JP2004211847A - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP2004211847A
JP2004211847A JP2003001464A JP2003001464A JP2004211847A JP 2004211847 A JP2004211847 A JP 2004211847A JP 2003001464 A JP2003001464 A JP 2003001464A JP 2003001464 A JP2003001464 A JP 2003001464A JP 2004211847 A JP2004211847 A JP 2004211847A
Authority
JP
Japan
Prior art keywords
gear
power transmission
planetary gear
external
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003001464A
Other languages
Japanese (ja)
Other versions
JP4252804B2 (en
Inventor
Seiji Minegishi
清次 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003001464A priority Critical patent/JP4252804B2/en
Priority to TW092122290A priority patent/TWI223034B/en
Priority to US10/650,131 priority patent/US7147582B2/en
Priority to KR1020030060360A priority patent/KR100740958B1/en
Priority to CNB031557619A priority patent/CN100368702C/en
Publication of JP2004211847A publication Critical patent/JP2004211847A/en
Application granted granted Critical
Publication of JP4252804B2 publication Critical patent/JP4252804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission device properly controllable to increase its transmission capacity and reduce its noise or vibration corresponding to a load exerted by a driven device while miniaturizing itself and saving space. <P>SOLUTION: The power transmission device 300 comprises a first inner gearing planetary gear mechanism 100 having a first external gear 102 and a first internal gear 104 somewhat different in the number of teeth, the first external gear 102 being assembled inside the first internal gear 104 for eccentric inner gearing rotation, and a second inner gearing planetary gear mechanism 200 arranged similarly between an input shaft 302 and an output shaft 306 in parallel to the first inner gearing planetary gear mechanism 100 on a power transmission passage and having a second external gear 202 and a second internal gear 204 somewhat different in the number of teeth, the second external gear 202 assembled inside the second internal gear 204 for eccentric inner gearing rotation. By differentiating the difference in the number of teeth between the first external gear 102 and the first internal gear 104 with the difference in the number of teeth between the second external gear 202 and the second internal gear 204, the power transmitting characteristics of the first and second inner gearing planetary gear mechanisms 100, 200 are differentiated from each other. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンベアや生ごみ処理機等に適用される動力伝達装置に関し、特に、装置の小型化、省スペース化を実現しながら、同時に、伝達容量の増大、騒音や振動の低減等について被駆動装置から受ける負荷に応じた適切な制御が可能な動力伝達装置に関する。
【0002】
【従来の技術】
従来、入力される動力を相手機械に伝達可能な動力伝達装置が多く知られており、これら動力伝達装置は、コンベアや生ごみ処理機の駆動等の用途に幅広く適用されている。
【0003】
このような動力伝達装置の一つとして、例えば特許文献1に示すような内接噛合遊星歯車減速機が提案されている。この従来公知の内接噛合遊星歯車減速機は、内歯歯車と外歯歯車との歯数差を複数としたトロコイド系歯形歯車を採用することにより、装置の伝達容量の向上を実現したものである。
【0004】
ところで、このような動力伝達装置がコンベアの駆動用途に適用された場合を例にとると、動力伝達装置は、特にコンベアの起動時や大きな搬送物を搬送する際に大きな反作用トルクをうけるため、コンベアの駆動には大きな伝達容量が必要とされるが、このようなコンベアの起動時や加速時等の中・重負荷時における騒音や振動は一般にはあまり問題とはならない。一方、コンベアが一度起動され、定常運転状態になった場合には、コンベア起動時等の半分にも満たない小さな伝達容量があればコンベアを駆動可能であるが、このような無・軽負荷時においては騒音や振動の低減が要求される。
【0005】
【特許文献1】
特許第1208548号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の動力伝達装置は、内歯歯車と外歯歯車の歯数差を1に設定した場合には、外歯歯車の歯形は連続したトロコイド歯形となり、全周において内歯歯車と外歯歯車を接触させることができ、騒音や振動を低減することが可能となるが、内歯歯車と外歯歯車の有効噛合本数が少ないため、伝達容量が小さくなり、特に中・重負荷時に必要十分な伝達容量を得るのが難しいといった問題があった。
【0007】
一方、内歯歯車と外歯歯車の歯数差を複数(2以上)に設定した場合には、内歯歯車と外歯歯車の有効噛合本数が増えるため、伝達容量の増大が実現可能となるものの、外歯歯車の歯形が連続したトロコイド曲線で無くなり、全周において内歯歯車と外歯歯車を接触させておくことができず、その結果、低騒音化や低振動化の為の高精度の加工が必要となる問題があった。
【0008】
本発明はこのような問題を解決するためになされたものであって、装置の小型化、省スペース化を実現しながら、同時に、伝達容量の増大、騒音や振動の低減等について被駆動装置から受ける負荷に応じた適切な制御が可能な動力伝達装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、入力される動力を相手機械に伝達可能な動力伝達装置において、該動力伝達装置の動力伝達機構を、僅少の歯数差を有する第1外歯歯車及び第1内歯歯車を備え、該第1外歯歯車を、前記第1内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第1内接噛合遊星歯車機構と、同じ入力軸と出力軸との間に該第1内接噛合遊星歯車機構と動力伝達経路上で並列に配置され、且つ僅少の歯数差を有する第2外歯歯車及び第2内歯歯車を備え、該第2外歯歯車を、前記第2内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第2内接噛合遊星歯車機構とで構成すると共に、前記第1外歯歯車と前記第1内歯歯車の歯数差と、前記第2外歯歯車と前記第2内歯歯車の歯数差に差異を持たせることによって、前記第1、2内接噛合遊星歯車機構の動力伝達特性を相異ならせたことにより、上記課題を解決したものである。
【0010】
本発明によれば、動力伝達装置に入力される動力を、歯数差に差異を持たせることによって動力伝達特性を相異ならせた第1、2内接噛合遊星歯車機構を介して相手機械に伝達することが可能となり、組み合わせる内接噛合遊星歯車機構の各々の特性によって、動力伝達装置全体の特性を変えることができる。
【0011】
従って、例えば、前記第1外歯歯車と前記第1内歯歯車の歯数差、及び前記第2外歯歯車と前記第2内歯歯車の歯数差の一方を1枚差にすると共に、他方を2枚差以上にすれば、剛性が低いが騒音や振動の低減が可能な第1内接噛合遊星歯車機構と、回転効率が高く、剛性が高い(伝達容量が大きい)第2内接噛合遊星歯車機構を介して動力伝達することが可能となる。その結果、無・軽負荷時には主として第1内接噛合遊星歯車機構によって、低騒音・低振動での動力伝達が可能となると共に、中・重負荷時には主として第2内接噛合遊星歯車機構によって、伝達容量の増大が可能となり、伝達容量の増大、騒音や振動の低減等について被駆動装置から受ける負荷に応じた適切な制御が可能となる。
【0012】
なお、前記第1、2内接噛合遊星歯車機構の動力伝達特性の差異の具現化については他の手段を用いても良く、例えば、前記第1外歯歯車及び第1内歯歯車の歯数と、前記第2外歯歯車及び第2内歯歯車の歯数に差異を持たせることによって、前記第1、2内接噛合遊星歯車機構の動力伝達特性を相異ならせてもよい。この場合には、各々の外歯歯車と内歯歯車との噛合い本数の違いによって、第1、2内接噛合遊星歯車機構の剛性(伝達容量)等に差異を持たせることが可能となり、上記と同様の効果を得ることができる。
【0013】
