JP2004196887A - Apparatus and method for generating natural gas from clathrate hydrate and its heat exchanger - Google Patents

Apparatus and method for generating natural gas from clathrate hydrate and its heat exchanger Download PDF

Info

Publication number
JP2004196887A
JP2004196887A JP2002364813A JP2002364813A JP2004196887A JP 2004196887 A JP2004196887 A JP 2004196887A JP 2002364813 A JP2002364813 A JP 2002364813A JP 2002364813 A JP2002364813 A JP 2002364813A JP 2004196887 A JP2004196887 A JP 2004196887A
Authority
JP
Japan
Prior art keywords
natural gas
heat exchanger
slurry
separator
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002364813A
Other languages
Japanese (ja)
Other versions
JP4284991B2 (en
Inventor
Takaaki Maruyama
隆明 丸山
Norihiro Okumura
則博 奥村
Tsuneo Sugitani
恒雄 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002364813A priority Critical patent/JP4284991B2/en
Publication of JP2004196887A publication Critical patent/JP2004196887A/en
Application granted granted Critical
Publication of JP4284991B2 publication Critical patent/JP4284991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a method for dehydrating natural gas generated through thermal cracking of a clathrate hydrate. <P>SOLUTION: The clathrate hydrate is dispersed in a slurry 10. The apparatus comprises a slurry-pressurizing pump 4 for pumping out the slurry 10 from a storage tank 1 where the slurry 10 is stored, a separator 7 for separating the thermally cracked slurry 10 into three phases, i.e. natural gas 16, a dispersion medium 17 and water 18, a regenerating heat exchanger 5 for exchanging heat between the natural gas 16 generated in the separator 7 and the slurry 10, a heat separator 6 for re-heating a fluid discharged from the regenerating heat exchanger 5 and sending it to the separator 7, a cryogenic condenser 8 for cooling the natural gas 16 discharged from the regenerated heat exchanger 5 to cryogenic temperature, a pipeline for successively sending the dispersion medium 17 separated by the separator 7 to the regenerating heat exchanger 5 and the cryogenic condenser 8 so that it flows down the walls on the natural gas side of these heat exchangers and a KO drum 11 for receiving the fluid from the cryogenic condenser 8 and separating it into natural gas and the dispersion medium. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガスの包接水和物(Clathrated Hydrate Natural Gas 以下、「NGH」という。)をケシロン等の分散媒体と混合したスラリーとして消費地に輸送した後に該スラリーを処理して天然ガスを発生させる方法に関する。
【0002】
【従来の技術】
天然ガスを生産地から消費地に輸送するには従来液化天然ガス(LNG)としてタンカーで輸送するか高圧パイプラインで輸送している。近年、天然ガスをNGHの形態で貯蔵輸送するシステムが提案され、その開発研究が進められている。天然ガスは1〜10MPaの高圧の下で、0〜20℃の温度条件で、水と化合し、主としてCH・5.75HOなる組成の特殊な結合形態の化合物固体(NGH)を形成し、この化合物固体は−20〜−30℃の温度条件であれば大気圧の雰囲気でも分解が殆んど進まず、貯蔵や輸送ができることがわかってきた。
【0003】
図1および図2は非特許文献1に発表された、かかるNGHの生産、輸送および分解再ガス化のフローシートである。
【0004】
【非特許文献1】
Frozen Hydrate for Transport of Natural Gas,by Gudmundsson Jr,Borrehaug A.,
Norwegian Inst.of Techn.,Trondheim(Norway)
Aker Engineering,Oslo(Norway)
Proceeding of 2nd International Conference of Natural Gas Hydrates,
June 2-6,1996,Toulouse.
【0005】
図1に示すように、ガス田からの天然ガスは分子量の大きい炭化水素である液体成分も同伴しているので、処理装置に入り、凝縮性のある液体成分とメタンを主成分とする天然ガスとに分離されて、ガスは反応器に送り込まれる。一方、反応器には高圧水が送り込まれ天然ガスと反応する。反応器は連続的に撹拌される。反応器内の圧力と温度は6.5MPa、10℃程度である。反応は発熱反応であるため、反応器に送られる水は2℃程度に冷却される。
【0006】
生成したNGHは水中に懸濁したスラリー状になっていて、セパレータに送られる。セパレータはベルトフィルタであり、同伴された水分を12%程度まで絞る。それを回転ドラム形のドライヤに入れ乾燥した天然ガスを送り込んで、向流接触させ、同伴された水分の1部をNGHにして、残留水分を10%程度まで下げる。ドライヤを出たNGHはスクリュウーコンベアを有するフリーザに送られ、−15℃程度に冷却される。冷却されたNGHは保冷され、大気圧の減圧タンクに送られる。減圧タンクは回分式に運転する3基で構成されており、1基のタンクの充填中は他のタンクは減圧中であり、さらに他のタンクはNGHの払い出しを行なっている。払い出されたNGHはコンベアで専用の輸送船に積み込まれる。輸送船内では大気圧の天然ガスの雰囲気で、−15℃に保たれる。
【0007】
図2に示すように、輸送船(キャリアー)で消費地に送られたNGHは、20℃の温水を輸送船のタンク内に注水して、NGHを分解し、発生した天然ガスは大口径のダクトで陸上に送られ、コンプレッサーで8MPaに圧縮され、次いで、エチレングリコールの脱水システムにより、8MPaにおける露点が−6℃になるように脱水されてパイプ輸送される。NGHの分解に使用されて、船槽内に残った温水はポンプで汲み上げられ、圧縮機のアフタークーラ、圧縮機を駆動する蒸気タービンのコンデンセート、海水を熱源とするヒートポンプなどで加熱され、再び船槽内に送り込まれる。
【0008】
以上はNGHを固体(粉体)として輸送する場合であるが、上記非特許文献1には取り扱いの便利さおよび圧送用のコンプレッサーを省略できることから粉体をケロシン等の分散媒体に混ぜて、スラリーとして揚陸することも提案されている。図3は上記記載からヒントを得てスラリーとして輸送する場合のNGHの生産、輸送および分解再ガス化のフローシートである。図3に示すように、天然ガス源からの天然ガスは2〜7MPaに圧縮されて反応器に送リ込まれる。一方、水は同様な圧力に加圧され、2℃程度に冷却されて反応器内に送り込まれる。反応器内で水と天然ガスが接触、混合撹拌される。反応は発熱反応で、反応器内の温度と圧力は5〜10℃、2〜7MPaである。反応器内で水とNGHのスラリーとなり、脱水機に送られて残留水分は分離され、水分が12%程度まで絞られる。その後再び天然ガスと接触させて熟成が行なわれる。熟成されたNGHは−20℃〜−30℃に過冷却され、同様に過冷却された液相分散媒体と混合してスラリーとし、加圧下で耐圧容器に閉じ込め、次いで放圧して大気圧とし、ポンプで専用の密閉、気密、保冷の輸送船に送り込む。輸送船は−30℃程度に保冷しておくので、たとえ平衡上分解が進む大気圧下でも急速に分解が進むことはない。
