JP2004214440A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2004214440A
JP2004214440A JP2003000277A JP2003000277A JP2004214440A JP 2004214440 A JP2004214440 A JP 2004214440A JP 2003000277 A JP2003000277 A JP 2003000277A JP 2003000277 A JP2003000277 A JP 2003000277A JP 2004214440 A JP2004214440 A JP 2004214440A
Authority
JP
Japan
Prior art keywords
source
insulating film
forming
drain
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003000277A
Other languages
English (en)
Inventor
Tomoyuki Ishizu
智之 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003000277A priority Critical patent/JP2004214440A/ja
Publication of JP2004214440A publication Critical patent/JP2004214440A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】熱処理によって活性領域の一部に集中するイオン注入欠陥を抑制することにより、リーク電流の低減を図る。
【解決手段】トレンチ素子分離領域2が形成された半導体基板1上に、ゲート絶縁膜3を形成する。その後、ゲート絶縁膜3上に下部ゲート電極4a、上部ゲート電極5a、および、ゲート上絶縁膜6aからなるゲート電極部8を形成する。その後、ゲート電極部8をマスクにして、n型エクステンション注入層9及びp型ポケット注入層10を形成する。その後、ゲート電極部8の側面上にサイドウォール12を形成した後、n型ソース・ドレイン注入層13を形成する。その後、保護絶縁膜15を形成した後、不純物を活性化させ、トレンチ素子分離領域2に埋め込まれている絶縁膜の応力を開放するためのRTA処理を行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、特に結晶欠陥に起因するソース−ドレイン間のリーク電流を抑制することができるトレンチ素子分離領域を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置の微細化・高集積化に伴い、素子分離領域の寸法もますます小さくなってきている。従来、素子分離領域の形成には、工程が簡便なLOCOS法が用いられてきたが、LOCOS素子分離領域の端部に形成されるバーズビークによる素子形成領域の寸法縮小が無視できなくなってきており、最近ではLOCOS法による素子分離領域にかわりトレンチ素子分離領域(STI:Shallow Trench Isolation)が使用されるようになってきている(例えば、特許文献1参照)。
【0003】
以下、従来のトレンチ素子分離領域を有する半導体装置の製造方法について説明する。
【0004】
図6(a)〜(e)は、従来のトレンチ素子分離領域を有する半導体装置の製造工程を示す断面図である。ここでは、n型MISトランジスタの製造方法を用いて説明する。
【0005】
まず、図6(a)に示す工程で、半導体基板101の主面にトレンチ素子分離領域102を形成する。このトレンチ素子分離領域102は、半導体基板101における素子形成領域上にシリコン窒化膜(図示せず)を形成した後、シリコン窒化膜をマスクにして、半導体基板101をエッチングしてトレンチを形成する。その後、基板上の全面に、絶縁膜を堆積した後、CMP等によってトレンチ内に絶縁膜を選択的に埋め込み、その後シリコン窒化膜を除去することによって形成する。
【0006】
次に、図6(b)に示す工程で、半導体基板101の素子形成領域上に、熱酸化法によりシリコン酸化膜からなるゲート絶縁膜103を形成する。その後、ゲート絶縁膜103上に、不純物がドープされたポリシリコン膜104、タングステン膜105、及び、シリコン窒化膜106を順次堆積する。その後、シリコン窒化膜106上にゲート電極形状を有するレジスト膜107を形成する。
【0007】
次に、図6(c)に示す工程で、レジスト膜107をマスクにしてシリコン窒化膜106、タングステン膜105、及び、ポリシリコン膜104の異方性エッチングを行い、下部ゲート電極104a、上部ゲート電極105a、および、ゲート上絶縁膜106aからなるゲート電極部108を形成する。
【0008】