同様に、前記第1、第2外歯歯車の前記入力軸に対する偏心量に差異を持たせることによって、前記第1、2内接噛合遊星歯車機構の動力伝達特性を相異ならせることも可能である。
【0014】
更に、前記第1及び第2外歯歯車にそれぞれ形成された内ピン孔に遊嵌され、且つ、自身の一端が前記出力軸又は該出力軸と一体化された部材によって片持ち支持された内ピンを介して、前記第1及び第2外歯歯車の自転成分を該出力軸に伝達可能な構成とすることにより、前記出力軸側に配置された方の外歯歯車の剛性を高くするか、又、前記第1内接噛合遊星歯車機構の全部又は一部の材質と、前記第2内接噛合遊星歯車機構の全部又は一部の材質にそれぞれ差異を持たせることによって、前記第1、第2内接噛合遊星歯車機構の動力伝達特性を相異ならせてもよい。
【0015】
なお、前記入力軸及び前記出力軸に対する前記第1内接噛合遊星歯車機構のバックラッシ量及び前記第2内接噛合遊星歯車機構のバックラッシ量にそれぞれ差異を持たせることによって、前記第1、第2内接噛合遊星歯車機構の動力伝達特性を相異ならせてもよく、例えば、第1、第2内接噛合遊星歯車機構のうち、剛性の低い方のバックラッシ量を剛性の高い方のバックラッシ量よりも小さくしてもよい。
【0016】
【発明の実施の形態】
以下、本発明の実施形態の例を図面に基づいて説明する。
【0017】
図1は、本発明の実施形態の例に係る動力伝達装置300の側断面図である。
【0018】
動力伝達装置300は、入力軸302と出力軸306と、第1内接噛合遊星歯車機構100と、第2内接噛合遊星歯車機構200と、を備えている。該動力伝達装置300は、入力軸302から入力される動力を、前記第1、第2内接噛合遊星歯車機構100、200及び出力軸306を介して図示せぬ相手機械に伝達が可能である。
【0019】
前記入力軸302は、軸受330、332によって回転自在に両持ち支持されており、軸心L1を中心に回転可能である。
【0020】
前記出力軸306は、軸受334、336によって回転自在に支持されており、前記入力軸302と同じ軸心L1を中心に回転可能である。
【0021】
又、これら入力軸302及び出力軸306の間には、動力伝達特性を相異ならせた第1内接噛合遊星歯車機構100と第2内接噛合遊星歯車機構200が動力伝達経路上、並列に配置されている。なお、「動力伝達経路上で並列に配置」とは、共通の部材である入力軸302及び出力軸306の間に、動力の伝達され得る経路が2つ(第1、第2内接噛合遊星歯車機構100、200)配置されていることを意味する。ちなみに、「動力伝達経路上で直列に備える」とは、ある系路を経た後に他の経路を通ることをいう。
【0022】
図2、図3は、それぞれ第1内接噛合遊星歯車機構100及び第2内接噛合遊星歯車機構200を示した図であり、図2は図1中におけるII−II線に沿う断面図、図3は図1中におけるIII−III線に沿う断面図である。
【0023】
図1、図2に示すように、第1内接噛合遊星歯車機構100は、僅少の歯数差を有する第1外歯歯車102及び第1内歯歯車104と、偏心体106と、ころ軸受110とを備えている。
【0024】
該偏心体106は、入力軸302の軸心L1に対してe1だけ偏心した外周を有している。又、偏心体106は、前記入力軸302の軸受330、332間の外周に、後述する第2内接噛合遊星歯車機構200の偏心体206と所定位相差(この例では180°)をもって設けられている。
【0025】
前記第1内歯歯車104は、ケーシング312の内周側に複数形成された円筒状の外ピン104aに外ローラ104bが挿嵌した構造で、これら外ローラ104bが内歯を形成している。なお、この例では、外ローラ104b(内歯)は12歯設けられている。
【0026】
前記第1外歯歯車102は、外周に滑らかなトロコイド歯形の外歯を有しており、前記第1内歯歯車104の内側に偏心内接噛合回転自在に組み込まれている。なお、この例では、第1外歯歯車102の外歯は11歯設けられており、第1内歯歯車104と第1外歯歯車102の歯数差は1枚差(=12(内歯)−11(外歯))に設定されている。
【0027】
又、該第1外歯歯車102は、該第1外歯歯車102と偏心体106の間に設けられたころ軸受110を介して偏心体106に嵌合され、該偏心体106の回転に伴って揺動回転可能である。更に、第1外歯歯車102には内ローラ孔102aが複数個設けられ、内ピン308及び内ローラ310が、各ローラ孔102aを貫通している。なお、図1に示すように該内ピン308の一端308aは、前記出力軸306によって片持ち支持されている。
【0028】
一方、図1、図3に示すように、第2内接噛合遊星歯車機構200は、僅少の歯数差を有する第2外歯歯車202及び第2内歯歯車204と、偏心体206と、ころ軸受210とを備えている。
【0029】
該偏心体206は、入力軸302の軸心L1に対してe2だけ偏心した外周を有している。又、偏心体206は、前記入力軸302の軸受330、332間の外周に前記第1内接噛合遊星歯車機構100の偏心体106と所定位相差をもって設けられている。
【0030】
前記第2内歯歯車204は、ケーシング312の内周側に複数形成された外ピン204aに外ローラ204bが挿嵌した構造で、これら外ローラ204bが内歯を形成している。なお、この例では、外ローラ204b(内歯)は24歯設けられている。
【0031】
前記第2外歯歯車202は、外周にトロコイド歯形の外歯を有しており、前記第2内歯歯車204の円筒状の外ローラ204bの内側に偏心内接噛合回転自在に組み込まれている。なお、この例では、第1外歯歯車202の外歯は22歯設けられており、第2内歯歯車204と第2外歯歯車202の歯数差は2枚差(=24(内歯)−22(外歯))に設定されている。
【0032】
又、該第2外歯歯車202は、該第2外歯歯車202と偏心体206の間に設けられたころ軸受210を介して偏心体206に嵌合され、該偏心体206の回転に伴って揺動回転可能である。更に、第2外歯歯車202には内ローラ孔202aが複数個設けられ、内ピン308及び内ローラ310が、各ローラ孔202aを貫通している。
【0033】
図1に示すように、内ピン308及び内ローラ310は、第1外歯歯車102の各ローラ孔102a及び第2外歯歯車202の各ローラ孔202aをそれぞれ貫通しており、第1外歯歯車102及び第2外歯歯車202の自転成分を該内ピン308を介して前記出力軸306に伝達可能である。なお、第2外歯歯車202は第1外歯歯車102よりも出力軸306側、即ち、該出力軸306に片持ち支持された内ピン308の一端308aに近い位置に配置されている。
【0034】
又、第1内接噛合遊星歯車機構100における偏心体106ところ軸受110との隙間S11、ころ軸受110と第1外歯歯車102との隙間S12、内ピン308と内ローラ310との隙間S13、内ローラ310と第1外歯歯車102との隙間S14、第1外歯歯車102と第1内歯歯車104との隙間S15は、第2内接噛合遊星歯車機構200における偏心体206ところ軸受210との隙間S21、ころ軸受210と第2外歯歯車202との隙間S22、内ピン308と内ローラ310との隙間S23、内ローラ310と第2外歯歯車202との隙間S24、第2外歯歯車202と第2内歯歯車204との隙間S25よりもそれぞれ小さく設計されている(S11<S21,S12<S22,S13<S23,S14<S24,S15<S25)。なお、必ずしも全ての隙間の大小関係はこうである必要がなく和がそうなっていれば良い。
【0035】
即ち、入力軸302及び出力軸306に対する第1内接噛合遊星歯車機構100のバックラッシ量は、第2内接噛合遊星歯車機構200のバックラッシ量よりも小さくなっている。
【0036】
次に、動力伝達装置300の作用について説明する。
【0037】
入力軸302が軸心L1を中心に回転すると、該入力軸302の外周に設けられた偏心体106、206がそれぞれ回転する。該偏心体106、206の回転により、第1、第2外歯歯車102、202も入力軸302の周りで揺動回転を行なおうとするが、第1、第2内歯歯車104、204によってその自転が拘束されているため、第1、第2外歯歯車102、202は、第1、第2内歯歯車104、204に内接しながらほとんど揺動のみを行なうことになる。
【0038】
この第1、第2外歯歯車の回転は、内ローラ孔102a、202a及び内ピン308の隙間によってその揺動成分が吸収され、自転成分のみが出力軸306を介して相手機械へと伝達される。
【0039】
本発明の実施形態の例における動力伝達装置300では、第1内接噛合遊星歯車機構100の第1内歯歯車104と第1外歯歯車102の歯数差を1枚差に設定する一方で、第2内接噛合遊星歯車機構200の第2内歯歯車204と第2外歯歯車202の歯数差を2枚差に設定することで、双方の内歯歯車と外歯歯車との歯数差に差異を持たせ、第1内接噛合遊星歯車機構100と第2内接噛合遊星歯車機構200の動力伝達特性に差異を設けている。
【0040】
又、第1内接噛合遊星歯車機構100の第1内歯歯車104の歯数を12歯、第1外歯歯車102の歯数を11歯に設定する一方で、第2内接噛合遊星歯車機構200の第2内歯歯車204の歯数を24歯、第2外歯歯車202の歯数を22歯に設定することで、双方の内歯歯車及び外歯歯車の歯数に差異を持たせ、第1内接噛合遊星歯車機構100と第2内接噛合遊星歯車機構200の動力伝達特性に差異を設けている。
【0041】
更に、第1内接噛合遊星歯車機構100の第1外歯歯車102の入力軸302に対する偏心量をe1とする一方で、第2内接噛合遊星歯車機構200の第2外歯歯車202の入力軸302に対する偏心量をe2とし、双方の外歯歯車の入力軸302に対する偏心量に差異を持たせ、第1内接噛合遊星歯車機構100と第2内接噛合遊星歯車機構200の動力伝達特性に差異を設けている。
【0042】
即ち、第1内接噛合遊星歯車機構100は、第1内歯歯車104と第1外歯歯車102の歯数差を1枚差に設定しているため、第1外歯歯車102の歯形は連続したトロコイド歯形となり、全周において第1内歯歯車104と第1外歯歯車102を接触させることができる。又、第1外歯歯車102の偏心量e1を、第2外歯歯車202の偏心量e2よりも小さく設定しているため、第1外歯歯車102の歯形はなだらかな曲線となり、第1内歯歯車104と第1外歯歯車102との噛合いを極めて安定的なものとすることができる。
【0043】
従って、第1内接噛合遊星歯車機構100は、歯車の接触時間の増大等により、駆動時の騒音や振動を大幅に低減することが可能である。
【0044】
又、第1内歯歯車104及び第1外歯歯車102の歯数を少なくしているため、第1内歯歯車104と第1外歯歯車102との噛合い本数が少なく、又、噛合いのピッチ円径が小さいことから、全体的に伝達トルクに対する各部材の変形量が大きい(剛性が低い)。
【0045】
一方、第2内接噛合遊星歯車機構200は、第2内歯歯車204と第2外歯歯車202の歯数差を2枚差に設定しているため、第2内歯歯車204と第2外歯歯車202との有効噛合本数が増える。従って、第1内接噛合遊星歯車機構100に比べ、伝達容量の増大が実現可能となると共に、全体的に伝達トルクに対する各部材の変形量が小さくなる(剛性が高くなる)。
【0046】
なお、第2内接噛合遊星歯車機構200の第2外歯歯車202は、第1外歯歯車102よりも出力軸306側、即ち、該出力軸306に片持ち支持された内ピン308の一端308aに近い位置に配置されているため、この点においても第2内接噛合遊星歯車機構200は第1内接噛合遊星歯車機構100よりも剛性が高くなっている。
【0047】
又、動力伝達装置300では、第1内接噛合遊星歯車機構100における偏心体106ところ軸受110との隙間S11、ころ軸受110と第1外歯歯車102との隙間S12、内ピン308と内ローラ310との隙間S13、内ローラ310と第1外歯歯車102との隙間S14、第1外歯歯車102と第1内歯歯車104との隙間S15は、第2内接噛合遊星歯車機構200における偏心体206ところ軸受210との隙間S21、ころ軸受210と第2外歯歯車202との隙間S22、内ピン308と内ローラ310との隙間S23、内ローラ310と第2外歯歯車202との隙間S24、第2外歯歯車202と第2内歯歯車204との隙間S25よりもそれぞれ小さく設計することにより、第1内接噛合遊星歯車機構100と第2内接噛合遊星歯車機構200のバックラッシ量に差異を設けている。
【0048】
このように、第1、第2内接噛合遊星歯車機構100、200のバックラッシ量に差異を設けているため、第1内接噛合遊星歯車機構100は、該入力軸302の動き(トルクの変動)に対しても、又、出力軸306の動き(トルクの変動)に対する反応が早いという特性を有するのに対して、第2内接噛合遊星歯車機構200は、当該バックラッシ量が大きく、入力軸302及び出力軸306の双方の動き(トルクの変動)に対して反応が遅いという特性を有する。
【0049】
従って、動力伝達装置300は、剛性が低いが騒音や振動が少なく、バックラッシ量の小さい第1内接噛合遊星歯車機構100と、回転効率及び剛性が高く(伝達容量が大きく)、バックラッシ量の大きい第2内接噛合遊星歯車機構200とを動力伝達経路上に並列に備えていることになる。その結果、動力伝達装置300の起動直後には、入力軸302に対するバックラッシ量の小さい第1内接噛合遊星歯車機構100が早く反応して動力の伝達を行う。その後、作用するトルクが大きくなり、動力の伝達に必要なトルクが出ない場合には、変形して第2内接噛合遊星歯車機構200も働き始める。
【0050】
即ち、作用するトルクが大きい、加速時等の中・重負荷時においては、第2内接噛合遊星歯車機構200も動力伝達を行うことになる結果、伝達容量の増大が可能である。しかも、第2内接噛合遊星歯車機構200は、第1内接噛合遊星歯車機構100に比べ回転効率が高いため、動力伝達装置300全体の回転効率の向上を図ることができる。
【0051】
一方、作用するトルクが小さい無・軽負荷時においては、第1内接噛合遊星歯車機構100が主として動力伝達を行うか、もしくは第2内接噛合遊星歯車機構200は働かないため、低騒音、低振動での動力伝達が可能である。
【0052】
上記実施形態の例においては、第2内接噛合遊星歯車機構200の第2内歯歯車204と第2外歯歯車202の歯数差を2に設定したが、本発明はこれに限定されるものではない。
【0053】
従って、例えば、図4〜6に示すような、第1内歯歯車154と第1外歯歯車152の歯数差が1枚差(=12(内歯)−11(外歯))に設定された第1内接噛合遊星歯車機構150と、第2内歯歯車254と第2外歯歯車252の歯数差が3枚差(=36(内歯)−33(外歯))に設定された第2内接噛合遊星歯車機構250とを、動力伝達系路上並列に備えた動力伝達装置350としてもよい。
【0054】
すなわち、2つの内接噛合遊星歯車機構の歯数差の具現化方法については、上記実施形態の例に示したものに限定されず、一方の内接噛合遊星歯車機構の歯数差を1枚差にすると共に、他方の内接噛合遊星歯車機構の歯数差を2枚差以上としてもよく、一方を2枚差、他方を3枚差としてもよい。なお、2つの内接噛合遊星歯車機構のうち、剛性の低い方の歯数差を小さく設定することが好ましい。
【0055】
なお、図4は、上記図1に対応する、本発明の実施形態の第2例に係る動力伝達装置350の側断面図、図5及び図6は、それぞれ上記図2及び図3に対応する、V−V線に沿う断面図、及びVI−VI線に沿う断面図である。
【0056】
又、前記動力伝達装置300にモータ400を連結・一体化し、図7に示すようなギヤドモータ500とすれば、装置の小型化、省スペース化を実現しながら、同時に、伝達容量の増大、騒音や振動の低減等について被駆動装置から受ける負荷に応じた適切な制御が可能なギヤドモータ500が提供可能となる。
【0057】
本発明に係る動力伝達装置の減速機構は、僅少の歯数差を有する第1外歯歯車及び第1内歯歯車を備え、該第1外歯歯車を、前記第1内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第1内接噛合遊星歯車機構と、同じ入力軸と出力軸との間に該第1内接噛合遊星歯車機構と動力伝達経路上で並列に配置され、且つ僅少の歯数差を有する第2外歯歯車及び第2内歯歯車を備え、該第2外歯歯車を、前記第2内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第2内接噛合遊星歯車機構とで構成されているものであればよく、上記実施形態における内接噛合遊星歯車機構に限定されるものではない。従って、例えば、動力伝達装置の減速機構として、歯車等で入力軸(中心軸)と平行する軸に入力回転が振り分けられるようにし、その軸に偏心体を設けることによって、外歯歯車が中心軸に対して偏心回転するようにした、いわゆる振り分けタイプの内接噛合遊星歯車機構等を適用してもよい。
【0058】
なお、上記実施形態の例においては、外歯歯車と内歯歯車との歯数差等によって第1、第2内接噛合遊星歯車機構100、200の動力伝達特性の差異を具現化したが、第1内接噛合遊星歯車機構100の全部又は一部の材質と、第2内接噛合遊星歯車機構200の全部又は一部の材質とにそれぞれ差異を持たせ、一方のヤング率を他方のヤング率より小さくする(剛性を小さくする)ことにより前記第1、第2内接噛合遊星歯車機構100、200の動力伝達特性を相異ならせた動力伝達装置としても良い。
【0059】
【発明の効果】
本発明によれば、装置の小型化、省スペース化を実現しながら、同時に、伝達容量の増大、騒音や振動の低減等について被駆動装置から受ける負荷に応じた適切な制御が可能な動力伝達装置が提供可能である。
【図面の簡単な説明】
【図1】本発明の実施形態の例に係る動力伝達装置の側断面図
【図2】図1におけるII−II線に沿う断面図
【図3】図1におけるIII−III線に沿う断面図
【図4】本発明の実施形態の第2例に係る動力伝達装置の側断面図
【図5】図4におけるV−V線に沿う断面図
【図6】図4におけるVI−VI線に沿う断面図
【図7】本発明の実施形態の例に係る動力伝達装置を適用したギヤドモータの側断面図
【符号の説明】
100、150…第1内接噛合遊星歯車機構
102、152…第1外歯歯車
102a、202a…内ローラ孔
104、154…第1内歯歯車
104a、204a…外ピン
104b、204b…外ローラ
106、206…偏心体
110、210…ころ軸受
200、250…第2内接噛合遊星歯車機構
202、252…第2外歯歯車
204、254…第2内歯歯車
300…動力伝達装置
302…入力軸
306…出力軸
308…内ピン
310…内ローラ
312…ケーシング
400…モータ
500…ギヤドモータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power transmission device applied to a conveyor, a garbage disposer, and the like, and more particularly to a reduction in the size and space of the device, and at the same time, a reduction in noise and vibration while increasing the transmission capacity. The present invention relates to a power transmission device capable of performing appropriate control according to a load received from a drive device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, many power transmission devices capable of transmitting input power to a partner machine have been known, and these power transmission devices have been widely applied to uses such as driving a conveyor or a garbage disposer.
[0003]
As one of such power transmission devices, for example, an internally meshing planetary gear reducer as disclosed in Patent Document 1 has been proposed. This conventionally known internally meshing planetary gear reducer achieves an improvement in the transmission capacity of the device by adopting a trochoid tooth gear having a plurality of difference in the number of teeth between the internal gear and the external gear. is there.
[0004]
By the way, taking as an example the case where such a power transmission device is applied to a driving application of a conveyor, the power transmission device receives a large reaction torque especially when the conveyor is started or when a large conveyed object is conveyed. A large transmission capacity is required to drive the conveyor, but noise and vibration during such a start-up or acceleration of the conveyor under a medium or heavy load generally does not cause much problem. On the other hand, if the conveyor is started once and enters a steady operation state, the conveyor can be driven if there is a small transmission capacity that is less than half that at the time of starting the conveyor, etc. , It is required to reduce noise and vibration.