【0009】
輸送船のタンク内でNGHが沈降、濃縮して、分散媒体のケロシンの上澄液が生じるので、これを先のスラリー化設備に返送して、輸送船の載荷重量を減らすようにする。
【0010】
輸送船が洋上を航海し消費地に到着すると、冷却したスラリーに分散媒体を追加して撹拌し、流動性の良いスラリーとしてポンプで揚陸し、陸上のタンクに貯える。陸上の貯蔵タンクはスラリーの1部を抜き出して冷却して循環することによって−30℃程度に保冷し、NGHが急速に分解するのを防止する。
【0011】
NGHの分解・再ガス化に当たっては、タンク内のスラリーを一定の濃度に保っておき、これを必要な圧力まで加圧し、送出量を計量し、スラリーのまま加熱してNGHを水と天然ガスに分解する。NGHを分解するときの条件は分解したときに発生する天然ガスの圧力が、送出に適当な圧力、たとえば、7MPa程度になるのが好ましく、この圧力であれば、送出のための圧縮機は不要である。この圧力下で分解するための加熱温度は40℃程度なので、加熱にヒートポンプを使用する。発生した天然ガスには圧力7MPaで露点が40℃になる水分を含んでいるので、これを冷却してパイプライン内で結露しないように除湿するが、冷却除湿の冷熱の1部はNGHの加熱の際に得られたものでまかなえる。冷却除湿された天然ガスは再度常温まで加熱され、環境温度で送出される。
【0012】
【発明が解決しようとする課題】
NGHを加熱分解して発生した1〜8MPaの高圧の天然ガスは、分解するときの温度が0〜40℃と比較的高く、その圧力温度の状態での飽和水蒸気を含むので、冬期の低温時あるいは配送中の減圧などにより低温になった場合に水分を凝縮・分離し、その凍結またはNGHの再生成などにより配管の閉塞などの不具合を起こす恐れがある。そのため、発生した天然ガスはパイプ輸送する前に除湿する必要がある。除湿するには、エチレングリコールやグリセリンなどの液体乾燥剤またはシリカゲルやゼオライトなどの固体乾燥剤と接触させるか、冷却して水分を氷として析出させて除去するかが行なわれる。
【0013】
この内、たとえば、エチレングリコールやグリセリンなど吸湿性が高く蒸気圧が低い液体で天然ガスを洗浄し、ガスから水分を除去する方法では、吸収塔・再生塔を切り換えて使用することが必要で、複雑なプロセスとなり、かつ、少しではあるが吸着剤の蒸気が天然ガス中に混入する可能性がある。さらに水分を吸着した吸着剤を再生するために高温に加熱する必要があり、エネルギーの消費も大きい。固体乾燥剤についても吸収塔・再生塔を切り換えて使用することが必要で装置が複雑であるばかりでなく、再生のために固体乾燥剤を高温に加熱する必要があり、エネルギーの消費が大きい。
【0014】
一方、NGHを加熱分解した天然ガスを冷却して水分の凝縮(凝固)またはNGHの再生成により天然ガス中の水分を析出させて分離するのは単純な方法であるが、冷却伝熱面が、析出する氷またはNGHで被覆されて伝熱阻害が起こり、さらには冷却器の閉塞などの障害が起こる。これを避けるため、通常、冷却熱交換器を複数基設け、冷却面に氷またはNGHが蓄積した場合に、その機器を切り離して加熱して、融氷あるいはNGHを分解除去し、その後に運転に復帰させる等の切り換え運転が必要である。
【0015】
本発明は従来技術のかかる問題点に鑑み案出されたもので、NGHを加熱分解して発生する高圧の天然ガスを冷却して除湿する際、冷却面への氷やNGHが付着することがなく、したがって、冷却器の切り換え運転の必要がない、包接水和物からの天然ガス発生装置およびそれに使用する熱交換器を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するため、本願請求項1記載の包接水和物からの天然ガス発生装置は、分散媒体中に天然ガスの包接水和物を分散させたスラリーを保冷して貯蔵する貯蔵タンクからスラリーを圧送するスラリー加圧ポンプと、上記スラリーを加熱分解したものを天然ガス、分散媒体および水の3相に分離する分離器と、分離器で発生した天然ガスとスラリー加圧ポンプから送られたスラリーとを熱交換する再生熱交換器と、再生熱交換器と分離器の間に介在し、再生熱交換器を出た流体を再加熱して分離器に送る加熱分解器と、再生熱交換器を出た天然ガスを深冷して除温する深冷凝縮器と、分離器で分離した分散媒体を再生熱交換器に続いて深冷凝縮器に送って、これらの熱交換器の天然ガス側の壁面を流下させて壁面への氷または包接水和物の付着を防ぐようにするパイプラインと、深冷凝縮器からの流体を受け入れて天然ガスと分散媒体とに分離するKOドラムとからなるものである。
【0017】
請求項2記載発明の包接水和物からの天然ガス発生装置は、上記請求項1記載の発生装置において、再生熱交換器に流入する天然ガスと分散媒体の混合流体の1部を分流して深冷凝縮器入口に戻すとともに、KOドラムからの天然ガスと上記混合流体とを熱交換するガス加温熱交換器を有してなるものである。
【0018】
分散媒体は沸点150℃以上、分子量150以上、流動点−25℃以下、0℃における蒸気圧0.2mmHg以下の物質であって、水を殆んど溶解しないものであるのが好ましい。
【0019】
分散媒体はケシロンまたは軽油などの石油留物であってもよい。
【0020】
請求項5記載の包接水和物からの天然ガス発生方法は、分散媒体中に天然ガス包接水和物を分散させたスラリーを保冷して貯蔵する貯蔵タンクからスラリーをスラリー加圧ポンプで圧送し、圧送されたスラリーを加熱分解したものを分離器に送って天然ガス、分散媒体および水の3相に分離し、分離器で発生した天然ガスとスラリー加圧ポンプから圧送されたスラリーとを再生熱交換器で熱交換し、再生熱交換器で一部分解されて発生した天然ガスとスラリーの混合流体を加熱分解器で再加熱して分離器に送り、再生熱交換器でスラリーと熱交換して冷却された天然ガスを深冷凝縮器に送って、深冷除湿する際、再生熱交換器に続いて深冷凝縮器の天然ガス側の壁面に上記分離器で分離された分散媒体を流し、壁面への氷または包接水和物の付着を防止するものである。
【0021】
上記分離器で分離され、再生熱交換器に流入する天然ガスと分散媒体との混合流体の1部を分流するとともに、深冷凝縮器で深冷された後、KOドラムで分散媒体と分離された天然ガスと上記混合流体とを熱交換し、天然ガスを加温するようにしてもよい。
【0022】
請求項7記載の包接水和物からの天然ガス発生装置における熱交換器は、分散媒体中に天然ガス包接水和物を分散させたスラリーを加熱分解して発生した天然ガスを冷却する熱交換器であって、天然ガス側の壁面は分離した分散媒体を流下させて、壁面への氷などの付着を防ぐようになっているものである。
【0023】
上記熱交換器は、シェルアンドチューブ型熱交換器であって、伝熱管は縦方向に配置されていて、上端は管板より上方に突出しており、上端の端面は水平で、かつ、高さが揃っていて、管板上に溜まった分散媒体が伝熱管内を一様に流下するようになっているのが好ましい。
【0024】
上記熱交換器は、伝熱管の上端に伝熱管内の流れを旋回させる口金を取り付けてなるものであるのが好ましい。
【0025】
次に本発明の作用を説明する。NGHはケロシン等の分散媒体中に分散させたスラリーとして、−20℃程度に保冷されて貯蔵タンクに貯蔵されている。貯蔵タンクからスラリー加圧ポンプによって、天然ガスの圧送に必要な圧力、たとえば、7MPa程度に加圧して、再生熱交換器と加熱分解器とをシリーズで通るように送り、加熱分解して分離器に流入する。加熱分解後の分離器における流体の温度は20℃程度である。分離器では分解天然ガス、分散媒体および水の3相に分離する。分離器で分離された天然ガスは再生熱交換器と深冷凝縮器を通り冷却・除湿されて、OKドラムに流入する。一方、分散媒体は、再生熱交換器と深冷凝縮器の天然ガス流路側の壁面に沿って流下し、これらの熱交換器の壁面への氷や再生したNGHの付着を防止する。
【0026】
分離器で分離された天然ガスと分散媒体の1部は、再生熱交換器をバイパスして、ガス加温熱交換器を通り、深冷凝縮器へ流入する。ガス加温熱交換器では、KOドラムで分離された天然ガスと上記の混合流体との間で熱交換して天然ガスを加温し、天然ガスは製品ガスとして外部に送出される。
【0027】
【発明の実施の形態】
以下、本発明の好ましい一実施形態について図面を参照しつつ説明する。図4は本発明の包接水和物からの天然ガス発生装置のフローシートである。図5は深冷凝縮器の断面図、図6は深冷凝縮器の1部拡大断面図である。これらの図において、1は貯蔵タンクである。貯蔵タンク1にはNGHをケロシン中に分散させたスラリー10として輸送船から受け入れて貯蔵している。この貯蔵タンク1は断熱保冷されており、わずかの入熱に対して低温度を保つため、スラリー10の冷却保冷器3を設け、ポンプ2でスラリー10の1部を汲み出して、−30℃程度に冷却して貯蔵タンク1に戻し、タンク1内を−20℃程度に保つようにしている。
【0028】
貯蔵タンク1に貯蔵されたスラリー10はスラリー加圧ポンプ4で加圧されて再生熱交換器5に送られる。スラリー加圧ポンプ4の圧力は発生した天然ガスを外部に圧送する際に必要な圧力、たとえば、7MPa程度にする。また、再生熱交換器5に送られるスラリー10の量は送出する天然ガスの量に相当するNGHを含むように計量調節される。
【0029】