その後、レジスト膜107を除去した後、ゲート電極部108をマスクにして、半導体基板101の素子形成領域に対してほぼ垂直な注入角度で、且つ、低エネルギーでn型不純物のイオン注入を行い、n型エクステンション注入層109を形成する。その後、ゲート電極部108をマスクにして、半導体基板101の素子形成領域に対し注入角度35°でp型不純物の斜めイオン注入を行い、n型エクステンション注入層109下にp型ポケット注入層110を形成する。この結果、半導体基板101の素子形成領域には、ゲート電極部108直下に位置するチャネル領域111を挟んでn型エクステンション注入層109及びp型ポケット注入層110がそれぞれ形成される。
【0009】
次に、図6(d)に示す工程で、基板上の全面にサイドウォール用絶縁膜を堆積した後、サイドウォール用絶縁膜を異方性エッチングすることにより、ゲート電極部108の側面上にサイドウォール112を形成する。このとき、ソース・ドレイン領域上に露出しているゲート絶縁膜103をエッチングする。その後、ゲート電極部108及びサイドウォール112をマスクにして、半導体基板101の素子形成領域にn型不純物のイオン注入を行い、n型ソース・ドレイン注入層113を形成する。
【0010】
次に、図6(e)に示す工程で、エクステンション注入層109、ポケット注入層110及びソース・ドレイン注入層113の不純物を活性化させるための熱処理を行うことにより、半導体基板101の素子形成領域には、ゲート電極部108直下に位置するチャネル領域111を挟んで、n型エクステンション拡散層109aとn型ソース・ドレイン拡散層113aとからなるソース・ドレイン領域114と、n型エクステンション拡散層109a下に位置するp型ポケット拡散層110aがそれぞれ形成される。なお、エクステンション注入層109及びポケット注入層110の不純物を活性化するための熱処理は、必ずしもソース・ドレイン注入層113と同時に行う必要はなく、ソース・ドレイン注入層113を形成する前に行っても良い。
【0011】
【特許文献1】
特開2001−160623号公報(第2−3頁、図6〜図14)
【0012】
【発明が解決しようとする課題】
しかしながら、上記のような従来の半導体装置の製造方法では、以下のような不具合がある。
【0013】
図6に示すように、半導体基板101にトレンチ素子分離領域102を形成した後、ゲート絶縁膜103を形成するための熱酸化工程、及び、エクステンション注入層、ポケット注入層及びソース・ドレイン注入層の不純物を活性化するための熱処理工程が施される。その結果、熱酸化に伴う体積膨張や、シリコン基板と酸化シリコンとの熱膨張係数の違いにより、半導体基板の素子形成領域とトレンチ素子分離領域との境界付近における半導体基板の素子形成領域のエッジ部に応力が集中する。
【0014】
図7は、ゲート絶縁膜を形成した後の応力シミュレーション結果を示す断面図である。同図は、酸化温度850℃で厚さ7.5nmのシリコン酸化膜からなるゲート絶縁膜103を形成した後の応力分布を示したものであり、活性領域中央部P1の圧縮応力が1.26E10(dyne/cm)であるのに対して、活性領域エッジ部P2の圧縮応力が2.10E10(dyne/cm)と高く、エッジ部P2に圧縮応力が集中していることがわかる。
【0015】
また、近年、素子の微細化に伴い、活性領域の面積縮小化が図られている。図8(a)は、シミュレーションした箇所を説明するための平面図、図8(b)はゲート絶縁膜形成後における、トレンチ素子分離領域から活性領域にかかる圧縮応力分布を示すシミュレーション結果である。
【0016】
図8(a)に示すように、トレンチ素子分離領域(STI)幅は0.22μmで一定とし、ゲート長方向の活性領域の幅Xを0.62μm、0.78μm、及び1.0μmと変化させた場合の活性領域エッジからゲート電極直下の活性領域中央部までの応力変化をシミュレーションした。図8(b)に示すように、ゲート長方向の活性領域の幅Xが減少するに伴い、ゲート電極直下に位置する活性領域の中央部の圧縮応力が増大していることがわかる。このことから、更なる微細化とともに活性領域にかかる応力の問題が深刻になることが予想される。なお、図8における活性領域の幅Xはマスク寸法であり、図面における点線の位置はトレンチ素子分離領域形成の際の側壁酸化分(70nm程度)を考慮したものである。
【0017】
また、図6(d)に示す工程で、n型ソース・ドレイン注入層113を形成する際、高濃度不純物のイオン注入を行うことにより、半導体基板101のソース・ドレイン注入層113は非晶質化(アモルファス化)するとともに注入欠陥が発生する。
【0018】
図9は、図6(d)における注入欠陥の発生を説明するための図であり、(a)は平面図、(b)は図9(a)におけるA−A箇所の断面図である。n型ソース・ドレイン注入層113を形成するためのイオン注入によって発生した注入欠陥115は、ソース・ドレイン注入層113の不純物を活性化するためのRTA(Rapid Thermal Anneal)でかなり回復する。しかしながら、RTA処理時に不純物が活性化すると同時に、応力の高い領域に注入欠陥が引き寄せられる。すなわち、非晶質化されなかったゲート電極部108直下のチャネル領域111のうち、特に、活性領域エッジ部の圧縮応力の高い領域116に欠陥115が集中する。この結果、ソース−ドレイン間のリークパスの原因となる結晶欠陥117が生成される。
【0019】
本発明は、上記の問題を解決するためのものであり、イオン注入によって発生した注入欠陥が熱処理によって活性領域の一部に欠陥が集中するのを抑制することにより、リーク電流の低減が図れる半導体装置の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明の第1の半導体装置の製造方法は、半導体基板にトレンチ素子分離領域を形成する工程(a)と、トレンチ素子分離領域に囲まれた半導体基板における素子形成領域上にゲート絶縁膜及びゲート電極を形成する工程(b)と、工程(b)の後に、素子形成領域に第1の不純物をイオン注入してソース・ドレイン注入層を形成する工程(c)と、工程(c)の後に、基板上の全面に、保護絶縁膜を形成する工程(d)と、保護絶縁膜が形成された状態で、ソース・ドレイン注入層の第1の不純物を活性化させるための熱処理を行い、ソース・ドレイン拡散層を形成する工程(e)とを有している。
【0021】
この構成によれば、イオン注入によってソース・ドレイン注入層を形成した後、基板上の全面に保護絶縁膜を形成し、保護絶縁膜が形成された状態でソース・ドレイン注入層の不純物を活性化するための熱処理を行うことにより、圧縮応力の緩和を図ることができる。従って、ソース・ドレイン注入層を形成する際に発生した注入欠陥が、その後の熱処理によって活性領域エッジ部に集中するのを抑制することができるので、リーク電流の低減を図ることができる。
【0022】
上記第1の半導体装置の製造方法において、工程(c)の後で工程(d)の前に、ソース・ドレイン注入層の直下の離れた位置に第2の不純物をイオン注入して高歪層を形成する工程を備えている。
【0023】
上記第1の半導体装置の製造方法において、工程(c)の後で工程(d)の前に、ゲート電極の下方に位置する半導体基板におけるチャネル領域に第3の不純物をイオン注入して非晶質層を形成する工程を備えている。
【0024】
本発明の第2の半導体装置の製造方法は、半導体基板にトレンチ素子分離領域を形成する工程(a)と、トレンチ素子分離領域に囲まれた半導体基板における素子形成領域上にゲート絶縁膜及びゲート電極を形成する工程(b)と、工程(b)の後に、半導体基板における素子形成領域に第1の不純物をイオン注入してソース・ドレイン注入層を形成する工程(c)と、工程(c)の後に、ソース・ドレイン注入層の直下の離れた位置に第2の不純物をイオン注入して高歪層を形成する工程(d)と、工程(d)の後に、ソース・ドレイン注入層の第1の不純物を活性化させるための熱処理を行い、ソース・ドレイン拡散層を形成する工程(e)とを有している。
【0025】
この構成によれば、ソース・ドレイン注入層の下方に高歪層を形成した状態で、ソース・ドレイン注入層の不純物を活性化するための熱処理を行うことにより、活性領域エッジ部及びチャネル領域への欠陥の転移を抑制することができる。従って、ソース・ドレイン注入層を形成する際に発生した注入欠陥が、その後の熱処理によって活性領域エッジ部に集中するのを抑制することができるので、リーク電流の低減を図ることができる。
【0026】
本発明の第3の半導体装置の製造方法は、半導体基板にトレンチ素子分離領域を形成する工程(a)と、トレンチ素子分離領域に囲まれた半導体基板における素子形成領域上にゲート絶縁膜及びゲート電極を形成する工程(b)と、工程(b)の後に、半導体基板における素子形成領域に第1の不純物をイオン注入してソース・ドレイン注入層を形成する工程(c)と、工程(c)の後にゲート電極の下方に位置する半導体基板おけるチャネル領域に第2の不純物をイオン注入して非晶質層を形成する工程(d)と、工程(d)の後に、ソース・ドレイン注入層の第1の不純物を活性化させるための熱処理を行い、ソース・ドレイン拡散層を形成する工程(e)とを有している。
【0027】
この構成によれば、チャネル領域に形成した非晶質層によって、チャネル領域に残留していた応力を開放することができるので、ソース−ドレイン間のリークパスの原因となる結晶欠陥がゲート電極下部のチャネル領域に集中することを抑制することができる。従って、ソース・ドレイン注入層を形成する際に発生した注入欠陥が、その後の熱処理によって活性領域エッジ部に集中するのを抑制することができるので、リーク電流の低減を図ることができる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0029】
(第1の実施形態)
図1(a)〜(f)は、本発明の第1の実施形態にかかる半導体装置の製造工程を示す断面図である。ここでは、n型MISトランジスタの製造方法を用いて説明する。
【0030】
まず、図1(a)に示す工程で、半導体基板1の主面にトレンチ素子分離領域2を形成する。このトレンチ素子分離領域2は、半導体基板1における素子形成領域上にシリコン窒化膜(図示せず)を形成した後、シリコン窒化膜をマスクにして、半導体基板1を約300nm程度エッチングしてトレンチを形成する。その後、基板上の全面に、高密度プラズマ法を用いて厚さ700nmのシリコン酸化膜からなる絶縁膜を堆積した後、CMP等によってトレンチ内に絶縁膜を選択的に埋め込み、その後シリコン窒化膜を除去することによって形成する。なお、トレンチ内に絶縁膜を堆積する前に、熱酸化法によってトレンチ内の露出表面に厚さ20nm程度のシリコン酸化膜を形成しても良い。
【0031】
次に、図1(b)に示す工程で、半導体基板1の素子形成領域上に、熱酸化法により厚さ2.6nm〜7nm程度のシリコン酸化膜からなるゲート絶縁膜3を形成する。その後、ゲート絶縁膜3上に、厚さ約80nmの不純物がドープされたポリシリコン膜4、厚さ約60nmのタングステン膜5、及び、厚さ約140nmのシリコン窒化膜6を順次堆積する。その後、シリコン窒化膜6上にゲート電極形状を有するレジスト膜7を形成する。
【0032】
次に、図1(c)に示す工程で、レジスト膜7をマスクにしてシリコン窒化膜6、タングステン膜5、及び、ポリシリコン膜4の異方性エッチングを行い、下部ゲート電極4a、上部ゲート電極5a、および、ゲート上絶縁膜6aからなるゲート電極部8を形成する。
【0033】
その後、レジスト膜7を除去した後、ゲート電極部8をマスクにして、半導体基板1の素子形成領域に対してn型不純物である砒素を、注入角度0゜、注入エネルギー5keV、ドーズ量5×1014/cmの条件でイオン注入を行い、n型エクステンション注入層9を形成する。その後、ゲート電極部8をマスクにして、半導体基板1の素子形成領域に対してp型不純物であるボロンを、注入角度35゜、注入エネルギー15keV、ドーズ量6×1012/cmの条件で4回転の斜めイオン注入を行い、n型エクステンション注入層9下にp型ポケット注入層10を形成する。この結果、半導体基板1の素子形成領域には、ゲート電極部8直下に位置するチャネル領域11を挟んでn型エクステンション注入層9及びp型ポケット注入層10がそれぞれ形成される。なお、ポケット注入層を形成するための斜めイオン注入の注入角度としては、15〜60°の範囲を用いることが好ましい。
【0034】
次に、図1(d)に示す工程で、基板上の全面に厚さ80nm程度のシリコン窒化膜からなるサイドウォール用絶縁膜を堆積した後、サイドウォール用絶縁膜を異方性エッチングすることにより、ゲート電極部8の側面上にサイドウォール12を形成する。このとき、続けてソース・ドレイン領域上に露出しているゲート絶縁膜3をエッチングする。なお、ゲート絶縁膜3は、図1(c)に示す工程で、ゲート電極部8を形成した後に、露出したゲート絶縁膜3をエッチングしても良い。その後、ゲート電極部8及びサイドウォール12をマスクにして、半導体基板1の素子形成領域に対して、n型不純物である砒素を注入角度7°、ドーズ量4×1015/cmの条件でイオン注入を行い、n型ソース・ドレイン注入層13を形成する。
【0035】
次に、図1(e)に示す工程で、基板上の全面に、トレンチ素子分離領域2、ゲート電極部8及びサイドウォール12を覆うように基板上の全面に、CVD法によって厚さ50nmの不純物を含まないシリコン酸化膜(NSG膜)からなる保護絶縁膜15を形成する。その後、エクステンション注入層9、ポケット注入層10及びソース・ドレイン注入層13の不純物を活性化させ、トレンチ素子分離領域2に埋め込まれている絶縁膜の応力を開放するのに十分な温度である約1000℃〜1050℃でRTA処理(短時間アニール)を行う。この結果、半導体基板1の素子形成領域には、ゲート電極部8直下に位置するチャネル領域11を挟んで、n型エクステンション拡散層9aとn型ソース・ドレイン拡散層13aとからなるソース・ドレイン領域14と、n型エクステンション拡散層9a下に位置するp型ポケット拡散層10aがそれぞれ形成される。なお、エクステンション注入層9及びポケット注入層10の不純物を活性化するための熱処理は、必ずしもソース・ドレイン注入層13と同時に行う必要はなく、ソース・ドレイン注入層13を形成する前に行っても良い。なお、本実施形態では、保護絶縁膜15として、NSG膜を用いて説明したが、シリコン窒化膜でもよい。
【0036】
次に、図1(f)に示す工程で、保護絶縁膜15上に層間絶縁膜16を形成した後、層間絶縁膜16及び保護絶縁膜15にn型ソース・ドレイン拡散層13aに到達するコンタクトホールを形成し、タングステン等の金属膜を埋め込んで金属プラグ17を形成する。本実施形態では、保護絶縁膜15を残存させたまま、層間絶縁膜16を形成したが、保護絶縁膜15を選択的に除去した後、層間絶縁膜を形成しても良い。
【0037】
図2は、ソース・ドレイン注入層の不純物を活性化するためのRTA処理後の応力シミュレーション結果を示す断面図であり、(a)は保護絶縁膜を形成してRTA処理したときの応力分布、(b)は従来のように保護絶縁膜を形成せずにRTA処理したときの応力分布である。
【0038】
図2(b)に示すように、従来の如く保護絶縁膜を形成せずにRTA処理した場合、活性領域中央部P1bの圧縮応力が4.51E9(dyne/cm)であるのに対して、活性領域エッジ部P2bの圧縮応力が1.0E10(dyne/cm)と高く、エッジ部P2bに圧縮応力が集中していることがわかる。
【0039】
これに対して、図2(a)に示すように、本実施形態の如く、保護絶縁膜を形成してRTA処理した場合、活性領域中央部P1a及び活性領域エッジ部P2aは、いずれも圧縮応力が4.96E9(dyne/cm)であり、基板上を保護絶縁膜で覆った状態で高温熱処理を行うことにより活性領域エッジ部への圧縮応力の集中が緩和されていることがわかる。
【0040】
図3は、活性領域エッジ部における圧縮応力に対する保護絶縁膜の膜厚依存性を示す図である。図3は、保護絶縁膜としてNSG膜を形成した場合の圧縮応力をシミュレーションで求めたものである。図3からわかるように、NSG膜の膜厚としては、50nm〜300nm程度形成すれば圧縮応力を低減することができ、100nm程度の厚さで最も低減することができる。
【0041】
本実施形態によれば、イオン注入によってソース・ドレイン注入層13を形成した後、基板上の全面に保護絶縁膜15を形成し、保護絶縁膜15が形成された状態でソース・ドレイン注入層13の不純物を活性化するための熱処理を行うことにより、圧縮応力の緩和を図ることができる。従って、ソース・ドレイン注入層13を形成する際に発生した注入欠陥が、その後の熱処理によって活性領域エッジ部に集中するのを抑制することができるので、リーク電流の低減を図ることができる。
【0042】
(第2の実施形態)
図4(a)〜(c)は、本発明の第2の実施形態にかかる半導体装置の製造工程を示す断面図である。ここでは、n型MISトランジスタの製造方法を用いて説明する。
【0043】
まず、図4(a)に示す工程では、第1の実施形態における図1(a)〜(d)に示す工程と同様な工程によって、半導体基板1の主面にトレンチ素子分離領域2、ゲート絶縁膜3、ゲート電極部8、サイドウォール12、n型エクステンション注入層9、p型ポケット注入層10及びn型ソース・ドレイン注入層13を形成する。
【0044】
次に、図4(b)に示す工程で、n型ソース・ドレイン注入層13の注入と同様に、ゲート電極部8及びサイドウォール12をマスクにして、半導体基板1の素子形成領域に対して、不活性な不純物であるシリコン(Si)を注入角度0°、注入エネルギー50〜60keV、ドーズ量1×1015/cmの条件でイオン注入を行い、ソース・ドレイン注入層13の直下の離れた位置に高歪層18を形成する。
【0045】
次に、図4(c)に示す工程で、エクステンション注入層9、ポケット注入層10及びソース・ドレイン注入層13の不純物を活性化させるのに十分な温度である約1000℃〜1050℃でRTA処理(短時間アニール)を行う。このとき、第1の実施形態と同様に、保護絶縁膜を形成した後、RTA処理を行っても良い。この結果、半導体基板1の素子形成領域には、ゲート電極部8直下に位置するチャネル領域11を挟んで、n型エクステンション拡散層9aとn型ソース・ドレイン拡散層13aとからなるソース・ドレイン領域14と、n型エクステンション拡散層9a下に位置するp型ポケット拡散層10aがそれぞれ形成される。さらに、ソース・ドレイン注入層13形成時に発生した注入欠陥は、RTA処理中に高歪層18のゲッタリング作用により高歪層18の方向へ転移する。
【0046】
その後、基板上に層間絶縁膜を形成した後、層間絶縁膜にn型ソース・ドレイン拡散層13aに到達するコンタクトホールを設け、金属膜を埋め込んで金属プラグを形成する。
【0047】
なお、本実施形態では、高歪層18を形成するためのイオン種としてSiを用いて説明したが、Siと同族元素であるGe等を用いても良い。これらの元素は、いずれも不純物濃度6×1018〜1×1021/cm程度で高歪層を形成することができる。
【0048】
本実施形態によれば、ソース・ドレイン注入層13の下方に高歪層18を形成した状態で、ソース・ドレイン注入層13の不純物を活性化するための熱処理を行うことにより、活性領域エッジ部及びチャネル領域への欠陥の転移を抑制することができる。従って、ソース・ドレイン注入層13を形成する際に発生した注入欠陥が、その後の熱処理によって活性領域エッジ部に集中するのを抑制することができるので、リーク電流の低減を図ることができる。
【0049】
(第3の実施形態)
図5(a)〜(c)は、本発明の第3の実施形態にかかる半導体装置の製造工程を示す断面図である。ここでは、n型MISトランジスタの製造方法を用いて説明する。
【0050】
まず、図5(a)に示す工程では、第1の実施形態における図1(a)〜(d)に示す工程と同様な工程によって、半導体基板1の主面にトレンチ素子分離領域2、ゲート絶縁膜3、ゲート電極部8、サイドウォール12、n型エクステンション注入層9、p型ポケット注入層10及びn型ソース・ドレイン注入層13を形成する。
【0051】
次に、図5(b)に示す工程で、n型ソース・ドレイン注入層13の注入と同様に、ゲート電極部8及びサイドウォール12をマスクにして、半導体基板1の素子形成領域に対して、不活性な不純物であるシリコン(Si)を注入角度60°、注入エネルギー110keV以上、ドーズ量1×1015/cmの条件で4回転の斜めイオン注入を行い、ゲート電極部8直下でn型エクステンション拡散層9の内側方に位置するチャネル領域11に非晶質層19を形成する。
【0052】
次に、図5(c)に示す工程で、エクステンション注入層9、ポケット注入層10及びソース・ドレイン注入層13の不純物を活性化させるのに十分な温度である約1000℃〜1050℃でRTA処理(短時間アニール)を行う。このとき、第1の実施形態と同様に、保護絶縁膜を形成した後、RTA処理を行っても良い。この結果、半導体基板1の素子形成領域には、ゲート電極部8直下に位置するチャネル領域11を挟んで、n型エクステンション拡散層9aとn型ソース・ドレイン拡散層13aとからなるソース・ドレイン領域14と、n型エクステンション拡散層9a下に位置するp型ポケット拡散層10aがそれぞれ形成される。このとき、チャネル領域11に形成した非晶質層19によって、チャネル領域11に残留していた応力が開放された状態となるので、RTA処理時において非晶質層19が再結晶化する際に、ソース−ドレイン間のリークパスの原因となる結晶欠陥がゲート電極下部のチャネル領域に集中することを抑制することができる。
【0053】
その後、基板上に層間絶縁膜を形成した後、層間絶縁膜にn型ソース・ドレイン拡散層13aに到達するコンタクトホールを設け、金属膜を埋め込んで金属プラグを形成する。
【0054】
本実施形態によれば、チャネル領域11に形成した非晶質層19によって、チャネル領域11に残留していた応力を開放することができるため、応力の高い領域が低減される。これにより、応力の高い領域に引き寄せられる注入欠陥の数を抑制することができるので、ソース−ドレイン間のリークパスの原因となる結晶欠陥がゲート電極下部のチャネル領域に集中することを抑制することができる。従って、ソース・ドレイン注入層13を形成する際に発生した注入欠陥が、その後の熱処理によって活性領域エッジ部に集中するのを抑制することができるので、リーク電流の低減を図ることができる。
【0055】
【発明の効果】
本発明の半導体装置の製造方法によれば、イオン注入によって発生した注入欠陥が、熱処理によってゲート電極下部のチャネル領域に集中するのを抑制することができるので、リーク電流が低減された高性能な半導体装置を形成することができる。
【図面の簡単な説明】
【図1】(a)〜(f)は、本発明の第1の実施形態にかかる半導体装置の製造工程を示す断面図
【図2】ソース・ドレイン注入層の不純物を活性化するためのRTA処理後の応力シミュレーション結果を示す断面図であり、
(a)は保護絶縁膜を形成してRTA処理したときの応力分布図
(b)は従来のように保護絶縁膜を形成せずにRTA処理したときの応力分布図
【図3】活性領域エッジ部における圧縮応力に対する保護絶縁膜の膜厚依存性を示す図
【図4】(a)〜(c)は、本発明の第2の実施形態にかかる半導体装置の製造工程を示す断面図
【図5】(a)〜(c)は、本発明の第3の実施形態にかかる半導体装置の製造工程を示す断面図
【図6】(a)〜(e)は、従来の半導体装置の製造工程を示す断面図
【図7】ゲート絶縁膜を形成した後の応力シミュレーション結果を示す断面図
【図8】(a)は、シミュレーションした箇所を説明するための平面図
(b)はゲート絶縁膜形成後における、トレンチ素子分離領域から活性領域にかかる圧縮応力分布を示すシミュレーション結果を示す図
【図9】図6(d)における注入欠陥の発生を説明するための模式図
【符号の説明】
1 半導体基板
2 トレンチ素子分離領域
3 ゲート絶縁膜
4 ポリシリコン膜
4a 下部ゲート電極
5 タングステン膜
5a 上部ゲート電極
6 シリコン窒化膜
6a ゲート上絶縁膜
7 レジスト膜
8 ゲート電極部
9 n型エクステンション注入層
9a n型エクステンション拡散層
10 p型ポケット注入層
10a P型ポケット拡散層
11 チャネル領域
12 サイドウォール
13 n型ソース・ドレイン注入層
13a n型ソース・ドレイン拡散層
14 ソース・ドレイン領域
15 保護絶縁膜
16 層間絶縁膜
17 金属プラグ
18 高歪層
19 非晶質層

Claims (5)

  1. 半導体基板にトレンチ素子分離領域を形成する工程(a)と、前記トレンチ素子分離領域に囲まれた前記半導体基板における素子形成領域上にゲート絶縁膜及びゲート電極を形成する工程(b)と、
    前記工程(b)の後に、前記素子形成領域に第1の不純物をイオン注入してソース・ドレイン注入層を形成する工程(c)と、
    前記工程(c)の後に、基板上の全面に、保護絶縁膜を形成する工程(d)と、
    前記保護絶縁膜が形成された状態で、前記ソース・ドレイン注入層の前記第1の不純物を活性化させるための熱処理を行い、ソース・ドレイン拡散層を形成する工程(e)と
    を有することを特徴とする半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記工程(c)の後で前記工程(d)の前に、前記ソース・ドレイン注入層の直下の離れた位置に第2の不純物をイオン注入して高歪層を形成する工程を備えていることを特徴とする半導体装置の製造方法。
  3. 請求項1記載の半導体装置の製造方法において、
    前記工程(c)の後で前記工程(d)の前に、前記ゲート電極の下方に位置する前記半導体基板におけるチャネル領域に第3の不純物をイオン注入して非晶質層を形成する工程を備えていることを特徴とする半導体装置の製造方法。
  4. 半導体基板にトレンチ素子分離領域を形成する工程(a)と、前記トレンチ素子分離領域に囲まれた前記半導体基板における素子形成領域上にゲート絶縁膜及びゲート電極を形成する工程(b)と、
    前記工程(b)の後に、前記半導体基板における前記素子形成領域に第1の不純物をイオン注入してソース・ドレイン注入層を形成する工程(c)と、
    前記工程(c)の後に、前記ソース・ドレイン注入層の直下の離れた位置に第2の不純物をイオン注入して高歪層を形成する工程(d)と、
    前記工程(d)の後に、前記ソース・ドレイン注入層の前記第1の不純物を活性化させるための熱処理を行い、ソース・ドレイン拡散層を形成する工程(e)と
    を有することを特徴とする半導体装置の製造方法。
  5. 半導体基板にトレンチ素子分離領域を形成工程(a)と、
    前記トレンチ素子分離領域に囲まれた前記半導体基板における素子形成領域上にゲート絶縁膜及びゲート電極を形成する工程(b)と、
    前記工程(b)の後に、前記半導体基板における前記素子形成領域に第1の不純物をイオン注入してソース・ドレイン注入層を形成する工程(c)と、
    前記工程(c)の後に、前記ゲート電極の下方に位置する前記半導体基板おけるチャネル領域に第2の不純物をイオン注入して非晶質層を形成する工程(d)と、
    前記工程(d)の後に、前記ソース・ドレイン注入層の前記第1の不純物を活性化させるための熱処理を行い、ソース・ドレイン拡散層を形成する工程(e)と
    を有することを特徴とする半導体装置の製造方法。
JP2003000277A 2003-01-06 2003-01-06 半導体装置の製造方法 Pending JP2004214440A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000277A JP2004214440A (ja) 2003-01-06 2003-01-06 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000277A JP2004214440A (ja) 2003-01-06 2003-01-06 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2004214440A true JP2004214440A (ja) 2004-07-29

Family

ID=32818639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000277A Pending JP2004214440A (ja) 2003-01-06 2003-01-06 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2004214440A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134492A (ja) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2009506574A (ja) * 2005-08-31 2009-02-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Nmosトランジスタおよびpmosトランジスタに凹んだ歪みのあるドレイン/ソース領域を形成する技術
JP2011501437A (ja) * 2007-10-30 2011-01-06 シノプシス, インコーポレイテッド 半導体基板における格子欠陥の抑制方法
US8504969B2 (en) 2007-10-26 2013-08-06 Synopsys, Inc. Filler cells for design optimization in a place-and-route system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506574A (ja) * 2005-08-31 2009-02-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Nmosトランジスタおよびpmosトランジスタに凹んだ歪みのあるドレイン/ソース領域を形成する技術
TWI420602B (zh) * 2005-08-31 2013-12-21 Advanced Micro Devices Inc 用於形成nmos與pmos電晶體中之凹陷之受應變之汲極/源極區之技術
JP2007134492A (ja) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US8504969B2 (en) 2007-10-26 2013-08-06 Synopsys, Inc. Filler cells for design optimization in a place-and-route system
JP2011501437A (ja) * 2007-10-30 2011-01-06 シノプシス, インコーポレイテッド 半導体基板における格子欠陥の抑制方法

Similar Documents

Publication Publication Date Title
US5753560A (en) Method for fabricating a semiconductor device using lateral gettering
TWI460859B (zh) 半導體裝置及製造半導體裝置之方法
JP4782821B2 (ja) 自己整合損傷層を有するデバイス構造体
US9059210B2 (en) Enhanced stress memorization technique for metal gate transistors
JP4733869B2 (ja) 半導体装置の製造方法
JP4134720B2 (ja) 半導体素子の製造方法
US20060189066A1 (en) Semiconductor device having optimized shallow junction geometries and method for fabrication thereof
US8466030B2 (en) Semiconductor device and fabricating method thereof
JPH07221293A (ja) Mosfetの製造方法
US5972761A (en) Method of making MOS transistors with a gate-side air-gap structure and an extension ultra-shallow S/D junction
JP2009033173A (ja) 半導体素子およびその製造方法
JP2011054740A (ja) 半導体装置及びその製造方法
JP4086099B2 (ja) 半導体素子の形成方法
US6261912B1 (en) Method of fabricating a transistor
JP2000208762A (ja) 絶縁ゲ―ト電界効果トランジスタおよびその製造方法
JP2007123439A (ja) 半導体装置及びその製造方法
JP2000138177A (ja) 半導体装置の製造方法
JP2004214440A (ja) 半導体装置の製造方法
JP2007287813A (ja) 半導体装置およびその製造方法
US6507075B1 (en) Method of forming a MOS transistor in a semiconductor device and a MOS transistor fabricated thereby
JP3371875B2 (ja) 半導体装置の製造方法
US20080286920A1 (en) Method for manufacturing semiconductor device
JP4041676B2 (ja) 半導体装置の製造方法
US6194298B1 (en) Method of fabricating semiconductor device
KR100546124B1 (ko) 반도체소자의 트랜지스터 형성방법