JP2004201400A - リアクトル装置 - Google Patents

リアクトル装置 Download PDF

Info

Publication number
JP2004201400A
JP2004201400A JP2002366142A JP2002366142A JP2004201400A JP 2004201400 A JP2004201400 A JP 2004201400A JP 2002366142 A JP2002366142 A JP 2002366142A JP 2002366142 A JP2002366142 A JP 2002366142A JP 2004201400 A JP2004201400 A JP 2004201400A
Authority
JP
Japan
Prior art keywords
voltage
reactor
coil
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002366142A
Other languages
English (en)
Inventor
Kenji Otsuka
健司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002366142A priority Critical patent/JP2004201400A/ja
Publication of JP2004201400A publication Critical patent/JP2004201400A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】広範囲に変化する入力電流に対して所定値以上のインダクタンスを有するリアクトル装置を提供する。
【解決手段】リアクトルL1は、コア2と、メインコイル3と、サブコイル4とスイッチ5とを含む。メインコイル3およびサブコイル4はコア2に巻回される。メインコイル3は、ノードN1とノードN2との間に接続される。サブコイル4は、スイッチ5とノードN2との間に接続される。スイッチ5は、ノードN1とサブコイル4の一方端との間に接続される。スイッチ5は、メインコイル3に流れる直流電流がコア2中に発生する磁束を飽和させる基準値以上のときオンされ、サブコイル4をメインコイル3に対して並列に接続する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
この発明は、リアクトル装置に関し、特に、広範囲で変化する入力電流に対して所定値以上のインダクタンスを有するリアクトル装置に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
【0004】
このようなハイブリッド自動車または電気自動車は、たとえば、図10に示すようなモータ駆動装置300を搭載することが考えられている。図10を参照して、モータ駆動装置300は、直流電源Bと、システムリレーSRと、昇圧コンバータ310と、コンデンサ320と、インバータ330とを備える。
【0005】
昇圧コンバータ310は、リアクトル311と、NPNトランジスタ312,313と、ダイオード314,315とを含む。
【0006】
NPNトランジスタ312,313は、インバータ330の電源ラインとアースラインとの間に直列に接続される。NPNトランジスタ312は、コレクタが電源ラインに接続され、エミッタがNPNトランジスタ313のコレクタに接続される。NPNトランジスタ313のエミッタは、アースラインに接続される。
【0007】
ダイオード314,315は、エミッタからコレクタへ電流が流れるようにそれぞれNPNトランジスタ312,313に並列に接続される。
【0008】
リアクトル311は、その一方端が直流電源Bの電源ラインに接続され、他方端がNPNトランジスタ312とNPNトランジスタ313との中間点に接続される。
【0009】
直流電源Bは、直流電圧を出力する。システムリレーSRは、制御装置(図示せず)からの制御信号によってオンされると、直流電源Bから出力された直流電圧を昇圧コンバータ310へ供給する。昇圧コンバータ310は、制御装置(図示せず)からの制御信号によってNPNトランジスタ312,313がオン/オフされ、直流電源Bから供給された直流電圧を昇圧して出力電圧をコンデンサ320に供給する。また、昇圧コンバータ310は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1によって発電され、インバータ330によって変換された直流電圧を降圧して直流電源Bへ供給する。
【0010】
コンデンサ320は、昇圧コンバータ310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。
【0011】
インバータ330は、コンデンサ320から直流電圧が供給されると制御装置(図示せず)からの制御信号によって直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値によって指定されたトルクを発生するように駆動される。また、インバータ330は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置からの制御信号によって直流電圧に変換し、その変換した直流電圧をコンデンサ320を介して昇圧コンバータ310へ供給する。
【0012】
このように、モータ駆動装置300は、直流電源Bから出力された直流電圧を昇圧して交流モータM1を駆動するとともに、交流モータM1が発電した電力により直流電源Bを充電する。
【0013】
モータ駆動装置300においては、昇圧コンバータ310が直流電源Bからの直流電圧を昇圧する場合、NPNトランジスタ313がオンされた期間に応じて電力がリアクトル311に蓄積され、リアクトル311に蓄積された電力に応じた電圧がダイオード314を介してインバータ330へ出力される。
【0014】
そして、リアクトル311に蓄積されるエネルギー(電力)は、リアクトル311のインダクタンスに比例するので、リアクトル311のインダクタンスは、昇圧コンバータ310における昇圧比を決定する重要な要因となる。
【0015】
一方、リアクトルのインダクタンスをリアクトルに印加される直流電圧に応じて切換える技術が特開平8−331846号公報に開示されている。すなわち、同一コアに巻回されたメインコイルとサブコイルとを設け、リアクトルに印加される直流電圧が低いときは、サブコイルをメインコイルに対して並列に接続し、リアクトルに印加される直流電圧が高いときは、サブコイルをメインコイルに対して直列に接続する。つまり、リアクトルに印加される直流電圧が低いとき、リアクトルのインダクタンスを小さくし、リアクトルに印加される直流電圧が高いとき、リアクトルのインダクタンスを大きくする。このように、2つのコイルを並列または直列に接続することにより、リアクトルのインダクタンスを切換えることができる。
【0016】
【特許文献1】
特開平8−331846号公報
【0017】
【発明が解決しようとする課題】
しかし、コアと、コアに巻回されたコイルとから成るリアクトルにおいては、コイルに印加される直流電流が増加すると、コア中に発生する磁束が飽和し、リアクトルのインダクタンスが低下するという問題が発生する。そして、特に、印加される直流電流が広範囲で変化する場合、この問題は顕著になる。
【0018】
上述したように、特開平8−331846号公報には、リアクトルのインダクタンスを切換える技術が開示されているが、特開平8−331846号公報に開示された技術では、印加される直流電流の増加によってインダクタンスが低下するという問題を解決できない。
【0019】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、広範囲に変化する入力電流に対して所定値以上のインダクタンスを有するリアクトル装置を提供することである。
【0020】
【課題を解決するための手段および発明の効果】
この発明によれば、リアクトル装置は、コアと、第1および第2のコイルとを備える。コアは、ギャップを有する。第1および第2のコイルは、コアに巻回される。そして、第2のコイルは、第1のコイルへの入力電流が基準値以上のとき、第1のコイルに並列に接続される。
【0021】
好ましくは、リアクトル装置は、接続手段をさらに備える。接続手段は、入力電流が基準値に達すると、第2のコイルを第1のコイルに並列に接続する。
【0022】
好ましくは、基準値は、当該リアクトル装置のインダクタンスが所定値になるときの電流値である。
【0023】
好ましくは、基準値は、コアに発生する磁束が所定の飽和度合いになるときの電流値である。
【0024】
好ましくは、第1のコイルの巻き数は、第2のコイルの巻き数に等しい。
この発明によるリアクトル装置においては、コアに巻回された第1のコイルに入力される入力電流が基準値以上に達すると、第2のコイルが第1のコイルに対して並列に接続される。そして、入力電流は、第1および第2のコイルに流れる。
【0025】
したがって、この発明によれば、コアに巻回されたコイルに流れる直流電流が増加してもリアクトル装置のインダクタンスの低下を防止できる。
【0026】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0027】
図1を参照して、この発明の実施の形態によるリアクトル装置を備えるモータ駆動装置100は、直流電源Bと、電圧センサー10,13と、システムリレーSR1,SR2と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14と、電流センサー18,24と、制御装置30とを備える。
【0028】
交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。あるいは、このモータはエンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
【0029】
昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。NPNトランジスタQ1,Q2は、インバータ14の電源ラインとアースラインとの間に直列に接続される。NPNトランジスタQ1は、コレクタが電源ラインに接続され、エミッタがNPNトランジスタQ2のコレクタに接続される。また、NPNトランジスタQ2のエミッタは、アースラインに接続される。
【0030】
各NPNトランジスタQ1,Q2のエミッタ−コレクタ間には、エミッタ側からコレクタ側へ電流が流れるように、それぞれ、ダイオードD1,D2が接続されている。
【0031】
リアクトルL1は、一方端が直流電源Bの電源ラインに接続され、他方端がNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。
【0032】
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、インバータ14の電源ラインとアースラインとの間に並列に設けられる。
【0033】
U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のエミッタ−コレクタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0034】
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0035】
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。
【0036】
コンデンサC1は、直流電源Bから供給された直流電圧Vbを平滑化し、その平滑化した直流電圧を昇圧コンバータ12へ供給する。
【0037】
昇圧コンバータ12は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2へ供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWMUを受けると、信号PWMUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。この場合、NPNトランジスタQ1は、信号PWMUによってオフされている。
【0038】
また、昇圧コンバータ12は、制御装置30から信号PWMDを受けると、コンデンサC2を介してインバータ14から供給された直流電圧を降圧して直流電源Bを充電する。
【0039】
さらに、昇圧コンバータ12は、制御装置30から信号EXCを受けると、リアクトルL1に含まれるサブコイルをメインコイルに並列に接続する。
【0040】
コンデンサC2は、昇圧コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。
【0041】
電圧センサー13は、コンデンサC2の両端の電圧Vm、すなわち、昇圧コンバータ12の出力電圧(インバータ14の入力電圧に相当する。)を検出し、その検出した電圧Vmを制御装置30へ出力する。
【0042】
インバータ14は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMIに基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。また、インバータ14は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMCに基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0043】
電流センサー18は、直流電源Bから出力される直流電流、すなわち、昇圧コンバータ12のリアクトルL1に入力されるリアクトルLCRTを検出し、その検出したリアクトル電流LCRTを制御装置30へ出力する。
【0044】
電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。
【0045】
