JP2004217463A - Manufacturing method of magnesium boride nanowire - Google Patents

Manufacturing method of magnesium boride nanowire Download PDF

Info

Publication number
JP2004217463A
JP2004217463A JP2003006301A JP2003006301A JP2004217463A JP 2004217463 A JP2004217463 A JP 2004217463A JP 2003006301 A JP2003006301 A JP 2003006301A JP 2003006301 A JP2003006301 A JP 2003006301A JP 2004217463 A JP2004217463 A JP 2004217463A
Authority
JP
Japan
Prior art keywords
magnesium boride
magnesium
nanowire
boride
nanoparticle precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006301A
Other languages
Japanese (ja)
Other versions
JP3837532B2 (en
Inventor
Yoshio Bando
義雄 板東
Ma Renzhi
ルンチィ・マ
Takao Mori
孝雄 森
Golberg Dmitri
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003006301A priority Critical patent/JP3837532B2/en
Publication of JP2004217463A publication Critical patent/JP2004217463A/en
Application granted granted Critical
Publication of JP3837532B2 publication Critical patent/JP3837532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel method for manufacturing a magnesium boride nanowire useful as a superconductive material. <P>SOLUTION: The magnesium boride nanowire is manufactured by heating a mixture of a magnesium powder and an amorphous boron powder in an argon atmosphere at 700-830°C to prepare a magnesium boride nanoparticle precursor and heating the precursor at 850-950°C in an argon gas flow. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、ホウ化マグネシウムナノワイヤーの製造方法に関するものである。さらに詳しくは、この出願の発明は、超電導材料として有用なホウ化マグネシウムナノワイヤーの新規な製造方法に関するものである。
【0002】
【従来の技術】
ホウ化マグネシウムは、転移温度39Kを示す超電動材料である。ホウ化マグネシウムは、多結晶、薄膜、ワイヤー、テープ、単結晶等の各種の形態を有する。そして、粒子径約40〜100ナノメートルのホウ化マグネシウムのナノメートルサイズの球状粒子が圧力下で高温処理を施すことにより得られている(たとえば、非特許文献1参照。)。また、最近、直径50〜400ナノメートルの多結晶ホウ化マグネシウムナノワイヤーが高温反応により得られている(たとえば、非特許文献2参照。)。
【0003】
得られたホウ化マグネシウムナノワイヤーの超電導を示す転移温度は、いずれも33Kである。
【0004】
【非特許文献1】
A.Gmbel外,アプライド・フィジックス・レターズ(Appl.Phys.Lett.),2002年,第80巻,p.2725
【非特許文献2】
Y.Wu外,アドバンスト・マテリアルズ(Adv.Mater.),2001年,第13巻,p.1487
【0005】
【発明が解決しようとする課題】
この出願の発明は、これまでに提案されている方法とは異なる方法によりホウ化マグネシウムナノワイヤーを製造することを課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、マグネシウム粉末と非晶質ホウ素粉末の混合物をアルゴン雰囲気中で700〜830℃に加熱し、ホウ化マグネシウムナノ粒子前駆物質を作製した後、このホウ化マグネシウムナノ粒子前駆物質をアルゴン気流中で850〜950℃に加熱することを特徴とするホウ化マグネシウムナノワイヤーの製造方法を提供する。
【0007】
以下、実施例を示しつつ、この出願の発明のホウ化マグネシウムナノワイヤーの製造方法についてさらに詳しく説明する。
【0008】
【発明の実施の形態】
この出願の発明のホウ化マグネシウムナノワイヤーの製造方法では、上述のとおり、マグネシウム粉末と非晶質ホウ素粉末を混合し、たとえば窒化ホウ素製のるつぼ等に入れ、アルゴン雰囲気中で700〜830℃に加熱してホウ化マグネシウムナノ粒子前駆物質を作製する。ホウ化マグネシウムナノ粒子前駆物質を作製する際の加熱温度は760℃が最適であるが、実験制御、精度等を考慮して700〜830℃とする。
【0009】
次いで、上記ホウ化マグネシウムナノ粒子前駆物質をアルゴン気流中で、たとえば赤外照射加熱炉等を用いて850〜950℃に加熱すると、結晶性のホウ化マグネシウムナノワイヤーが得られる。このときの加熱温度は900℃が最適であり、加熱時の実験制御、精度等を考慮して加熱温度は850〜950℃とする。
【0010】
得られたホウ化マグネシウムナノワイヤーは、転移温度39Kを示す超電導体であり、転移温度の上昇が見られる。
【0011】
【実施例】
マグネシウム粉末(純度99.9%、325メッシュ)と非晶質ホウ素粉末(純度99.9%、粒子径約50nm)の混合物(モル比2.5:1)を十分に混ぜ合わせた後、混合物を窒化ホウ素製のるつぼに入れた。このるつぼを石英管の中に配置し、高周波誘導加熱炉を用いてアルゴンガス雰囲気中で750〜780℃に2時間加熱した後、室温まで冷却した。ホウ化マグネシウムナノ粒子前駆物質が得られた。
【0012】
次いで、得られたホウ化マグネシウムナノ粒子前駆物質を、赤外線照射加熱炉を用いてアルゴンガスを流しながら急速に温度を上げ、5分以内に900℃まで上昇させ、この温度に40分間維持した。
【0013】
ホウ化マグネシウムナノ粒子前駆物質の走査型電子顕微鏡像を図1(a)に示した。粒子径が約100〜500ナノメートルのナノ粒子であると確認される。また、図1(b)は、ホウ化マグネシウムナノ粒子前駆物質のX線回折パターンであり、MgBと少量の未反応マグネシウムからなっていることが確認される。
【0014】
図2(a)は、900℃で処理した後の試料のX線回折パターンであり、図1(b)のX線回折パターンと比較すると、未反応のマグネシウムのピークが消失しており、MgBの相構造とよく一致している。また、X線回折パターンからは、少量の酸素とマグネシウムが反応したと考えられる酸化マグネシウムがわずかに存在していることが確認される。
【0015】
図2(b)は、900℃で処理した後の試料の走査型電子顕微鏡像であるが、10〜20ナノメートルの均一な直径を有するナノワイヤーが生成していることが確認される。一方、X線エネルギー拡散スペクトルと電子エネルギー損失スペクトルの測定結果からは、ホウ素とマグネシウムが主成分で少量の酸素が含まれおり、Mg:B:Oの原子比は1.0:2.0:0.3〜0.5であることが確認される。電子線回折の測定結果からは、試料は、六方晶系のホウ化マグネシウム(a=3.08Å、C=3.52Å)であると確認される。
【0016】
図3は、以上のホウ化マグネシウムナノ粒子前駆物質及びホウ化マグネシウムナノワイヤーの超電導性に関する磁化率と温度の関係について測定したグラフである。
【0017】
ホウ化マグネシウムナノ粒子前駆物質の転移温度が36.5Kであるのに対し、ホウ化マグネシウムナノワイヤーの転移温度は39Kであり、ナノワイヤーにすることによる転移温度の上昇が確認される。また、得られたホウ化マグネシウムナノワイヤーは、これまでのものに比べ、転移温度が高くなっている。
【0018】
【発明の効果】
以上詳しく説明したとおり、超電導材料として有用なホウ化マグネシウムナノワイヤーが、まったく新しい方法により得られ、しかも転移温度の上昇が実現される。
【図面の簡単な説明】
【図1】(a)(b)は、それぞれ、実施例で得られたホウ化マグネシウムナノ粒子前駆物質の走査型電子顕微鏡像、X線回折スペクトルである。
【図2】(a)(b)は、それぞれ、実施例で得られたホウ化マグネシウムナノワイヤーのX線回折スペクトル、走査型電子顕微鏡像である。
【図3】実施例で得られたホウ化マグネシウムナノ粒子前駆物質及びホウ化マグネシウムナノワイヤーの磁化率を示したグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing a magnesium boride nanowire. More specifically, the invention of this application relates to a novel method for producing magnesium boride nanowires useful as a superconducting material.
[0002]
[Prior art]
Magnesium boride is a super-electric material exhibiting a transition temperature of 39K. Magnesium boride has various forms such as polycrystal, thin film, wire, tape, and single crystal. Then, nanometer-sized spherical particles of magnesium boride having a particle diameter of about 40 to 100 nanometers are obtained by performing a high-temperature treatment under pressure (for example, see Non-Patent Document 1). Recently, polycrystalline magnesium boride nanowires having a diameter of 50 to 400 nanometers have been obtained by a high-temperature reaction (for example, see Non-Patent Document 2).
[0003]
The transition temperature indicating superconductivity of the obtained magnesium boride nanowires is 33K in all cases.
[0004]
[Non-patent document 1]
A. Gmbel et al., Applied Physics Letters (Appl. Phys. Lett.), 2002, Vol. 80, p. 2725
[Non-patent document 2]
Y. Wu et al., Advanced Materials (Adv. Mater.), 2001, Vol. 13, p. 1487
[0005]
[Problems to be solved by the invention]
An object of the invention of this application is to produce a magnesium boride nanowire by a method different from a method proposed so far.
[0006]
[Means for Solving the Problems]
The invention of this application is to solve the above-mentioned problems, by heating a mixture of magnesium powder and amorphous boron powder to 700 to 830 ° C. in an argon atmosphere to produce a magnesium boride nanoparticle precursor, A method for producing a magnesium boride nanowire is provided, wherein the magnesium boride nanoparticle precursor is heated to 850 to 950 ° C. in an argon stream.
[0007]
Hereinafter, the method for producing a magnesium boride nanowire of the present invention will be described in more detail with reference to examples.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing a magnesium boride nanowire of the invention of the present application, as described above, a magnesium powder and an amorphous boron powder are mixed, put into a crucible made of, for example, boron nitride, and heated to 700 to 830 ° C. in an argon atmosphere. Heat to produce magnesium boride nanoparticle precursor. The heating temperature for preparing the magnesium boride nanoparticle precursor is optimally 760 ° C., but is set to 700 to 830 ° C. in consideration of experimental control, accuracy and the like.
[0009]
Next, when the magnesium boride nanoparticle precursor is heated to 850 to 950 ° C. in an argon stream using, for example, an infrared irradiation heating furnace, a crystalline magnesium boride nanowire is obtained. The heating temperature at this time is optimally 900 ° C, and the heating temperature is 850 to 950 ° C in consideration of experimental control, accuracy, and the like during heating.
[0010]
The obtained magnesium boride nanowire is a superconductor having a transition temperature of 39 K, and the transition temperature is increased.
[0011]
【Example】
After thoroughly mixing a mixture (molar ratio 2.5: 1) of magnesium powder (purity 99.9%, 325 mesh) and amorphous boron powder (purity 99.9%, particle diameter of about 50 nm), the mixture was mixed. Was placed in a crucible made of boron nitride. This crucible was placed in a quartz tube, heated to 750 to 780 ° C. for 2 hours in an argon gas atmosphere using a high-frequency induction heating furnace, and then cooled to room temperature. A magnesium boride nanoparticle precursor was obtained.
[0012]
Next, the temperature of the obtained magnesium boride nanoparticle precursor was rapidly increased while flowing argon gas using an infrared irradiation heating furnace, raised to 900 ° C. within 5 minutes, and maintained at this temperature for 40 minutes.
[0013]
A scanning electron microscope image of the magnesium boride nanoparticle precursor is shown in FIG. It is confirmed that the particles have a particle diameter of about 100 to 500 nanometers. FIG. 1B is an X-ray diffraction pattern of the magnesium boride nanoparticle precursor, and it is confirmed that the precursor consists of MgB 2 and a small amount of unreacted magnesium.
[0014]
FIG. 2A is an X-ray diffraction pattern of the sample after the treatment at 900 ° C. Compared with the X-ray diffraction pattern of FIG. 1B, the peak of unreacted magnesium has disappeared, and MgB This is in good agreement with phase structure 2 . The X-ray diffraction pattern confirms that a small amount of magnesium oxide, which is considered to have reacted with a small amount of oxygen and magnesium, is present.
[0015]
FIG. 2B is a scanning electron microscope image of the sample after the treatment at 900 ° C., and it is confirmed that nanowires having a uniform diameter of 10 to 20 nm are generated. On the other hand, the measurement results of the X-ray energy diffusion spectrum and the electron energy loss spectrum show that boron and magnesium are main components and a small amount of oxygen is contained, and the atomic ratio of Mg: B: O is 1.0: 2.0: It is confirmed that it is 0.3 to 0.5. From the results of the electron diffraction measurement, it is confirmed that the sample is hexagonal magnesium boride (a = 3.08 °, C = 3.52 °).
[0016]
FIG. 3 is a graph showing the relationship between the magnetic susceptibility and the temperature of the superconductivity of the magnesium boride nanoparticle precursor and the magnesium boride nanowire described above.
[0017]
The transition temperature of the magnesium boride nanoparticle precursor is 36.5K, whereas the transition temperature of the magnesium boride nanowire is 39K, and the transition temperature is increased by using the nanowire. In addition, the obtained magnesium boride nanowire has a higher transition temperature than the conventional ones.
[0018]
【The invention's effect】
As described in detail above, magnesium boride nanowires useful as a superconducting material can be obtained by a completely new method, and the transition temperature can be increased.
[Brief description of the drawings]
1 (a) and 1 (b) are a scanning electron microscope image and an X-ray diffraction spectrum of a magnesium boride nanoparticle precursor obtained in an example, respectively.
FIGS. 2 (a) and (b) are an X-ray diffraction spectrum and a scanning electron microscope image of a magnesium boride nanowire obtained in an example, respectively.
FIG. 3 is a graph showing the magnetic susceptibilities of magnesium boride nanoparticle precursors and magnesium boride nanowires obtained in Examples.

Claims (1)

マグネシウム粉末と非晶質ホウ素粉末の混合物をアルゴン雰囲気中で700〜830℃に加熱し、ホウ化マグネシウムナノ粒子前駆物質を作製した後、このホウ化マグネシウムナノ粒子前駆物質をアルゴン気流中で850〜950℃に加熱することを特徴とするホウ化マグネシウムナノワイヤーの製造方法。A mixture of magnesium powder and amorphous boron powder is heated to 700 to 830 ° C. in an argon atmosphere to produce a magnesium boride nanoparticle precursor, and then the magnesium boride nanoparticle precursor is heated to 850 to 850 ° C in an argon stream. A method for producing magnesium boride nanowires, comprising heating to 950 ° C.
JP2003006301A 2003-01-14 2003-01-14 Method for producing magnesium boride nanowire Expired - Lifetime JP3837532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006301A JP3837532B2 (en) 2003-01-14 2003-01-14 Method for producing magnesium boride nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006301A JP3837532B2 (en) 2003-01-14 2003-01-14 Method for producing magnesium boride nanowire

Publications (2)

Publication Number Publication Date
JP2004217463A true JP2004217463A (en) 2004-08-05
JP3837532B2 JP3837532B2 (en) 2006-10-25

Family

ID=32896726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006301A Expired - Lifetime JP3837532B2 (en) 2003-01-14 2003-01-14 Method for producing magnesium boride nanowire

Country Status (1)

Country Link
JP (1) JP3837532B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078814A2 (en) * 2003-12-11 2005-08-25 Yale University Growth of boron nanostructures with controlled diameter
US7018954B2 (en) * 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
JP2012501942A (en) * 2008-09-05 2012-01-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Purification method for elemental boron
CN114735714A (en) * 2021-12-03 2022-07-12 上海市第十人民医院 Mg1-xRxB2Preparation method and application of material
CN115465870A (en) * 2022-08-31 2022-12-13 青岛科技大学 Preparation method of magnesium boride nanosheet and application of magnesium boride nanosheet in Li-S battery diaphragm

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018954B2 (en) * 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
WO2005078814A2 (en) * 2003-12-11 2005-08-25 Yale University Growth of boron nanostructures with controlled diameter
WO2005078814A3 (en) * 2003-12-11 2005-10-06 Univ Yale Growth of boron nanostructures with controlled diameter
JP2007521664A (en) * 2003-12-11 2007-08-02 イエール ユニバーシティ Growth of boron nanostructures with controlled diameter
JP2012501942A (en) * 2008-09-05 2012-01-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Purification method for elemental boron
US8790607B2 (en) 2008-09-05 2014-07-29 H. C. Starck Gmbh Method for purifying elemental boron
CN114735714A (en) * 2021-12-03 2022-07-12 上海市第十人民医院 Mg1-xRxB2Preparation method and application of material
CN114735714B (en) * 2021-12-03 2023-08-22 上海市第十人民医院 Mg 1-x R x B 2 Preparation method and application of material
CN115465870A (en) * 2022-08-31 2022-12-13 青岛科技大学 Preparation method of magnesium boride nanosheet and application of magnesium boride nanosheet in Li-S battery diaphragm
CN115465870B (en) * 2022-08-31 2024-02-02 青岛科技大学 Preparation method of magnesium boride nano-sheet and application of magnesium boride nano-sheet in Li-S battery diaphragm

Also Published As

Publication number Publication date
JP3837532B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
Li et al. Formation of GaN nanorods by a sublimation method
Zhou et al. Preparation of Y3Al5O12: Eu phosphors by citric–gel method and their luminescent properties
Song et al. Single-crystalline CuO nanobelts fabricated by a convenient route
WO2002055435A1 (en) Intermetallic compound superconductor and alloy superconductor, and method for their preparation
CN103469155B (en) High-purity high-density WO 3the preparation method of/S Core-shell Structure Nanoparticles
Chang et al. Synthesis and morphology of anisotropic NaNbO3 seed crystals
JP2016508943A (en) Rapid solid-state reaction of oxides by ultraviolet radiation.
JP3837532B2 (en) Method for producing magnesium boride nanowire
Yang et al. Synthesis of single crystalline GaN nanoribbons on sapphire (0001) substrates
CN107021463B (en) High-quality boron nitride nano-tube and preparation method thereof
Peng et al. Blue-light emission from amorphous SiOx nanoropes
Li et al. Synthesis of aligned gallium nitride nanowire quasi-arrays
Wu et al. Fabrication and characterization of boron-related nanowires
Xie et al. Characterization and growth mechanism of germanium nitride nanowires prepared by an oxide-assisted method
JP2007223896A (en) Zinc sulfide/silicon core/shell nanowire and method for producing the same
JP2005139044A (en) Single crystal silicon nanotube and its manufacturing method
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
JP3893464B2 (en) Method for producing gallium nitride nanotubes
CN105645464B (en) A kind of size uniform In2O3The preparation method of octahedron nanometer particle
JP4925639B2 (en) RE123 oxide superconductor and manufacturing method thereof
Li et al. Regular arrays of GaN nanorods
Xia et al. Rapid synthesis of novel flowerlike ZnO structures by thermolysis of zinc acetate
Tang et al. An one-pot epitaxial growth method to synthesize cactus-like ZnO
Hu et al. Preparation of α-Si3N4 nanorods assembled nanobelts by crystallizing amorphous Si3N4 powders
Wimbush et al. Synthesis and characterization of BaZrO3-doped YBa2Cu3O7− δ microtapes with improved critical current densities

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Ref document number: 3837532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term