JP2004202040A - Electronic endoscopic apparatus - Google Patents

Electronic endoscopic apparatus Download PDF

Info

Publication number
JP2004202040A
JP2004202040A JP2002376407A JP2002376407A JP2004202040A JP 2004202040 A JP2004202040 A JP 2004202040A JP 2002376407 A JP2002376407 A JP 2002376407A JP 2002376407 A JP2002376407 A JP 2002376407A JP 2004202040 A JP2004202040 A JP 2004202040A
Authority
JP
Japan
Prior art keywords
main body
light guide
light
endoscope
endoscope main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002376407A
Other languages
Japanese (ja)
Inventor
Kunio Ando
邦郎 安藤
Masahiko Nagano
雅彦 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I SYSTEMS KK
MEDIA TECHNOLOGY KK
Systems Kk I
Media Technology Corp
Original Assignee
I SYSTEMS KK
MEDIA TECHNOLOGY KK
Systems Kk I
Media Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I SYSTEMS KK, MEDIA TECHNOLOGY KK, Systems Kk I, Media Technology Corp filed Critical I SYSTEMS KK
Priority to JP2002376407A priority Critical patent/JP2004202040A/en
Publication of JP2004202040A publication Critical patent/JP2004202040A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic endoscopic apparatus, highly safe from the view-point of the electrical safety and the prevention of infection by connecting an endoscope body part and an external device in the electrically non-contact state. <P>SOLUTION: The signal transmission between the endoscope body part 11 and a signal processing part 12 is performed via an electrically non-contact transmission means such as light, and a solar battery 43 is mounted on the endoscope body part 11. A light guide 39 for the solar battery is juxtaposed with a light guide 19 for illuminating an observed subject. The light from a light source 13 is made to be incident on the solar battery 43 via the light guide 39, and the generated electric power is fed to a circuit inside the endoscope body part 11. As a result, the endoscope body part 11 and the signal processing part 12 and the light source 13 are completely electrically separated, and the electrical safety is secured. Further, as an optical cable 55 connecting the endoscope body part 11 and the light source 13 is detachable by an operation part 11B, the washing and disinfection work can be easily performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子内視鏡装置、特に被観察体に挿入される内視鏡本体部と映像信号処理部等の外部装置とを電気的に非接触な状態で接続するための構成に関する。
【0002】
【従来の技術】
図6には、従来の電子内視鏡装置の基本的な構成が示されており、内視鏡本体部1内にはその先端部に配置された対物レンズ2及び固体撮像素子3を含む撮像系と、照明用レンズ4及びライトガイド5を含む照明系が組み込まれる。この内視鏡本体部1には、光源ランプ6を有し上記ライトガイド5に光を送るための光源部7と、内視鏡本体部1から出力される映像信号を処理する信号処理部8とが接続され、この信号処理部8に、上記固体撮像素子3で撮像された被観察体の映像を表示する表示部9が接続される。
【0003】
このような電子内視鏡装置では、装置の安全性を高めるために内視鏡本体部1からの映像信号を信号処理部8に伝送するものとして、ホトカプラーを用いた光伝送手段や電波を用いて通信する無線通信手段といった電気的に非接触の伝送手段がある。また、内視鏡本体部1に設置されている固体撮像素子3を含む電子回路を駆動する電力については、特開平7−327922号公報に示されるように、内視鏡に設けた充電式電池によって供給したり、特開平10−155740号公報に示されるように、外部に設けられた信号処理部からリード線を介さずに空間的な電磁結合手段によって供給したりすることも提案されている。
【0004】
【特許文献1】
特開平7−327922号公報
【特許文献2】
特開平10−155740号公報
【0005】
【発明が解決しようとする課題】
しかしながら、これまでに提案されている電子内視鏡装置での上記内視鏡本体部1と信号処理部8の間の電力の供給(電源ライン)においては、いくつかの解決すべき課題もあり実用化されていない。例えば、内視鏡本体部1に電池を搭載する方式では、内視鏡を用いた術中に電池の出力低下が起こった場合に画像が見られなくなる等の不都合を避けることはできない。また、空間的な電磁結合手段を用いた方式では、コネクタ部の構造が複雑になり、電力の伝送効率が高くないという問題もある。
【0006】
更に、近来、電子内視鏡装置における洗浄、消毒の問題が重要視されるようになり、上記内視鏡本体部1は、洗浄、消毒の容易な構成であることも強く要求されている。
【0007】
本発明は上記問題点に鑑みなされたものであり、その目的は、光源部からの光を電力に変換することにより内視鏡本体部と外部装置とを電気的に非接触な状態で接続し、電気安全面、感染防止面から見て高い安全が得られる電子内視鏡装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、被観察体を照明するライトガイドを含む照明系と対物レンズ及び固体撮像素子を含む撮像系を有する内視鏡本体部と、この内視鏡本体部から出力される映像信号を処理する信号処理部と、この信号処理部からの出力に基づき被観察体の映像を表示する表示部と、上記ライトガイドに内視鏡本体部の外部から光を供給する光源部とを有する電子内視鏡装置において、上記内視鏡本体部と上記信号処理部との間の信号伝送を電気的に非接触な状態で行う伝送手段と、上記内視鏡本体部に配置され、上記光源部からライトガイドを介して供給された光を入射する太陽電池とを設け、この太陽電池で得られた電力を上記内視鏡本体部内の回路に供給することを特徴とする。
【0009】
請求項2に係る発明は、上記被観察体照明用ライトガイドと太陽電池用ライトガイドを並設した光コネクタを設け、この光コネクタにて当該内視鏡本体部を上記光源部に接続することを特徴とする。
請求項3に係る発明は、上記内視鏡本体部と光源部との間を結ぶためのライトガイドケーブルを、内視鏡本体部の操作部に着脱自在に接続したことを特徴とする。
【0010】
上記の構成によれば、上記の電気的に非接触な信号伝送手段として、電波を用いて通信する無線通信やホトカプラー等を用いた光伝送が目的に応じて選択・適用され、また太陽電池用のライトガイド(第2のライトガイド)は、例えば内視鏡本体部と光源部の間に配設されるライトガイドケーブル内の被観察体(被写体)照明用ライトガイドと並設される。そして、内視鏡本体部から出力された映像信号は、電気的に非接触な状態で信号処理部へ伝送されると共に、光源部の光が被観察体照明用ライトガイドと並設された太陽電池用ライトガイドから太陽電池に照射され、この太陽電池で発生した電力で内視鏡本体部の電子回路が駆動される。このようにして、内視鏡本体部と信号処理部とは完全に電気的に分離されることになり、電気的な安全性が確保される。
【0011】
上記請求項2の構成によれば、太陽電池用ライトガイドを被観察体照明用ライトガイドと並設することで、太陽電池用の光源を別個に持つことなく、照明用として設けられている光源部を共用することができる。
上記請求項3の構成によれば、内視鏡本体部と光源部を結ぶライトガイドケーブル(信号伝送のための光ファイバー伝送線を設ける場合はこれを含ませる)を内視鏡本体部操作部で着脱自在にすることで、内視鏡本体部からケーブルを外すことができるので簡単な構成にすることができ、洗浄、消毒の作業が容易になる。
【0012】
【発明の実施の形態】
図1には、実施例に係る電子内視鏡装置の全体構成が示されており、この装置は、内視鏡本体部11、信号処理部(プロセッサ装置)12、光源部(光源装置)13及び表示部(モニタ)14より構成される。図1の実施例では、内視鏡本体部11と信号処理部12は電気的に絶縁された状態を保つために、光学的な手段で連結される。また、内視鏡本体部11に装着されている回路を駆動する電力も光学的手段を介して供給されるので、内視鏡本体部11と信号処理部12とは完全に電気的に絶縁された状態にあり、非常に安全性の高い電子内視鏡装置となる。
【0013】
図1において、上記内視鏡本体部11は被観察体(被検体)内に挿入される挿入部11Aと内視鏡を操作する操作部(又は保持部)11Bより構成され、この挿入部11Aの先端には、対物レンズ16と固体撮像素子であるCCD17を含んだ撮像系が組み込まれる。一方、挿入部11Aの先端の照明用レンズ18に接続する形で、操作部11Bの後端まで、照明光を伝達する照明系のライトガイド19が配設される。また、上記CCD17はCCD駆動回路21によって駆動され、このCCD17から出力された被観察体の映像は映像信号として第1の信号処理回路22へ供給される。
【0014】
上記CCD駆動回路21には、光−電気(O/E)変換インターフェース回路23を介してホトセンサのようなO/E変換素子(受光素子)24が接続され、このO/E変換素子24は、光伝送(ファイバー)線25によって信号処理部12と接続される。上記第1の信号処理回路22には、電気−光(E/O)変換インターフェース回路26を介して発光ダイオードのようなE/O変換素子(発光素子)27が接続され、このE/O変換素子27は、光伝送(ファイバー)線28によって信号処理部12と接続される。
【0015】
一方、上記信号処理部12には、上記光伝送線25に接続する形で、電気−光(E/O)変換素子(発光素子)30、E/O変換インターフェース回路31及び同期信号回路32が設けられており、この同期信号回路32からの同期信号が、E/O変換インターフェース回路31を介しE/O変換素子で光信号に変換され、光伝送線25を通ってO/E変換素子24に伝送され、O/E変換インターフェース回路23を介してCCD駆動回路21へ伝送される。
【0016】
また、上記信号処理回路12には、上記光伝送線28に接続する形で、光−電気(O/E)変換素子(受光素子)33、O/E変換インターフェース回路34及び第2の信号処理回路35が設けられており、上記内視鏡本体部11のCCD17から出力された映像信号は、第1の信号処理回路22で所定の信号処理が行われた後、E/O変換インターフェース回路26、E/O変換素子(発光素子)27を介して光信号へ変換され、この映像信号は光伝送線28を介して光信号として信号処理部12へ伝送され、この信号処理部12内では、光信号がO/E変換素子(受光素子)33で電気信号に変換され、O/E変換インターフェース回路34を介して第2の信号処理回路35で所定の処理が行われることになり、この第2の信号処理回路35で形成された映像信号が表示部(装置)14へ出力される。
【0017】
この信号処理部12では、同期信号回路32の同期信号が第2の信号処理回路35に分配されるが、この同期信号は、上述のように内視鏡本体部11にもE/O変換インターフェース回路31、E/O変換素子30及び光伝送線25を介して光信号として伝送される。
【0018】
更に、光源部13には、ハロゲンランプ、キセノンランプ等の光源ランプ37が設けられており、この光源ランプ37からの光が照明光として、照明用ライトガイド19を介して内視鏡本体部11の先端(挿入部11Aの先端)まで導かれる。実施例では、この照明用ライトガイド19に沿うようにして太陽電池用ライトガイド39が設けられる。一方、内視鏡本体部11の操作部11B内には、上記太陽電池用ライトガイド39に接続する形で太陽電池ユニット40が設けられ、この太陽電池ユニット40には電源回路41が接続されており、上記光源ランプ37からの光を太陽電池ユニット40へ導くことによって、内視鏡本体部11内の各回路を駆動する電力が得られるようになっている。
【0019】
図2には、上述した太陽電池ユニット40の詳細図が示されており、図2(A)は太陽電池ユニット40の斜視図、図2(B)は側面図である。図示されるように、この太陽電池ユニット40は、太陽電池43とその表面側に接触配置させた光透過性の樹脂又はガラス板等の導光板44とからなり、この導光板44の一方の端面に上記太陽電池用ライトガイド39の端面を横長に配列した状態で取り付け、このライトガイド39のファイバー射出端からの光が太陽電池43の全面に照射されるようになっている。また、上記導光板44の外周面(太陽電池43に対面しない図の底面及び外周側面)に、アルミ材のような反射率の高い物質、反射部材45が配置される。
【0020】
このような太陽電池ユニット40によれば、図2(B)に示されるように、導光板44の中でライトガイド39からの光が反射を繰り返しながら太陽電池43へ表面から効率よく入射されることになり、また外周面の反射部材45によって導光板44の外に漏れるような光も再利用することで、入射効率及び電力発生効率が高められる。
【0021】
図2(C)には、太陽電池ユニット40の他の構成例が示されている。この例では、上下の2枚の太陽電池46A,46Bの表面を対向させ、かつ導光板44を中間にサンドイッチ状に挟み、この導光板44の外周側面に反射膜47を設ける。これによれば、導光板44に入射する光を2枚の太陽電池で受けることが可能となり、このような構成にて電力の発生効率を高めることもできる。
【0022】
図3には、電力の安定化を図るために、上記太陽電池に対し充電可能な電池を併設する例が示されている。この例では、所定電圧を発生させる電源回路41に接続された太陽電池43(46A,46B)に対し、ダイオード49を直列に、充電可能な電池(二次電池)50を並列に接続する。このような構成によれば、太陽電池43で得られた電力で電池50を充電し、この電池50の電力に基づいて所定電圧を発生させることにより、内視鏡本体部11内の回路に安定した電力を供給することができる。
【0023】
図1に示した構造では、内視鏡本体部11と信号処理部12及び光源部13は光伝送線25,28で接続されているが、機器を取扱い易くするためにこの光伝送線25,28(ライトガイド19,39を含め)を内視鏡本体部11側と信号処理部12及び光源部13側の双方において着脱可能な構造にすることが容易である。光伝送の場合は、光ケーブルをコネクタで接続しても、光が空間を伝播するのでコネクタの構造は簡単になり、また容易に気密性の高い構造が取れる。従って、光ケーブルを採用すれば電気接点を持つ電気コネクタよりも信頼性の高いコネクタを容易かつ小型に形成できる。
【0024】
図4には、上記光ケーブル及びコネクタの構造が示されている。この例では、内視鏡本体部11と光源部を含む信号処理部(装置)54との間を光ケーブル55で連結するようになっており、この光ケーブル55には、同期信号用の光伝送線25、映像信号用の光伝送線28、照明用ライトガイド19A及び太陽電池用ライトガイド39Aが収納され、それらの両端をコネクタ体(口金)56A,56Bに固定する構造となっている。なお、このコネクタ体56B側のライトガイド19A,39Aの端部は、図示のように所定量だけ突出させた口金57で固定される。
【0025】
一方、内視鏡本体部11の操作部11Bにコネクタの受け部11C、光源部を内蔵した信号処理部54にコネクタの受け部54Cが設けられており、上記受け部11Cに、光ケーブル55の一端のコネクタ体56Aが着脱自在となり、受け部54Cに他端のコネクタ体56Bが着脱自在となる。なお、このコネクタ体56A,56Bと受け部11C,54Cとの連結には、回転リングを用いて螺合結合させるネジ式固定手段やバネ式の係合部材を係止させて固定するバネ固定手段等を用いることができる。
【0026】
そして、図1で説明したように、内視鏡本体部11の受け部11Cの内部には、O/E変換素子24及びE/O変換素子27と、照明用ライトガイド19B及び太陽電池用ライトガイド39Bの端部が組み込まれる。同様に、信号処理部54の受け部54Cの内部には、E/O変換素子30及びO/E変換素子33が設けられると共に、上記ライトガイド19A,39Aの端部を保護する保護パイプ58が組み込まれる。即ち、上記光ケーブル55のコネクタ体56Bから突出するライトガイド19A,39Aの口金57は、受け部54C内に配置された上記保護パイプ58内に収納され、このライトガイド19A,39Aの入射端がE/O変換素子30及びO/E変換素子33より離れた位置で光源部13の光出力端に対向することになるので、E/O変換素子30及びE/O変換素子33を光源部13の熱より絶縁された状態にすることができる。
【0027】
図5には、図4の光ケーブル55を用いた各装置の接続状態が示されており、図示されるように、光ケーブル55のコネクタ体56A,56Bを受け部11C,54Cから取り外し、内視鏡本体部11と信号処理部(光源部を含む)54の連結を解除すると、内視鏡本体部11はシンプルな形状になるので、高度な洗浄、消毒を容易に行うことができる。
【0028】
また、本発明の電子内視鏡装置は、内視鏡本体部の先端部に左右2個の撮像系を搭載した立体内視鏡に応用することもできる。この場合は、左右2系統の映像信号のための映像信号系の光伝送線を1系統増やすだけであるので、内視鏡本体部と信号処理部との連結をコンパクトにまとめることができ、その効果は非常に大きい。
【0029】
なお、上記実施例では、内視鏡本体部11と信号処理部12及び信号処理部54との間の信号伝送に光を用いたが、この信号伝送を無線通信として信号伝送に関するケーブルを省く等の他の構成を採用することが可能である。また、この他にも、本発明の要旨を逸脱しない範囲内で、種々の形態の電子内視鏡を実施することができる。
【0030】
【発明の効果】
以上説明したように、本発明によれば、内視鏡本体部と信号処理部との間の信号伝送を電気的に非接触な信号伝送手段で行うと共に、内視鏡本体部に配置した太陽電池に光源部からの光をライトガイドを介して入射し、この太陽電池で得られた電力を内視鏡本体部内回路へ供給するようにしたので、内視鏡本体部と信号処理部とは簡単な構造で完全に電気的に分離され、電気的な安全性が容易に確保されるという効果がある。
【0031】
また、請求項2の構成によれば、太陽電池用の光源を特別に配置することなく照明用の光源を共用し、装置の簡略化を図ることができ、請求項3の構成によれば、着脱自在となるライトガイドケーブルを外すことにより、内視鏡本体部自体が短くかつコンパクトになるので、洗浄、消毒の作業が容易となり、感染防止面から見ても安全性が容易に確保できることになる。
【図面の簡単な説明】
【図1】本発明の実施例に係る電子内視鏡装置の全体構成を示す図である。
【図2】実施例の太陽電池ユニットの構成を示し、図(A)は斜視図、図(B)は図(A)の側面図、図(C)は他の構成例の側面図である。
【図3】実施例の太陽電池を利用した電力形成回路の一構成例を示す図である。
【図4】実施例の光ケーブル及びコネクタの一構成例を示す図である。
【図5】図4の光ケーブルを用いた実施例の装置全体の接続を示す図である。
【図6】従来の電子内視鏡装置の基本的な構成図である。
【符号の説明】
1,11…内視鏡本体部、 7,13…光源部、
8,12…信号処理部、 9,14…表示部、
17…CCD、
19…被観察体照明用ライトガイド、
25,28…光(ファイバー)伝送線、
39…太陽電池用ライトガイド、
40…太陽電池ユニット、
43,46A,46B…太陽電池、
44…導光板、 45…反射部材、
54…光源部を含む信号処理部、
55…光ケーブル、
11C,54C…受け部、
56A,56B…コネクタ体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic endoscope apparatus, and more particularly to a configuration for electrically connecting an endoscope main body inserted into an object to be observed and an external apparatus such as a video signal processing section in a non-contact state.
[0002]
[Prior art]
FIG. 6 shows a basic configuration of a conventional electronic endoscope apparatus. In an endoscope main body 1, an imaging system including an objective lens 2 and a solid-state imaging device 3 disposed at a distal end thereof is provided. The system and the illumination system including the illumination lens 4 and the light guide 5 are incorporated. The endoscope body 1 has a light source lamp 6 for transmitting light to the light guide 5 and a signal processing unit 8 for processing a video signal output from the endoscope body 1. Is connected to the signal processing unit 8, and a display unit 9 for displaying an image of the object to be observed picked up by the solid-state imaging device 3 is connected to the signal processing unit 8.
[0003]
In such an electronic endoscope device, in order to enhance the safety of the device, a video signal from the endoscope main body 1 is transmitted to the signal processing unit 8 by using an optical transmission means using a photocoupler or a radio wave. There is an electrically non-contact transmission means such as a wireless communication means for performing communication. As for the power for driving an electronic circuit including the solid-state imaging device 3 installed in the endoscope main body 1, as shown in JP-A-7-327922, a rechargeable battery provided in the endoscope is used. As described in Japanese Patent Application Laid-Open No. H10-155740, it is also proposed that the signal is supplied from an externally provided signal processing unit by a spatial electromagnetic coupling means without using a lead wire. .
[0004]
[Patent Document 1]
JP-A-7-327922 [Patent Document 2]
JP-A-10-155740
[Problems to be solved by the invention]
However, there are some problems to be solved in the power supply (power supply line) between the endoscope main body 1 and the signal processing unit 8 in the electronic endoscope apparatus proposed so far. Not practical. For example, in the system in which a battery is mounted on the endoscope main body 1, it is not possible to avoid inconveniences such as the inability to see an image when the output of the battery is reduced during an operation using the endoscope. Further, in the method using the spatial electromagnetic coupling means, there is a problem that the structure of the connector section is complicated and the power transmission efficiency is not high.
[0006]
Further, recently, the problem of cleaning and disinfecting in the electronic endoscope apparatus has been emphasized, and it is strongly required that the endoscope main body 1 has a configuration that is easy to clean and disinfect.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to convert light from a light source unit into electric power to connect an endoscope main body unit and an external device in an electrically non-contact state. Another object of the present invention is to provide an electronic endoscope apparatus which can provide high safety in terms of electrical safety and infection prevention.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 provides an endoscope main body having an illumination system including a light guide for illuminating an object to be observed and an imaging system including an objective lens and a solid-state imaging device. A signal processing unit that processes a video signal output from the endoscope main body unit, a display unit that displays an image of the observation target based on the output from the signal processing unit, and the light guide that is provided outside the endoscope main body unit. An electronic endoscope device having a light source unit that supplies light from the electronic endoscope device, wherein a transmission unit that performs signal transmission between the endoscope main body unit and the signal processing unit in an electrically non-contact state; A solar cell disposed in the endoscope main body and receiving light supplied from the light source through a light guide, and supplying power obtained by the solar cell to a circuit in the endoscope main body; It is characterized by the following.
[0009]
The invention according to claim 2 is to provide an optical connector in which the light guide for illuminating the object to be observed and the light guide for solar cells are provided side by side, and the endoscope main body is connected to the light source by the optical connector. It is characterized by.
The invention according to claim 3 is characterized in that a light guide cable for connecting between the endoscope main body and the light source is detachably connected to an operation section of the endoscope main body.
[0010]
According to the above configuration, as the above-mentioned electrically non-contact signal transmission means, radio communication using radio waves or optical transmission using a photocoupler or the like is selected and applied according to the purpose, and for a solar cell. The light guide (second light guide) is arranged in parallel with a light guide for illuminating an observation object (subject) in a light guide cable provided between the endoscope main body and the light source, for example. The video signal output from the endoscope main body is transmitted to the signal processing unit in an electrically non-contact state, and the light of the light source unit is connected to the light guide for illuminating the observation object. The solar cell is irradiated from the battery light guide, and the electric circuit generated in the solar cell drives the electronic circuit of the endoscope main body. In this manner, the endoscope main body and the signal processing unit are completely electrically separated, and electrical safety is ensured.
[0011]
According to the configuration of the second aspect, by providing the light guide for the solar cell in parallel with the light guide for illuminating the observation object, the light source provided for illumination without having a separate light source for the solar cell. Departments can be shared.
According to the configuration of the third aspect, the light guide cable (including an optical fiber transmission line for signal transmission when the optical fiber transmission line is provided) connecting the endoscope main body and the light source unit is operated by the endoscope main body operation unit. By making it detachable, the cable can be detached from the endoscope main body, so that a simple configuration can be achieved, and cleaning and disinfecting operations become easy.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an overall configuration of an electronic endoscope apparatus according to an embodiment. This apparatus includes an endoscope main body section 11, a signal processing section (processor apparatus) 12, and a light source section (light source apparatus) 13. And a display unit (monitor) 14. In the embodiment of FIG. 1, the endoscope main body 11 and the signal processing unit 12 are connected by optical means so as to maintain an electrically insulated state. In addition, since power for driving a circuit mounted on the endoscope main body 11 is also supplied via optical means, the endoscope main body 11 and the signal processing unit 12 are completely electrically insulated. In this state, the electronic endoscope apparatus is extremely safe.
[0013]
In FIG. 1, the endoscope main body 11 is composed of an insertion section 11A inserted into a body to be observed (subject) and an operation section (or holding section) 11B for operating the endoscope. An image pickup system including an objective lens 16 and a CCD 17 which is a solid-state image pickup device is incorporated at the front end of the camera. On the other hand, a light guide 19 of an illumination system for transmitting illumination light is provided to the rear end of the operation unit 11B so as to be connected to the illumination lens 18 at the distal end of the insertion unit 11A. The CCD 17 is driven by a CCD drive circuit 21, and the image of the object to be observed output from the CCD 17 is supplied to a first signal processing circuit 22 as a video signal.
[0014]
An O / E conversion element (light receiving element) 24 such as a photo sensor is connected to the CCD drive circuit 21 via an optical-electric (O / E) conversion interface circuit 23. The O / E conversion element 24 An optical transmission (fiber) line 25 connects to the signal processing unit 12. An E / O conversion element (light-emitting element) 27 such as a light-emitting diode is connected to the first signal processing circuit 22 via an electro-optical (E / O) conversion interface circuit 26. The element 27 is connected to the signal processing unit 12 by an optical transmission (fiber) line 28.
[0015]
On the other hand, the signal processing unit 12 includes an electro-optical (E / O) conversion element (light-emitting element) 30, an E / O conversion interface circuit 31, and a synchronization signal circuit 32, which are connected to the optical transmission line 25. The synchronization signal from the synchronization signal circuit 32 is converted into an optical signal by an E / O conversion element via an E / O conversion interface circuit 31 and passed through an optical transmission line 25 to the O / E conversion element 24. And transmitted to the CCD drive circuit 21 via the O / E conversion interface circuit 23.
[0016]
The signal processing circuit 12 is connected to the optical transmission line 28 so as to be connected to an optical-electric (O / E) conversion element (light receiving element) 33, an O / E conversion interface circuit 34, and a second signal processing circuit. A circuit 35 is provided. The video signal output from the CCD 17 of the endoscope main body 11 is subjected to predetermined signal processing by the first signal processing circuit 22 and then to an E / O conversion interface circuit 26. , An E / O conversion element (light-emitting element) 27, and the video signal is transmitted to the signal processing unit 12 as an optical signal via an optical transmission line 28. The optical signal is converted into an electric signal by an O / E conversion element (light receiving element) 33, and predetermined processing is performed by a second signal processing circuit 35 via an O / E conversion interface circuit 34. 2 signal processing circuit Video signal formed by 5 is output to the display unit (device) 14.
[0017]
In the signal processing unit 12, the synchronization signal of the synchronization signal circuit 32 is distributed to the second signal processing circuit 35, and the synchronization signal is transmitted to the endoscope main body unit 11 as described above. The signal is transmitted as an optical signal via the circuit 31, the E / O conversion element 30, and the optical transmission line 25.
[0018]
Further, the light source unit 13 is provided with a light source lamp 37 such as a halogen lamp or a xenon lamp, and the light from the light source lamp 37 is used as illumination light via the illumination light guide 19 and the endoscope main body unit 11. (The tip of the insertion portion 11A). In the embodiment, a solar cell light guide 39 is provided along the illumination light guide 19. On the other hand, a solar cell unit 40 is provided in the operation section 11B of the endoscope main body 11 so as to be connected to the solar cell light guide 39, and a power supply circuit 41 is connected to the solar cell unit 40. In addition, by guiding the light from the light source lamp 37 to the solar cell unit 40, power for driving each circuit in the endoscope main body 11 can be obtained.
[0019]
FIG. 2 shows a detailed view of the solar cell unit 40 described above. FIG. 2 (A) is a perspective view of the solar cell unit 40, and FIG. 2 (B) is a side view. As shown in the figure, the solar cell unit 40 is composed of a solar cell 43 and a light guide plate 44 such as a light-transmitting resin or a glass plate which is disposed in contact with the surface of the solar cell 43. The light guide 39 for the solar cell is mounted in a state where the end faces thereof are arranged horizontally long, and light from the fiber emission end of the light guide 39 is applied to the entire surface of the solar cell 43. On the outer peripheral surface of the light guide plate 44 (the bottom surface and the outer peripheral side surface not facing the solar cell 43), a reflective member 45 having a high reflectance such as an aluminum material is disposed.
[0020]
According to such a solar cell unit 40, as shown in FIG. 2 (B), light from the light guide 39 in the light guide plate 44 is efficiently reflected from the surface to the solar cell 43 while repeating reflection. That is, the light that leaks out of the light guide plate 44 by the reflection member 45 on the outer peripheral surface is reused, so that the incident efficiency and the power generation efficiency are improved.
[0021]
FIG. 2C shows another configuration example of the solar cell unit 40. In this example, the surfaces of the upper and lower two solar cells 46A and 46B are opposed to each other, the light guide plate 44 is sandwiched therebetween, and a reflection film 47 is provided on the outer peripheral side surface of the light guide plate 44. According to this, the light incident on the light guide plate 44 can be received by the two solar cells, and the power generation efficiency can be increased with such a configuration.
[0022]
FIG. 3 shows an example in which a rechargeable battery is provided in addition to the solar cell in order to stabilize the power. In this example, a diode 49 is connected in series and a rechargeable battery (secondary battery) 50 is connected in parallel to the solar cells 43 (46A, 46B) connected to the power supply circuit 41 that generates a predetermined voltage. According to such a configuration, the battery 50 is charged with the electric power obtained by the solar cell 43, and a predetermined voltage is generated based on the electric power of the battery 50, thereby stabilizing the circuit in the endoscope main body 11. Power can be supplied.
[0023]
In the structure shown in FIG. 1, the endoscope main body 11, the signal processing unit 12, and the light source unit 13 are connected by the optical transmission lines 25, 28. 28 (including the light guides 19 and 39) can be easily attached to and detached from both the endoscope main body 11 and the signal processing unit 12 and the light source unit 13. In the case of optical transmission, even if an optical cable is connected by a connector, light propagates through the space, so that the structure of the connector is simplified, and a highly airtight structure can be easily obtained. Therefore, if an optical cable is adopted, a connector having higher reliability than an electric connector having electric contacts can be formed easily and in a small size.
[0024]
FIG. 4 shows the structure of the optical cable and the connector. In this example, the endoscope main body 11 and a signal processing unit (device) 54 including a light source unit are connected by an optical cable 55. The optical cable 55 has an optical transmission line for a synchronization signal. 25, a light transmission line 28 for video signals, a light guide 19A for illumination, and a light guide 39A for solar cells are housed, and both ends thereof are fixed to connector bodies (bases) 56A, 56B. The ends of the light guides 19A and 39A on the connector body 56B side are fixed by a base 57 projecting a predetermined amount as shown in the figure.
[0025]
On the other hand, a connector receiving section 11C is provided in the operation section 11B of the endoscope main body section 11 and a connector receiving section 54C is provided in the signal processing section 54 having the light source section built therein. One end of the optical cable 55 is provided in the receiving section 11C. The connector body 56A of the other end becomes detachable, and the connector body 56B at the other end of the receiving portion 54C becomes detachable. The connection between the connector bodies 56A, 56B and the receiving portions 11C, 54C is performed by screw-type fixing means for screwing and coupling using a rotating ring, or spring fixing means for locking and fixing a spring-type engaging member. Etc. can be used.
[0026]
As described with reference to FIG. 1, the O / E conversion element 24 and the E / O conversion element 27, the illumination light guide 19B, and the solar cell light are provided inside the receiving portion 11C of the endoscope main body 11. The end of the guide 39B is incorporated. Similarly, an E / O conversion element 30 and an O / E conversion element 33 are provided inside the receiving section 54C of the signal processing section 54, and a protection pipe 58 for protecting the ends of the light guides 19A and 39A is provided. Be incorporated. That is, the bases 57 of the light guides 19A and 39A protruding from the connector body 56B of the optical cable 55 are housed in the protection pipe 58 arranged in the receiving portion 54C, and the light guide 19A and 39A have the incident ends of E. Since the optical output end of the light source unit 13 is opposed to the I / O conversion element 30 and the O / E conversion element 33 at a position apart from the I / O conversion element 30 and the O / E conversion element 33, the E / O conversion element 30 and the E / O conversion element 33 It can be insulated from heat.
[0027]
FIG. 5 shows a connection state of each device using the optical cable 55 of FIG. 4. As shown, the connector bodies 56A and 56B of the optical cable 55 are detached from the receiving portions 11C and 54C, and the endoscope is used. When the connection between the main unit 11 and the signal processing unit (including the light source unit) 54 is released, the endoscope main unit 11 has a simple shape, so that advanced cleaning and disinfection can be easily performed.
[0028]
Further, the electronic endoscope apparatus of the present invention can be applied to a stereoscopic endoscope having two left and right imaging systems mounted at the distal end of the endoscope main body. In this case, since only one additional optical transmission line of the video signal system for the left and right two video signals is added, the connection between the endoscope main body unit and the signal processing unit can be compacted, and The effect is very large.
[0029]
In the above-described embodiment, light is used for signal transmission between the endoscope main body 11, the signal processing unit 12, and the signal processing unit 54. However, this signal transmission is wireless communication and a cable for signal transmission is omitted. It is possible to adopt other configurations. In addition, various types of electronic endoscopes can be implemented without departing from the scope of the present invention.
[0030]
【The invention's effect】
As described above, according to the present invention, the signal transmission between the endoscope main body and the signal processing unit is performed by an electrically non-contact signal transmission unit, and the solar light disposed in the endoscope main body is used. The light from the light source unit is incident on the battery via the light guide, and the power obtained by the solar cell is supplied to the internal circuit of the endoscope main unit, so that the endoscope main unit and the signal processing unit There is an effect that electrical isolation is completely achieved with a simple structure, and electrical safety is easily ensured.
[0031]
In addition, according to the configuration of claim 2, the light source for illumination can be shared without specially disposing the light source for the solar cell, and the apparatus can be simplified. According to the configuration of claim 3, By removing the detachable light guide cable, the body of the endoscope itself becomes shorter and more compact, so that the work of cleaning and disinfection becomes easier, and safety can be easily secured from the viewpoint of infection prevention. Become.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of an electronic endoscope apparatus according to an embodiment of the present invention.
FIGS. 2A and 2B show a configuration of a solar cell unit according to an embodiment. FIG. 2A is a perspective view, FIG. 2B is a side view of FIG. 2A, and FIG. 2C is a side view of another configuration example. .
FIG. 3 is a diagram illustrating a configuration example of a power generation circuit using a solar cell according to an embodiment.
FIG. 4 is a diagram illustrating a configuration example of an optical cable and a connector according to an embodiment.
FIG. 5 is a diagram showing connection of the entire apparatus of the embodiment using the optical cable of FIG. 4;
FIG. 6 is a basic configuration diagram of a conventional electronic endoscope device.
[Explanation of symbols]
1,11 ... endoscope main body part, 7, 13 ... light source part,
8, 12 ... signal processing unit, 9, 14 ... display unit,
17 ... CCD,
19: Light guide for illuminating the observation object,
25, 28 ... optical (fiber) transmission line,
39 ... Light guide for solar cell,
40 ... Solar cell unit,
43, 46A, 46B ... solar cells,
44: light guide plate, 45: reflection member,
54 ... Signal processing unit including light source unit
55 ... optical cable,
11C, 54C ... receiving part,
56A, 56B: Connector body.

Claims (3)

被観察体を照明するライトガイドを含む照明系と対物レンズ及び固体撮像素子を含む撮像系を有する内視鏡本体部と、この内視鏡本体部から出力される映像信号を処理する信号処理部と、この信号処理部からの出力に基づき被観察体の映像を表示する表示部と、上記ライトガイドに内視鏡本体部の外部から光を供給する光源部とを有する電子内視鏡装置において、
上記内視鏡本体部と上記信号処理部との間の信号伝送を電気的に非接触な状態で行う信号伝送手段と、上記内視鏡本体部に配置され、上記光源部からライトガイドを介して供給された光を入射する太陽電池とを設け、この太陽電池で得られた電力を上記内視鏡本体部内の回路に供給することを特徴とする電子内視鏡装置。
An endoscope main body having an illumination system including a light guide for illuminating an object to be observed and an imaging system including an objective lens and a solid-state imaging device, and a signal processing unit for processing a video signal output from the endoscope main body And an electronic endoscope device having a display unit that displays an image of the object to be observed based on an output from the signal processing unit, and a light source unit that supplies light to the light guide from outside the endoscope body. ,
A signal transmission unit that performs signal transmission between the endoscope main body and the signal processing unit in an electrically non-contact state, and is disposed in the endoscope main body, and a light guide from the light source unit via a light guide. A solar cell that receives the supplied light, and supplies power obtained by the solar cell to a circuit in the endoscope main body.
上記被観察体照明用ライトガイドと太陽電池用ライトガイドを並設した光コネクタを設け、この光コネクタにて当該内視鏡本体部を上記光源部に接続することを特徴とする上記請求項1記載の電子内視鏡装置。2. An optical connector in which the light guide for illuminating the object to be observed and the light guide for solar cells are provided side by side, and the endoscope main body is connected to the light source by the optical connector. An electronic endoscope device according to claim 1. 上記内視鏡本体部と光源部との間を結ぶためのライトガイドケーブルを、内視鏡本体部の操作部に着脱自在に接続したことを特徴とする上記請求項1又は2記載の電子内視鏡装置。3. The electronic electronic device according to claim 1, wherein a light guide cable for connecting the endoscope main body and the light source is detachably connected to an operation unit of the endoscope main body. Endoscope device.
JP2002376407A 2002-12-26 2002-12-26 Electronic endoscopic apparatus Pending JP2004202040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376407A JP2004202040A (en) 2002-12-26 2002-12-26 Electronic endoscopic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376407A JP2004202040A (en) 2002-12-26 2002-12-26 Electronic endoscopic apparatus

Publications (1)

Publication Number Publication Date
JP2004202040A true JP2004202040A (en) 2004-07-22

Family

ID=32813887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376407A Pending JP2004202040A (en) 2002-12-26 2002-12-26 Electronic endoscopic apparatus

Country Status (1)

Country Link
JP (1) JP2004202040A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082230A1 (en) * 2004-03-02 2005-09-09 Olympus Corporation Endoscope
EP1862108A2 (en) 2006-05-31 2007-12-05 Karl Storz Endovision Optically coupled endoscope with microchip
WO2014078538A1 (en) 2012-11-15 2014-05-22 Intuitive Surgical Operations, Inc. Endoscopic systems with low capacitance and/or electromagnetic shielding, and related methods
JP2015536195A (en) * 2012-11-08 2015-12-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical probe system
US9993135B2 (en) 2012-11-15 2018-06-12 Intuitive Surgical Operations, Inc. Endoscopic system with electrogmagnetic interference shielding
WO2018163498A1 (en) * 2017-03-08 2018-09-13 ソニー・オリンパスメディカルソリューションズ株式会社 Medical device and method for manufacturing medical device
US11284803B2 (en) 2012-11-15 2022-03-29 Intuitive Surgical Operations, Inc. Low capacitance endoscopic system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082230A1 (en) * 2004-03-02 2005-09-09 Olympus Corporation Endoscope
EP1862108A2 (en) 2006-05-31 2007-12-05 Karl Storz Endovision Optically coupled endoscope with microchip
JP2007319686A (en) * 2006-05-31 2007-12-13 Karl Storz Endovision Inc Optically coupled endoscope with microchip
EP1862108A3 (en) * 2006-05-31 2008-05-07 Karl Storz Endovision Optically coupled endoscope with microchip
JP2015536195A (en) * 2012-11-08 2015-12-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical probe system
EP2919691A4 (en) * 2012-11-15 2016-10-26 Intuitive Surgical Operations Endoscopic systems with low capacitance and/or electromagnetic shielding, and related methods
WO2014078538A1 (en) 2012-11-15 2014-05-22 Intuitive Surgical Operations, Inc. Endoscopic systems with low capacitance and/or electromagnetic shielding, and related methods
US9993135B2 (en) 2012-11-15 2018-06-12 Intuitive Surgical Operations, Inc. Endoscopic system with electrogmagnetic interference shielding
US11284803B2 (en) 2012-11-15 2022-03-29 Intuitive Surgical Operations, Inc. Low capacitance endoscopic system
WO2018163498A1 (en) * 2017-03-08 2018-09-13 ソニー・オリンパスメディカルソリューションズ株式会社 Medical device and method for manufacturing medical device
JPWO2018163498A1 (en) * 2017-03-08 2020-05-14 ソニー・オリンパスメディカルソリューションズ株式会社 Medical device and method of manufacturing medical device
US11166621B2 (en) 2017-03-08 2021-11-09 Sony Olympus Medical Solutions Inc. Medical apparatus and method of manufacturing medical apparatus
US11982846B2 (en) 2017-03-08 2024-05-14 Sony Olympus Medical Solutions Inc. Medical apparatus and method of manufacturing medical apparatus

Similar Documents

Publication Publication Date Title
JP5704878B2 (en) Photoelectric conversion connector, optical transmission module, imaging device, and endoscope
US6796939B1 (en) Electronic endoscope
JP3615890B2 (en) Electronic endoscope device
CA2105757A1 (en) Processor module for video inspection probe
US20030107652A1 (en) Dental video camera
CN102697449A (en) Endoscope and light source device for the same
JPH10165362A (en) Television camera device for endoscope
US11653825B2 (en) Imaging unit and oblique-viewing endoscope
JPH119548A (en) Portable electronic endoscope
US20150011825A1 (en) Endoscopic device intended, in particular, for a medical usage
JP2004202040A (en) Electronic endoscopic apparatus
JP2010057960A (en) Endoscope
CN102551648A (en) Endoscope and light source device for endoscope
JP3306155B2 (en) Endoscope device
US10512390B2 (en) Endoscope with cable link structure
JP2011245019A (en) Image capturing unit and endoscope device
JP2006320381A (en) Electronic endoscopic apparatus
WO2020067219A1 (en) Angled viewing endoscope
WO2014195843A2 (en) Endoscopic/boroscopic instrument with wireless transmission and charging module
CN100421613C (en) Image type intubation auxiliary device
JP2021166565A (en) Endoscope system
JP2006320382A (en) Electronic endoscopic apparatus
US6123437A (en) Easy access light box
WO2021172002A1 (en) Endoscope imaging device
JP2011200338A (en) Electronic endoscope