スラリー10は再生熱交換器5に続いて加熱分解器6を通って加熱分解され分離器7に送られる。加熱分解器6からの出口温度は10〜40℃であり、天然ガスの組成や分解するときの圧力により異なる。圧力が7MPa程度であれば、温度は40℃程度にする。再生熱交換器5の加熱側の流体は、分離器7で分離された天然ガス16とケロシン17である。再生熱交換器5内の加熱流体側の壁面にはケロシン17を流すようにして壁面に氷や再生したNGHが付着しないようにする。加熱分解器6の加熱側の流体は海水を熱源とするヒートポンプで発生する蒸気19で、加熱分解器6が蒸気の凝縮器となる。
【0030】
分離器7内では、NGHが加熱分解して発生する天然ガス16と水18および分散媒体であるケロシンの3相に分離されている。水18は重いので最下層であり、圧力差によって水タンク14に送られ、さらに精密にケロシン17を除去した後に廃棄するか、ケロシン17を精密に除去せず、NGHスラリーの輸送船のバラストとして天然ガスの生産地に送り、リサイクル再利用してもよい。
【0031】
分離器7で分離した天然ガス16中にはその温度での飽和水蒸気を含むので、そのまま外部に送ると配管中に結露することになり、除湿する必要がある。ここでは天然ガス16を冷却して水分を氷またはNGHの形で固化・析出させて気相から分離し、被冷却温度の露点を持つ乾燥天然ガスとする。
【0032】
天然ガス16は、先ず再生熱交換器5で−20〜−30℃のスラリー10と熱交換して冷却され、その後深冷熱交換器8で−30℃の冷媒20と熱交換して、−20℃まで冷却される。この冷却過程で、通常は析出する水分が氷結した氷や再生成するNGHが冷却伝熱面に固着・蓄積して運転の妨げになる。しかし、本発明では、天然ガス16は既にケロシンの蒸気で飽和しており、追加のケロシンを注入しても新たな不都合は生じないので、天然ガス16にケロシン17を注入して、再生熱交換器5およびその下流の深冷熱交換器8の天然ガス側の壁面(冷却伝熱面)のほぼ全面にケロシンを流して油膜を形成し、天然ガス16からの水分の固化析出はこのケロシン17の油膜の表面で生じ、析出した氷または再生したNGHはケロシン17中に浮遊した状態となり、ケロシン17と共に流出する。
【0033】
深冷熱交換器8の出口の気水混合流体は、天然ガス、ケロシンおよびケロシン中に浮遊している氷またはNGHの3相となっている。深冷熱交換器8を出た混合流体は、次にKOドラムに流入し、ここで天然ガス16からケロシン17および氷などを分離し、天然ガス16はガス加温熱交換器9でほぼ常温まで加温されて製品ガスとして外部に送出される。
【0034】
ガス加温熱交換器9の加熱側の流体21は、再生熱交換器5に流入する天然ガスとケロシンの混合流体の1部であり、再生熱交換器5をバイパスして流れ、ガス加温熱交換器9を出た混合流体は再生熱交換器5を出た混合流体と合流して深冷凝縮器8に流入する。
【0035】
KOドラム11から出た少量の氷またはNGHを含むケロシン17は、ポンプ12によりリサイクルケロシンタンク13に送られ、それからケロシンリサイクル装置15を経て貯蔵タンク1または輸送船に送られ、揚陸または貯蔵する際のスラリー濃度調節用の補充ケロシンとして使用される。
【0036】
18は冷凍機であり、−30℃程度の冷媒を冷却保冷器3および深冷凝縮器8に送るものである。冷凍機18は流体の冷媒を冷却保冷器3や深冷凝縮器8との間で循環させるようにしてもよいが、LPGを使用し、冷却保冷器3や深冷凝縮器8の直前に膨張弁を設けて、LPGの気化熱により、気体の冷媒としてこれらの熱交換器に流入させるようにしてもよい。
【0037】
図5は本発明に適用する深冷凝縮器の概念図である。なお、再生熱交換器5も同様な構造になっている。図に示すように深冷凝縮器8は垂直配置のシェル8a内に上下の管板8c、8dを配置し、これらの管板8c、8d間に多数の垂直配置の伝熱管8bが取り付けられている。伝熱管8bの上端は上側の管板8cの上面よりも若干延長されていて、管板8c上に液体の溜まりが形成されるようになっている。また、伝熱管8bの上端の高さはすべて等しく、かつ、上端面は水平になっている。したがって、伝熱管8bの内面をケロシン17が均一、かつ、一様に溢流するようになっている。シェル8aの内部で、伝熱管8bの外側を冷媒20が流れるようになっている。冷媒20は深冷凝縮器8の下方から流入し、上方から流出する。したがって、向流式の熱交換器である。
【0038】
深冷凝縮器8には天然ガス16とケロシン17とが上部の鏡板8eから流入し、ケロシン17は上部管板8c上に一旦貯留し、伝熱管8b内に溢流して流下し、液膜を形成して氷やNGHの伝熱管8b内面への付着を防止するとともに、析出した氷やNGHを洗浄する。一方、水分を含む天然ガス16は伝熱管8b内に流入し、流下している間に天然ガス中の水分は析出して氷となり、ケロシン17中に浮遊した状態で流下し、外部に流出する。また、再生熱交換器5内や深冷凝縮器8内は高圧なので、水と天然ガスとが化合し、少量のNGHが発生する。これもケロシン17中に浮遊した状態で流下する。深冷凝縮器8を出た混合流体は天然ガス、ケロシンおよび氷またはNGHの3相となっており、KOドラム11内に流入し、天然ガス16とケロシン中にわずかの氷またはNGHが浮遊した状態のスラリー17とに分離するので、それぞれ先に述べたように処理する。
【0039】
図6は深冷凝縮器8の伝熱管8bの上端の入口に取り付ける口金8fの図面である。図6(B)は断面図、図6(A)は図6(B)のA−A矢視図である。図に示すように、口金8fには外周面から内周面に向って接線方向に複数の孔8gが設けられていて、ケロシン17の溢流が、この孔8gを通って流入して伝熱管8bの内面に旋回流を形成するので、均一な液膜と良好な伝熱特性が得られる。
【0040】
次に本実施形態の作用を説明する。以上説明したように、本発明では、分解天然ガス中に含まれる水分を脱水するのに冷却して水分を凝固させて除去しているが、冷却する際に熱交換器の天然ガス側の壁面に、NGHのスラリーから分離したケロシンを流して氷や再生したNGHが壁面に付着・蓄積するのを防いでいるので、熱交換器を複数台切り換えて使用する必要もないし、熱交換器の壁面に付着した氷を融解・除去するためのエネルギーも不要である。
【0041】
本発明は、以上述べた実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。たとえば、スラリーの分散媒体はケロシンであるとして説明したが、ケロシンに限られない。分散媒体には沸点150℃以上、流動点−25℃以下、0℃における蒸気圧0.2mmHg以下で水を殆ど溶解しない物質であればよい。
【0042】
【発明の効果】
以上述べたように、本発明ではNGHを分解して発生する天然ガスを脱水するのに冷却して水分を氷またはNGHとして析出させて除去しているが、それらの氷やNGHが熱交換器の壁面に付着しないように、壁面に分散媒体を流しているので、熱交換器を複数台切り換え使用する必要や、熱交換器の壁面に付着した氷を融解除去するためのエネルギーも不要であるなどの効果を有する。
【図面の簡単な説明】
【図1】文献に発表されたNGHの生産方法のフローシートである。
【図2】文献に発表された消費地におけるNGHの生産方法のフローシートである。
【図3】NGHをケロシンのスラリーとして輸送する場合のフローシートである。
【図4】本発明のNGHからの天然ガスの発生方法のフローシートである。
【図5】本発明の装置に使用する熱交換器の断面図である。
【図6】熱交換器の口金の図面である。
【符号の説明】
1 貯蔵タンク
4 スラリー加圧ポンプ
5 再生熱交換器
6 加熱分解器
7 分離器
8 深冷凝縮器
9 ガス加温熱交換器
10 スラリー
11 KOドラム
16 天然ガス
17 分散媒体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a natural gas clathrate hydrate (hereinafter, referred to as "NGH"), which is transported to a consuming area as a slurry mixed with a dispersing medium such as kesilon, and then treated with natural gas. The method of generating.
[0002]
[Prior art]
Conventionally, to transport natural gas from a production site to a consumption site, it is conventionally transported as liquefied natural gas (LNG) by tanker or by high-pressure pipeline. In recent years, a system for storing and transporting natural gas in the form of NGH has been proposed, and research and development thereof has been advanced. Natural gas is combined with water under a high pressure of 1 to 10 MPa at a temperature of 0 to 20 ° C. to form a compound solid (NGH) mainly having a composition of CH 4 , 5.75 H 2 O in a special bonded form. However, it has been found that this compound solid hardly decomposes at atmospheric pressure in the temperature condition of -20 to -30 ° C, and can be stored and transported.
[0003]
FIG. 1 and FIG. 2 are flow sheets for the production, transportation and decomposition and regasification of such NGH published in Non-Patent Document 1.
[0004]
[Non-patent document 1]
Frozen Hydrate for Transport of Natural Gas, by Gudmundsson Jr, Borrehaug A.,
Norwegian Inst. Of Techn., Trondheim (Norway)
Aker Engineering, Oslo (Norway)
Proceeding of 2 nd International Conference of Natural Gas Hydrates,
June 2-6,1996, Toulouse.
[0005]
As shown in FIG. 1, the natural gas from the gas field is accompanied by a liquid component which is a hydrocarbon having a high molecular weight, so the natural gas from the gas field enters the processing apparatus, and the condensable liquid component and natural gas mainly composed of methane are used. And the gas is fed into the reactor. On the other hand, high-pressure water is sent into the reactor and reacts with natural gas. The reactor is continuously stirred. The pressure and temperature in the reactor are about 6.5 MPa and about 10 ° C. Since the reaction is exothermic, the water sent to the reactor is cooled to about 2 ° C.
[0006]
The generated NGH is in the form of a slurry suspended in water and sent to the separator. The separator is a belt filter and reduces the accompanying moisture to about 12%. It is put into a rotary drum type dryer, and dried natural gas is fed into it and brought into countercurrent contact to make a part of the entrained water into NGH and reduce residual water to about 10%. The NGH that has left the dryer is sent to a freezer having a screw conveyor, and cooled to about -15 ° C. The cooled NGH is kept cool and sent to an atmospheric pressure reducing tank. The pressure reducing tank is composed of three units operated in a batch system. While one tank is being filled, the other tank is being depressurized, and the other tank is dispensing NGH. The delivered NGH is loaded on a dedicated transport ship by conveyor. Inside the transport ship, it is kept at -15 ° C in the atmosphere of natural gas at atmospheric pressure.
[0007]
As shown in FIG. 2, the NGH sent to the consumption area by the transport ship (carrier) injects 20 ° C. hot water into the tank of the transport ship to decompose the NGH, and the generated natural gas has a large diameter. It is sent to the land by a duct, compressed to 8 MPa by a compressor, and then dewatered by an ethylene glycol dehydration system so that the dew point at 8 MPa is -6 ° C, and piped. The hot water remaining in the hull used for the decomposition of NGH is pumped up by a pump, heated by an aftercooler of a compressor, a condensate of a steam turbine driving the compressor, a heat pump using seawater as a heat source, and the like. It is sent into the tank.
[0008]
The above is a case where NGH is transported as a solid (powder). However, in Non-patent Document 1, the powder is mixed with a dispersion medium such as kerosene because the handling is convenient and a compressor for pressure feeding can be omitted. It has also been proposed to make a landing. FIG. 3 is a flow sheet of NGH production, transportation, and decomposition and regasification when transported as a slurry inspired by the above description. As shown in FIG. 3, natural gas from a natural gas source is compressed to 2-7 MPa and sent to the reactor. On the other hand, water is pressurized to a similar pressure, cooled to about 2 ° C., and sent into the reactor. Water and natural gas are contacted and mixed and stirred in the reactor. The reaction is an exothermic reaction, and the temperature and pressure in the reactor are 5 to 10 ° C and 2 to 7 MPa. A slurry of water and NGH is formed in the reactor and sent to a dehydrator to separate residual water, and the water is reduced to about 12%. After that, it is brought into contact with natural gas again to ripen it. The aged NGH is supercooled to −20 ° C. to −30 ° C., mixed with a similarly supercooled liquid phase dispersion medium to form a slurry, sealed in a pressure vessel under pressure, and then released to atmospheric pressure, Pump into a dedicated hermetic, airtight, refrigerated transport ship. Since the transport ship is kept cool at about −30 ° C., decomposition does not proceed rapidly even under the atmospheric pressure where decomposition proceeds at equilibrium.
[0009]
The sedimentation and concentration of NGH in the tank of the transport ship produces a kerosene supernatant liquid as a dispersion medium, which is returned to the previous slurrying facility so as to reduce the payload of the transport ship.
[0010]
When the transport ship sails offshore and arrives at the consuming area, the dispersion medium is added to the cooled slurry, stirred, pumped off as a highly fluid slurry, and stored in a tank on land. The onshore storage tank draws a portion of the slurry, cools it and circulates it to keep it cool at around -30 ° C to prevent rapid degradation of NGH.
[0011]
When decomposing and regasifying NGH, keep the slurry in the tank at a certain concentration, pressurize it to the required pressure, measure the amount of delivery, and heat the slurry to convert NGH into water and natural gas. Decompose into The conditions for decomposing NGH are such that the pressure of natural gas generated upon decomposition is preferably a pressure suitable for sending, for example, about 7 MPa, and if this pressure is used, a compressor for sending is unnecessary. It is. Since the heating temperature for decomposition under this pressure is about 40 ° C., a heat pump is used for heating. The generated natural gas contains moisture that has a dew point of 40 ° C at a pressure of 7MPa, so it is cooled and dehumidified so as not to cause dew condensation in the pipeline. Can be covered by the one obtained at the time. The cooled and dehumidified natural gas is heated again to room temperature and delivered at ambient temperature.
[0012]
[Problems to be solved by the invention]
The high-pressure natural gas of 1 to 8 MPa generated by thermal decomposition of NGH has a relatively high temperature of 0 to 40 ° C. when decomposed and contains saturated steam at that pressure temperature, so it can be used at low temperatures in winter. Alternatively, when the temperature becomes low due to a reduced pressure during delivery, moisture may be condensed and separated, and the freezing or regeneration of NGH may cause problems such as blockage of the pipe. Therefore, it is necessary to dehumidify the generated natural gas before transporting it by pipe. The dehumidification is performed by contacting with a liquid desiccant such as ethylene glycol or glycerin or a solid desiccant such as silica gel or zeolite, or by cooling to remove water as ice.
[0013]
Among them, for example, in a method of washing natural gas with a liquid having a high hygroscopicity and a low vapor pressure such as ethylene glycol or glycerin and removing moisture from the gas, it is necessary to switch and use an absorption tower and a regeneration tower, The process becomes complicated and, to a small extent, adsorbent vapors can enter the natural gas. Further, it is necessary to heat to a high temperature in order to regenerate the adsorbent that has adsorbed moisture, and energy consumption is large. As for the solid desiccant, it is necessary to switch and use the absorption tower and the regeneration tower, which not only complicates the apparatus, but also requires the solid desiccant to be heated to a high temperature for regeneration, which consumes a large amount of energy.
[0014]
On the other hand, it is a simple method to cool and decompose natural gas obtained by thermally decomposing NGH and precipitate and separate water in natural gas by condensation (coagulation) of water or regeneration of NGH. In addition, it is coated with the precipitated ice or NGH, and heat transfer is inhibited, and further, obstacles such as blockage of a cooler occur. In order to avoid this, usually, a plurality of cooling heat exchangers are provided, and when ice or NGH accumulates on the cooling surface, the equipment is cut off and heated to decompose and remove the ice melt or NGH. A switching operation, such as returning, is required.
[0015]
The present invention has been devised in view of such a problem of the related art, and when cooling and dehumidifying high-pressure natural gas generated by heating and decomposing NGH, ice and NGH adhere to a cooling surface. It is an object of the present invention to provide a natural gas generator from clathrate hydrate and a heat exchanger used for the same, without the need for switching operation of a cooler.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the apparatus for generating a natural gas from clathrate hydrate according to claim 1 of the present application is a storage device that cools and stores a slurry in which a clathrate hydrate of natural gas is dispersed in a dispersion medium. A slurry pressurizing pump for pumping the slurry from the tank, a separator for separating the thermally decomposed slurry into three phases of natural gas, a dispersion medium and water, and a natural gas and slurry pressurizing pump for the separator. A regenerative heat exchanger that exchanges heat with the sent slurry, a thermal cracker that is interposed between the regenerative heat exchanger and the separator and reheats the fluid that has exited the regenerative heat exchanger and sends the fluid to the separator; The chilled condenser that cools and removes the temperature of the natural gas that has exited the regenerative heat exchanger, and the dispersion medium separated by the separator is sent to the cryogenic condenser following the regenerative heat exchanger, and these heat exchanges are performed. Ice or clathrate hydration on the natural gas side wall of the vessel It is composed of a pipeline for preventing the adhesion of substances and a KO drum for receiving fluid from the cryogenic condenser and separating it into natural gas and a dispersion medium.
[0017]
The natural gas generator from clathrate hydrate according to the second aspect of the present invention is the generator according to the first aspect, wherein a part of the mixed fluid of the natural gas and the dispersion medium flowing into the regenerative heat exchanger is divided. And a gas heating heat exchanger for exchanging heat between the natural gas from the KO drum and the mixed fluid.
[0018]
The dispersion medium is a substance having a boiling point of 150 ° C. or higher, a molecular weight of 150 or higher, a pour point of −25 ° C. or lower, and a vapor pressure of 0.2 mmHg or lower at 0 ° C., and preferably does not substantially dissolve water.
[0019]
The dispersing medium may be a petroleum distillate such as kesilon or light oil.
[0020]
The method for generating natural gas from clathrate hydrate according to claim 5, wherein the slurry in which a slurry in which natural gas clathrate hydrate is dispersed in a dispersion medium is kept cool and stored by a slurry pressurizing pump. The pressure-fed and thermally decomposed slurry is sent to a separator to separate the natural gas, the dispersion medium and water into three phases, and the natural gas generated by the separator and the slurry fed from the slurry pressure pump are combined with the natural gas. The mixed fluid of natural gas and slurry, which was partially decomposed by the regenerative heat exchanger, was reheated by the thermal decomposer and sent to the separator, and the slurry and heat were regenerated by the regenerative heat exchanger. When the exchanged and cooled natural gas is sent to the cryogenic condenser for cryogenic dehumidification, the dispersion medium separated by the separator on the natural gas side wall of the cryogenic condenser following the regenerative heat exchanger Of ice or clathrate hydrate on the wall It is intended to prevent wear.
[0021]
A part of the mixed fluid of the natural gas and the dispersion medium, which is separated by the separator and flows into the regenerative heat exchanger, is diverted and, after being cooled by the cryogenic condenser, is separated from the dispersion medium by the KO drum. Heat may be exchanged between the natural gas and the mixed fluid to heat the natural gas.
[0022]
The heat exchanger in the apparatus for generating a natural gas from clathrate hydrate according to claim 7 cools the natural gas generated by thermally decomposing a slurry in which the natural gas clathrate hydrate is dispersed in a dispersion medium. In the heat exchanger, the wall surface on the natural gas side allows the separated dispersion medium to flow down to prevent the adhesion of ice or the like to the wall surface.
[0023]
The heat exchanger is a shell-and-tube heat exchanger, wherein the heat transfer tubes are arranged vertically, the upper end protrudes above the tube sheet, the upper end surface is horizontal, and the height is higher. Are preferably arranged so that the dispersion medium accumulated on the tube sheet flows down uniformly in the heat transfer tubes.
[0024]
It is preferable that the heat exchanger is provided with a base for rotating a flow in the heat transfer tube at an upper end of the heat transfer tube.