[0005]
[Patent Document 1]
Patent No. 1208548 [0006]
[Problems to be solved by the invention]
However, in the conventional power transmission device, when the difference in the number of teeth between the internal gear and the external gear is set to 1, the external gear has a continuous trochoidal tooth profile, and the internal gear and the external gear Gears can be brought into contact and noise and vibration can be reduced.However, since the number of effective meshes between the internal gear and the external gear is small, the transmission capacity is small, especially when medium and heavy loads are required. There is a problem that it is difficult to obtain a large transmission capacity.
[0007]
On the other hand, when the difference in the number of teeth between the internal gear and the external gear is set to a plurality (two or more), the effective meshing number of the internal gear and the external gear increases, so that the transmission capacity can be increased. However, the tooth profile of the external gear is lost in a continuous trochoidal curve, and the internal gear and the external gear cannot be kept in contact all around, resulting in high precision for lower noise and vibration. There is a problem that requires processing.
[0008]
The present invention has been made to solve such a problem, and realizes a reduction in the size and space of the device, and at the same time, an increase in the transmission capacity, a reduction in noise and vibration, etc., from the driven device. It is an object of the present invention to provide a power transmission device capable of performing appropriate control according to a received load.
[0009]
[Means for Solving the Problems]
According to the present invention, in a power transmission device capable of transmitting input power to a partner machine, a power transmission mechanism of the power transmission device includes a first external gear and a first internal gear having a small difference in the number of teeth. A first internally meshing planetary gear mechanism in which the first external gear is eccentrically engaged internally and rotatable inside the first internal gear, and the first input gear and the output shaft. A second external gear and a second internal gear, which are arranged in parallel with the internal meshing planetary gear mechanism on the power transmission path and have a small difference in the number of teeth, wherein the second external gear is the second external gear; A second internally meshing planetary gear mechanism incorporated eccentrically inwardly meshing and rotatable inside the internal gear; a difference in the number of teeth between the first external gear and the first internal gear; By providing a difference in the number of teeth between the second external gear and the second internal gear, the first and second internally meshing planetary teeth are provided. By having the power transmission characteristics of the mechanism with different phases is obtained by solving the above problems.
[0010]
According to the present invention, the power input to the power transmission device is transmitted to the counterpart machine via the first and second internally meshing planetary gear mechanisms having different power transmission characteristics by providing a difference in the number of teeth. It is possible to transmit the power, and the characteristics of the power transmission device as a whole can be changed by the characteristics of each of the internal meshing planetary gear mechanisms to be combined.
[0011]
Therefore, for example, one of the tooth number difference between the first external gear and the first internal gear and the tooth number difference between the second external gear and the second internal gear are set to one, and If the other is more than two sheets apart, the first internally meshing planetary gear mechanism having low rigidity but capable of reducing noise and vibration, and the second internal gear having high rotation efficiency and high rigidity (high transmission capacity) Power can be transmitted via the meshing planetary gear mechanism. As a result, low-noise and low-vibration power transmission becomes possible mainly by the first internally meshing planetary gear mechanism at no load and light load, and mainly by the second internally meshing planetary gear mechanism at medium and heavy loads. The transmission capacity can be increased, and appropriate control according to the load received from the driven device can be performed with respect to the increase in the transmission capacity, reduction of noise and vibration, and the like.
[0012]
Other means may be used to realize the difference in the power transmission characteristics of the first and second internally meshing planetary gear mechanisms. For example, the number of teeth of the first external gear and the first internal gear may be different. The power transmission characteristics of the first and second internally meshing planetary gear mechanisms may be made different by making the numbers of teeth of the second external gear and the second internal gear different. In this case, the difference in the number of meshes between the external gears and the internal gears makes it possible to make the rigidity (transmission capacity) of the first and second internally meshing planetary gear mechanisms differ, and the like. The same effect as described above can be obtained.
[0013]
Similarly, by making the eccentric amounts of the first and second external gears with respect to the input shaft different, the power transmission characteristics of the first and second internally meshing planetary gear mechanisms can be made different. is there.
[0014]
Further, the inner shaft is loosely fitted into the inner pin holes respectively formed in the first and second external gears, and one end of the inner shaft is cantilevered by the output shaft or a member integrated with the output shaft. By setting the rotation components of the first and second external gears to be transmitted to the output shaft via pins, the rigidity of the external gear disposed on the output shaft side is increased. Further, by giving a difference to the whole or a part of the material of the first internally meshing planetary gear mechanism and the entire or part of the material of the second internally meshing planetary gear mechanism, The power transmission characteristics of the second internally meshing planetary gear mechanism may be different.
[0015]
It should be noted that the first and second internal meshing planetary gear mechanisms have different backlash amounts with respect to the input shaft and the output shaft, and the second internal meshing planetary gear mechanism has different backlash amounts. The power transmission characteristics of the internally meshing planetary gear mechanism may be different. For example, of the first and second internally meshing planetary gear mechanisms, the backlash amount of the lower rigidity is smaller than the backlash amount of the higher rigidity. May also be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a side sectional view of a power transmission device 300 according to an example of an embodiment of the present invention.
[0018]
The power transmission device 300 includes an input shaft 302, an output shaft 306, a first internally meshing planetary gear mechanism 100, and a second internally meshing planetary gear mechanism 200. The power transmission device 300 can transmit the power input from the input shaft 302 to the counterpart machine (not shown) via the first and second internally meshing planetary gear mechanisms 100 and 200 and the output shaft 306. .
[0019]
The input shaft 302 is rotatably supported at both ends by bearings 330 and 332, and is rotatable about an axis L1.
[0020]
The output shaft 306 is rotatably supported by bearings 334 and 336, and is rotatable about the same axis L1 as the input shaft 302.
[0021]
Between the input shaft 302 and the output shaft 306, a first internally meshing planetary gear mechanism 100 and a second internally meshing planetary gear mechanism 200 having different power transmission characteristics are arranged in parallel on the power transmission path. Are located. Note that “arranged in parallel on the power transmission path” means that there are two paths through which power can be transmitted between the input shaft 302 and the output shaft 306, which are common members (the first and second internally meshing planets). Gear mechanisms 100, 200). By the way, "provided in series on the power transmission path" means passing through another path after passing through a certain system path.
[0022]
2 and 3 are diagrams showing a first internally meshing planetary gear mechanism 100 and a second internally meshing planetary gear mechanism 200, respectively. FIG. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is a sectional view taken along line III-III in FIG.
[0023]
As shown in FIGS. 1 and 2, the first internally meshing planetary gear mechanism 100 includes a first external gear 102 and a first internal gear 104 having a small difference in the number of teeth, an eccentric body 106, and a roller bearing. 110.
[0024]
The eccentric body 106 has an outer periphery eccentric by e1 with respect to the axis L1 of the input shaft 302. The eccentric body 106 is provided on the outer periphery between the bearings 330 and 332 of the input shaft 302 with a predetermined phase difference (180 ° in this example) from the eccentric body 206 of a second internally meshing planetary gear mechanism 200 described later. ing.
[0025]
The first internal gear 104 has a structure in which an outer roller 104b is inserted into a plurality of cylindrical outer pins 104a formed on the inner peripheral side of a casing 312, and these outer rollers 104b form internal teeth. In this example, the outer roller 104b (inner teeth) is provided with 12 teeth.
[0026]
The first external gear 102 has smooth trochoid-shaped external teeth on the outer circumference, and is incorporated inside the first internal gear 104 so as to be rotatable with an eccentric internal contact. In this example, the first external gear 102 has eleven external teeth, and the difference in the number of teeth between the first internal gear 104 and the first external gear 102 is one (= 12 (internal teeth). ) -11 (external teeth)).
[0027]
Further, the first external gear 102 is fitted to the eccentric body 106 via a roller bearing 110 provided between the first external gear 102 and the eccentric body 106, and rotates with the rotation of the eccentric body 106. It can swing and rotate. Further, the first external gear 102 is provided with a plurality of inner roller holes 102a, and the inner pin 308 and the inner roller 310 pass through each roller hole 102a. As shown in FIG. 1, one end 308a of the inner pin 308 is cantilevered by the output shaft 306.
[0028]
On the other hand, as shown in FIGS. 1 and 3, the second internally meshing planetary gear mechanism 200 includes a second external gear 202 and a second internal gear 204 having a small difference in the number of teeth, an eccentric body 206, And a roller bearing 210.
[0029]
The eccentric body 206 has an outer periphery eccentric by e2 with respect to the axis L1 of the input shaft 302. The eccentric body 206 is provided on the outer periphery between the bearings 330 and 332 of the input shaft 302 with a predetermined phase difference from the eccentric body 106 of the first internally meshing planetary gear mechanism 100.
[0030]
The second internal gear 204 has a structure in which an outer roller 204b is inserted into a plurality of outer pins 204a formed on the inner peripheral side of a casing 312, and these outer rollers 204b form internal teeth. In this example, the outer roller 204b (internal teeth) is provided with 24 teeth.
[0031]
The second external gear 202 has trochoid-shaped external teeth on the outer periphery, and is eccentrically inscribed and rotatably incorporated inside a cylindrical outer roller 204b of the second internal gear 204. . In this example, the first external gear 202 has 22 external teeth, and the difference in the number of teeth between the second internal gear 204 and the second external gear 202 is two (= 24 (internal teeth). ) -22 (external teeth)).
[0032]
Further, the second external gear 202 is fitted to the eccentric body 206 via a roller bearing 210 provided between the second external gear 202 and the eccentric body 206, and rotates with the rotation of the eccentric body 206. It can swing and rotate. Further, the second external gear 202 is provided with a plurality of inner roller holes 202a, and the inner pin 308 and the inner roller 310 pass through each roller hole 202a.
[0033]
As shown in FIG. 1, the inner pin 308 and the inner roller 310 pass through the respective roller holes 102 a of the first external gear 102 and the respective roller holes 202 a of the second external gear 202, respectively. The rotation components of the gear 102 and the second external gear 202 can be transmitted to the output shaft 306 via the inner pin 308. The second external gear 202 is disposed closer to the output shaft 306 than the first external gear 102, that is, closer to one end 308a of the inner pin 308 that is cantilevered on the output shaft 306.
[0034]
Further, the eccentric body 106 in the first internally meshing planetary gear mechanism 100 and the gap S11 between the bearing 110, the gap S12 between the roller bearing 110 and the first external gear 102, the gap S13 between the inner pin 308 and the inner roller 310, The gap S14 between the inner roller 310 and the first external gear 102 and the gap S15 between the first external gear 102 and the first internal gear 104 are the eccentric body 206 and the bearing 210 in the second internally meshing planetary gear mechanism 200. , A gap S22 between the roller bearing 210 and the second external gear 202, a gap S23 between the inner pin 308 and the inner roller 310, a gap S24 between the inner roller 310 and the second external gear 202, a second outer It is designed to be smaller than the gap S25 between the tooth gear 202 and the second internal gear 204 (S11 <S21, S12 <S22, S13 <S23, S14 <S24, S 5 <S25). In addition, the magnitude relation of all the gaps does not necessarily have to be as described above, and it is sufficient if the sum is equal.
[0035]
That is, the amount of backlash of the first internally meshing planetary gear mechanism 100 with respect to the input shaft 302 and the output shaft 306 is smaller than the amount of backlash of the second internally meshing planetary gear mechanism 200.
[0036]
Next, the operation of the power transmission device 300 will be described.
[0037]
When the input shaft 302 rotates about the axis L1, the eccentric bodies 106 and 206 provided on the outer periphery of the input shaft 302 rotate. Due to the rotation of the eccentric bodies 106 and 206, the first and second external gears 102 and 202 also try to oscillate around the input shaft 302. However, the first and second internal gears 104 and 204 Since the rotation is restricted, the first and second external gears 102 and 202 almost only swing while being in contact with the first and second internal gears 104 and 204.
[0038]
The rotation of the first and second external gears is absorbed by the gap between the inner roller holes 102a and 202a and the inner pin 308, and only the rotation component is transmitted to the mating machine via the output shaft 306. You.
[0039]
In the power transmission device 300 according to the embodiment of the present invention, while the difference in the number of teeth between the first internal gear 104 and the first external gear 102 of the first internally meshing planetary gear mechanism 100 is set to one, By setting the difference in the number of teeth between the second internal gear 204 and the second external gear 202 of the second internally meshing planetary gear mechanism 200 to two, the teeth of both the internal gear and the external gear are set. A difference is provided in the number difference to provide a difference in the power transmission characteristics between the first internally meshing planetary gear mechanism 100 and the second internally meshing planetary gear mechanism 200.
[0040]
The number of teeth of the first internal gear 104 of the first internally meshing planetary gear mechanism 100 is set to 12 and the number of teeth of the first external gear 102 is set to 11 while the second internally meshed planetary gear is set. By setting the number of teeth of the second internal gear 204 of the mechanism 200 to 24 and the number of teeth of the second external gear 202 to 22, there is a difference in the number of teeth of both the internal gear and the external gear. Thus, a difference is provided in the power transmission characteristics between the first internally meshing planetary gear mechanism 100 and the second internally meshing planetary gear mechanism 200.
[0041]
Further, the amount of eccentricity of the first external gear 102 of the first internally meshing planetary gear mechanism 100 with respect to the input shaft 302 is set to e1, while the input of the second external gear 202 of the second internally meshing planetary gear mechanism 200 is set to e1. The amount of eccentricity with respect to the shaft 302 is represented by e2, and the amount of eccentricity of the two external gears with respect to the input shaft 302 is made different, so that the power transmission characteristics of the first internally meshing planetary gear mechanism 100 and the second internally meshing planetary gear mechanism 200 Are different.
[0042]
That is, in the first internally meshing planetary gear mechanism 100, since the difference in the number of teeth between the first internal gear 104 and the first external gear 102 is set to one, the tooth profile of the first external gear 102 is A continuous trochoidal tooth profile is formed, and the first internal gear 104 and the first external gear 102 can be brought into contact over the entire circumference. Further, since the eccentric amount e1 of the first external gear 102 is set smaller than the eccentric amount e2 of the second external gear 202, the tooth profile of the first external gear 102 becomes a gentle curve, The meshing between the tooth gear 104 and the first external gear 102 can be made extremely stable.
[0043]
Therefore, the first internally meshing planetary gear mechanism 100 can significantly reduce noise and vibration during driving due to an increase in the contact time of the gears and the like.
[0044]
Further, since the number of teeth of the first internal gear 104 and the first external gear 102 is reduced, the number of meshes between the first internal gear 104 and the first external gear 102 is small, and the number of meshes is small. Since the pitch circle diameter is small, the amount of deformation of each member with respect to the transmission torque is large as a whole (the rigidity is low).
[0045]
On the other hand, since the second internal gear planetary gear mechanism 200 sets the difference in the number of teeth between the second internal gear 204 and the second external gear 202 to two, the second internal gear 204 and the second internal gear The number of effective meshes with the external gear 202 increases. Therefore, as compared with the first internally meshing planetary gear mechanism 100, the transmission capacity can be increased, and the amount of deformation of each member with respect to the transmission torque is reduced as a whole (the rigidity is increased).
[0046]
The second external gear 202 of the second internally meshing planetary gear mechanism 200 is closer to the output shaft 306 than the first external gear 102, that is, one end of an inner pin 308 that is cantilevered on the output shaft 306. Since the second internally meshing planetary gear mechanism 200 is arranged at a position close to 308a, the rigidity of the second internally meshing planetary gear mechanism 200 is higher than that of the first internally meshing planetary gear mechanism 100 also at this point.
[0047]
Further, in the power transmission device 300, the eccentric body 106 of the first internally meshing planetary gear mechanism 100, the gap S11 between the bearing 110, the gap S12 between the roller bearing 110 and the first external gear 102, the inner pin 308 and the inner roller The gap S13 between the internal gear 310, the gap S14 between the inner roller 310 and the first external gear 102, and the gap S15 between the first external gear 102 and the first internal gear 104 are the same as those in the second internally meshing planetary gear mechanism 200. The eccentric body 206 has a gap S21 between the bearing 210, a gap S22 between the roller bearing 210 and the second external gear 202, a gap S23 between the inner pin 308 and the inner roller 310, and a gap S23 between the inner roller 310 and the second external gear 202. By designing the gap S24 and the gap S25 between the second external gear 202 and the second internal gear 204 to be smaller than each other, the first internally meshing planetary gear mechanism 100 and the second internal gear It is provided a difference in backlash meshing planetary gear mechanism 200.
[0048]
As described above, since the first and second internally meshing planetary gear mechanisms 100 and 200 are provided with a difference in the amount of backlash, the first internally meshing planetary gear mechanism 100 moves the input shaft 302 (changes in torque). ) Also has a characteristic that the response to the movement of the output shaft 306 (fluctuation in torque) is fast, whereas the second internally meshing planetary gear mechanism 200 has a large amount of backlash and the input shaft It has a characteristic that the response is slow to the movement (fluctuation of torque) of both the output shaft 302 and the output shaft 306.
[0049]
Therefore, the power transmission device 300 has low rigidity but low noise and vibration, and the first internally meshing planetary gear mechanism 100 with small backlash, high rotational efficiency and high rigidity (large transmission capacity), and large backlash. The second internally meshing planetary gear mechanism 200 is provided in parallel on the power transmission path. As a result, immediately after the power transmission device 300 is started, the first internally meshing planetary gear mechanism 100 having a small amount of backlash with respect to the input shaft 302 reacts quickly to transmit power. Thereafter, when the acting torque increases and the torque required for transmitting the power is not generated, the second internally meshing planetary gear mechanism 200 is deformed and starts to work.
[0050]
In other words, when the applied torque is large, during medium or heavy loads such as during acceleration, the second internally meshing planetary gear mechanism 200 also transmits power, so that the transmission capacity can be increased. In addition, since the second internally meshing planetary gear mechanism 200 has higher rotational efficiency than the first internally meshing planetary gear mechanism 100, the rotational efficiency of the entire power transmission device 300 can be improved.
[0051]
On the other hand, when no torque is applied and when there is no light load, the first internally meshing planetary gear mechanism 100 mainly transmits power, or the second internally meshing planetary gear mechanism 200 does not work, so that low noise and Power transmission with low vibration is possible.
[0052]
In the example of the above embodiment, the difference in the number of teeth between the second internal gear 204 and the second external gear 202 of the second internally meshing planetary gear mechanism 200 is set to 2, but the present invention is not limited to this. Not something.
[0053]
Accordingly, for example, as shown in FIGS. 4 to 6, the difference in the number of teeth between the first internal gear 154 and the first external gear 152 is set to one difference (= 12 (internal teeth) -11 (external teeth)). The difference in the number of teeth between the first internally meshing planetary gear mechanism 150 and the second internal gear 254 and the second external gear 252 is set to three (= 36 (internal teeth) -33 (external teeth)). The power transmission device 350 may be provided with the second internally meshing planetary gear mechanism 250 provided in parallel on the power transmission path.
[0054]
That is, the method of realizing the difference in the number of teeth between the two internally meshing planetary gear mechanisms is not limited to that shown in the example of the above-described embodiment, and the difference in the number of teeth between the one internally meshing planetary gear mechanism is reduced by one In addition to the difference, the difference in the number of teeth of the other internally meshing planetary gear mechanism may be two or more, one may be two and the other may be three. In addition, it is preferable to set a small difference in the number of teeth of the lower rigidity between the two internally meshing planetary gear mechanisms.
[0055]
4 is a side sectional view of a power transmission device 350 according to a second example of the embodiment of the present invention, corresponding to FIG. 1, and FIGS. 5 and 6 correspond to FIGS. 2 and 3, respectively. , V-V, and a cross-sectional view along the line VI-VI.
[0056]
Further, if the motor 400 is connected to and integrated with the power transmission device 300 to form the geared motor 500 as shown in FIG. 7, the size and space of the device can be reduced, and at the same time, the transmission capacity increases, noise and noise are reduced. It is possible to provide the geared motor 500 that can appropriately control vibration reduction and the like according to the load received from the driven device.
[0057]
The reduction gear mechanism of the power transmission device according to the present invention includes a first external gear and a first internal gear having a small difference in the number of teeth, and the first external gear is provided inside the first internal gear. A first internally meshing planetary gear mechanism, which is rotatably incorporated into an eccentric internal meshing planetary gear mechanism, and is disposed in parallel on the power transmission path with the first internally meshing planetary gear mechanism between the same input shaft and output shaft; and A second internal gear having a second external gear and a second internal gear having a small difference in the number of teeth, wherein the second external gear is eccentrically inscribed and meshed rotatably inside the second internal gear; What is necessary is just to be comprised with an intermeshed planetary gear mechanism, and it is not limited to the intermeshed planetary gear mechanism in the said embodiment. Therefore, for example, as the reduction mechanism of the power transmission device, the input rotation is distributed to an axis parallel to the input shaft (central axis) by a gear or the like, and an eccentric body is provided on the axis, so that the external gear is driven by the central shaft. A so-called distribution-type internally meshing planetary gear mechanism or the like configured to rotate eccentrically with respect to may be applied.
[0058]
In the example of the above embodiment, the difference in the power transmission characteristics between the first and second internally meshing planetary gear mechanisms 100 and 200 is embodied by the difference in the number of teeth between the external gear and the internal gear. All or part of the material of the first internally meshing planetary gear mechanism 100 and all or part of the material of the second internally meshing planetary gear mechanism 200 are respectively different, and one Young's modulus is changed to the other Young's modulus. A power transmission device in which the power transmission characteristics of the first and second internally meshing planetary gear mechanisms 100 and 200 are made different from each other by making the ratio smaller (the rigidity is made smaller).
[0059]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while realizing the miniaturization and space saving of an apparatus, the power transmission which can perform appropriate control according to the load received from a driven device about increase of transmission capacity, reduction of noise and vibration, etc. at the same time Apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a power transmission device according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. 1. FIG. 3 is a sectional view taken along line III-III in FIG. 4 is a side sectional view of a power transmission device according to a second example of the embodiment of the present invention. FIG. 5 is a sectional view taken along line VV in FIG. 4. FIG. 6 is a sectional view taken along line VI-VI in FIG. FIG. 7 is a side sectional view of a geared motor to which a power transmission device according to an embodiment of the present invention is applied.
100, 150: first internally meshing planetary gear mechanism 102, 152: first external gear 102a, 202a: inner roller hole 104, 154: first internal gear 104a, 204a: outer pin 104b, 204b: outer roller 106 , 206 ... eccentric body 110, 210 ... roller bearing 200, 250 ... second internally meshing planetary gear mechanism 202, 252 ... second external gear 204, 254 ... second internal gear 300 ... power transmission device 302 ... input shaft 306 ... output shaft 308 ... inner pin 310 ... inner roller 312 ... casing 400 ... motor 500 ... geared motor

Claims (7)

入力される動力を相手機械に伝達可能な動力伝達装置において、
該動力伝達装置の動力伝達機構を、僅少の歯数差を有する第1外歯歯車及び第1内歯歯車を備え、該第1外歯歯車を、前記第1内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第1内接噛合遊星歯車機構と、同じ入力軸と出力軸との間に該第1内接噛合遊星歯車機構と動力伝達経路上で並列に配置され、且つ僅少の歯数差を有する第2外歯歯車及び第2内歯歯車を備え、該第2外歯歯車を、前記第2内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第2内接噛合遊星歯車機構とで構成すると共に、
前記第1外歯歯車と前記第1内歯歯車の歯数差と、前記第2外歯歯車と前記第2内歯歯車の歯数差に差異を持たせることによって、前記第1、2内接噛合遊星歯車機構の動力伝達特性を相異ならせた
ことを特徴とする動力伝達装置。
In a power transmission device capable of transmitting input power to a partner machine,
The power transmission mechanism of the power transmission device includes a first external gear and a first internal gear having a small difference in the number of teeth, and the first external gear is eccentric inside the first internal gear. A first internally meshing planetary gear mechanism, which is rotatably assembled with the first internally meshing planetary gear mechanism, and is arranged in parallel with the first internally meshing planetary gear mechanism on the power transmission path between the same input shaft and output shaft; A second internal gear having a second external gear and a second internal gear having a difference in the number of teeth, wherein the second external gear is eccentric internal gear rotatably incorporated inside the second internal gear; With a planetary gear mechanism,
By providing a difference in the number of teeth between the first external gear and the first internal gear, and the difference in the number of teeth between the second external gear and the second internal gear, the first and second internal gears are different. A power transmission device characterized in that the power transmission characteristics of the meshing planetary gear mechanism are different.
請求項1において、
前記第1外歯歯車と前記第1内歯歯車の歯数差、及び前記第2外歯歯車と前記第2内歯歯車の歯数差の一方を1枚差にすると共に、他方を2枚差以上にした
ことを特徴とする動力伝達装置。
In claim 1,
One of the difference in the number of teeth between the first external gear and the first internal gear and the difference in the number of teeth between the second external gear and the second internal gear is set to one, and the other is set to two. A power transmission device characterized in that the difference is greater than the difference.
入力される動力を相手機械に伝達可能な動力伝達装置において、
該動力伝達装置の動力伝達機構を、僅少の歯数差を有する第1外歯歯車及び第1内歯歯車を備え、該第1外歯歯車を、前記第1内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第1内接噛合遊星歯車機構と、同じ入力軸と出力軸との間に該第1内接噛合遊星歯車機構と動力伝達経路上で並列に配置され、且つ僅少の歯数差を有する第2外歯歯車及び第2内歯歯車を備え、該第2外歯歯車を、前記第2内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第2内接噛合遊星歯車機構とで構成すると共に、
前記第1外歯歯車及び第1内歯歯車の歯数と、前記第2外歯歯車及び第2内歯歯車の歯数に差異を持たせることによって、前記第1、2内接噛合遊星歯車機構の動力伝達特性を相異ならせた
ことを特徴とする動力伝達装置。
In a power transmission device capable of transmitting input power to a partner machine,
The power transmission mechanism of the power transmission device includes a first external gear and a first internal gear having a small difference in the number of teeth, and the first external gear is eccentric inside the first internal gear. A first internally meshing planetary gear mechanism, which is rotatably assembled with the first internally meshing planetary gear mechanism, and is arranged in parallel with the first internally meshing planetary gear mechanism on the power transmission path between the same input shaft and output shaft; A second internal gear having a second external gear and a second internal gear having a difference in the number of teeth, wherein the second external gear is eccentric internal gear rotatably incorporated inside the second internal gear; With a planetary gear mechanism,
By providing a difference between the number of teeth of the first external gear and the first internal gear and the number of teeth of the second external gear and the second internal gear, the first and second internally meshing planetary gears are provided. A power transmission device characterized by different power transmission characteristics of the mechanism.
入力される動力を相手機械に伝達可能な動力伝達装置において、
該動力伝達装置の動力伝達機構を、僅少の歯数差を有する第1外歯歯車及び第1内歯歯車を備え、該第1外歯歯車を、前記第1内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第1内接噛合遊星歯車機構と、同じ入力軸と出力軸との間に該第1内接噛合遊星歯車機構と動力伝達経路上で並列に配置され、且つ僅少の歯数差を有する第2外歯歯車及び第2内歯歯車を備え、該第2外歯歯車を、前記第2内歯歯車の内側で偏心内接噛合回転自在に組み込んだ第2内接噛合遊星歯車機構とで構成すると共に、
前記第1、第2外歯歯車の前記入力軸に対する偏心量に差異を持たせることによって、前記第1、第2内接噛合遊星歯車機構の動力伝達特性を相異ならせた
ことを特徴とする動力伝達装置。
In a power transmission device capable of transmitting input power to a partner machine,
The power transmission mechanism of the power transmission device includes a first external gear and a first internal gear having a small difference in the number of teeth, and the first external gear is eccentric inside the first internal gear. A first internally meshing planetary gear mechanism, which is rotatably assembled with the first internally meshing planetary gear mechanism, and is arranged in parallel with the first internally meshing planetary gear mechanism on the power transmission path between the same input shaft and output shaft; A second internal gear having a second external gear and a second internal gear having a difference in the number of teeth, wherein the second external gear is eccentric internal gear rotatably incorporated inside the second internal gear; With a planetary gear mechanism,
The power transmission characteristics of the first and second internally meshing planetary gear mechanisms are made different by giving different amounts of eccentricity of the first and second external gears with respect to the input shaft. Power transmission device.
請求項1乃至4のいずれかにおいて、
前記第1及び第2外歯歯車にそれぞれ形成された内ピン孔に遊嵌され、且つ、自身の一端が前記出力軸又は該出力軸と一体化された部材によって片持ち支持された内ピンを介して、前記第1及び第2外歯歯車の自転成分を該出力軸に伝達可能な構成とすることにより、前記出力軸側に配置された方の外歯歯車の剛性を高くし、前記第1、第2内接噛合遊星歯車機構の動力伝達特性を相異ならせた
ことを特徴とする動力伝達装置。
In any one of claims 1 to 4,
An inner pin which is loosely fitted into an inner pin hole formed in each of the first and second external gears and whose one end is cantilevered by the output shaft or a member integrated with the output shaft. By transmitting rotation components of the first and second external gears to the output shaft via the output shaft, the rigidity of the external gear disposed on the output shaft side is increased, and 1. A power transmission device wherein power transmission characteristics of a second internally meshing planetary gear mechanism are different.
請求項1乃至5のいずれかにおいて、
前記第1内接噛合遊星歯車機構の全部又は一部の材質と、前記第2内接噛合遊星歯車機構の全部又は一部の材質にそれぞれ差異を持たせることによって、該第1、第2内接噛合遊星歯車機構の動力伝達特性を相異ならせた
ことを特徴とする動力伝達装置。
In any one of claims 1 to 5,
By providing a difference between all or a part of the material of the first internally meshing planetary gear mechanism and all or a part of the material of the second internally meshing planetary gear mechanism, the first and second internal meshing planetary gear mechanisms are different. A power transmission device characterized in that the power transmission characteristics of the meshing planetary gear mechanism are different.
請求項1乃至6のいずれかにおいて、
前記第1、第2内接噛合遊星歯車機構のうち、剛性の低い方のバックラッシ量を剛性の高い方のバックラッシ量よりも小さくした
ことを特徴とする動力伝達装置。
In any one of claims 1 to 6,
A power transmission device characterized in that, of the first and second internally meshing planetary gear mechanisms, the backlash amount of the lower rigidity is smaller than the backlash amount of the higher rigidity.
JP2003001464A 2002-08-30 2003-01-07 Power transmission device Expired - Fee Related JP4252804B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003001464A JP4252804B2 (en) 2003-01-07 2003-01-07 Power transmission device
TW092122290A TWI223034B (en) 2002-08-30 2003-08-13 Power transmission device
US10/650,131 US7147582B2 (en) 2002-08-30 2003-08-28 Power transmission device
KR1020030060360A KR100740958B1 (en) 2002-08-30 2003-08-29 Power transmission system
CNB031557619A CN100368702C (en) 2002-08-30 2003-09-01 Power driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001464A JP4252804B2 (en) 2003-01-07 2003-01-07 Power transmission device

Publications (2)

Publication Number Publication Date
JP2004211847A true JP2004211847A (en) 2004-07-29
JP4252804B2 JP4252804B2 (en) 2009-04-08

Family

ID=32819484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001464A Expired - Fee Related JP4252804B2 (en) 2002-08-30 2003-01-07 Power transmission device

Country Status (1)

Country Link
JP (1) JP4252804B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038941A (en) * 2006-08-02 2008-02-21 Sumitomo Heavy Ind Ltd Eccentric swing gear unit
US9869383B2 (en) 2015-09-02 2018-01-16 Nippon Thompson Co., Ltd. Reduction gear
JP2019132362A (en) * 2018-02-01 2019-08-08 住友重機械工業株式会社 Eccentric oscillation type speed reducer
US10883572B2 (en) 2018-03-16 2021-01-05 Nippon Thompson Co., Ltd. Cycloid speed reducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038941A (en) * 2006-08-02 2008-02-21 Sumitomo Heavy Ind Ltd Eccentric swing gear unit
US9869383B2 (en) 2015-09-02 2018-01-16 Nippon Thompson Co., Ltd. Reduction gear
JP2019132362A (en) * 2018-02-01 2019-08-08 住友重機械工業株式会社 Eccentric oscillation type speed reducer
US10883572B2 (en) 2018-03-16 2021-01-05 Nippon Thompson Co., Ltd. Cycloid speed reducer

Also Published As

Publication number Publication date
JP4252804B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
EP2450596B1 (en) Planetary gear mechanism
EP1914444B1 (en) Reduction gear
US7147582B2 (en) Power transmission device
JP4747129B2 (en) Eccentric oscillation reduction device
JP2866246B2 (en) Speed reducer series with internal meshing planetary gear structure
JP2003278849A (en) Reduction gear and series thereof
JPS63243547A (en) Speed increasing/decreasing gear having planetary gear mechanism
JP2004286044A (en) Internal gear swing type inner mesh planetary gear
JP4897496B2 (en) Swing intermeshing planetary gear unit
JP2004211847A (en) Power transmission device
JP2004301136A (en) Geared motor and reduction gear having swing speed reduction part of inscribed meshing planetary gear structure
JP2007100843A (en) Rocking inscribed planetary gear device and geared motor
JP2020029914A (en) Hypocycloid speed reducer
JP4598460B2 (en) Planetary gear transmission
JP2686337B2 (en) Inner mesh planetary gear structure
JP7339745B2 (en) Transmission device
JP4331483B2 (en) Motor built-in roller
JPS62101943A (en) Reducer
JP4025152B2 (en) Power transmission device and drive device
JP2525593B2 (en) Gearbox with planetary gear mechanism
JP3946923B2 (en) Rotation drive device and method of manufacturing the rotation drive device
JP2808306B2 (en) Planetary gearbox
JP2008000803A (en) Press machine
JP4113446B2 (en) Power transmission device
JP2004293682A (en) Drive mechanism with oscillating speed reduction part of inscribed engagement planetary gear structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Ref document number: 4252804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees