錘体第1層110および重錘体第2層210の外周部にはストッパ壁540が形成されているが、このストッパ壁540も重錘体の一部をなす構成要素と看做せば、基本的な構造は同じである。同様に、台座第1層130および台座第2層230の内周部にはストッパ壁550が形成されているが、このストッパ壁550も台座の一部をなす構成要素と看做せば、基本的な構造は同じである。
【0090】
このように、上述した各段階を経て得られる構造体は、基本的には、図6および図7に示す構造体と同等のものであり、体積の大きな重錘体を用いることにより、検出感度の高いセンサを実現することができる。ここで、注目すべき点は、上述した各段階は、エッチングを主とした半導体プレーナプロセスを用いて実行することができるため、量産に適した製造プロセスが実現できるという点である。しかも、より重要な効果は、エッチングプロセスを用いて製造しているにもかかわらず、寸法精度の高い製品を製造することが可能になる点である。その理由は、第2層再エッチング段階において、第2層200に対する水平方向へのエッチングが進行するものの、この水平方向へのエッチングの進行の程度は、ストッパ壁540,550によって正確に制御されることになるからである。
【0091】
たとえば、図21(a) において、橋梁体第1層121,122の長さは、ストッパ壁540,550によって規定されており、第2層再エッチング段階における水平方向へのエッチングの進行の程度に影響されることはない。このため、量産した場合であっても、すべてのロットの橋梁体の長さが正確な寸法に制御されることになる。別言すれば、図22の上面図において、境界位置L1〜L4は、すべてストッパ壁540,550の位置によって定まり、上面用マスクMUやストッパ用マスクMSの平面パターンによって正確に制御することが可能になる。
【0092】
また、図22に示す例のように、検出素子としてピエゾ抵抗素子を用いるセンサ本体を製造する場合、各ピエゾ抵抗素子を、ストッパ壁540,550に接触する位置に、もしくは、ストッパ壁の近隣位置に、正確に配置することが可能になり、検出感度が良好な位置への配置が可能になる。もちろん、ロットごとに検出感度がばらつくような事態も解消できる。このように、本発明は、量産に適し、かつ、十分な寸法精度が得られる力学量検出センサ用構造体の製造方法を提供することができる。
【0093】
<<< §4.本発明を実施する上で好ましいエッチング方法 >>>
前述した各段階のうち、第1層エッチング段階と第3層エッチング段階では、実用上、次の2つの条件を満たすエッチング法を行う必要がある。第1の条件は、各層の主として厚み方向への方向性をもった浸食が行われるエッチング法であること、第2の条件は、シリコン層に対しては浸食性を有するが、酸化シリコン層に対しては浸食性を有しないエッチング法であること、である。第1の条件は、マスクどおりの平面パターンをもったエッチングを行うために必要な条件であり、第2の条件は、酸化シリコンからなる第2層200に対する浸食が行われないようにするための条件である。
【0094】
第1の条件を満たすエッチングを行うには、誘導結合型プラズマエッチング法(ICPエッチング法:Induced Coupling Plasma Etching Method )を用いるのが好ましい。このエッチング法は、垂直方向に深い溝を掘る際に効果的な方法であり、一般に、DRIE(Deep Reactive Ion Etching )と呼ばれているエッチング方法の一種である。この方法の特徴は、材料層を厚み方向に浸食しながら掘り進むエッチング段階と、掘った穴の側面にポリマーの壁を形成するデポジション段階と、を交互に繰り返す点にある。掘り進んだ穴の側面は、順次ポリマーの壁が形成されて保護されるため、ほぼ厚み方向にのみ浸食を進ませることが可能になる。一方、第2の条件を満たすエッチングを行うには、酸化シリコンとシリコンとでエッチング選択性を有するエッチング材料を用いればよい。
【0095】
本願発明者は、この2つの条件を満足させるエッチングとして、実際に次のような条件で、エッチングを行ったところ、良好な結果が得られた。すなわち、上述した誘導結合型プラズマエッチング法を用い、次のような具体的条件によりエッチング段階とデポジション段階とを交互に繰り返すようにした。まず、エッチング対象となる材料基板を、低圧のチャンバ内に収容し、エッチング段階では、SFガスを100sccm、Oガスを10sccmの割合でチャンバ内に供給し、デポジション段階では、Cガスを100sccmの割合でチャンバ内に供給した。エッチング段階とデポジション段階をそれぞれ10秒程度の周期で繰り返し実行したところ、3μm/min程度のエッチングレートでエッチングが実行された。もちろん、本発明に係る製造方法は、上述のエッチング方法を用いる方法のみに限定されるものではない。
【0096】
一方、第2層再エッチング段階では、次の2つの条件を満たすエッチング法を行う必要がある。第1の条件は、厚み方向とともに層方向への方向性をもった浸食が行われるエッチング法であること、第2の条件は、酸化シリコン層に対しては浸食性を有するが、シリコン層や窒化シリコン層に対しては浸食性を有しないエッチング法であること、である。第1の条件は、橋梁体第2層221〜224の部分を水平方向に浸食して除去するために必要な条件であり、第2の条件は、既に所定形状への加工が完了しているシリコンからなる第1層残存部や第3層残存部およびストッパ壁に浸食が及ばないようにするために必要な条件である。
【0097】
本願発明者は、この2つの条件を満足させるエッチングとして、実際に次のような条件で、エッチングを行ったところ、良好な結果が得られた。すなわち、バッファド弗酸(HF:NHF=1:10の混合液)をエッチング液として用い、エッチング対象物をこのエッチング液に30分ほど浸漬することにより、エッチングを行った。あるいは、CFガスとOガスとの混合ガスを用いたRIE法によるドライエッチングを行っても、同様に良好な結果が得られた。もちろん、本発明に係る製造方法は、上述のエッチング方法を用いる方法のみに限定されるものではない。
【0098】
<<< §5.いくつかの変形例 >>>
以上、本発明を図示する基本的な製造工程に基づいて説明したが、本発明はこの基本工程に限定されるものではなく、この他にも種々の態様で実施可能である。ここでは、本発明のいくつかの変形例を述べておく。
【0099】
<断面V字型の溝形成>
§3の基本工程では、図11に示す第1層エッチング段階や、図12に示す第2層エッチング段階において、ストッパ用空隙V1,V2として、垂直下方へのエッチングにより、井戸型の溝を形成する例を述べた。しかしながら、図13に示すストッパ用材料層の形成段階において、CVD法を用いてストッパ用材料を堆積させることを考慮すると、井戸型の溝よりも、断面V字型の溝(側面が傾斜面となる溝)を形成しておいた方が好ましい。これは、井戸型の溝の場合、その側面に対する堆積が生じにくいため、溝内をストッパ材料で完全に充填することが困難になるからである。
【0100】
図23(a) の側断面図に示すように、第1層100および第2層200に対して、ストッパ用空隙V1,V2となる断面V字型の溝Vを形成しておくようにすれば、窒化シリコンなどのストッパ材料をCVD法で堆積させてストッパ用材料層500を形成する場合、図23(b) に示すように、溝側面への堆積が生じやすくなる。このように、断面V字型の溝Vの斜面に順次ストッパ材料を堆積してゆけば、比較的簡単に、図23(c) に示すようなストッパ用材料層500を得ることができる。第1層エッチング段階および第2層エッチング段階において、断面V字型の溝Vが形成されるようにするには、ある程度の等方性をもったエッチング液(たとえば、第1層エッチング段階ではKOH、第2層エッチング段階ではバッファド弗酸)を用いてエッチングを行うようにすればよい。
【0101】
なお、図15に示すようなレジスト層600を用いて、ストッパ用材料層500に対するエッチング工程を行うと、図16(a) に示すように、第1層100の上面より更に上方に突き出たストッパ壁540,550が形成されることになる。ところが、このようなストッパ壁540,550によって第1層100の上面に凹凸構造が形成されると、ピエゾ抵抗素子などに対する配線を行う上では好ましくない。そこで、実用上は、ストッパ用材料層500の不要部分をエッチングにより除去した後、残存した部分の上面を研磨することにより、第1層100の上面と同じ高さをもつストッパ壁540,550を形成するようにするのが好ましい。
【0102】
図23(d) は、断面V字型の溝Vに堆積させたストッパ用材料層500に対して、不要部分をエッチングにより除去する工程を行った後、残存部分の上面を研磨することにより、第1層100の上面と同じ高さをもつストッパ壁580を形成した例である。ストッパ壁580の上面は、第1層100の上面と一致し、第1層100の上面に配線を施す際の障害にはならない。しかも、ストッパ壁580は、第2層200に対して後に行われる再エッチング工程において、エッチングストッパとしての役割を支障なく果たすことができる。
【0103】
<U字型の抵抗素子>
図22の上面図に示す例では、各ピエゾ抵抗素子の一端が、ストッパ壁540もしくは550に接触する位置に配置されている。たとえば、ピエゾ抵抗素子Rx1の右端はストッパ壁550に接触しており、ピエゾ抵抗素子Rx2の左端はストッパ壁540に接触しており、ピエゾ抵抗素子Rx3の右端はストッパ壁540に接触しており、ピエゾ抵抗素子Rx4の左端はストッパ壁550に接触している。これは、既に述べたとおり、橋梁体第1層121〜124に撓みが生じた場合、境界位置L1〜L4に応力が集中するため、この位置にピエゾ抵抗素子を配置すると最も検出感度が高くなるためである。
【0104】
しかしながら、ピエゾ抵抗素子の抵抗値を測定するためには、ピエゾ抵抗素子の両端位置に配線を施す必要があり、ピエゾ抵抗素子の端部がストッパ壁に接触していたり、ストッパ壁の近隣位置に配置されていたりすると、配線を施しにくいという問題が生じる。
【0105】
このような問題に対処するひとつの解決策は、図24に示すようなU字型の抵抗素子Rx11を、U字の底部がストッパ壁550側になるように配置し、U字の上部両端位置に対して配線を施すようにすることである。ここで、ハッチングは、U字型の抵抗素子Rx11の形状と、ストッパ壁550の位置を示す便宜のためのものであり、断面を示すものではない。図示の例では、U字型の抵抗素子Rx11の底部はストッパ壁550に接触する位置に配置されているが、その上部両端の配線端Ta,Tbは、ストッパ壁550からある程度の距離を保持して配置されている。そこで、図示のように、配線W1,W2の接合部J1,J2を、この配線端Ta,Tbに接続するようにして配線を行うようにすれば、何ら支障なく配線を施すことが可能になる。
【0106】
<幅に段差構造をもつ橋梁体の形成>
上述した配線に関する問題に対する別な解決策は、幅に段差構造をもつ橋梁体を形成することである。たとえば、図25に上面図を示すような橋梁体を考えてみる。この橋梁体は、幅広橋梁体121αと幅狭橋梁体121βとの2つの部分から構成されており、図22に示す橋梁体121と同等の機能を果たす。すなわち、幅広橋梁体121αは、図示のとおり、右端においてストッパ壁550に接合されており、幅狭橋梁体121βは、図示されていないが、左端においてストッパ壁540に接合されている。しかも、ピエゾ抵抗素子Rx1は、ストッパ壁550から若干離れた位置に配置されており、配線W3,W4の接合部J3,J4を、このピエゾ抵抗素子Rx1の両端に接合するのに何ら支障は生じていない。なお、この図25におけるハッチングは、抵抗素子Rx1およびストッパ壁550の位置を示す便宜のためのものであり、断面を示すものではない。
【0107】
ここで注目すべき点は、ピエゾ抵抗素子Rx1の右端が、境界位置L5に配置されている点である。本来、橋梁部と台座(この例の場合はストッパ壁550)との境界は、境界位置L1であり、橋梁部に生じる応力は、この境界位置L1に集中するはずであるが、ここに示す例の場合、応力は、境界位置L1よりも、むしろ境界位置L5に集中することになり、ピエゾ抵抗素子Rx1が図示の位置に配置されていたとしても、十分な検出感度を得ることができる。これは、幅広橋梁体121αの幅αに比べて、幅狭橋梁体121βの幅βがかなり小さく設定されているためである。境界位置L1と境界位置L5とに生じる応力集中の度合いは、幅αと幅βとの差に左右されることになり、幅の差が大きければ大きいほど、境界位置L5における応力集中度が高まる。
【0108】
したがって、幅αと幅βとを、境界位置L5に十分な応力が生じるような適当な値に設定すれば、図示のとおり、ピエゾ抵抗素子Rx1をストッパ壁550から離れた位置に配置しても、十分な検出感度が得られることになる。
【0109】
なお、図25では、ピエゾ抵抗素子Rx1の位置をストッパ壁550から離すために、橋梁体の外側端の幅αが、中央部分の幅βに比べて広い形状となるような例を示したが、図22に示すピエゾ抵抗素子Rx2の位置をストッパ壁540から離すためには、橋梁体121の内側端の幅αが、中央部分の幅βに比べて広い形状となるようにすればよい。他の橋梁体122〜124に関しても同様である。
【0110】
このように幅に段差構造をもつ橋梁体を形成するには、図9に示すような上面用マスクMUを準備する段階において、内側端または外側端の幅が、中央部分の幅に比べて広い形状をもった橋梁体マスク領域M21〜M24を有する上面用マスクを用意すればよい。
【0111】
<庇部の形成>
図26に上面図を示す変形例は、上述した「幅に段差構造をもつ橋梁体」を更に発展させたものである。この変形例を、図22に示す例と比べてみると、いずれも4本の橋梁体によって重錘体を支持する構造を有している点は共通しているが、ストッパ壁540の外周部分に庇部140αが形成されており、ストッパ壁550の内周部分に庇部150αが形成されている点が異なっている。なお、説明の便宜上、ストッパ壁540,550の部分にハッチングを施して示すが、このハッチングは断面を示すものではない。
【0112】
実は、これら庇部140α,150αは、隣接配置された複数の橋梁体マスク領域の内側端もしくは外側端に設けられた幅広部分を融合させた部分である。たとえば、図26に示す橋梁体121βは、図25に示す幅狭橋梁体121βと同等の機能を果たす部分であり、図26に示す庇部150αは、図25に示す幅広橋梁体121αと同等の機能を果たす部分になる。同様に、図26に示す庇部140αは、橋梁体の内側端に設けられた幅広橋梁体として機能することになる。
【0113】
このような構造をとれば、各ピエゾ抵抗素子の端部を、ストッパ壁540,550に接触させる位置に配置する必要はなくなり、配線上の便宜を図ることが可能になる。すなわち、各橋梁体における応力集中箇所は、ストッパ壁540,550との境界位置(たとえば、図26に示すL1,L2)ではなく、庇部140α,150αとの境界位置(たとえば、図26に示すL5,L6)になるので、図示のような位置に各ピエゾ抵抗素子を配置しても、十分良好な検出感度が得られるようになる。
【0114】
なお、図26に示すような構造をもった構造体を製造するには、庇部140α,150αに対応する庇状領域を有する上面用マスクMU用意し、この庇状領域に対応した部分として、庇部140α,150αを第1層100の一部分により形成するようにすればよい。
【0115】
<容量素子の構成>
これまで述べた実施形態は、いずれもピエゾ抵抗素子を検出素子として利用したセンサ本体を製造するための工程を示すものであったが、本発明に係る力学量検出センサ用構造体の製造方法は、このようなピエゾ抵抗素子を検出素子として利用するセンサ本体の製造に限定されるものではない。ここでは、容量素子を検出素子として利用したセンサ本体を製造する例を述べる。
【0116】
図27は、容量素子を検出素子として利用したセンサ本体の構造を示す上面図である。この図においても、説明の便宜上、ストッパ壁540,550の部分にハッチングを施して示すが、このハッチングは断面を示すものではない。図22に示すセンサ本体と比較すると、主要な構造部分はほぼ同じであるが、検出素子の構成が異なっていることがわかる。すなわち、図22に示すセンサ本体では、橋梁体121〜124の上面に、検出素子となるピエゾ抵抗素子が形成されているが、図27に示すセンサ本体では、橋梁体121〜124の上面には何も形成されていない。その代わりに、4枚の電極層161〜164が形成されている。この4枚の電極層161〜164は、いずれも第1層100の一部分より構成されている。
【0117】
この図27に示すセンサ本体では、第1層100および第3層300は、いずれも導電性材料から構成されている。その結果、4枚の電極層161〜164は、いずれも導電性を有する層となり、電極として機能する。一方、重錘体第3層310は、全体が導電性をもったブロックになる。そのため、4枚の電極層161〜164と、これらに対向する重錘体第3層310の上面の各部分とによって、4組の容量素子C1〜C4が形成される。図28は、こうして形成される4組の容量素子C1〜C4を示す平面図である。図において、一点鎖線で示すのが重錘体第3層310であり、斜線ハッチングを施して示した部分が、4枚の電極層161〜164と、重錘体第3層310との平面的な重複部分、すなわち、4組の容量素子C1〜C4が形成される部分である。
【0118】
図29は、この図27に示すセンサ本体の側断面図であり、分図(a),(b),(c) は、それぞれ図27の切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。電極層161,162は、図29(a) では、橋梁体第1層121,122の陰に隠れて現れていないが、図29(b) では、明瞭に示されている。図示のとおり、4枚の電極層161〜164は、4本の橋梁体第1層121〜124と同様に、第1層100の一部によって構成されている要素である。図29(b) に示されているように、電極層161と重錘体第3層310の上面の一部によって容量素子C1が形成され、電極層162と重錘体第3層310の上面の一部によって容量素子C2が形成されている。
【0119】
重錘体第3層310が外力によって変位すると、各容量素子を構成する電極間隔が変化するため、各容量素子の静電容量値に変化が生じる。そこで、各容量素子の静電容量値を電気的に検出すれば、重錘体第3層310の変位状態を認識することができ、重錘体に作用した力や加速度などの力学量を検出することができる。
【0120】
このような構造をもったセンサ本体を製造するには、まず、基板準備段階において、第1層100および第3層300が導電性材料からなる材料基板を用意するようにする。前述した基本工程で用意したSOI基板は、シリコン層/酸化シリコン層/シリコン層という3層からなる基板であったが、このSOI基板の各シリコン層の部分に不純物をドープして導電性をもたせた基板を用いればよい。
【0121】
また、上面用マスク準備段階では、所定位置に電極層161〜164を形成するための電極層マスク領域を更に有する上面用マスクを用意するようにする。そして、この電極層マスク領域に関して、橋梁体マスク領域と同一のエッチングプロセスを施すことにより、電極層161〜164を第1層100の一部分により形成し、形成した電極層161〜164と第3層重錘体310の上面とによって容量素子C1〜C4が形成されるようにすれば、これら容量素子C1〜C4の静電容量値に基づいて、重錘体に作用した力や加速度を検出する機能をもった力センサや加速度センサを実現できる。
【0122】
<角速度センサへの適用>
本発明に係る力学量検出センサ用構造体の製造方法は、力センサや加速度センサの製造に限定されるものではなく、角速度センサの製造に利用することも可能である。たとえば、図27に示すセンサ本体は、上述したように、加速度センサとして利用することも可能であるが、角速度センサとして利用することも可能である。角速度センサとして利用する場合には、一部の容量素子に交流電力を供給することにより重錘体を所定方向に振動させた状態において、一部の容量素子の静電容量値を測定し、作用したコリオリ力を求め、重錘体に作用した角速度を検出するようにすればよい。
【0123】
<各段階の順序変更>
§3で述べた各段階は、必ずしも説明した順序で行う必要はなく、各段階のプロセスが実行可能な範囲内で適宜入れ替えることが可能である。たとえば、上述の説明では、第2層再エッチング段階を、第3層エッチング段階の後に行うようにしているが、第3層エッチング段階の前に行うことも可能である。この場合、たとえば、図17に示すような構造体に対して、第2層再エッチング段階を実行することになるので、材料基板の下面側からではなく、上面側から橋梁体第2層221〜224に対するエッチング除去が行われることになる。
【0124】
<ストッパ壁の形成位置>
§3で述べた例では、図9に示されているとおり、橋梁体マスク領域M21〜M24の内側端と重錘体上面マスク領域M10の外周との間にストッパ用空隙V1を形成するとともに、橋梁体マスク領域M21〜M24の外側端と台座上面マスク領域M30の内周との間にストッパ用空隙V2を形成した上面用マスクMUを用いたため、図22に示すように、橋梁体121〜124の両端にそれぞれストッパ壁540,550が形成された構造を得ることができた。しかしながら、ストッパ壁は、必ずしも橋梁体121〜124の両端に形成する必要はなく、ストッパ壁540かストッパ壁550かのいずれか一方のみを形成することも可能である。その場合には、ストッパ用空隙V1かV2かのいずれか一方が形成された上面用マスクMUを用いるようにすればよい。
【0125】
もちろん、ストッパ壁540かストッパ壁550かのいずれか一方のみを形成した場合、ストッパ壁が形成されていない側についてはエッチングストッパとして機能する構成要素がなくなるため、第2層再エッチング段階における正確なエッチング制御を行うことができなくなる。したがって、実用上は、§3で述べた例のように、ストッパ壁540,550の双方を形成するのが好ましい。
【0126】
また、上述の実施形態では、ストッパ用材料層を窒化シリコンによって構成したが、たとえば、ポリシリコンをストッパ用材料として用いてもかまわない。
【0127】
【発明の効果】
以上のとおり、本発明によれば、量産に適し、かつ、十分な寸法精度が得られる力学量検出センサ用構造体の製造方法を提供することができる。
【図面の簡単な説明】
【図1】力センサおよび加速度センサとして利用可能なセンサ本体の上面図である。
【図2】図1に示すセンサ本体を、XZ平面で切断した側断面図である。
【図3】図1に示すセンサ本体に、X軸正方向の外力+Fxが作用した状態を示す側断面図(XZ平面で切断した側断面図)である。
【図4】図1に示すセンサ本体に、Z軸正方向の外力+Fzが作用した状態を示す側断面図(XZ平面で切断した側断面図)である。
【図5】図1に示すセンサ本体に適用するための検出回路の一例を示す回路図である。
【図6】本発明に係る製造方法の適用対象となる改良型センサ本体の上面図である。
【図7】図6に示すセンサ本体を、XZ平面で切断した側断面図である。
【図8】本発明に係る製造方法で用意される材料基板の構造を示す側断面図である。
【図9】本発明に係る製造方法で用意される上面用マスクMUのパターンを示す平面図である(ハッチングは、エッチング工程において除去されずに残る各マスク領域を示すためのものであり、断面を示すものではない。)。
【図10】本発明に係る製造方法の第1層エッチング段階において、レジスト層400に対するパターニングを完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図11】本発明に係る製造方法において、第1層エッチング段階が完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図12】本発明に係る製造方法において、第2層エッチング段階が完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図13】本発明に係る製造方法において、ストッパ用材料層形成段階が完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図14】本発明に係る製造方法で用意されるストッパ用マスクMSのパターンを示す平面図である(ハッチングは、エッチング工程において除去されずに残る各マスク領域を示すためのものであり、断面を示すものではない。)。
【図15】本発明に係る製造方法において、ストッパ用材料層のエッチング段階を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図16】本発明に係る製造方法において、ストッパ壁形成段階が完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図17】本発明に係る製造方法において、抵抗素子形成段階が完了した状態を示す側断面図である(図9に示す切断線a−aの位置で切断した側断面図に相当する)。
【図18】本発明に係る製造方法において、段差形成段階が完了した状態を示す側断面図である(図9に示す切断線a−aの位置で切断した側断面図に相当する)。
【図19】本発明に係る製造方法で用意される下面用マスクMLのパターンを示す平面図である(ハッチングは、エッチング工程において除去されずに残る各マスク領域を示すためのものであり、断面を示すものではない。)。
【図20】本発明に係る製造方法において、第3層エッチング段階が完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図21】本発明に係る製造方法において、第2層再エッチング段階が完了した状態を示す側断面図であり、分図(a),(b),(c)は、それぞれ図9に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【図22】本発明に係る製造方法において製造されたセンサ本体の上面図である(説明の便宜上、ストッパ壁540,550の部分にハッチングを施して示すが、このハッチングは断面を示すものではない。)。
【図23】本発明に係る製造方法において、断面V字型の溝Vを形成する変形例を示す側断面図である。
【図24】本発明に係る製造方法において、U字型の抵抗素子を形成する変形例を示す平面図である(ハッチングは、U字型の抵抗素子Rx11の形状と、ストッパ壁550の位置を示す便宜のためのものであり、断面を示すものではない。)。
【図25】本発明に係る製造方法において、幅に段差構造をもつ橋梁体を形成する変形例を示す平面図である(ハッチングは、抵抗素子Rx1と、ストッパ壁550の位置を示す便宜のためのものであり、断面を示すものではない。)。
【図26】本発明に係る製造方法において、橋梁体の両端に庇部を形成する変形例を示す平面図である(説明の便宜上、ストッパ壁540,550の部分にハッチングを施して示すが、このハッチングは断面を示すものではない。)。
【図27】本発明に係る製造方法において、容量素子を形成する変形例を示す平面図である(説明の便宜上、ストッパ壁540,550の部分にハッチングを施して示すが、このハッチングは断面を示すものではない。)。
【図28】図27に示す変形例の一部を示す平面図である(ハッチングは、容量素子C1〜C4の形成領域およびストッパ壁540,550の部分を示すものであり、断面を示すものではない。)。
【図29】図27に示す変形例の側断面図であり、分図(a),(b),(c)は、それぞれ図27に示す切断線a−a,b−b,c−cの位置で切断した側断面図に相当する。
【符号の説明】
10…重錘体
15…重錘体上層部
16…重錘体本体部
21〜24…橋梁体
30…台座
41〜43…電圧計
51〜53…電源
100…第1層(シリコン層)
110…重錘体第1層
121〜124…橋梁体第1層
121α…幅広橋梁体
121β〜124β…幅狭橋梁体
130…台座第1層
140α…庇部
150α…庇部
161〜164…電極層
200…第2層(酸化シリコン層)
210…重錘体第2層
221〜224…橋梁体第2層
230…台座第2層
300…第3層(シリコン層)
310…重錘体第3層
330…台座第3層
400…レジスト層
410…重錘体レジスト層
421〜424…橋梁体レジスト層
430…台座レジスト層
500…ストッパ用材料層
540…ストッパ壁
550…ストッパ壁
580…ストッパ壁
600…レジスト層
640…ストッパ壁レジスト層
650…ストッパ壁レジスト層
a,b,c…切断線
C1〜C4…容量素子
+Fx…X軸方向への外力
+Fz…Z軸方向への外力
G,G1,G2,G3…溝
J1〜J4…接合部
L1〜L6…境界位置
ML…下面用マスク
MS…ストッパ用マスク
MU…上面用マスク
M10…重錘体上面マスク領域
M21〜M24…橋梁体マスク領域
M30…台座上面マスク領域
M40…ストッパ壁マスク領域
M50…ストッパ壁マスク領域
M60…重錘体下面マスク領域
M70…台座下面マスク領域
Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4…ピエゾ抵抗素子
Rx11…U字形の抵抗素子
Ta,Tb…配線端
V…断面V字型の溝
V1,V2…ストッパ用空隙
W1〜W4…配線
X,Y,Z…座標軸
α,β…寸法値

Claims (21)

  1. 重錘体と、この重錘体の周囲を囲うように設けられた台座と、前記台座の上部と前記重錘体の上部とを連結する橋梁体と、を備え、前記重錘体に力が作用すると前記橋梁体に撓みが生じ、前記重錘体が前記台座に対して変位するように構成され、前記撓みもしくは前記変位に基づいて力学量を検出する用途に用いることが可能な力学量検出センサ用構造体を製造する方法であって、上から順に、第1層、第2層、第3層の3層を積層してなり、前記第1層と前記第2層とが互いにエッチング特性が異なり、前記第3層と前記第2層とが互いにエッチング特性が異なるような材料基板を用意する基板準備段階と、
    前記重錘体の上面を形成するための重錘体上面マスク領域と、前記台座の上面を形成するための台座上面マスク領域と、前記橋梁体を形成するための橋梁体マスク領域と、を有し、前記橋梁体マスク領域の内側端と前記重錘体上面マスク領域の外周との間、および、前記橋梁体マスク領域の外側端と前記台座上面マスク領域の内周との間、の少なくとも一方には、ストッパ用空隙が確保されている上面用マスクを用意する上面用マスク準備段階と、
    前記重錘体の下面を形成するための重錘体下面マスク領域と、前記台座の下面を形成するための台座下面マスク領域と、を有する下面用マスクを用意する下面用マスク準備段階と、
    前記上面用マスクを利用して、前記第1層に対して前記第2層の上面が露出するまで厚み方向へのエッチングを行い、前記重錘体上面マスク領域の下に残った重錘体第1層と、前記台座上面マスク領域の下に残った台座第1層と、前記橋梁体マスク領域の下に残った橋梁体第1層と、を第1層残存部として形成する第1層エッチング段階と、
    前記第1層残存部をマスクとして利用して、前記第2層に対して前記第3層の上面が露出するまで厚み方向へのエッチングを行い、前記重錘体第1層の下に残った重錘体第2層と、前記台座第1層の下に残った台座第2層と、前記橋梁体第1層の下に残った橋梁体第2層と、を第2層残存部として形成する第2層エッチング段階と、
    前記上面用マスクのストッパ用空隙の位置に対応して、前記第2層に形成されたストッパ用空隙部分に、前記第2層とはエッチング特性が異なるストッパ用材料を充填することにより、前記第2層残存部に対するエッチングの進行を停止させるためのストッパ壁を形成するストッパ壁形成段階と、
    前記下面用マスクを利用して、前記第3層に対して厚み方向へのエッチングを行い、前記重錘体下面マスク領域の上に残った重錘体第3層と、前記台座下面マスク領域の上に残った台座第3層と、を第3層残存部として分離形成する第3層エッチング段階と、
    前記ストッパ壁をエッチングストッパとして利用して、前記第2層残存部に対するエッチングを行い、前記橋梁体第2層を除去する第2層再エッチング段階と、
    を有し、前記重錘体第1層、前記重錘体第2層、前記重錘体第3層からなる積層体により重錘体を構成し、前記台座第1層、前記台座第2層、前記台座第3層からなる積層体により台座を構成し、前記橋梁体第1層により橋梁体を構成することを特徴とする力学量検出センサ用構造体の製造方法。
  2. 請求項1に記載の製造方法において、
    第1層エッチング段階を、第1層に対しては浸食性を有し、第2層および第3層に対しては浸食性を有しないエッチング方法により行うことを特徴とする力学量検出センサ用構造体の製造方法。
  3. 請求項1または2に記載の製造方法において、
    第2層エッチング段階を、第2層に対しては浸食性を有し、第1層および第3層に対しては浸食性を有しないエッチング方法により行うことを特徴とする力学量検出センサ用構造体の製造方法。
  4. 請求項1〜3のいずれかに記載の製造方法において、
    第3層エッチング段階を、第3層に対しては浸食性を有し、第1層、第2層およびストッパ用材料に対しては浸食性を有しないエッチング方法により行うことを特徴とする力学量検出センサ用構造体の製造方法。
  5. 請求項1〜4のいずれかに記載の製造方法において、
    第2層再エッチング段階を、第2層に対しては浸食性を有し、第1層、第3層およびストッパ用材料に対しては浸食性を有しないエッチング方法により行うことを特徴とする力学量検出センサ用構造体の製造方法。
  6. 請求項1〜5のいずれかに記載の製造方法において、
    第2層再エッチング段階を、第3層エッチング段階の後に行うことを特徴とする力学量検出センサ用構造体の製造方法。
  7. 請求項1〜5のいずれかに記載の製造方法において、
    第2層再エッチング段階を、第3層エッチング段階の前に行うことを特徴とする力学量検出センサ用構造体の製造方法。
  8. 請求項1〜7のいずれかに記載の製造方法において、
    ストッパ壁形成段階を、
    第2層エッチング段階が終了した状態の基板上に、ストッパ用材料を堆積させてストッパ用材料層を形成する段階と、
    ストッパ壁を形成するためのストッパ用マスク領域を有するストッパ用マスクを用意する段階と、
    前記ストッパ用マスクを利用して、前記ストッパ用材料層の不要部分をエッチングにより除去し、残存した部分をストッパ壁とする段階と、
    によって行うことを特徴とする力学量検出センサ用構造体の製造方法。
  9. 請求項8に記載の製造方法において、
    第1層エッチング段階および第2層エッチング段階において、断面V字型の溝が形成されるエッチングを行うようにし、
    ストッパ用材料を堆積させる際に、CVD法を用いて、前記断面V字型の溝の斜面にストッパ材料層が形成されるようにしたことを特徴とする力学量検出センサ用構造体の製造方法。
  10. 請求項8または9に記載の製造方法において、
    ストッパ用材料層の不要部分をエッチングにより除去した後、残存した部分の上面を研磨することにより、第1層の上面と同じ高さをもつストッパ壁を形成することを特徴とする力学量検出センサ用構造体の製造方法。
  11. 請求項1〜10のいずれかに記載の製造方法において、
    重錘体第2層の外周を縁取りするような環状形状をもったストッパ壁を形成することを特徴とする力学量検出センサ用構造体の製造方法。
  12. 請求項1〜11のいずれかに記載の製造方法において、
    台座第2層の内周を縁取りするような環状形状をもったストッパ壁を形成することを特徴とする力学量検出センサ用構造体の製造方法。
  13. 請求項1〜12のいずれかに記載の製造方法において、
    内側端および外側端の少なくとも一方の幅が、中央部分の幅に比べて広い形状をもった橋梁体マスク領域を有する上面用マスクを用意し、内側端および外側端の少なくとも一方の幅が、中央部分の幅に比べて広い形状をもった橋梁体を形成するようにしたことを特徴とする力学量検出センサ用構造体の製造方法。
  14. 請求項13に記載の製造方法において、
    複数本の橋梁体によって重錘体を支持する構造を有する構造体を製造するために、複数の橋梁体マスク領域を有し、かつ、隣接配置された複数の橋梁体マスク領域の内側端もしくは外側端に設けられた幅広部分が融合して庇状領域を形成している上面用マスクを用意し、前記庇状領域に対応した庇部を第1層の一部分により形成することを特徴とする力学量検出センサ用構造体の製造方法。
  15. 請求項1〜14のいずれかに記載の製造方法において、
    基板準備段階において、3層構造を有する材料基板として、SOI基板を用意することを特徴とする力学量検出センサ用構造体の製造方法。
  16. 請求項15に記載の製造方法において、
    第1層がシリコン、第2層が酸化シリコン、第3層がシリコンから構成されているSOI基板を用いるようにし、ストッパ用材料として、窒化シリコンを用いるようにすることを特徴とする力学量検出センサ用構造体の製造方法。
  17. 請求項1〜16のいずれかに記載の製造方法を利用して加速度センサを製造する方法であって、
    橋梁体第1層の上面にピエゾ抵抗素子を形成する抵抗素子形成段階を更に行い、前記ピエゾ抵抗素子の抵抗値に基づいて、重錘体に作用した加速度を検出する機能をもった加速度センサを製造することを特徴とする加速度センサの製造方法。
  18. 請求項17に記載の加速度センサの製造方法において、
    ピエゾ抵抗素子を、ストッパ壁に接触する位置に、もしくは、ストッパ壁の近隣位置に配置することを特徴とする加速度センサの製造方法。
  19. 請求項18に記載の加速度センサの製造方法において、
    U字型の抵抗素子を、U字の底部がストッパ壁側になるように配置し、U字の上部両端位置に対して配線を施すことを特徴とする加速度センサの製造方法。
  20. 請求項1〜16のいずれかに記載の製造方法を利用して加速度センサを製造する方法であって、
    基板準備段階において、第1層および第3層が導電性材料からなる材料基板を用意するようにし、
    上面用マスク準備段階において、所定位置に電極層を形成するための電極層マスク領域を更に有する上面用マスクを用意し、前記電極層マスク領域に関して、橋梁体マスク領域と同一のエッチングプロセスを施すことにより、電極層を第1層の一部分により形成し、形成した電極層と第3層重錘体上面とによって容量素子が形成されるようにし、この容量素子の静電容量値に基づいて、重錘体に作用した加速度を検出する機能をもった加速度センサを製造することを特徴とする加速度センサの製造方法。
  21. 請求項1〜16のいずれかに記載の製造方法を利用して角速度センサを製造する方法であって、
    基板準備段階において、第1層および第3層が導電性材料からなる材料基板を用意するようにし、
    上面用マスク準備段階において、所定位置に電極層を形成するための電極層マスク領域を更に有する上面用マスクを用意し、前記電極層マスク領域に関して、橋梁体マスク領域と同一のエッチングプロセスを施すことにより、電極層を第1層の一部分により形成し、形成した電極層と第3層重錘体上面とによって容量素子が形成されるようにし、形成された容量素子に電力供給することにより重錘体を振動させた状態において、形成された容量素子の静電容量値に基づいて、重錘体に作用した角速度を検出する機能をもった角速度センサを製造することを特徴とする角速度センサの製造方法。
JP2003010774A 2003-01-20 2003-01-20 力学量検出センサ用構造体の製造方法 Pending JP2004226085A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010774A JP2004226085A (ja) 2003-01-20 2003-01-20 力学量検出センサ用構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010774A JP2004226085A (ja) 2003-01-20 2003-01-20 力学量検出センサ用構造体の製造方法

Publications (1)

Publication Number Publication Date
JP2004226085A true JP2004226085A (ja) 2004-08-12

Family

ID=32899877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010774A Pending JP2004226085A (ja) 2003-01-20 2003-01-20 力学量検出センサ用構造体の製造方法

Country Status (1)

Country Link
JP (1) JP2004226085A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008062705A1 (ja) * 2006-11-20 2010-03-04 大日本印刷株式会社 力学量センサおよびその製造方法
EP2237049A1 (en) * 2009-03-31 2010-10-06 Domintech Co., LTD. Process of fabricating a capacitive tri-axial accelerometer
CN107727206A (zh) * 2017-10-27 2018-02-23 温州米田机电科技有限公司 一种测重传感器
CN107860447A (zh) * 2017-10-27 2018-03-30 温州米田机电科技有限公司 一种具有展开部件的测重传感器
CN107860456A (zh) * 2017-10-27 2018-03-30 温州米田机电科技有限公司 一种新型测重传感器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008062705A1 (ja) * 2006-11-20 2010-03-04 大日本印刷株式会社 力学量センサおよびその製造方法
EP2237049A1 (en) * 2009-03-31 2010-10-06 Domintech Co., LTD. Process of fabricating a capacitive tri-axial accelerometer
CN107727206A (zh) * 2017-10-27 2018-02-23 温州米田机电科技有限公司 一种测重传感器
CN107860447A (zh) * 2017-10-27 2018-03-30 温州米田机电科技有限公司 一种具有展开部件的测重传感器
CN107860456A (zh) * 2017-10-27 2018-03-30 温州米田机电科技有限公司 一种新型测重传感器

Similar Documents

Publication Publication Date Title
JP5956644B2 (ja) 単結晶シリコン電極を備えた容量性微小電気機械式センサー
Ayazi et al. High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology
US6445053B1 (en) Micro-machined absolute pressure sensor
US6276205B1 (en) Micro-machining
JP4176849B2 (ja) センサの製造方法
JP4216525B2 (ja) 加速度センサおよびその製造方法
US7051595B2 (en) Monolithic multi-functional integrated sensor and method for fabricating the same
US9828242B2 (en) Accelerometer and its fabrication technique
TWI637900B (zh) 多層微機械結構的製造方法
EP3052901B1 (en) Inertial and pressure sensors on single chip
JPS6391568A (ja) 圧電抵抗ひずみ計の製造方法並びにこのひずみ計を含む加速度計の製造方法
JP2011022137A (ja) Mems装置及びその製造方法
AU2001280660A1 (en) Micro-machined absolute pressure sensor
US9557346B2 (en) Accelerometer and its fabrication technique
JP4815857B2 (ja) 力学量検出センサの製造方法
JP4562524B2 (ja) モノリシックシリコン加速度センサーの製造方法
JP2004226085A (ja) 力学量検出センサ用構造体の製造方法
KR101071915B1 (ko) 가속도 센서 및 이의 제조 방법
JPH11274142A (ja) エッチング深さ検知方法、この検知方法を利用した半導体デバイスの製造方法及びこの検知方法を利用した力学量センサの製造方法
JP2004069405A (ja) 抵抗素子を用いた力センサおよび加速度センサならびにその製造方法
JP3021905B2 (ja) 半導体加速度センサの製造方法
CN115265663A (zh) 一种单芯片复合传感器结构及其制备方法
JP2010210432A (ja) 加速度センサの製造方法及びその製造方法で製造された加速度センサ
JP5293145B2 (ja) 半導体装置
TW554440B (en) Method for forming conductor connect on SOI microstructure