[0025]
Next, the operation of the present invention will be described. NGH is stored in a storage tank as a slurry dispersed in a dispersion medium such as kerosene, which is kept cool at about −20 ° C. From the storage tank, the pressure required for pumping natural gas, for example, about 7 MPa, is sent to the regenerative heat exchanger and the pyrolyzer through a series by a slurry pressurizing pump, and then heated, decomposed and separated. Flows into. The temperature of the fluid in the separator after thermal decomposition is about 20 ° C. In the separator, the natural gas, the dispersing medium and the water are separated into three phases. The natural gas separated by the separator passes through the regenerative heat exchanger and the cryogenic condenser, is cooled and dehumidified, and flows into the OK drum. On the other hand, the dispersion medium flows down along the wall surfaces of the regenerative heat exchanger and the cryogenic condenser on the side of the natural gas channel, and prevents adhesion of ice and regenerated NGH to the wall surfaces of these heat exchangers.
[0026]
Part of the natural gas and the dispersion medium separated by the separator bypasses the regenerative heat exchanger, passes through the gas warming heat exchanger, and flows into the cryogenic condenser. In the gas heating heat exchanger, heat is exchanged between the natural gas separated by the KO drum and the mixed fluid to heat the natural gas, and the natural gas is sent to the outside as a product gas.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a flow sheet of the apparatus for generating a natural gas from clathrate hydrate according to the present invention. FIG. 5 is a sectional view of the refrigerated condenser, and FIG. 6 is an enlarged sectional view of a part of the refrigerated condenser. In these figures, 1 is a storage tank. The storage tank 1 receives and stores a slurry 10 in which NGH is dispersed in kerosene from a transport ship. This storage tank 1 is insulated and kept cool, and in order to keep a low temperature against a slight heat input, a cooling / cooling device 3 for the slurry 10 is provided, and a part of the slurry 10 is pumped out by the pump 2 to about -30 ° C. Then, it is returned to the storage tank 1 and the inside of the tank 1 is kept at about −20 ° C.
[0028]
The slurry 10 stored in the storage tank 1 is pressurized by the slurry pressurizing pump 4 and sent to the regenerative heat exchanger 5. The pressure of the slurry pressurizing pump 4 is set to a pressure required for pumping the generated natural gas to the outside, for example, about 7 MPa. In addition, the amount of the slurry 10 sent to the regenerative heat exchanger 5 is adjusted so as to include NGH corresponding to the amount of natural gas to be sent.
[0029]
The slurry 10 is thermally decomposed through the regenerative heat exchanger 5 and the thermal decomposer 6 and sent to the separator 7. The outlet temperature from the thermal cracker 6 is 10 to 40 ° C., and varies depending on the composition of natural gas and the pressure at which it is decomposed. If the pressure is about 7 MPa, the temperature is about 40 ° C. The fluid on the heating side of the regenerative heat exchanger 5 is the natural gas 16 and the kerosene 17 separated by the separator 7. Kerosene 17 is caused to flow on the wall surface on the heating fluid side in the regenerative heat exchanger 5 so that ice and regenerated NGH do not adhere to the wall surface. The fluid on the heating side of the heat decomposer 6 is steam 19 generated by a heat pump using seawater as a heat source, and the heat decomposer 6 serves as a steam condenser.
[0030]
In the separator 7, NGH is separated into three phases of natural gas 16 generated by thermal decomposition, water 18 and kerosene as a dispersion medium. The water 18 is heavy and is the bottom layer.It is sent to the water tank 14 by the pressure difference, and then discarded after removing kerosene 17 more precisely, or without removing kerosene 17 precisely, it is used as a ballast of NGH slurry transport ship. It may be sent to a natural gas producing area and recycled.
[0031]
Since the natural gas 16 separated by the separator 7 contains saturated steam at that temperature, if it is sent to the outside as it is, condensation will form in the piping, and it will be necessary to dehumidify it. Here, the natural gas 16 is cooled, and water is solidified and precipitated in the form of ice or NGH and separated from the gas phase to obtain a dry natural gas having a dew point at the temperature to be cooled.
[0032]
First, the natural gas 16 is cooled by exchanging heat with the slurry 10 at −20 to −30 ° C. in the regenerative heat exchanger 5, and then heat-exchanging with the refrigerant 20 at −30 ° C. in the cryogenic heat exchanger 8 to obtain −20. Cool to ° C. During this cooling process, ice that has precipitated out and ice that has been frozen or NGH that regenerates usually adheres and accumulates on the cooling heat transfer surface and hinders operation. However, in the present invention, the natural gas 16 is already saturated with the vapor of kerosene, and no additional inconvenience occurs even if the additional kerosene is injected. Almost all of the natural gas side wall (cooling heat transfer surface) of the heat exchanger 5 and the cryogenic heat exchanger 8 downstream thereof is flowed with kerosene to form an oil film. The ice or the regenerated NGH generated on the surface of the oil film floats in the kerosene 17 and flows out together with the kerosene 17.
[0033]
The air-water mixture fluid at the outlet of the cryogenic heat exchanger 8 has three phases of natural gas, kerosene, and ice or NGH suspended in kerosene. The mixed fluid leaving the cryogenic heat exchanger 8 then flows into the KO drum, where kerosene 17 and ice are separated from the natural gas 16, and the natural gas 16 is heated to almost normal temperature by the gas-heated heat exchanger 9. It is heated and sent out as product gas.
[0034]
The fluid 21 on the heating side of the gas heating heat exchanger 9 is a part of the mixed fluid of natural gas and kerosene flowing into the regenerative heat exchanger 5, flows by bypassing the regenerative heat exchanger 5, and The mixed fluid exiting the heat exchanger 9 merges with the mixed fluid exiting the regenerative heat exchanger 5 and flows into the cryogenic condenser 8.
[0035]
The kerosene 17 containing a small amount of ice or NGH from the KO drum 11 is sent to a recycled kerosene tank 13 by a pump 12 and then sent to a storage tank 1 or a transport ship via a kerosene recycling device 15 for landing or storage. Is used as a supplemental kerosene for adjusting the slurry concentration.
[0036]
Reference numeral 18 denotes a refrigerator, which sends a refrigerant at about −30 ° C. to the cooling cooler 3 and the cryogenic condenser 8. The refrigerator 18 may circulate the refrigerant of the fluid between the cooling cooler 3 and the cryogenic condenser 8. However, the refrigerator 18 expands immediately before the cooling cooler 3 and the cryogenic condenser 8 using LPG. A valve may be provided so that the heat of vaporization of the LPG flows into these heat exchangers as a gaseous refrigerant.
[0037]
FIG. 5 is a conceptual diagram of a cryogenic condenser applied to the present invention. The regenerative heat exchanger 5 has a similar structure. As shown in the drawing, the cryogenic condenser 8 has upper and lower tube sheets 8c and 8d arranged in a vertically arranged shell 8a, and a number of vertically arranged heat transfer tubes 8b are mounted between these tube sheets 8c and 8d. I have. The upper end of the heat transfer tube 8b is slightly extended from the upper surface of the upper tube sheet 8c so that a liquid pool is formed on the tube sheet 8c. The heights of the upper ends of the heat transfer tubes 8b are all equal, and the upper end surface is horizontal. Therefore, the kerosene 17 uniformly and uniformly overflows the inner surface of the heat transfer tube 8b. Inside the shell 8a, the refrigerant 20 flows outside the heat transfer tube 8b. The refrigerant 20 flows in from below the cryogenic condenser 8 and flows out from above. Therefore, it is a countercurrent type heat exchanger.
[0038]
Natural gas 16 and kerosene 17 flow into the cryogenic condenser 8 from the upper end plate 8e, and the kerosene 17 is temporarily stored on the upper tube plate 8c, overflows into the heat transfer tube 8b, flows down, and removes the liquid film. The formed ice and NGH are prevented from adhering to the inner surface of the heat transfer tube 8b, and the deposited ice and NGH are washed. On the other hand, the natural gas 16 containing water flows into the heat transfer tube 8b, and while flowing down, the water in the natural gas precipitates out to become ice, flows down while floating in the kerosene 17, and flows out to the outside. . Further, since the inside of the regenerative heat exchanger 5 and the inside of the cryogenic condenser 8 are at a high pressure, water and natural gas combine to generate a small amount of NGH. This also flows down while floating in the kerosene 17. The mixed fluid exiting the cryogenic condenser 8 has three phases of natural gas, kerosene and ice or NGH, flows into the KO drum 11, and a slight amount of ice or NGH floats in the natural gas 16 and kerosene. Since the slurry 17 is separated into the slurry 17 in the state, it is processed as described above.
[0039]
FIG. 6 is a drawing of the base 8f attached to the inlet at the upper end of the heat transfer tube 8b of the cryogenic condenser 8. FIG. 6B is a cross-sectional view, and FIG. 6A is a view on arrow AA in FIG. 6B. As shown in the figure, the base 8f is provided with a plurality of holes 8g in a tangential direction from the outer peripheral surface toward the inner peripheral surface, and the overflow of the kerosene 17 flows through the holes 8g and flows into the heat transfer tube. Since a swirling flow is formed on the inner surface of 8b, a uniform liquid film and good heat transfer characteristics can be obtained.
[0040]
Next, the operation of the present embodiment will be described. As described above, in the present invention, the water contained in the decomposed natural gas is dehydrated by cooling to solidify and remove the water, but when cooling, the wall surface of the heat exchanger on the natural gas side is cooled. In addition, the kerosene separated from the NGH slurry is flown to prevent ice and regenerated NGH from adhering and accumulating on the wall surface, so that it is not necessary to switch and use a plurality of heat exchangers, and it is not necessary to use the heat exchanger wall surface. No energy is required to melt and remove the ice attached to the surface.
[0041]
The present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention. For example, the dispersion medium of the slurry is described as being kerosene, but is not limited to kerosene. The dispersing medium may be any substance that has a boiling point of 150 ° C. or higher, a pour point of −25 ° C. or lower, a vapor pressure at 0 ° C. of 0.2 mmHg or lower, and hardly dissolves water.
[0042]
【The invention's effect】
As described above, in the present invention, natural gas generated by decomposing NGH is cooled and dehydrated to remove water as ice or NGH, but the ice or NGH is removed by a heat exchanger. Since the dispersing medium is flown on the wall so that it does not adhere to the wall, it is not necessary to switch and use multiple heat exchangers, and energy for melting and removing ice attached to the wall of the heat exchanger is unnecessary. It has effects such as.
[Brief description of the drawings]
FIG. 1 is a flow sheet of a method for producing NGH published in the literature.
FIG. 2 is a flow sheet of a method for producing NGH in a consumption area published in the literature.
FIG. 3 is a flow sheet when NGH is transported as a slurry of kerosene.
FIG. 4 is a flow sheet of the method for generating natural gas from NGH of the present invention.
FIG. 5 is a sectional view of a heat exchanger used in the apparatus of the present invention.
FIG. 6 is a drawing of a base of a heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage tank 4 Slurry pressurization pump 5 Regeneration heat exchanger 6 Heat decomposition unit 7 Separator 8 Chilled condenser 9 Gas heating heat exchanger 10 Slurry 11 KO drum 16 Natural gas 17 Dispersion medium

Claims (9)

分散媒体中に天然ガスの包接水和物を分散させたスラリーを保冷して貯蔵する貯蔵タンクからスラリーを圧送するスラリー加圧ポンプと、上記スラリーを加熱分解したものを天然ガス、分散媒体および水の3相に分離する分離器と、分離器で発生した天然ガスとスラリー加圧ポンプから送られたスラリーとを熱交換する再生熱交換器と、再生熱交換器と分離器の間に介在し、再生熱交換器を出た流体を再加熱して分離器に送る加熱分解器と、再生熱交換器を出た天然ガスを深冷して除温する深冷凝縮器と、分離器で分離した分散媒体を再生熱交換器に続いて深冷凝縮器に送って、これらの熱交換器の天然ガス側の壁面を流下させて壁面への氷または包接水和物の付着を防ぐようにするパイプラインと、深冷凝縮器からの流体を受け入れて天然ガスと分散媒体とに分離するKOドラムとからなることを特徴とする包接水和物からの天然ガス発生装置。A slurry pressurizing pump that pumps the slurry from a storage tank that cools and stores the slurry in which the clathrate hydrate of natural gas is dispersed in the dispersion medium, and heats and decomposes the slurry to natural gas, a dispersion medium and A separator for separating into three phases of water, a regenerative heat exchanger for exchanging heat between the natural gas generated by the separator and the slurry sent from the slurry pressurizing pump, and a separator interposed between the regenerative heat exchanger and the separator A thermal cracker that reheats the fluid that has exited the regenerative heat exchanger and sends it to the separator, a cryogenic condenser that chills the natural gas that has exited the regenerative heat exchanger and removes the temperature, and a separator The separated dispersion medium is sent to a refrigerated condenser following the regenerative heat exchanger to allow the natural gas side walls of these heat exchangers to flow down to prevent ice or clathrate hydrates from adhering to the walls. Pipeline and fluid from the cryogenic condenser Natural gas generator from clathrate hydrate, characterized by comprising the KO drum for separating the scan and the dispersion medium. 再生熱交換器に流入する、天然ガスと分散媒体の混合流体の1部を分流して深冷凝縮器入口に戻すとともに、KOドラムからの天然ガスと混合流体とを熱交換するガス加温熱交換器を有してなる請求項1記載の包接水和物からの天然ガス発生装置。Gas heating heat exchange for diverting part of the mixed fluid of natural gas and dispersion medium flowing into the regenerative heat exchanger and returning it to the inlet of the cryogenic condenser, and exchanging heat between the natural gas and the mixed fluid from the KO drum The apparatus for generating natural gas from clathrate hydrate according to claim 1, comprising a vessel. 分散媒体は沸点150℃以上、分子量150以上、流動点−25℃以下、0℃における蒸気圧0.2mmHg以下の物質であって、水を殆んど溶解しないものである請求項1または請求項2記載の包接水和物からの天然ガス発生装置。The dispersing medium is a substance having a boiling point of 150 ° C. or higher, a molecular weight of 150 or higher, a pour point of −25 ° C. or lower, and a vapor pressure of 0.2 mmHg or lower at 0 ° C. that hardly dissolves water. A natural gas generator from the clathrate hydrate according to 2. 分散媒体はケシロンまたは軽油などの石油留物である請求項3記載の包接水和物からの天然ガス発生装置。The natural gas generator from clathrate hydrate according to claim 3, wherein the dispersion medium is a petroleum distillate such as kesilon or light oil. 分散媒体中に天然ガス包接水和物を分散させたスラリーを保冷して貯蔵する貯蔵タンクからスラリーをスラリー加圧ポンプで圧送し、圧送されたスラリーを加熱分解したものを分離器に送って天然ガス、分散媒体および水の3相に分離し、分離器で発生した天然ガスとスラリー加圧ポンプから圧送されたスラリーとを再生熱交換器で熱交換し、再生熱交換器で一部分解されて発生した天然ガスとスラリーの混合流体を加熱分解器で再加熱して分離器に送り、再生熱交換器でスラリーと熱交換して冷却された天然ガスを深冷凝縮器に送って、深冷除湿する際、再生熱交換器に続いて深冷凝縮器の天然ガス側の壁面に上記分離器で分離された分散媒体を流し、壁面への氷または包接水和物の付着を防止することを特徴とする包接水和物からの天然ガス発生方法。The slurry in which the natural gas clathrate hydrate is dispersed in the dispersing medium is pumped with a slurry pressurizing pump from a storage tank for cooling and storing the slurry, and the thermally decomposed slurry is sent to a separator. The natural gas, dispersion medium and water are separated into three phases, and the natural gas generated in the separator and the slurry pumped from the slurry pressurizing pump exchange heat with a regenerative heat exchanger and are partially decomposed by the regenerative heat exchanger. The mixed fluid of natural gas and slurry generated by reheating is reheated by a thermal cracker and sent to a separator, and natural gas cooled by heat exchange with the slurry by a regenerative heat exchanger is sent to a cryogenic condenser, At the time of cold dehumidification, the dispersion medium separated by the separator is caused to flow on the natural gas side wall of the cryogenic condenser following the regenerative heat exchanger to prevent ice or clathrate hydrate from adhering to the wall. Natural from clathrate hydrate characterized by the fact that It is generated method. 上記分離器で分離され、再生熱交換器に流入する天然ガスと分散媒体との混合流体の1部を分流するとともに、深冷凝縮器で深冷された後、KOドラムで分散媒体と分離された天然ガスと上記混合流体とを熱交換し、天然ガスを加温する請求項5記載の包接水和物からの天然ガス発生方法。A part of the mixed fluid of the natural gas and the dispersion medium, which is separated by the separator and flows into the regenerative heat exchanger, is diverted and, after being cooled by the cryogenic condenser, is separated from the dispersion medium by the KO drum. The method for generating natural gas from clathrate hydrate according to claim 5, wherein the natural gas and the mixed fluid are heat-exchanged to heat the natural gas. 分散媒体中に天然ガス包接水和物を分散させたスラリーを加熱分解して発生した天然ガスを冷却する熱交換器であって、天然ガス側の壁面は分離した分散媒体を流下させて、壁面への氷などの付着を防ぐようになっていることを特徴とする包接水和物からの天然ガス発生装置における熱交換器。A heat exchanger that cools the natural gas generated by heating and decomposing the slurry in which the natural gas clathrate hydrate is dispersed in the dispersion medium, wherein the natural gas side wall surface allows the separated dispersion medium to flow down, A heat exchanger in a natural gas generator from clathrate hydrate, characterized in that adhesion of ice or the like to a wall surface is prevented. 熱交換器はシェルアンドチューブ型であって、伝熱管は縦方向に配置されていて、上端は管板より上方に突出しており、上端の端面は水平で、かつ、高さが揃っていて、管板上に溜まった分散媒体が伝熱管内を一様に流下するようになっている請求項7記載の包接水和物からの天然ガス発生装置における熱交換器。The heat exchanger is a shell and tube type, the heat transfer tubes are arranged in the vertical direction, the upper end protrudes above the tube sheet, the upper end surface is horizontal, and the height is uniform, The heat exchanger in a natural gas generator from clathrate hydrate according to claim 7, wherein the dispersion medium accumulated on the tube sheet flows down uniformly in the heat transfer tube. 伝熱管の上端に伝熱管内の流れを旋回させる口金を取り付けてなる請求項8記載の包接水和物からの天然ガス発生装置における熱交換器。The heat exchanger in the natural gas generator from clathrate hydrate according to claim 8, wherein a cap for rotating the flow in the heat transfer tube is attached to an upper end of the heat transfer tube.
JP2002364813A 2002-12-17 2002-12-17 Natural gas generator from clathrate hydrate, generation method and heat exchanger thereof Expired - Fee Related JP4284991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364813A JP4284991B2 (en) 2002-12-17 2002-12-17 Natural gas generator from clathrate hydrate, generation method and heat exchanger thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364813A JP4284991B2 (en) 2002-12-17 2002-12-17 Natural gas generator from clathrate hydrate, generation method and heat exchanger thereof

Publications (2)

Publication Number Publication Date
JP2004196887A true JP2004196887A (en) 2004-07-15
JP4284991B2 JP4284991B2 (en) 2009-06-24

Family

ID=32762527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364813A Expired - Fee Related JP4284991B2 (en) 2002-12-17 2002-12-17 Natural gas generator from clathrate hydrate, generation method and heat exchanger thereof

Country Status (1)

Country Link
JP (1) JP4284991B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303083A (en) * 1999-04-23 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Hydrate slurry fuel, its production, and apparatus for producing it, and method for storing it
JP2001254895A (en) * 2000-03-14 2001-09-21 Sumitomo Precision Prod Co Ltd Liquefied gas vaporization device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303083A (en) * 1999-04-23 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Hydrate slurry fuel, its production, and apparatus for producing it, and method for storing it
JP2001254895A (en) * 2000-03-14 2001-09-21 Sumitomo Precision Prod Co Ltd Liquefied gas vaporization device

Also Published As

Publication number Publication date
JP4284991B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4913733B2 (en) Carbon dioxide liquefaction method and apparatus
US2940268A (en) Apparatus for transporting, storing and using natural gas
CN102762701B (en) Apparatus &amp; process for treating natural gas
CN1131982C (en) improved multi-component refrigeration process for liquefaction of natural gas
USRE39826E1 (en) Comprehensive natural gas processing
CN111656115B (en) Process integration for natural gas condensate recovery
US6461413B1 (en) Method for dehydrating a wet gas using a liquid dessicant, with advanced regeneration of said dessicant
CN101854990B (en) Process for the separation of CO2 from a gaseous feed stream
KR20110036767A (en) Method and system for extracting carbon dioxide by anti-sublimation at raised pressure
JP2009500498A (en) Method for mass transport and storage of gases in liquid media
CA2987988C (en) Method and apparatus for dehydration of a hydrocarbon gas
US9511323B2 (en) Dehydration of gases with liquid desiccant
KR102248010B1 (en) Natural gas pretreatment facility
JP4284991B2 (en) Natural gas generator from clathrate hydrate, generation method and heat exchanger thereof
US5630865A (en) Cold gas dryer for compressed natural gas
JP2014501701A (en) Method for separating a pollutant or a mixture of pollutants from a CH4 containing gas feed stream
CN209836108U (en) Natural gas purification system
CN101290184B (en) Chemical industry tail gas liquefied separation method and equipment
KR102198046B1 (en) gas treatment system and offshore plant having the same
CN209098595U (en) A kind of associated gas condensate recovery device for offshore marginal oilfield
CN102304404B (en) System and method for removing benzene in natural gas
KR102175556B1 (en) gas treatment system and offshore plant having the same
CN211079068U (en) Natural gas denitrification device
KR102132073B1 (en) gas treatment system and offshore plant having the same
JPS5813203B2 (en) Method and equipment for recovering hydrocarbons in gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees