JP2004217433A - 水素発生装置及び燃料電池 - Google Patents

水素発生装置及び燃料電池 Download PDF

Info

Publication number
JP2004217433A
JP2004217433A JP2003003400A JP2003003400A JP2004217433A JP 2004217433 A JP2004217433 A JP 2004217433A JP 2003003400 A JP2003003400 A JP 2003003400A JP 2003003400 A JP2003003400 A JP 2003003400A JP 2004217433 A JP2004217433 A JP 2004217433A
Authority
JP
Japan
Prior art keywords
chamber
hydrogen
liquid
liquid substance
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003400A
Other languages
English (en)
Inventor
Yasuharu Morinishi
康晴 森西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003003400A priority Critical patent/JP2004217433A/ja
Publication of JP2004217433A publication Critical patent/JP2004217433A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】装置を大型化させることなく任意の速度及び量で水素を発生させることができる装置を提供することを目的とする。
【解決手段】水素生成反応に関与する第1液状物質1を収容し、第1液状物質1を排出する排出口10を備える第1室2と、水素生成反応に関与する第2液状物質6を密閉可能に収容し、第1液状物質1を導入する導入口11と第1液状物質1と第2液状物質6との混合により発生する水素を取り出す取出口12とを備える第2室4と、第1室2から第2室4へ第1液状物質1を輸送する輸送システムとして、液路9と液輸送ポンプ3とから構成される水素発生装置。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、水素発生装置及び燃料電池に関する。より詳しくは、本発明は、水素発生反応に関与する2つの液状物質を混合することにより水素を発生させる水素発生装置及び燃料電池に関する。
【0002】
【従来の技術】
これまでに、水素の発生源として、水の電気分解、金属と酸の反応、金属とアルカリの反応、メタノール又は天然ガスの水蒸気改質、水素吸蔵合金からの放出などが知られている。
しかし、これらの発生源は大量のエネルギー消費を伴ったり、使用原料に対する水素発生量が少なかったり、大規模の設備を必要とするなどの問題があり、特に自動車用及び携帯電子機器用燃料電池に搭載する水素源としては実用的ではなかった。
【0003】
これに対して、金属水素錯化合物の塩基性水溶液を水素発生剤として利用する方法が提案されている(例えば、特許文献1参照)。金属水素錯化合物は式(1)に示すように、水と接触すると爆発的に反応して大量の水素を発生するが、塩基性水溶液中では長期間に渡って安定である。この性質を利用し、金属水素錯化合物を塩基性水溶液中に保管し、水素を発生させる際に、触媒能を有する金属を塩基性水溶液中の金属水素錯化合物と接触させて水素を発生させる。この方法は、安全に水素を発生させることができ、かつ水素の発生を容易に調節することができるという点において、有効な方法である。
NaBH + 2HO → 4H + NaBO (1)
【0004】
【発明が解決しようとする課題】
しかし、金属水素錯化合物の塩基性水溶液と触媒能を有する物質との接触による水素発生方法においては、水素生成速度に応じ、金属水素錯化合物の塩基性水溶液と物質との接触面積を増加させる必要がある。そのため、速く大量の水素を発生させるためには大型の装置が必要となる。
一方、小型化及び高出力化への要望の高い、例えば自動車用及び携帯電子機器用燃料電池に搭載する水素発生装置には、この水素発生方法を用いる装置は大型すぎて不向きである。
従って、この水素発生方法を用いる装置を大型化させることなく、任意の速度で水素を発生させることができる装置が要望されている。
【0005】
【特許文献1】
特開2001−19401号公報
【0006】
【課題を解決するための手段】
本発明によれば、水素生成反応に関与する第1液状物質を収容し、該第1液状物質を排出する排出口を備える第1室と、
水素生成反応に関与する第2液状物質を密閉可能に収容し、前記第1液状物質を導入する導入口と前記第1液状物質と第2液状物質との混合により発生する水素を取り出す取出口とを備える第2室と、
前記第1室から第2室へ第1液状物質を輸送する輸送システムとから構成される水素発生装置が提供される。