制御装置30は、外部に設けられたECU(Electrical Control Unit)から入力されたトルク指令値TRおよびモータ回転数MRN、電圧センサー10からの直流電圧Vb、電圧センサー13からの出力電圧Vm、および電流センサー24からのモータ電流MCRTに基づいて、後述する方法により昇圧コンバータ12を駆動するための信号PWMUとインバータ14を駆動するための信号PWMIとを生成し、その生成した信号PWMUおよび信号PWMIをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0046】
信号PWMUは、直流電源Bからの直流電圧Vbを出力電圧Vmに変換する場合に昇圧コンバータ12を駆動するための信号である。そして、制御装置30は、昇圧コンバータ12が直流電圧Vbを出力電圧Vmに変換する場合に、出力電圧Vmをフィードバック制御し、出力電圧Vmが指令された電圧指令Vdccomになるように昇圧コンバータ12を駆動するための信号PWMUを生成する。
【0047】
また、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。この場合、インバータ14のNPNトランジスタQ3〜Q8は、信号PWMCによってスイッチング制御される。これにより、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。
【0048】
さらに、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
【0049】
さらに、制御装置30は、電流センサー18からのリアクトル電流LCRTに応じてリアクトルL1に含まれるサブコイルとメインコイルとの接続/不接続を制御するための信号EXCを生成してリアクトルL1へ出力する。より具体的には、制御装置30は、リアクトル電流LCRTを基準値と比較し、リアクトル電流LCRTが基準値以上であるとき、サブコイルをメインコイルに対して並列に接続するためのHレベルの信号EXCを生成してリアクトルL1へ出力し、リアクトル電流LCRTが基準値よりも小さいとき、サブコイルをメインコイルから切離すためのLレベルの信号EXCを生成してリアクトルL1へ出力する。
【0050】
さらに、制御装置30は、システムリレーSR1,SR2をオン/オフするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0051】
図2を参照して、リアクトルL1について詳細に説明する。リアクトルL1は、コア2と、メインコイル3と、サブコイル4と、スイッチ5とを含む。コア2は、ギャップ2A,2B,2C,2Dを有する。メインコイル3は、コアに巻回される。そして、メインコイル3は、その一方端がノードN1に接続され、他方端がノードN2に接続される。
【0052】
また、サブコイル4は、メインコイル3が巻回されたコア2の領域と異なる領域に巻回される。そして、サブコイル4は、その一方端がスイッチ5に接続され、他方端がノードN2に接続される。
【0053】
スイッチ5は、ノードN1とサブコイル4の一方端との間に接続される。そして、スイッチ5は、制御装置30からのLレベルの信号EXCに応じてオフされ、制御装置30からのHレベルの信号EXCに応じてオンされる。したがって、スイッチ5がオンされると、サブコイル4はメインコイル3に対して並列に接続される。
【0054】
図3は、制御装置30の機能ブロック図である。図3を参照して、制御装置30は、モータトルク制御手段301と、電圧変換制御手段302と、切換手段303とを含む。
【0055】
モータトルク制御手段301は、トルク指令値TR(車両におけるアクセルペダルの踏み込み度合い、ハイブリッド車両においてはエンジンの動作状態をも考慮しながらモータに与えるべきトルク指令を演算して得られている)、直流電源Bから出力された直流電圧Vb、モータ電流MCRT、モータ回転数MRNおよび出力電圧Vmに基づいて、交流モータM1の駆動時、後述する方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUと、インバータ14のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMIとを生成し、その生成した信号PWMUおよび信号PWMIをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0056】
電圧変換制御手段302は、回生制動時、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。
【0057】
また、電圧変換制御手段302は、回生制動時、信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。このように、昇圧コンバータ12は、直流電圧を降圧するための信号PWMDにより電圧を降圧させることもできるので、双方向コンバータの機能を有するものである。
【0058】
切換手段303は、リアクトル電流LCRTを電流センサー18から受ける。そして、切換手段303は、リアクトル電流LCRTを基準値と比較し、リアクトル電流LCRTが基準値以上であるとき、Hレベルの信号EXCを生成してリアクトルL1へ出力する。また、切換手段303は、リアクトル電流LCRTが基準値よりも小さいとき、Lレベルの信号EXCを生成してリアクトルL1へ出力する。
【0059】
図4は、モータトルク制御手段301の機能ブロック図である。図4を参照して、モータトルク制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、インバータ入力電圧指令演算部50と、コンバータ用デューティー比演算部52と、コンバータ用PWM信号変換部54とを含む。
【0060】
モータ制御用相電圧演算部40は、昇圧コンバータ12の出力電圧Vm、すなわち、インバータ14への入力電圧を電圧センサー13から受け、交流モータM1の各相に流れるモータ電流MCRTを電流センサー24から受け、トルク指令値TRを外部ECUから受ける。そして、モータ制御用相電圧演算部40は、これらの入力される信号に基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0061】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ14の各NPNトランジスタQ3〜Q8をオン/オフするための信号PWMIを生成し、その生成した信号PWMIをインバータ14の各NPNトランジスタQ3〜Q8へ出力する。
【0062】
これにより、各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出力するように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。
【0063】
一方、インバータ入力電圧指令演算部50は、トルク指令値TRおよびモータ回転数MRNに基づいてインバータ入力電圧の最適値(目標値)を演算し、その演算した最適値をコンバータ用デューティー比演算部52へ出力する。
【0064】
コンバータ用デューティー比演算部52は、電圧センサー10から出力された直流電圧Vb(「バッテリ電圧Vb」とも言う。)に基づいて、電圧センサー13からの入力電圧Vmを、インバータ入力電圧指令演算部50から出力される最適値に設定するためのデューティー比を演算する。
【0065】
コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比に基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0066】
なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
【0067】
図5を参照して、リアクトルのインダクタンスLとリアクトルのコイルに流れる直流電流Iとの関係について説明する。インダクタンスLは、直流電流Iが所定値になるまではほぼ一定の値を保持し、直流電流Iが所定値を超えると低下する。これは、コイルに流れる直流電流が所定値まではコア中に発生する磁束は飽和しないが、直流電流が所定値を超えるとコア中に発生する磁束が飽和するからである。
【0068】
コイルに流れる直流電流Iの増加に対してコア中に発生する磁束が飽和しないようにするためには、リアクトルに入力される直流電流Iをコア中に発生する磁束が飽和しないようにコイルに流す必要がある。
【0069】
そこで、この発明においては、コア2と、メインコイル3とサブコイル4とを用いてリアクトルL1を構成し、直流電源BからリアクトルL1に入力されるリアクトル電流LCRTがコア2中に発生する磁束を飽和させる電流値よりも小さい範囲においてはメインコイル3のみにリアクトル電流LCRTを流し、リアクトルL1に入力されるリアクトル電流LCRTがコア2中に発生する磁束を飽和させる電流値以上の範囲においては、サブコイル4をメインコイル3に並列に接続し、メインコイル3とサブコイル4とに直流電流を流すように制御する。つまり、リアクトルL1に入力されるリアクトル電流LCRTがメインコイル3に直流電流を流すことによってコア2中に発生する磁束を飽和させない範囲においてはメインコイル3のみにリアクトル電流LCRTを流し、メインコイル3に直流電流を流すことによってコア2中に発生する磁束を飽和させる範囲においてはメインコイル3と、メインコイル3に並列に接続されたサブコイル4とにリアクトル電流LCRTを流すように制御する。これによって、リアクトルL1に入力されるリアクトル電流LCRTが増加してもリアクトルL1のインダクタンスLが低下するのを防止し、リアクトルL1のインダクタンスLを一定以上の値に保持できる。
【0070】
具体的には、図6に示すように、リアクトルL1に入力されるリアクトル電流LCRTが電流値Ibまでの範囲においては、スイッチ5をオフし、メインコイル3のみリアクトル電流LCRTを流す。そして、リアクトルL1に入力されるリアクトル電流LCRTが電流値Ib以上の範囲においては、スイッチ5をオンし、メインコイル3およびサブコイル4にリアクトル電流LCRTを流す。これによって、リアクトルL1は、リアクトル電流LCRTが電流値Ibまでの範囲においては曲線k1に従って変化し、リアクトル電流LCRTが電流値Ib以上の範囲においては直線k2に従って一定の値を保持する。
【0071】
インダクタンスの初期値をL0とし、リアクトル電流LCRTが電流値IbであるときのインダクタンスをL01とすると、L01=L0/2にするためには、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比n1:n2を1:1にすればよい。また、L01=L0/2以外のインダクタンスL01を実現するためには、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比n1:n2を1:1以外の値に設定すればよい。したがって、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比を変えることによりリアクトル電流LCRTが電流値Ib以上の範囲において所望のインダクタンスを保持できる。この実施の形態においては、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比n1:n2を1:1に設定する。
【0072】
このように、リアクトル電流LCRTが電流値Ib以上の範囲においてメインコイル3に並列にサブコイル4を接続することにより、リアクトルL1をメインコイル3のみを用いて構成した場合に、リアクトル電流LCRTが電流値Ib以上の範囲においてインダクタンスLが曲線k3に従って低下していたのを防止できる。
【0073】
上述したように、切換手段303は、電流センサー18からのリアクトル電流LCRTを電流値Ib(「基準値」と言う。)と比較し、リアクトル電流LCRTが基準値Ibよりも小さいときLレベルの信号EXCを生成してリアクトルL1へ出力し、リアクトル電流LCRTが基準値Ib以上であるときHレベルの信号EXCを生成してリアクトルL1へ出力する。
【0074】
そうすると、リアクトル電流LCRTが基準値Ibよりも小さいときスイッチ5はオフされ、リアクトル電流LCRTはメインコイル3のみに流れ、リアクトル電流LCRTが基準値Ib以上であるときスイッチ5はオンされ、リアクトル電流LCRTはメインコイル3およびサブコイル4に流れる。そして、リアクトルL1のインダクタンスが一定以上の値に保持される。
【0075】
再び、図1を参照して、モータ駆動装置100における全体動作について説明する。全体の動作が開始されると、制御装置30は、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2がオンされる。直流電源Bは、直流電圧VbをシステムリレーSR1,SR2を介して昇圧コンバータ12へ出力する。
【0076】
電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30へ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出して制御装置30へ出力する。そして、制御装置30は、外部ECUからトルク指令値TR、およびモータ回転数MRNを受ける。
【0077】
そうすると、制御装置30は、直流電圧Vb、電圧Vm、モータ電流MCRT、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法により信号PWMIを生成し、その生成した信号PWMIをインバータ14へ出力する。また、制御装置30は、直流電圧Vb、電圧Vm、モータ電流MCRT、トルク指令値TR、およびモータ回転数MRNに基づいて、上述した方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0078】
さらに、制御装置30は、電流センサー18からのリアクトル電流LCRTを基準値Ibと比較する。モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車が走行を開始したときトルク指定値TRは小さいので、リアクトル電流LCRTは基準値Ibよりも小さい。したがって、制御装置30は、Lレベルの信号EXCを生成してリアクトルL1へ出力する。
【0079】
そうすると、昇圧コンバータ12において、リアクトルL1のスイッチ5は、Lレベルの信号EXCに応じてオフされ、リアクトル電流LCRTはメインコイル3のみに流れる。そして、NPNトランジスタQ1,Q2は、信号PWMUに応じてオン/オフされ、昇圧コンバータ12は直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。そして、インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMIによって交流電圧に変換して交流モータM1を駆動する。これによって、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。
【0080】
モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の走行中にトルク指令値TRおよびモータ回転数MRNが上昇し、リアクトル電流LCRTが基準値Ib以上になると、制御装置30は、Hレベルの信号EXCを生成してリアクトルL1へ出力する。そうすると、リアクトルL1のスイッチ5はHレベルの信号EXCに応じてオンされ、リアクトル電流LCRTはメインコイル3およびサブコイル4に流れる。そして、NPNトランジスタQ1,Q2は信号PWMUに応じてオン/オフされ、昇圧コンバータ12は、リアクトルL1のインダクタンスをL01に保持して直流電圧Vbを出力電圧Vmに変換する。その後、上述した動作に従って交流モータM1が駆動される。
【0081】
また、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置30は、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMCを生成してそれぞれインバータ14へ出力し、信号PWMDを生成して昇圧コンバータ12へ出力する。
【0082】
回生制動時にも、制御装置30は、電流センサー18からのリアクトル電流LCRTを基準値Ibと比較する。そして、制御装置30は、リアクトル電流LCRTが基準値Ibよりも小さいときLレベルの信号EXCを生成してリアクトルL1へ出力する。
【0083】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMCに応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12においては、リアクトルL1のスイッチ5は、Lレベルの信号EXCに応じてオフされ、NPNトランジスタQ1,Q2は信号PWMDに応じてオン/オフされる。昇圧コンバータ12は、NPNトランジスタQ1がオンされた期間、コンデンサC2からの直流電流をリアクトルL1のメインコイル3のみに流してコンデンサC2からの直流電圧を降圧して直流電源Bを充電する。
【0084】
また、リアクトル電流LCRTが基準値Ib以上であるとき、制御装置30は、Hレベルの信号EXCを生成してリアクトルL1へ出力する。
【0085】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMCに応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12においては、リアクトルL1のスイッチ5は、Hレベルの信号EXCに応じてオンされ、NPNトランジスタQ1,Q2は信号PWMDに応じてオン/オフされる。昇圧コンバータ12は、NPNトランジスタQ1がオンされた期間、コンデンサC2からの直流電流をリアクトルL1のメインコイル3およびサブコイル4に流してコンデンサC2からの直流電圧を降圧して直流電源Bを充電する。これにより、交流モータM1によって発電された電力が直流電源Bに充電される。
【0086】
このように、昇圧コンバータ12は、リアクトルL1に入力されるリアクトル電流LCRTが基準値Ib以上になってもリアクトルL1のインダクタンスを一定以上の値に保持して電圧の昇圧および降圧を行なう。
【0087】
なお、コア2、メインコイル3、サブコイル4、スイッチ5および切換手段303は、「リアクトル装置」を構成する。
【0088】
また、スイッチ5およびHレベルの信号EXCを出力する切換手段303は、「接続手段」を構成する。
【0089】
さらに、上記においては、サブコイル4はメインコイル3と異なる位置に巻回されていると説明したが、メインコイル3との絶縁性が確保される場合、メインコイル3と同じ位置に巻回されてもよい。
【0090】
この発明によるモータ駆動装置は、図7に示すモータ駆動装置100Aであってもよい。図7を参照して、モータ駆動装置100Aは、モータ駆動装置100のリアクトルL1をリアクトルL2に代え、制御装置30を制御装置30Aに代え、モータ駆動装置100に電圧検出回路11を追加したものであり、その他は、モータ駆動装置100と同じである。
【0091】
図8を参照して、リアクトルL2は、リアクトルL1にスイッチ6,7を追加したものである。スイッチ6は、ノードN3に接続される、スイッチ7は、ノードN4に接続される。
【0092】
電圧検出回路11は、スイッチ6とスイッチ7との間に接続される。そして、電圧検出回路11は、リアクトルL2のスイッチ5がオフされている間、スイッチ6,7がオンされ、サブコイル4に接続される。そして、電圧検出回路11は、サブコイル4を用いてメインコイル3の両端に発生するリアクトル電圧VLを検出し、その検出したリアクトル電圧VLをコイル電圧Vcとして制御装置30へ出力する。つまり、電圧検出回路11は、サブコイル4を探りコイルとして用いることによりリアクトル電圧VLを検出する。
【0093】
図9を参照して、電圧検出回路11におけるリアクトル電圧VLの検出方法について説明する。昇圧コンバータ12のNPNトランジスタQ1,Q2が信号PWMUによってオン/オフ制御されているとき、リアクトルL2は、その両端に信号PWMUの周期に同期して振幅が変化する電圧V1を発生する。そして、電圧V1のボトムとピークとの間の値がリアクトル電圧VLに相当し、リアクトル電圧VLは、昇圧コンバータ12の出力電圧Vmに等しい。この場合、リアクトル電圧VLは、直流電源Bからの直流電圧Vbよりも昇圧されている。
【0094】
そして、電圧V2がサブコイル4の両端に発生する。そうすると、電圧検出回路11は、信号PWMUの周期に同期して振幅が変化する電圧V2のピークをホールドし、そのホールドした値をコイル電圧Vcとして検出する。そして、電圧検出回路11は、検出したコイル電圧Vcを制御装置30へ出力する。
【0095】
リアクトル電圧VLとコイル電圧Vcとの比は、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比に等しい。上述したように、この実施の形態においては、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比は1:1であるので、コイル電圧Vcはリアクトル電圧VLに等しい。
【0096】
なお、メインコイル3の巻き数n1とサブコイル4の巻き数n2との比が1:1でないときは、コイル電圧Vcは、Vc=(n2/n1)VLによって決定される。したがって、電圧検出回路11は、この関係を保持しており、検出したコイル電圧Vcおよび巻き数n1,n2を用いてリアクトル電圧VLを求めるようにすることも可能である。
【0097】
再び、図7を参照して、制御装置30Aは、リアクトルL2のスイッチ5がオフされている場合、電圧センサー13からの電圧Vmに代えて電圧検出回路11からのコイル電圧Vcを用いて信号PWMUおよび信号PWMIを生成し、それぞれ、昇圧コンバータ12およびインバータ14へ出力する。また、制御装置30Aは、信号EXCに代えて信号EXC1,2を生成し、その生成した信号EXC1,2をリアクトルL2へ出力する。
【0098】
信号EXC1は、リアクトルL2のスイッチ5をオン/オフするための信号である。また、信号EXC2は、リアクトルL2のスイッチ6,7を同時にオン/オフするための信号である。そして、信号EXC1は、信号EXC2の論理レベルと反対の論理レベルを有するように生成される。すなわち、Hレベルの信号EXC1が生成されるとき、信号EXC2はLレベルの論理レベルを有し、Lレベルの信号EXC1が生成されるとき、信号EXC2はHレベルの論理レベルを有する。
【0099】
制御装置30Aは、それ以外、制御装置30と同じ機能を有する。そして、制御装置30Aは、制御装置30と同じ機能ブロックから成り、切換手段303は、リアクトル電流LCRTが基準値Ibよりも小さいときLレベルの信号EXC1およびHレベルの信号EXC2を生成してリアクトルL2へ出力する。
【0100】
そうすると、リアクトルL2において、スイッチ5はオフされ、スイッチ6,7はオンされる。そして、NPNトランジスタQ1,Q2が信号PWMUに応じてオン/オフされ、昇圧コンバータ12が昇圧動作を開始すると、電圧検出回路11は、サブコイル4を探りコイルとして用いてコイル電圧Vc(=リアクトル電圧VL)を検出し、その検出したコイル電圧Vcを制御装置30Aへ出力する。そして、制御装置30Aのモータトルク制御手段301は、電圧検出回路11からのコイル電圧Vcを電圧Vmの代わりに用いて信号PWMI,PWMUを生成する。
【0101】
また、切換手段303は、リアクトル電流LCRTが基準値Ib以上であるときHレベルの信号EXC1とLレベルの信号EXC2とを生成してリアクトルL2へ出力する。そうすると、リアクトルL2において、スイッチ5はオンされ、スイッチ6,7はオフされる。そして、上述した動作に従って、昇圧コンバータ12は、リアクトルL2のインダクタンスを一定以上の値に保持して直流電圧Vbを昇圧する。なお、この場合、制御装置30Aのモータトルク制御手段301は、電圧センサー13からの電圧Vmを用いて信号PWMI,PWMUを生成する。
【0102】
モータ駆動装置100Aにおける全体動作について説明する。全体の動作が開始されると、制御装置30Aは、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2がオンされる。直流電源Bは、直流電圧VbをシステムリレーSR1,SR2を介して昇圧コンバータ12へ出力する。
【0103】
また、制御装置30Aは、電流センサー18からのリアクトル電流LCRTを基準値Ibと比較する。モータ駆動装置100Aが搭載されたハイブリッド自動車または電気自動車が走行を開始したときトルク指定値TRは小さいので、リアクトル電流LCRTは基準値Ibよりも小さい。したがって、制御装置30Aは、Lレベルの信号EXC1とHレベルの信号EXC2とを生成してリアクトルL2へ出力する。
【0104】
そうすると、リアクトルL2において、スイッチ5はオフされ、スイッチ6,7はオンされる。そして、電圧検出回路11は、コイル電圧Vcを検出し、その検出したコイル電圧Vcを制御装置30Aへ出力する。電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30Aへ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30Aへ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出して制御装置30Aへ出力する。そして、制御装置30Aは、外部ECUからトルク指令値TR、およびモータ回転数MRNを受ける。
【0105】
そうすると、制御装置30Aは、直流電圧Vb、コイル電圧Vc、モータ電流MCRT、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法により信号PWMIを生成し、その生成した信号PWMIをインバータ14へ出力する。また、制御装置30Aは、直流電圧Vb、コイル電圧Vc、モータ電流MCRT、トルク指令値TR、およびモータ回転数MRNに基づいて、上述した方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0106】
そうすると、昇圧コンバータ12において、リアクトル電流LCRTはメインコイル3のみに流れ、NPNトランジスタQ1,Q2は、信号PWMUに応じてオン/オフされる。そして、昇圧コンバータ12は、直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。そして、インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30Aからの信号PWMIによって交流電圧に変換して交流モータM1を駆動する。これによって、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。
【0107】
モータ駆動装置100Aが搭載されたハイブリッド自動車または電気自動車の走行中にトルク指令値TRおよびモータ回転数MRNが上昇し、リアクトル電流LCRTが基準値Ib以上になると、制御装置30Aは、Hレベルの信号EXC1とLレベルの信号EXC2とを生成してリアクトルL2へ出力する。そうすると、リアクトルL2において、スイッチ5はHレベルの信号EXC1に応じてオンされ、スイッチ6,7はLレベルの信号EXC2に応じてオフされる。そして、リアクトル電流LCRTはメインコイル3およびサブコイル4に流れ、NPNトランジスタQ1,Q2は信号PWMUに応じてオン/オフされる。その結果、昇圧コンバータ12は、リアクトルL2のインダクタンスをL01に保持して直流電圧Vbを出力電圧Vmに変換する。その後、上述した動作に従って交流モータM1が駆動される。
【0108】
また、モータ駆動装置100Aが搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置30Aは、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMCを生成してそれぞれインバータ14へ出力し、信号PWMDを生成して昇圧コンバータ12へ出力する。
【0109】
回生制動時にも、制御装置30Aは、リアクトル電流LCRTを基準値Ibと比較する。そして、制御装置30Aは、リアクトル電流LCRTが基準値Ibよりも小さいときLレベルの信号EXC1とHレベルの信号EXC2とを生成してリアクトルL2へ出力する。
【0110】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMCに応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12においては、リアクトルL2のスイッチ5は、Lレベルの信号EXC1に応じてオフされ、スイッチ6,7はHレベルの信号EXC2に応じてオンされ、NPNトランジスタQ1,Q2は信号PWMDに応じてオン/オフされる。昇圧コンバータ12は、NPNトランジスタQ1がオンされた期間、コンデンサC2からの直流電流をリアクトルL2のメインコイル3のみに流してコンデンサC2からの直流電圧を降圧して直流電源Bを充電する。
【0111】
また、リアクトル電流LCRTが基準値Ib以上であるとき、制御装置30Aは、Hレベルの信号EXC1とLレベルの信号EXC2とを生成してリアクトルL2へ出力する。
【0112】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMCに応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12においては、リアクトルL2のスイッチ5は、Hレベルの信号EXC1に応じてオンされ、スイッチ6,7はLレベルの信号EXC2に応じてオフされ、NPNトランジスタQ1,Q2は信号PWMDに応じてオン/オフされる。昇圧コンバータ12は、NPNトランジスタQ1がオンされた期間、コンデンサC2からの直流電流をリアクトルL2のメインコイル3およびサブコイル4に流してコンデンサC2からの直流電圧を降圧して直流電源Bを充電する。これにより、交流モータM1によって発電された電力が直流電源Bに充電される。
【0113】
なお、上記においては、基準値Ibは、リアクトルのインダクタンスが所定値L01になるときの電流値であると説明したが、この発明においては、これに限らず、基準値Ibは、コア2中に発生する磁束が所定の飽和度合いになるときの電流値であってもよい。
【0114】
また、上記においては、電流センサー18によってリアクトル電流LCRTを検出すると説明したが、この発明においては、外部ECUから受けるトルク指令値TRおよびモータ回転数MRNに基づいて、リアクトル電流LCRTを検出するようにしてもよい。
【0115】
さらに、上記においては、交流モータが1個の場合について説明したが、この発明は、これに限らず、複数の交流モータを駆動するモータ駆動装置についても適用可能である。その場合、複数の交流モータに対応して設けられた複数のインバータは、コンデンサC2の両端に並列に接続される。そして、複数のインバータの各々は、コンデンサC2を介して昇圧コンバータ12から受けた出力電圧Vmを交流電圧に変換して対応する交流モータを駆動する。
【0116】
さらに、上述の実施の形態に記載した内容以外にも、この発明は、種々のハイブリッド自動車または電気自動車に適用できることは言うまでもない。たとえば、コンデンサC2に対して複数のインバータおよびモータを並列に接続し、それぞれのモータ(あるいはモータジェネレータ)を独立に駆動するようにしてもよい。この場合、1つのモータを後輪駆動用に用い、他のモータを前輪駆動用に用いてもよい。また、遊星ギア機構を用いたハイブリッド自動車としては、1つのモータジェネレータを遊星ギア機構のサンギアに接続し、エンジンを遊星ギア機構のキャリアに接続し、もう1つのモータジェネレータをリングギアに接続するものも公知であるが、この発明は、このようなハイブリッド自動車にも適用できる。
【0117】
さらに、昇圧コンバータ12およびインバータ14を構成するスイッチング素子は、NPNトランジスタに限られるものではなく、MOSトランジスタであってもよい。
【0118】
この発明の実施の形態によれば、リアクトル装置は、コアと、コアに巻回されたメインコイルと、コアに巻回されたサブコイルと、サブコイルをメインコイルに対して並列に接続するためのスイッチと、メインコイルに流れる直流電流が基準値以上のときスイッチをオンするように制御する制御装置とを備えるので、広範囲の入力電流に対してリアクトルのインダクタンスを一定以上の値に保持できる。
【0119】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】この発明の実施の形態におけるモータ駆動装置の概略ブロック図である。
【図2】図1に示すリアクトルの平面図である。
【図3】図1に示す制御装置の機能ブロック図である。
【図4】図3に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図5】インダクタンスと直流電流との関係を示す図である。
【図6】インダクタンスと直流電流との関係を示す図である。
【図7】この発明の実施の形態におけるモータ駆動装置の他の概略ブロック図である。
【図8】図7に示すリアクトルの平面図である。
【図9】図8に示す電圧検出回路の動作を説明するための信号のタイミングチャートである。
【図10】従来のモータ駆動装置の概略ブロック図である。
【符号の説明】
2 コア、2A,2B,2C,2D ギャップ、3 メインコイル、4 サブコイル、5〜7 スイッチ、10,13 電圧センサー、11 電圧検出回路、12,310 昇圧コンバータ、14,330 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、18,24 電流センサー、30 制御装置、40 モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、50 インバータ入力電圧指令演算部、52 コンバータ用デューティー比演算部、54 コンバータ用PWM信号変換部、100,100A,300 モータ駆動装置、301 モータトルク制御手段、302 電圧変換制御手段、303 切換手段、B 直流電源、SR1,SR2 システムリレー、C1,C2,320 コンデンサ、L1,L2,311 リアクトル、Q1〜Q8,312,313 NPNトランジスタ、D1〜D8,314,315 ダイオード、M1 交流モータ。

Claims (5)

  1. ギャップを有するコアと、
    前記コアに巻回された第1のコイルと、
    前記コアに巻回された第2のコイルとを備え、
    前記第2のコイルは、前記第1のコイルへの入力電流が基準値以上のとき、前記第1のコイルに並列に接続される、リアクトル装置。
  2. 前記入力電流が前記基準値に達すると、前記第2のコイルを前記第1のコイルに並列に接続する接続手段をさらに備える、請求項1に記載のリアクトル装置。
  3. 前記基準値は、当該リアクトル装置のインダクタンスが所定値になるときの電流値である、請求項1または請求項2に記載のリアクトル装置。
  4. 前記基準値は、前記コアに発生する磁束が所定の飽和度合いになるときの電流値である、請求項1または請求項2に記載のリアクトル装置。
  5. 前記第1のコイルの巻き数は、前記第2のコイルの巻き数に等しい、請求項1から請求項4のいずれか1項に記載のリアクトル装置。
JP2002366142A 2002-12-18 2002-12-18 リアクトル装置 Withdrawn JP2004201400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366142A JP2004201400A (ja) 2002-12-18 2002-12-18 リアクトル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366142A JP2004201400A (ja) 2002-12-18 2002-12-18 リアクトル装置

Publications (1)

Publication Number Publication Date
JP2004201400A true JP2004201400A (ja) 2004-07-15

Family

ID=32763433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366142A Withdrawn JP2004201400A (ja) 2002-12-18 2002-12-18 リアクトル装置

Country Status (1)

Country Link
JP (1) JP2004201400A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150231A (ja) * 2005-10-27 2007-06-14 Denso Corp 熱電変換装置
JP2009050154A (ja) * 2007-08-21 2009-03-05 Ford Global Technologies Llc 自動車用電力変換システム
JP2016101073A (ja) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 電力変換装置
JP2019118227A (ja) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150231A (ja) * 2005-10-27 2007-06-14 Denso Corp 熱電変換装置
JP2009050154A (ja) * 2007-08-21 2009-03-05 Ford Global Technologies Llc 自動車用電力変換システム
JP2016101073A (ja) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 電力変換装置
JP2019118227A (ja) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 制御装置

Similar Documents

Publication Publication Date Title
JP4280573B2 (ja) 負荷駆動装置
JP4623065B2 (ja) 電圧変換装置および電圧変換方法
US7362597B2 (en) AC voltage generating apparatus and motive power outputting apparatus
US7212891B2 (en) Motor drive apparatus, hybrid vehicle drive apparatus using the same, and computer readable recording medium recorded with program for causing computer to perform control of motor drive apparatus
JP4640200B2 (ja) 電圧変換装置および電圧変換器の制御方法
JP3928559B2 (ja) 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
US20060055349A1 (en) Motor drive apparatus, vehicle having the same mounted therein, and computer readable storage medium having a program stored therein to cause computer to control voltage conversion
JP2007166874A (ja) 電圧変換装置
JPWO2011101959A1 (ja) 電源装置
JP2005051895A (ja) 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2005051898A (ja) 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2005237117A (ja) 電圧変換装置
JP4013739B2 (ja) 電圧変換装置、電圧変換方法および電圧変換をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP3879528B2 (ja) 電圧変換装置
JP4432463B2 (ja) 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2004072892A (ja) 電気負荷駆動装置、電気負荷駆動方法、電気負荷の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4049038B2 (ja) 負荷駆動装置および負荷駆動装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004194475A (ja) インバータ装置
JP2004166370A (ja) 電圧変換装置
JP3994846B2 (ja) 電圧変換装置、および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP3931734B2 (ja) 電気負荷駆動装置
JP2004201439A (ja) 電圧変換システム、残留電荷消費方法および残留電荷の消費をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004201400A (ja) リアクトル装置
JP2004229399A (ja) 電圧変換装置、電圧変換方法、電力供給方法および電力供給の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004219324A (ja) 電圧変換装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307