JP2004225969A - Total enthalpy heat exchanging element - Google Patents

Total enthalpy heat exchanging element Download PDF

Info

Publication number
JP2004225969A
JP2004225969A JP2003012927A JP2003012927A JP2004225969A JP 2004225969 A JP2004225969 A JP 2004225969A JP 2003012927 A JP2003012927 A JP 2003012927A JP 2003012927 A JP2003012927 A JP 2003012927A JP 2004225969 A JP2004225969 A JP 2004225969A
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
exchange element
moisture
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012927A
Other languages
Japanese (ja)
Inventor
Hiroshi Okano
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2003012927A priority Critical patent/JP2004225969A/en
Priority to TW92104642A priority patent/TW592826B/en
Priority to CNB031086101A priority patent/CN100498088C/en
Publication of JP2004225969A publication Critical patent/JP2004225969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total enthalpy heat exchange element capable of discharging toxic gas generated in a room outdoors and preventing the gas from returning indoors. <P>SOLUTION: The total heat exchange element is formed by laminating sheets fixed with styrene based ion exchanging resin having a chemically bonded ionization group in a molecule as moisture absorbent so that a large number of through holes are provided. This allows moisture exchange while toxic gas generated indoors is discharged to outside without returning them indoors. Also, as surface area of the moisture absorbent is large, moisture exchange efficiency is high. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は冷暖房時に換気を行った際に失われる顕熱を回収する全熱交換素子に関するものである。
【0002】
【従来の技術】
上記の全熱交換素子を構成するシートには潜熱交換即ち湿気の吸着を行なわせるためシリカゲル、活性炭、ゼオライト等の吸湿剤が固着されている。そしてたとえば夏季には高温多湿の外気を全熱交換素子の入気ゾーンに通してその温度および湿度を下げて冷房された室内に供給し、室内からの還気を全熱交換素子の還気ゾーンに通して高温多湿の外気より全熱交換素子に与えられた熱および湿気を還気に与え排気として室外に排出する。
【0003】
しかしながら、そのような従来の全熱交換素子は熱交換に際し、還気または外気に含まれている種々の臭気物質その他の有害ガス、その他の物質も全熱交換素子の吸湿剤に吸着され漸次蓄積する。それが室内に送られ、室内における臭気発生の原因となり人間の嗅覚に感知されるに至るトラブルが発生した。
【0004】
全熱交換素子には顕熱交換のための蓄熱手段と、潜熱交換のための湿気吸着手段とがある。そして湿気吸着手段は湿気の吸着が速くかつ脱着が容易でなければ湿気の室内への還流ができない。しかし、湿気の吸着が速くかつ脱着が容易な湿気吸着剤は一般的に水以外のものも吸・脱着し易く、このために臭気成分も吸・脱着してしまい、臭気成分を室内へ戻してしまうという問題があった。
【0005】
このため全熱交換素子の臭気成分の移行を少なくする技術例えば、水の分子の直径とほぼ同一径のポアを有するゼオライトを湿気吸着剤として用いる技術等が種々提案された。
【0006】
例えば特許文献1には、平均細孔径4Å〜6Åの親水性ゼオライトを湿気吸着剤として用いることによって臭気物質の移行を少なくする技術が開示され、特許文献2にはA型あるいはRD型シリカゲルを湿気吸着剤として用いることによって臭気物質の移行を少なくする技術が開示されている。
【0007】
【特許文献1】
特開平5−87477号公報
【0008】
【特許文献2】
特開平5−309771号公報
【0009】
【発明が解決しようとする課題】
上記の従来の全熱交換素子は臭気成分の移行が少なくなったが十分ではなく、また微量の化学物質を吸着せず室内より排出するという点で必ずしも十分なものではなかった。
【0010】
つまり従来の全熱交換素子は湿気の吸着剤としてシリカゲルやゼオライトを用いており、これらの湿気の吸着原理は低湿度側では吸着剤と水の分子が水素結合で結合することによっている。従って、この原理では水の分子だけを吸着するのでなく例えばアンモニアなどの極性物質であれば水の分子とともに吸着してしまう。そのような極性物質は吸着剤からの脱着によって室内側に移行する。
【0011】
また近年は室内に多くのガス状の化学物質が存在し、これらの化学物質は従来の全熱交換素子では移行を効果的に防止することが困難であった。
【0012】
つまり、家具や壁紙等に用いられる接着剤や防虫剤等に多くの化学物質が使用され、このため近年家庭やオフィス等の中から種々の微量な化学物質が発生し、このような化学物質が化学物質過敏症を引き起こすということが報告されている。
【0013】
本発明は上記の問題点に着目してなされたものであり、臭気成分の移行を極めて少なくするとともに空気中に含まれるガスが微量であっても室内より排出可能な全熱交換素子を提供しようとするものである。
【0014】
【課題を解決するための手段】
分子内に化学結合した電離基を有するスチレン系イオン交換樹脂を粉砕した粒子を湿気吸着剤として定着したシートを多数の小透孔を有するよう積層成形するようにした。
【0015】
【発明の実施の形態】
本発明の請求項1に記載の発明は、分子内に化学結合した電離基を有するスチレン系イオン交換樹脂を粉砕した粒子を湿気吸着剤として定着したシートを多数の小透孔を有するよう積層成形したものであり、空気中に含まれるガスが水蒸気以外のどのような種類のものであっても殆ど吸着せず、また湿気吸着剤の表面積が大きいため湿気の移行性能が高いものである。
【0016】
【実施例】
以下本発明の全熱交換素子の実施例について図に沿って詳細に説明する。
【0017】
メラミン樹脂で被覆されたアルミニウムシートの表面に接着剤を塗布し、その上から分子内に化学結合した電離基を有するスチレン系イオン交換樹脂を粉砕した粉末を湿気吸着剤としてアルミニウムシートの重量に対して約20〜35%吹き付ける。この製造は特許出願公開平成4年第106396号公報に開示された方法を用いることができる。
【0018】
また粉砕の大きさであるが、100メッシュ以上の粒子が0%、100〜200メッシュ(0.149〜0.074mm)の粒子が71.9%、200〜325メッシュ(0.074〜0.044mm)24.7%、325メッシュ以下の粒子が3.4%の分布になるようにした。
【0019】
粉砕後の粒子があまりにも小さいと、表面積は大きくなるのであるが吹き付けが困難になる。また粒子径があまりにも大きいと吹き付けは容易であるが表面積が十分にとれない。また粒子径が大きいとアルミニウムシートに接着されていても脱落し易い。さらにアルミシートの上に接着した時にシートの表面の凹凸が大きく、空気抵抗が大きくなる。しかし上記の分布を形成するような粉砕であると、吹き付けの観点からも表面積の観点からも十分に満足することができる。
【0020】
そして図1に示す如く湿気吸着剤を吹き付けたアルミニウムシートを波状に加工したコルゲートシート1と、平状のライナーシート2とを重ねてボス3上に巻き付ける。この巻き付けの際にコルゲートシート1の波の頂部に接着剤を塗布する。これによってコルゲートシート1とライナーシート2とが互いに接着され、巻き付けた後のハニカム体が強固なものとなる。
【0021】
そして接着剤に前もって抗菌剤を混入しておく。抗菌剤は多くのものが市販されているが、この中で人体に安全なものを選択する。例えば塩化銀等は古くから使用され安全が確認されているので好ましい。
【0022】
所定の厚さまで巻き付けた後、防黴剤を混合したバインダー溶液の中に浸漬し、その後外周部に亜鉛メッキ鋼板等の外周板4を巻き付け全熱交換素子5を完成する。
【0023】
上記の湿気吸着剤としてスチレン系イオン交換樹脂Na形を用いることができ、そのさらに具体的な材料として、三菱化学株式会社製の(DIAIONSK 1B)やダウケミカル株式会社製の(ダウェックスイオンHCR−S)等を用いることができる。
【0024】
また、スチレン系イオン交換樹脂は製造された直後の状態は直径0.4〜0.6mmの球状であり、そのままでは粒径が大きいのでミルを使用して粉砕して使用する。
【0025】
以上の構成の本発明の全熱交換素子5は、スチレン系イオン交換樹脂Na形のものを粉砕した微粉末が湿気吸着剤として機能する。そしてアルミニウムシートよりなるコルゲートシート1とライナーシート2とが顕熱の蓄熱材として機能する。
【0026】
つまり従来の全熱交換素子のうち湿気吸着剤としてシリカゲルやゼオライトを用いたものは水分の吸着原理として、水の分子を水素結合や毛細管現象によって吸着している。これに対して本発明の全熱交換素子5においては、湿気吸着剤は分子内に化学結合した電離基を有するスチレン系イオン交換樹脂であり水分の吸着原理がイオン交換基と水和して吸着されるものであるため例えば炭化水素の蒸気と水蒸気の混合ガスが接触した場合、水の分子のみ選択吸着する。ここで、本件発明に使用した分子内に化学結合した電離基を有するスチレン系イオン交換樹脂の化学式を示す。
【0027】
【化1】

Figure 2004225969
【0028】
イオン交換樹脂は強アルカリのNaで中和されているため、例えばNHなどのアルカリ性ガスやSOxなどの酸性ガスでもイオン交換することはない。このようにして湿気吸着剤であるイオン交換樹脂は水以外の物質を吸脱着せず、よって臭気物質や化学物質の移行が極めて小さくなる。
【0029】
本発明の全熱交換素子5についてアンモニアの移行を次の方法で試験した。つまり、図1のRA(還気)に35ppm濃度のアンモニアを入れて全熱交換素子5に通し、SA(給気)への移行量を調べた。空気条件はOA(外気)の温度を35℃に固定し、相対湿度を40%から80%まで変化させ、RA(還気)の温度を24℃、相対湿度を55%に固定した。
【0030】
全熱交換素子5の前面風速は3m/sとし、全熱交換素子5の回転数は15RPMとした。この結果図2に示すように湿気吸着剤としてシリカゲルを用いたものと比較してアンモニアの移行率は極めて小さいものであった。
【0031】
また図3に示すように全熱交換素子5の前面風速を2m/sから4.5m/sまで変化させて相対湿度50%と80%でアンモニアの移行率を試験した。ここでも本発明の全熱交換素子5と湿気吸着剤としてシリカゲルを用いたものと比較した。この結果でも判るように、本発明のものは湿気吸着剤としてシリカゲルを用いたものと比較してアンモニアの移行率は極めて小さいものであった。
【0032】
次に図4に示すように全熱交換素子の臭気移行率を代表的な湿気吸着剤毎に試験した。湿気吸着剤としてシリカゲルを用いたもの、ゼオライトを用いたもの及び全熱交換素子を構成するアルミニウムシートの表面を酸化させてアルミナを生成しそれに湿気を吸着させるようにしたものの3種類を試験した。図4より明らかなように本発明の全熱交換素子5の臭気移行率が他のものより小さい。
【0033】
また本発明の全熱交換素子5についてイソプロピルアルコールの移行を次の方法で試験した。つまり、図1のRA(還気)に35ppm濃度のイソプロピルアルコールを入れて全熱交換素子5に通し、SA(給気)への移行量を調べた。空気条件はOA(外気)の温度を30℃、相対湿度を60%に固定し、RA(還気)の温度を27℃、相対湿度を50%に固定した。全熱交換素子5前面風速は2m〜4.5/sとし、全熱交換素子5の回転数は15RPMとした。この結果図5に示すようにイソプロピルアルコールの移行率はシリカゲルやアルミナを用いた従来品と比較して極めて小さいものであった。
【0034】
さらにイソプロピルアルコールに代えてトルエンを用い、全く同じ条件で実験を行った。その結果を図6に示す。図6から判るように、この実験でも本発明の全熱交換素子5はトルエンの移行率はシリカゲルやアルミナを用いた従来品と比較して極めて小さいものであった。
【0035】
そして臭気物質の空気中の濃度変化に対する移行率の変化を試験した。その結果を図7に示す。図7に示す試験はOAの条件を温度36℃、相対湿度80%に固定し、全熱交換素子5前面風速は4.5/sに固定し、全熱交換素子5に通す空気中のイソプロピルアルコール濃度を50〜200ppmまで変化させた。この結果、図7に示すように移行率は上記濃度全域にわたって殆ど0%であった。
【0036】
また夏場に冷房を行っている部屋の換気時の全熱交換素子として全熱交換素子5を使用した場合に、表面が結露によって濡れることがある。つまり、部屋を冷房している時は図1のRAは低温・低湿であり、OAは高温・高湿である。
【0037】
ここで、全熱交換素子5の運転を停止すると、全熱交換素子5へ送られる空気の流れが止まる。RAが流れるゾーンからOAが流れるゾーンへ移動した直後の部分は温度が低く、OAに触れると結露することがある。
【0038】
この状態で長時間放置されると、結露によって濡れた部分に黴が生えることが考えられるが、防黴剤が担持されているため、黴の発生が防止される。また、コルゲートシート1とライナーシート2の接着部付近は両シートが互いに接近しているため、細い隙間が形成される。そしてこの隙間に結露水が溜まるが、接着剤に抗菌剤が混入されているため、ここで菌が繁殖することはない。
【0039】
以上の実施例ではアルミニウムシートによってコルゲートシート1およびライナーシート2を構成したが、これ以外にポリエチレンテレフタレートシート、ポリエステルシート、難燃化処理をした紙等を用いることができる。
【0040】
さらに以上の実施例では、粉砕された湿気吸着剤をシート材に吹き付けて付着する例を示したが、粉砕された湿気吸着剤を液状接着剤の中に分散させておき、その中にシート材を浸漬してもよい。そしてこの浸漬はシート材をコルゲート加工する前の状態で行ってもよいし、コルゲート加工しハニカム状に加工した後に行ってもよい。
【0041】
また以上の実施例ではスチレン系イオン交換樹脂Na形微粉末を湿気吸着剤として用いたが、スチレン系イオン交換樹脂H形、スチレン系イオン交換樹脂Li形微粉末、スチレン系イオン交換樹脂K形微粉末あるいはスチレン系イオン交換樹脂Ca形微粉末を用いることができる。
【0042】
以上の各種イオン交換樹脂は、全熱交換素子5の用いられる雰囲気にあわせて、つまり空気中に含有するガスに応じて適宜選択することができる。そして各種イオン交換樹脂を単一種ではなく複数種混合して用いることにより、空気中に含有するガスが複数種であっても対応することができる。
【0043】
【発明の効果】
本発明の全熱交換素子は以上の説明のとおり、分子内に化学結合した電離基を有するスチレン系イオン交換樹脂を粉砕した粒子を湿気吸着剤として定着したシートを多数の小透孔を有するよう積層成形したものであり、湿気吸着剤が水の分子のみ選択吸着するため、臭気物質や化学物質の移行が極めて少なくなる。
【0044】
このため、全熱交換素子を通過した空気が臭うことがなく、全熱交換素子を機能させることによって室内に化学物質が発生しても室外へ排出することができ、シックハウス症候群や化学物質過敏症を予防することができる。
【0045】
またスチレン系イオン交換樹脂は一般に濃硫酸の中に原料液をノズルから押し出して作るものであり、その結果スチレン系イオン交換樹脂は球状に形成され、表面積は小さい。これを粉砕すると、粉砕によってできた粒子は不定形であり、表面積が大きくなる。よって湿気の吸着効果が高くなる。
【0046】
さらに黴や細菌の発生もなく、全熱交換素子を通過した空気の中に黴や菌が浮遊することがなく衛生的である。
【図面の簡単な説明】
【図1】本発明の全熱交換素子の斜視図である。
【図2】本発明の全熱交換素子及び従来の全熱交換素子のアンモニアの移行を示すグラフである。
【図3】本発明の全熱交換素子及び従来の全熱交換素子のアンモニアの移行を示すグラフである。
【図4】本発明の全熱交換素子及び従来の全熱交換素子のアンモニアの移行を示すグラフである。
【図5】本発明の全熱交換素子及び従来の全熱交換素子の有機ガスの移行を示すグラフである。
【図6】本発明の全熱交換素子及び従来の全熱交換素子の有機ガスの移行を示すグラフである。
【図7】本発明の全熱交換素子及び従来の全熱交換素子の有機ガスの移行を示すグラフである。
【符号の説明】
1 コルゲートシート
2 ライナーシート
3 ボス
4 外周板
5 全熱交換素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a total heat exchange element that recovers sensible heat lost when ventilation is performed during cooling and heating.
[0002]
[Prior art]
A moisture absorbing agent such as silica gel, activated carbon, or zeolite is fixed to the sheet constituting the above total heat exchange element in order to perform latent heat exchange, that is, adsorption of moisture. In the summer, for example, high-temperature and high-humidity outside air is passed through the air-intake zone of the total heat exchange element to reduce its temperature and humidity and supplied to a cooled room. The heat and humidity given to the total heat exchange element from the high-temperature and high-humidity outside air are returned to the return air, and are discharged outside as outdoor air.
[0003]
However, in such a conventional total heat exchange element, during the heat exchange, various odor substances and other harmful gases and other substances contained in the return air or the outside air are also adsorbed by the hygroscopic agent of the total heat exchange element and gradually accumulate. I do. It was sent indoors, causing odors in the room and causing a problem that was perceived by human smell.
[0004]
The total heat exchange element has a heat storage means for sensible heat exchange and a moisture adsorption means for latent heat exchange. The moisture adsorbing means cannot return the moisture to the room unless the moisture is quickly adsorbed and easily desorbed. However, moisture adsorbents that absorb moisture quickly and are easy to desorb are generally easy to absorb and desorb substances other than water, so that odor components are also absorbed and desorbed, and the odor components are returned to the room. There was a problem that it would.
[0005]
For this reason, various techniques have been proposed for reducing the transfer of odor components in the total heat exchange element, for example, a technique using a zeolite having a pore having substantially the same diameter as that of water molecules as a moisture adsorbent.
[0006]
For example, Patent Literature 1 discloses a technique for reducing the transfer of odorous substances by using a hydrophilic zeolite having an average pore diameter of 4 ° to 6 ° as a moisture adsorbent. There is disclosed a technique for reducing the transfer of odorous substances by using it as an adsorbent.
[0007]
[Patent Document 1]
JP-A-5-84777
[Patent Document 2]
JP-A-5-309771
[Problems to be solved by the invention]
The above-mentioned conventional total heat exchange element has reduced the transfer of odor components, but is not sufficient, and is not always sufficient in that a small amount of chemical substance is discharged from the room without being adsorbed.
[0010]
That is, the conventional total heat exchange element uses silica gel or zeolite as a moisture adsorbent, and the principle of adsorbing these moistures is that the adsorbent and water molecules are bonded by hydrogen bonds on the low humidity side. Therefore, according to this principle, not only water molecules are adsorbed but also a polar substance such as ammonia is adsorbed together with water molecules. Such polar substances move to the indoor side by desorption from the adsorbent.
[0011]
In recent years, many gaseous chemical substances have been present in a room, and it has been difficult to effectively prevent the transfer of these chemical substances by a conventional total heat exchange element.
[0012]
In other words, many chemical substances are used for adhesives, insect repellents, etc. used for furniture, wallpaper, etc., and thus, in recent years, various trace chemical substances are generated from homes, offices, etc., and such chemical substances are used. It has been reported to cause chemical sensitivity.
[0013]
The present invention has been made in view of the above-described problems, and will provide a total heat exchange element capable of extremely minimizing the transfer of odor components and discharging the gas from the room even if the amount of gas contained in the air is very small. It is assumed that.
[0014]
[Means for Solving the Problems]
A sheet in which particles obtained by pulverizing a styrene-based ion exchange resin having an ionizing group chemically bonded in a molecule were fixed as a moisture adsorbent was laminated and formed so as to have a large number of small holes.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is a method of laminating a sheet in which particles obtained by pulverizing a styrene-based ion exchange resin having an ionizing group chemically bonded in a molecule as a moisture adsorbent have a large number of small holes. It hardly adsorbs any kind of gas other than water vapor contained in the air, and has a high moisture transfer performance due to the large surface area of the moisture adsorbent.
[0016]
【Example】
Hereinafter, embodiments of the total heat exchange element of the present invention will be described in detail with reference to the drawings.
[0017]
An adhesive is applied to the surface of an aluminum sheet coated with a melamine resin, and a powder obtained by pulverizing a styrene-based ion-exchange resin having an ionizing group chemically bonded to a molecule from above is used as a moisture adsorbent to the weight of the aluminum sheet. About 20-35%. For this production, a method disclosed in Japanese Patent Application Laid-Open No. 106396/1992 can be used.
[0018]
Also, as for the size of the pulverization, particles having a size of 100 mesh or more are 0%, particles having a size of 100 to 200 mesh (0.149 to 0.074 mm) are 71.9%, and particles having a size of 200 to 325 mesh (0.074 to 0. (044 mm) 24.7%, particles having a size of 325 mesh or less had a distribution of 3.4%.
[0019]
If the particles after the pulverization are too small, the surface area becomes large, but spraying becomes difficult. If the particle size is too large, spraying is easy, but a sufficient surface area cannot be obtained. Also, if the particle size is large, the particles easily fall off even if they are adhered to the aluminum sheet. Furthermore, when adhered on an aluminum sheet, the surface of the sheet has large irregularities, and the air resistance increases. However, when the pulverization is performed so as to form the above distribution, the pulverization can be sufficiently satisfied from the viewpoint of spraying and the surface area.
[0020]
Then, as shown in FIG. 1, a corrugated sheet 1 obtained by processing an aluminum sheet sprayed with a moisture adsorbent into a corrugated shape and a flat liner sheet 2 are superposed and wound around a boss 3. At the time of this winding, an adhesive is applied to the top of the corrugated sheet 1 wave. Thereby, the corrugated sheet 1 and the liner sheet 2 are adhered to each other, and the wound honeycomb body becomes strong.
[0021]
Then, an antibacterial agent is mixed in the adhesive beforehand. Many antibacterial agents are commercially available, and among them, select one that is safe for the human body. For example, silver chloride is preferable since it has been used for a long time and its safety has been confirmed.
[0022]
After being wound to a predetermined thickness, it is immersed in a binder solution mixed with a fungicide, and then an outer peripheral plate 4 such as a galvanized steel sheet is wound around the outer peripheral portion to complete the total heat exchange element 5.
[0023]
The styrene-based ion-exchange resin Na form can be used as the moisture adsorbent, and as more specific materials, (DIAIONSK 1B) manufactured by Mitsubishi Chemical Corporation and (Dowex Ion HCR- manufactured by Dow Chemical Company, Ltd.) S) can be used.
[0024]
Immediately after the styrene-based ion exchange resin is manufactured, it is spherical with a diameter of 0.4 to 0.6 mm. Since the particle size is large as it is, it is pulverized using a mill for use.
[0025]
In the total heat exchange element 5 of the present invention having the above configuration, fine powder obtained by pulverizing a styrene-based ion exchange resin of Na type functions as a moisture adsorbent. The corrugated sheet 1 and the liner sheet 2 made of an aluminum sheet function as a sensible heat storage material.
[0026]
That is, among the conventional total heat exchange elements, those using silica gel or zeolite as the moisture adsorbent adsorb water molecules by hydrogen bonding or capillary action as a principle of water adsorption. On the other hand, in the total heat exchange element 5 of the present invention, the moisture adsorbent is a styrene ion exchange resin having an ionizing group chemically bonded in the molecule, and the principle of water adsorption is hydration with the ion exchange group to adsorb. For example, when a mixed gas of hydrocarbon vapor and water vapor comes into contact, only water molecules are selectively adsorbed. Here, the chemical formula of the styrene ion exchange resin having an ionizing group chemically bonded in the molecule used in the present invention is shown.
[0027]
Embedded image
Figure 2004225969
[0028]
Since the ion exchange resin is neutralized with strong alkali Na, there is no exchange of ions with an alkaline gas such as NH 3 or an acidic gas such as SOx. In this way, the ion exchange resin, which is a moisture adsorbent, does not adsorb and desorb substances other than water, so that the transfer of odorous substances and chemical substances is extremely small.
[0029]
The transfer of ammonia was tested for the total heat exchange element 5 of the present invention by the following method. That is, 35 ppm concentration of ammonia was put into RA (return air) in FIG. 1 and passed through the total heat exchange element 5 to examine the amount of transfer to SA (air supply). The air conditions were such that the temperature of OA (outside air) was fixed at 35 ° C., the relative humidity was changed from 40% to 80%, the temperature of RA (return air) was fixed at 24 ° C., and the relative humidity was fixed at 55%.
[0030]
The front wind speed of the total heat exchange element 5 was 3 m / s, and the rotation speed of the total heat exchange element 5 was 15 RPM. As a result, as shown in FIG. 2, the transfer rate of ammonia was extremely small as compared with that using silica gel as the moisture adsorbent.
[0031]
Further, as shown in FIG. 3, the transfer rate of ammonia was tested at a relative humidity of 50% and 80% while changing the front wind speed of the total heat exchange element 5 from 2 m / s to 4.5 m / s. Here also, comparison was made with the total heat exchange element 5 of the present invention and the element using silica gel as the moisture adsorbent. As can be seen from these results, the transfer rate of ammonia was very small in the case of the present invention as compared with the case where silica gel was used as the moisture adsorbent.
[0032]
Next, as shown in FIG. 4, the odor transfer rate of the total heat exchange element was tested for each representative moisture adsorbent. Three types were tested, one using silica gel as a moisture adsorbent, one using zeolite, and one in which the surface of an aluminum sheet constituting the total heat exchange element was oxidized to produce alumina and adsorb moisture. As is clear from FIG. 4, the odor transfer rate of the total heat exchange element 5 of the present invention is smaller than the others.
[0033]
The transfer of isopropyl alcohol was tested for the total heat exchange element 5 of the present invention by the following method. That is, isopropyl alcohol having a concentration of 35 ppm was added to RA (return air) in FIG. 1 and passed through the total heat exchange element 5, and the amount of transfer to SA (air supply) was examined. The air conditions were such that the temperature of OA (outside air) was fixed at 30 ° C. and the relative humidity was fixed at 60%, the temperature of RA (return air) was fixed at 27 ° C., and the relative humidity was fixed at 50%. The wind speed at the front of the total heat exchange element 5 was 2 m to 4.5 / s, and the rotation speed of the total heat exchange element 5 was 15 RPM. As a result, as shown in FIG. 5, the transfer rate of isopropyl alcohol was extremely small as compared with the conventional products using silica gel or alumina.
[0034]
Further, an experiment was performed under exactly the same conditions, using toluene instead of isopropyl alcohol. FIG. 6 shows the result. As can be seen from FIG. 6, also in this experiment, the total heat exchange element 5 of the present invention had an extremely small toluene transfer rate as compared with the conventional products using silica gel or alumina.
[0035]
Then, the change in the transfer rate with respect to the change in the concentration of the odorant in the air was tested. FIG. 7 shows the result. In the test shown in FIG. 7, the OA conditions were fixed at a temperature of 36 ° C. and a relative humidity of 80%, the wind speed in front of the total heat exchange element 5 was fixed at 4.5 / s, and isopropyl in the air passed through the total heat exchange element 5 was used. The alcohol concentration was varied from 50 to 200 ppm. As a result, as shown in FIG. 7, the transfer rate was almost 0% over the entire concentration range.
[0036]
Further, when the total heat exchange element 5 is used as the total heat exchange element at the time of ventilation in a room where cooling is performed in summer, the surface may be wet due to dew condensation. That is, when the room is being cooled, RA in FIG. 1 is at low temperature and low humidity, and OA is at high temperature and high humidity.
[0037]
Here, when the operation of the total heat exchange element 5 is stopped, the flow of the air sent to the total heat exchange element 5 stops. The temperature immediately after moving from the zone in which RA flows to the zone in which OA flows is low, and dew condensation may occur when touching OA.
[0038]
If left in this state for a long time, it is considered that mold may grow on the wetted portion due to dew condensation. However, since the fungicide is carried, the generation of mold is prevented. Further, a narrow gap is formed in the vicinity of the bonded portion between the corrugated sheet 1 and the liner sheet 2 because both sheets are close to each other. Dew water accumulates in these gaps, but since the antibacterial agent is mixed in the adhesive, bacteria do not propagate here.
[0039]
In the above embodiments, the corrugated sheet 1 and the liner sheet 2 are made of an aluminum sheet. However, other than this, a polyethylene terephthalate sheet, a polyester sheet, a flame-retarded paper, or the like can be used.
[0040]
Further, in the above embodiments, the example in which the pulverized moisture adsorbent is sprayed and adhered to the sheet material is shown, but the pulverized moisture adsorbent is dispersed in the liquid adhesive, and the sheet material is contained therein. May be immersed. This immersion may be performed before corrugating the sheet material, or may be performed after corrugating and processing the sheet material into a honeycomb shape.
[0041]
In the above embodiments, the styrene-based ion exchange resin Na type fine powder was used as the moisture adsorbent, but the styrene-based ion exchange resin H-type, styrene-based ion exchange resin Li-type fine powder, and styrene-based ion exchange resin K-type fine powder were used. Powder or styrene-based ion exchange resin Ca-type fine powder can be used.
[0042]
The above various ion exchange resins can be appropriately selected according to the atmosphere in which the total heat exchange element 5 is used, that is, according to the gas contained in the air. By using various types of ion exchange resins instead of a single type, it is possible to cope with a plurality of types of gas contained in the air.
[0043]
【The invention's effect】
As described above, the total heat exchange element of the present invention has a sheet in which particles obtained by pulverizing a styrene-based ion exchange resin having an ionizing group chemically bonded in a molecule as a moisture adsorbent have a large number of small pores. Since the moisture adsorbent selectively adsorbs only water molecules, migration of odorous substances and chemical substances is extremely reduced.
[0044]
Therefore, the air passing through the total heat exchange element does not smell, and even if a chemical substance is generated inside the room by operating the total heat exchange element, it can be discharged to the outside of the room. Can be prevented.
[0045]
The styrene-based ion-exchange resin is generally formed by extruding a raw material solution into concentrated sulfuric acid from a nozzle. As a result, the styrene-based ion-exchange resin is formed in a spherical shape and has a small surface area. When this is pulverized, the particles formed by the pulverization are amorphous and have a large surface area. Therefore, the effect of absorbing moisture is enhanced.
[0046]
Furthermore, there is no generation of mold and bacteria, and the mold and bacteria do not float in the air that has passed through the total heat exchange element, which is sanitary.
[Brief description of the drawings]
FIG. 1 is a perspective view of a total heat exchange element of the present invention.
FIG. 2 is a graph showing the transfer of ammonia in the total heat exchange element of the present invention and the conventional total heat exchange element.
FIG. 3 is a graph showing the transfer of ammonia in the total heat exchange element of the present invention and the conventional total heat exchange element.
FIG. 4 is a graph showing the transfer of ammonia in the total heat exchange element of the present invention and the conventional total heat exchange element.
FIG. 5 is a graph showing migration of organic gas in the total heat exchange element of the present invention and the conventional total heat exchange element.
FIG. 6 is a graph showing migration of organic gas in the total heat exchange element of the present invention and the conventional total heat exchange element.
FIG. 7 is a graph showing migration of organic gas in the total heat exchange element of the present invention and the conventional total heat exchange element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Corrugated sheet 2 Liner sheet 3 Boss 4 Outer peripheral plate 5 Total heat exchange element

Claims (4)

分子内に化学結合した電離基を有するスチレン系イオン交換樹脂を粉砕した粒子を湿気吸着剤として定着したシートを多数の小透孔を有するよう積層成形してなることを特徴とする全熱交換素子。A total heat exchange element comprising: laminating a sheet in which particles obtained by pulverizing a styrene-based ion exchange resin having an ionizing group chemically bonded in a molecule as a moisture adsorbent so as to have a large number of small holes are laminated. . シートをハニカム状に積層成形してなる請求項1記載の全熱交換素子。The total heat exchange element according to claim 1, wherein the sheet is formed by laminating into a honeycomb shape. 防黴剤が添着された請求項1記載の全熱交換素子。The total heat exchange element according to claim 1, further comprising a fungicide. シートを接着剤を介して積層成形し、前記接着剤には抗菌剤が混入された請求項1記載の全熱交換素子。2. The total heat exchange element according to claim 1, wherein the sheet is formed by lamination with an adhesive, and an antimicrobial agent is mixed in the adhesive.
JP2003012927A 2003-01-22 2003-01-22 Total enthalpy heat exchanging element Pending JP2004225969A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003012927A JP2004225969A (en) 2003-01-22 2003-01-22 Total enthalpy heat exchanging element
TW92104642A TW592826B (en) 2003-01-22 2003-03-05 Total heat exchanger
CNB031086101A CN100498088C (en) 2003-01-22 2003-03-31 Whole heat-exchange assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012927A JP2004225969A (en) 2003-01-22 2003-01-22 Total enthalpy heat exchanging element

Publications (1)

Publication Number Publication Date
JP2004225969A true JP2004225969A (en) 2004-08-12

Family

ID=32901382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012927A Pending JP2004225969A (en) 2003-01-22 2003-01-22 Total enthalpy heat exchanging element

Country Status (3)

Country Link
JP (1) JP2004225969A (en)
CN (1) CN100498088C (en)
TW (1) TW592826B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191716B1 (en) * 2011-04-12 2012-10-16 김희식 Rotary type heat exchanging apparatus
US8316542B2 (en) 2007-04-17 2012-11-27 Mitsubishi Electric Corporation Method of manufacturing total heat exchange element and total heat exchange element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689859B2 (en) 2006-10-03 2014-04-08 Mitsubishi Electric Corporation Total heat exchanging element and total heat exchanger
CN103275568B (en) * 2013-05-06 2016-01-06 华南理工大学 The preparation method of pipe box finned heat exchanger nonionic adsorption resin hygroscopic coatings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106396A (en) * 1990-08-24 1992-04-08 Seibu Giken:Kk Manufacture of element for total heat exchanger
JPH07204451A (en) * 1993-11-30 1995-08-08 Seibu Giken:Kk Dehumidifing sheet and element using organic moisture absorbent
JPH1043530A (en) * 1996-04-25 1998-02-17 Bridgestone Corp Air purifying filter
JPH11300147A (en) * 1998-04-10 1999-11-02 Seibu Giken Co Ltd Moisture or all heat exchanging element
JP2000039278A (en) * 1998-05-14 2000-02-08 Seibu Giken Co Ltd Total heat exchanging element
JP2001113117A (en) * 1999-10-19 2001-04-24 Ebara Corp Moisture adsorptive/desorptive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106396A (en) * 1990-08-24 1992-04-08 Seibu Giken:Kk Manufacture of element for total heat exchanger
JPH07204451A (en) * 1993-11-30 1995-08-08 Seibu Giken:Kk Dehumidifing sheet and element using organic moisture absorbent
JPH1043530A (en) * 1996-04-25 1998-02-17 Bridgestone Corp Air purifying filter
JPH11300147A (en) * 1998-04-10 1999-11-02 Seibu Giken Co Ltd Moisture or all heat exchanging element
JP2000039278A (en) * 1998-05-14 2000-02-08 Seibu Giken Co Ltd Total heat exchanging element
JP2001113117A (en) * 1999-10-19 2001-04-24 Ebara Corp Moisture adsorptive/desorptive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316542B2 (en) 2007-04-17 2012-11-27 Mitsubishi Electric Corporation Method of manufacturing total heat exchange element and total heat exchange element
KR101191716B1 (en) * 2011-04-12 2012-10-16 김희식 Rotary type heat exchanging apparatus

Also Published As

Publication number Publication date
TW592826B (en) 2004-06-21
TW200413096A (en) 2004-08-01
CN1517664A (en) 2004-08-04
CN100498088C (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US11058988B2 (en) Ventilating air conditioning apparatus
JP6605548B2 (en) Ventilation air conditioner
JP2950444B2 (en) Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
US20080308262A1 (en) Humidity and/or Heat-Exchange Device
JP4341924B2 (en) Desiccant ventilation system
JP2012135759A (en) Hygroscopic agent, method for production thereof, and apparatus using the hygroscopic agent
WO2010100739A1 (en) Air conditioner
JP2011143358A (en) Moisture absorption filter and humidifier
JP2004225969A (en) Total enthalpy heat exchanging element
JP2000051634A (en) Gas adsorbing element
JP2000039278A (en) Total heat exchanging element
JP2005329317A (en) Adsorption/desorption device
EP0957320B1 (en) Heat exchanger element
JP3594486B2 (en) Moisture exchange element
WO2020203508A1 (en) Gas adsorbent
JPH119942A (en) Sheet and element for dehumidification and total heat exchange
JP2010048461A (en) Total enthalpy heat exchanger
JP4393478B2 (en) Desiccant ventilation system
JP2006000617A (en) Adsorbing/desorbing device
KR19990087028A (en) Moisture Exchange Device_
JP2001215097A (en) Heat exchange element with added harmful gas elimination function
JP2000055575A (en) Heat exchange element
JP2000229216A (en) Dry type adsorption device and adsorbent
JP2004190921A (en) Heat exchanger and heat exchanging ventilator
Batukray An Overview on Role of Desiccant Cooling on Human Health

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818