また、本発明によれば、上記水素発生装置が水素供給手段として接続されてなる燃料電池が提供される。
【0007】
【発明の実施の形態】
本発明の水素発生装置では、水素発生反応に関与する第1液状物質及び第2液状物質は、別々に、すなわち第1室及び第2室に分けて収容される。
第1室及び第2室は、液漏れのない容器を用いることが必要である。材質は限定されないが、液状物質により腐食等を起こさないものであることを要する。例えば、プラスチック(ポリカーボネート、アクリル、ジェラコン等)、金属(ステンレス、アルミニウム、銅、鉄等)、ガラス等が挙げられる。なかでも、重量及び加工性を考慮すると、プラスチックが好ましい。第1室及び第2室の大きさは、特に限定されるものではなく、用いる液状物質の種類、量、発生させる水素量等によって適宜調整することができる。また、その形状は、多角柱、円柱、球等が挙げられるが、安定性や安全性を考慮すると円柱が望ましい。これらの第1及び第2室はそれぞれ別個に離れて存在してもよいし、隣接するように一体的に構成されていてもよい。
【0008】
第1室は、水素生成反応に関与する第1液状物質を収容しており、第1液状物質を第2室へ導入するための排出口を備えている。また、必要に応じて、第1室は、第1室内の圧力を調節するため、外気取り入れ口を設けてもよい。第1室も、後述する第2室と同様に、密閉可能に構成されていることが好ましい。
第2室は、第2室内で発生する水素を効率よく取り出すために密閉可能に構成されるが、さらに第1液状物質を導入するための導入口と、第2室で発生した水素を取り出すための取出口を備える。導入口及び取出口は、第2室に収容される第2液状物質が漏れ出ないように、第2液状物質の液面から離れた位置に形成することが好ましい。
【0009】
輸送システムは、第1室から第2室へ第1液状物質を輸送するために用いられるものであり、例えば、排出口から導入口へ第1液状物質を非強制的に輸送する液路と、強制的に輸送させる輸送手段とから構成することができる。
液路は、第1室の排出口に接続されるとともに、第1液状物質を効率的に排出するために、液路の先端が第1液状物質の液中に配置していることが好ましい。また、液路は、第2室の導入口に接続されるとともに、導入口から導入される第1液状物質が第2液状物質と容易に混合し得るように、その液路の先端が第2液状物質の液中に配置していることが好ましい。液路は、液状物質により腐食等を起こさない材料で構成されるものが好ましく、その長さは、第1室から第2室へ輸送される第1液状物質の量や輸送速度を考慮して調整することができる。
【0010】
輸送手段は、液体を輸送するために用いられる手段であればどのようなものでも用いることができる。つまり、強制的に液状物質の流れをつくりだすように、液体や気体を吸引及び/又は押し出す手段が挙げられる。具体的には、液輸送ポンプ、エアポンプ、コンプレッサー等が挙げられる。輸送手段は、第1液状物質の第2室への導入量を制御することができるように、吸引する又は排出する液体量を、あるいは第1室及び/又は第2室の圧力を、所定の値に調整することができるものであることが好ましい。輸送手段は、第1室から第2室におよぶ液路の途中に装備してもよいし、第2室の取出口に配置して、水素を取り出すとともに、第2室の気圧を低下させることにより、液路をとおして第1室から第1液状物質を第2室に輸送するように装備してもよいし、第1室の外気取り入れ口に配置して、外気を第1室に導入することにより第1室の気圧を増加させることにより、液路をとおして第1室から第1液状物質を第2室に輸送するように装備してもよい。
【0011】
また、輸送システムとして、第1室及び第2室を上下に配置し、液路を介して、又は第1室の排出口と第2室の導入口とを直接接続させることにより液路を介さないように構成し、第2室の圧力を制御するようなポンプを第2室に接続させて、第1室から第1液状物質を第2室に輸送するように装備してもよい。
本発明においては、第1液状物質が金属水素錯化合物の塩基性溶液であり、第2液状物質が酸溶液であってもよいし、第1液状物質が酸溶液であり、第2液状物質が金属水素錯化合物の塩基性溶液であってもよい。
【0012】
特開2001−19401号公報に示されるように、金属水素錯化合物は水と反応して水素を発生する物質であるが、塩基性水溶液中では長期間に渡って安定である。したがって、本発明は金属水素錯化合物の塩基性溶液を用い、この溶液を酸溶液と反応させることで塩基を中和し、金属水素錯化合物の水との反応を開始させて、水素生成反応を引き起こさせるという原理を用いる。
金属水素錯化合物は、一般式(I):
4−n (I)
[式中、Mはアルカリ金属であり、Mは元素周期表のIII族の金属であり、Rはアルキル、アルコキシ、アリール、アリールオキシ又はアルカノイルオキシ基であり、nは0〜4の整数である]
で表すことができる。
アルカリ金属とは、例えばリチウム、ナトリウム、カリウム、ルビジウム等を意味する。元素周期表のIII族の金属とは、例えばホウ素、アルミニウム、ガリウム等を意味する。
【0013】
アルキル基とは、炭素数1〜20を有する直鎖状又は分岐状アルキル基、例えば、メチル、エチル、n−プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル等を意味する。中でも、炭素数1〜12を有するもの、例えば、メチル、エチル、n−プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル及びヘキサデシルが好ましい。
【0014】
アルコキシ基とは炭素数1〜20を有する直鎖状又は分岐状アルコキシ基、例えば、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、イソブチル、sec−ブトキシ、tert−ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシ、テトラデシルオキシ、ペンタデシルオキシ、ヘキサデシルオキシ、ヘプタデシルオキシ、オクタデシルオキシ、ノナデシルオキシ、イコシルオキシ等を意味する。中でも炭素数1〜6を有するもの、例えばメトキシ、エトキシ、n−プロポキシ、イソプロポキシ、sec−ブトキシ、tert−ブトキシ、ペンチルオキシ及びヘキシルオキシが好ましい。
【0015】
アリール基とは、炭素数6〜18を有し、例えばフェニル、ナフチル、アントラセニル、ピレニル等を意味する。中でも炭素数6〜12を有するもの、例えばフェニル及びナフチルが好ましい。
アリールオキシ基とは、炭素数6〜18を有するアリールオキシ基、例えばフェノキシ、ナフチルオキシ、アントラセニルオキシ、ピレニルオキシ等を意味する。中でも炭素数6〜12を有するもの、例えばフェノキシ及びナフチルオキシが好ましい。
アルカノイルオキシ基とは、炭素数1〜20を有する直鎖状又は分岐状アルキルカルボニル基、例えばホルミル、アセチル、プロピオニル、ブチリル、バレリル、ヘキサノイル、ヘプタノイル、ステアロイル、イソブチリル、イソバレリル、ピバロイル等を意味する。
【0016】
一般式(I)で表される金属水素錯化合物の具体例として、例えば、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ(s−ブチル)ホウ素リチウム、水素化トリブチルホウ素リチウム、水素化ホウ素ナトリウム、トリメトキシ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム、トリフェノキシ水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化トリ(s−ブチル)ホウ素カリウム、水素化トリフェニルホウ素カリウム、水素化アルミニウムリチウム、水素化アルミニウムリチウム、モノエトキシ水素化アルミニウムリチウム、トリ(t−ブトキシ)水素化アルミニウムリチウム、トリメトキシ水素化アルミニウムリチウム、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム等が挙げられる。なかでも水素化ホウ素リチウム、水素化ホウ素ナトリウム及び水素化ホウ素カリウムが好ましい。
【0017】
塩基性溶液としては、液状塩基性物質又は非液状塩基性物質を溶液に溶解させたものを用いることができる。液状塩基性物質としては、トリエチルアミン、ジイソプロピルエチルアミン等が挙げられる。非液状塩基性物質としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩等が挙げられる。なかでも、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が好ましい。溶液としては、水及び水混和性の有機溶媒、例えばアルコール(例えば、メタノール、エタノール、エチレングリコール、ジエチレングリコール等)、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。これらは単独で用いても、2種類以上を混合して用いてもよい。また、液状塩基性物質を上述した溶液と混合して用いてもよい。
【0018】
塩基性溶液における金属水素錯化合物の濃度は、発生させる水素の量及び発生速度に応じて、適宜調整することができる。用いる塩基性溶液は、金属水素錯化合物を溶解させることができ、かつ安定に保つことができるものが好ましい。この塩基性溶液中に金属水素錯化合物を完全に溶解させるのが好ましいが、安定であれば、金属水素錯化合物は完全に溶解しなくともよい。使用する金属水素錯化合物及び塩基性溶液の比は、金属水素錯化合物:塩基性溶液が約5〜20モル:約10〜25モル、さらに約10〜15モル:約15〜20モルが適当である。
【0019】
酸としては、無機酸、例えば塩酸、又は有機酸、例えばクエン酸、リン酸、酢酸、ギ酸、プロピオン酸が挙げられる。なかでも有機酸が好ましい。酸溶液の媒体としては、上述した溶液を用いることができる。中でも、水が好ましい。酸溶液としては、酸を単独又は2種類以上で、媒体に懸濁又は溶解させたものを用いることができる。酸溶液の酸の濃度としては、約20〜60重量%、さらに約30〜50重量%が挙げられる。例えば、約40重量%を用いることができる。
【0020】
本発明の水素発生装置は、水素供給手段として燃料電池に接続して用いることができる。燃料電池は、通常、電極及び高分子電解質膜を備えているものを用いることができる。本発明の水素発生装置で発生させた水素は、第2室に設けられた取出口から燃料電池に供給され、酸素(空気)との化学反応により発電が行われる。
【0021】
以下に本発明の水素発生装置及び燃料電池の実施の形態を図面に基づいて詳細に説明する。
(実施の形態1)
本発明の水素発生装置は、図1に示したように、第1室2と、第2室4と、これらを接続する液路9と、その途中に液輸送ポンプ3が設けられて構成される。第1室2には第1液状物質1が収容されており、第2室4には第2液状物質6が収容されている。
第1室2には、第1液状物質1を排出する排出口10が形成されており、第2室4には、第1液状物質1を導入する導入口11と水素を取り出す取出口12が形成されている。なお、排出口10に接続される液路9は、その先端が第1液状物質1内に配置しており、導入口11に接続される液路9は、その先端5が第2液状物質6内に配置しており、取出口12に接続されるチューブは、その先端7が第2液状物質6が漏れ出さない位置に配置している。
【0022】
水素生成反応に関与する第1液体物質として、表1に示すように、水酸化ナトリウム(NaOH)水溶液に水素化ホウ素ナトリウム(NaBH)を溶解させた溶液、水素生成反応に関与する第2液体物質としてはクエン酸水溶液を用いた。
まず、第1液体物質1を第1室2に入れ、液輸送ポンプ3で第2室4へ送り、液路9により第2室4に予め入れておいた第2液体物質6中に注入した。次いで、第2室4で発生した水素を取出口12を通して取出した。
第2室4と燃料電池(図示せず)との間に流量計8を設け、この水素発生装置で発生する水素の発生速度を測定した。その結果を表1に示す。
【0023】
【表1】
Figure 2004217433
【0024】
この時の水素発生速度と液輸送ポンプ吐出量との関係を図2に示す。
図2より、液輸送ポンプの吐出量を変化させることにより水素発生速度を変化させることができ、その変化は、水素発生速度が液輸送ポンプの吐出量に比例するものであることが示された。従って、装置の大きさを変化させることなく、液輸送ポンプの吐出量を変化させるだけで水素発生速度を制御することができる。
また、水素生成装置をニューウエーブ社製燃料電池(PFC1212.C)に接続し、その燃料電池に電子負荷装置で500mAの定電流負荷を1時間かけた。このときの水素生成装置は実験条件2の条件下で作動させた。その結果、動作の間中、12〜14Vの出力を維持することができた。
【0025】
(実施の形態2)
この実施の形態の水素発生装置は、図3に示したように、取出口12と燃焼電池(図示せず)との間にエアポンプ16を装備した以外は実質的に実施の形態1における水素発生装置と同様に構成した。
また、実施の形態1と同様に、水素の発生速度を測定した。その結果を表2に示す。
【0026】
【表2】
Figure 2004217433
【0027】
表2に示す通り、エアポンプの吐出量は水素発生速度に比例することから、水素発生速度は、エアポンプの吐出量によって直接的に変化させることができた。従って、装置サイズを変化させることなく、エアポンプの吐出量を変化させるだけで水素発生速度を制御することができる。
また、本水素生成装置をニューウエーブ社製燃料電池(PFC1212.C)2個に接続し、それぞれの燃料電池に電子負荷装置で600mAの定電流負荷を1時間かけた。このときの水素生成装置は実験条件5の条件下で作動させた。その結果、各燃料電池とも動作の間中、12〜14Vの出力を維持することができた。
【0028】
【発明の効果】
本発明によれば、水素発生反応に必要な2種類の物質を、液状物質に調製して反応させることにより、簡便な混合によって、容易、安全かつ効率的に水素を発生させることができる。また、第1液状物質の第2室への導入速度を調整することにより、水素の発生速度を調節することができ、そのため、第1液状物質と第2液状物質との反応を促進することによって、水素発生装置を大型化することなく、大量の水素を容易に発生させることができる。
また、水素発生反応に必要な第1液状物質と第2液状物質を第1室及び第2室とそれぞれ別々の容器に備えるが、これらの物質を混合するために新たに別の容器を必要とすることなく、第2室内でこれらの物質を混合して、水素の発生を実現することが可能であり、装置の小型化を実現することができる。
【図面の簡単な説明】
【図1】本発明の水素発生装置の実施の形態を示す概略図である。
【図2】図1の水素発生装置における水素発生速度と液輸送ポンプ吐出量との関係を示したグラフである。
【図3】本発明の水素発生装置の別の実施の形態を示す概略図である。
【符号の説明】
1 第1液体物質
2 第1室
3 液輸送ポンプ
4 第2室
5、7 先端
6 第2液体物質
8 流量計
9 液路
10 排出口
11 導入口
12 取出口
16 エアポンプ

Claims (5)

  1. 水素生成反応に関与する第1液状物質を収容し、該第1液状物質を排出する排出口を備える第1室と、
    水素生成反応に関与する第2液状物質を密閉可能に収容し、前記第1液状物質を導入する導入口と前記第1液状物質と第2液状物質との混合により発生する水素を取り出す取出口とを備える第2室と、
    前記第1室から第2室へ第1液状物質を輸送する輸送システムとから構成される水素発生装置。
  2. 輸送システムが、排出口から導入口へ第1液状物質を非強制的に輸送する液路と、強制的に輸送させる輸送手段とから構成される請求項1に記載の水素発生装置。
  3. 第1液状物質及び第2液状物質の組み合わせが、金属水素錯化合物の塩基性溶液及び酸溶液の組み合わせである請求項1又は2に記載の水素発生装置。
  4. 金属水素錯化合物が、一般式(I):
    4−n (I)
    [式中、Mはアルカリ金属であり、Mは元素周期表の3A族の金属であり、Rはアルキル、アルコキシ、アリール、アリールオキシ又はアルカノイルオキシ基であり、nは0〜4の整数である]
    で表される化合物である請求項3に記載の水素発生装置。
  5. 請求項1〜4のいずれか1つに記載の水素発生装置が水素供給手段として接続されてなる燃料電池。
JP2003003400A 2003-01-09 2003-01-09 水素発生装置及び燃料電池 Pending JP2004217433A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003400A JP2004217433A (ja) 2003-01-09 2003-01-09 水素発生装置及び燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003400A JP2004217433A (ja) 2003-01-09 2003-01-09 水素発生装置及び燃料電池

Publications (1)

Publication Number Publication Date
JP2004217433A true JP2004217433A (ja) 2004-08-05

Family

ID=32894679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003400A Pending JP2004217433A (ja) 2003-01-09 2003-01-09 水素発生装置及び燃料電池

Country Status (1)

Country Link
JP (1) JP2004217433A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532893A (ja) * 2004-11-12 2008-08-21 トルライト,インク. 水素生成カートリッジ
JP2009030168A (ja) * 2007-07-25 2009-02-12 Samsung Electro Mech Co Ltd 水素発生装置用電解質溶液及びこれを用いる水素発生装置
KR101342599B1 (ko) 2007-10-31 2013-12-17 삼성에스디아이 주식회사 수소 발생장치 및 이를 채용한 연료전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532893A (ja) * 2004-11-12 2008-08-21 トルライト,インク. 水素生成カートリッジ
JP2009030168A (ja) * 2007-07-25 2009-02-12 Samsung Electro Mech Co Ltd 水素発生装置用電解質溶液及びこれを用いる水素発生装置
KR101342599B1 (ko) 2007-10-31 2013-12-17 삼성에스디아이 주식회사 수소 발생장치 및 이를 채용한 연료전지

Similar Documents

Publication Publication Date Title
CN100393608C (zh) 氢气发生***
EP2280441A3 (en) Fuel cell system
US6866689B2 (en) Aqueous borohydride compositions
Chen et al. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the formation rate of CO2 hydrate
CN216998605U (zh) 小型质子交换膜电解制氢储氢加氢一体化***
JP2004217433A (ja) 水素発生装置及び燃料電池
JP2004244262A (ja) 水素生成法
CN102372637B (zh) 一种亚硝酸酯气体连续供给装置
CN108325755B (zh) 一种烃类油改性制备低阶煤泥杂极性捕收剂的方法
MX2007009992A (es) Concentrado de combustible estable en almacenamiento.
Weng et al. Enhanced hydrogen generation from hydrolysis of LiBH4 with diethyl ether addition for micro proton exchange membrane fuel cell application
US20070077482A1 (en) Fuel cell system and fuel storage apparatus
US20050155279A1 (en) Storage-stable fuel concentrate
KR101255757B1 (ko) 암모니아 보란의 합성 시스템 및 이를 이용한 암모니아 보란의 제조방법
CN209243190U (zh) 电解制砷烷装置
JP7175227B2 (ja) メタン製造システム
JP5953620B2 (ja) 水素貯蔵のためのイオン性液体の使用
TW200904747A (en) Portable hydrogen producer
AU2021342550B2 (en) Aqueous liquid sorbent
CN220878839U (zh) 高纯一氧化碳发生器
CN220550241U (zh) 示踪气体发生器
CN209669362U (zh) 电解法制锗烷用电解装置
WO2024048796A1 (ja) 培養装置及び培養装置の制御方法
CN100401570C (zh) 液体容器及燃料电池***
SE0303232D0 (sv) Anordning för lufttillförsel till bränslecell