JP2004194768A - Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it - Google Patents

Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it Download PDF

Info

Publication number
JP2004194768A
JP2004194768A JP2002364613A JP2002364613A JP2004194768A JP 2004194768 A JP2004194768 A JP 2004194768A JP 2002364613 A JP2002364613 A JP 2002364613A JP 2002364613 A JP2002364613 A JP 2002364613A JP 2004194768 A JP2004194768 A JP 2004194768A
Authority
JP
Japan
Prior art keywords
wire
core material
guide wire
catheter
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364613A
Other languages
Japanese (ja)
Inventor
Shin Sumimoto
伸 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002364613A priority Critical patent/JP2004194768A/en
Publication of JP2004194768A publication Critical patent/JP2004194768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09075Basic structures of guide wires having a core without a coil possibly combined with a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a guide wire core material of a catheter for medical use which is highly strong at an introduction part, namely is strong in torque transmission, and especially has excellent transmission property of twist torque in a bent state, and a guide wire of the catheter for the medical use using it. <P>SOLUTION: The guide wire of the catheter for the medical use is constituted of an insertion part 2 and the introduction part 3 connected to the insertion part. Then, the core material 1 forming the introduction part 3 is formed of a straight wire made of high silica stainless steel and the wire is subjected to the heat treatment to hold it at a high temperature (450°C to 500°C) for 0.5 to 240 minutes. Thus, the guide wire core material 1 is turned to be the one of high strength equal to or higher than 2,800MPa. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、治療や検査を必要とする血管、消化菅、気管、その他体腔(以下、要治療菅という)内に導入する細い菅状のカテーテルを案内するのに用いる医療用カテーテルのガイドワイヤ用芯材(以下、「芯材」ともいう)及び医療用カテーテルのガイドワイヤ(以下「ガイドワイヤ」ともいう)に関する。
【0002】
【従来の技術】
医療用カテーテルのガイドワイヤの構造は、用途に応じて種々のものがあるが、一般的には、図9に示すように、所定長さの芯材010の周囲を合成樹脂011で被覆したものと、図10に示すように、所定長さの芯材012の周囲をコイルスプリング013で被包したものが知られている。そして、図9、図10に示すように、芯材010と012には、ガイドワイヤとしての挿入部分に柔軟性を付与するため、挿入部010aと012aは次第に断面積が減少する先細形状に形成されている。
【0003】
ガイドワイヤとして重要な性能は、手元操作によって要治療菅内にスムーズにガイドワイヤを挿入でき、カテーテルを目的部位に正確に案内導入できることである。このため、ガイドワイヤには、その挿入部が、複雑に蛇行する要治療菅内に対応し、かつ要治療菅の内壁を傷つけることなく挿入し得る形態順応性(しなやかさ)を備えるとともに、挿入部に続く導入部が手元での微妙な操作量でも挿入部に正確にトルクを伝達できるトルク伝達性(高強度性)を備えていることが要求される。上記のトルク伝達性とは、微妙な手元操作量を挿入部(先端部)に正確に伝達し得る特性を意味し、トルク伝達性に優れるとは、伝達トルクおよびねじり剛性が高いことを意味する。
【0004】
そして、今日、医療技術の発達に応じて、複雑な分岐血管に対しても適用できるようにするため、ガイドワイヤの芯材には、導入部の高強度と挿入部のしなやかさが求められており、特に、導入部には3000MPa以上の高強度の真直ワイヤが望まれている。
【0005】
ガイドワイヤの芯材として、導入部の高強度と挿入部のしなやかさを有するものとして、挿入部の芯材を例えばNi−Ti合金製の線材で形成し、導入部の芯材を例えば、ステンレス鋼製の線材で形成して、これら両部材を接続したガイドワイヤが最近提案されている。
【0006】
【特許文献1】特許第2729856号公報
【特許文献2】特公平6−69495号公報
【特許文献3】特公平4−2274号公報
【0007】
【発明が解決しようとする課題】
ところで、ガイドワイヤの導入部の芯材を、ステンレス鋼製の線材で形成した上記の従来例のガイドワイヤは、後に記載する表2、表3に示すように、「先端歪み角」、「曲げ応力下での捩じり伝達特性」(いずれも後述)において劣るという欠点があり、そのため、トルク伝達が弱く、図4に示すような、曲げられた状態での捩じりトルクの伝達性が低いという課題がある。
本発明は、上記従来の技術の有するこのような課題を解決しようとするもので、本発明は、導入部のガイドワイヤ芯材が、高強度であり、つまりトルク伝達が強く、特に曲げられた状態での捩じりトルクの伝達性に優れた医療用カテーテルのガイドワイヤ芯材、およびこれを用いた医療用カテーテルのガイドワイヤを提供することにある。
【0008】
【課題を解決するための手段】
本発明は、挿入部と同挿入部に連接される導入部とからなる医療用カテーテルのガイドワイヤにおいて、上記導入部を形成する芯材を、2800MPa以上の高強度の真直ワイヤで構成することで課題解決の手段としている。
【0009】
また、高珪素ステンレス鋼製の真直線材を熱加工して、上記2800MPa以上の高強度の真直ワイヤを形成することで課題解決の手段としている。
【0010】
さらに、上記高珪素ステンレス鋼製の線材を、300°C弱〜550°Cの温度下で0.5〜240分保持する熱処理を行うことで課題解決の手段としている。
【0011】
また、上記高珪素ステンレス鋼製の線材として、直径0.2mm〜0.5mm、好ましくは直径0.30mm〜0.35mmのものを用いることで課題解決の手段としている。
【0012】
さらにまた、上高珪素ステンレス鋼製の線材として、重量%で、C:0.08%以下、Si:3.0〜5.0%、Mn:3.0%以下、Ni:4.0〜12.0%、Cr:12.0〜24.0%、Mo:0.9〜2.0%、Cu:0.5〜2.0%、残部が鉄及び不可避的不純物からなる線材を用いることでことで課題解決の手段としている。
【0013】
上記芯材を合成樹脂や複合材料などで被覆したり、コイルスプリングで被包したりしてり、医療用カテーテルのガイドワイヤを構成することで課題解決の手段としている。
【0014】
【発明の実施の形態】
次に、図面とともに本発明の実施形態について説明する。図1は本発明の一実施形態としての医療用カテーテルのガイドワイヤ用芯材の断面図、図2(a),(b)は同医療用カテーテルのガイドワイヤの断面図、図3は捩じり伝達力測定装置の概略図。図4は屈曲状態における捩じり応力伝達測定装置の概略図、図5は熱処理効果を示すグラフ、図6は捩じり伝達力特性を示すグラフ、図7は屈曲状態における捩じり応力伝達を示すグラフ、図8は挿入部と導入部との接続部構造の1例を示す断面図である。
【0015】
図1において、符号1は所定長さ(例えば、2000mm〜3000mm)を有する医療用カテーテルのガイドワイヤ用芯材(以下「芯材」と略記することがある)を示しており、この芯材1は、医療用カテーテルのガイドワイヤの挿入部2とこの挿入部2に一体的に接合される導入部3とで構成されている。符号4はその接合部を示す。
ここで、挿入部2の弾性限度は導入部3の弾性限度よりも大きく、導入部3のねじり剛性は挿入部のねじり剛性よりも大きくなるような関係を満たすように、化学組成の異なる線材で構成される。
【0016】
挿入部2の長さは、特に限定されるものではないが、通常100mm〜300mm程度であり、また、挿入部2の断面形状は導入部3の断面形状と同じでもよいが、図1に示すように、挿入部2は先端に向けて断面積が次第に減少する先細形状に形成すると、一層柔軟になり形態順応性を向上させることができる。
【0017】
挿入部2を構成する線材としては、従来のもの(例えば、Ti−Ni系合金、Cu−Al−Ni系合金、あるいはFe−Ni−Ti系合金から選択したいずれかの合金が好適である)が用いられている。
導入部3を構成する線材としては、この実施形態では、高珪素ステンレス鋼製の線材が用いられている。
【0018】
導入部3を構成する線材として、高珪素ステンレス鋼製の線材が好適であるのは次の理由による。
すなわち、高珪素ステンレス鋼製の線材は、後述するように、従来の医療用カテーテルのガイドワイヤ用の導入部を構成する線材として通常用いられているステンレス鋼に比べて、強度に優れ、かつ屈曲状態における捩じり応力伝達特性に優れた線材であるからである。
【0019】
この実施形態においても、挿入部2の芯材と導入部3の芯材との接合は、従来のものと同様の、例えば、挿入部2と導入部3を構成する両方の線材に対して親和性を有する低融点のろう接合金を介して接合される。
このほか、レーザ溶接、電子ビーム溶接により両線材を接合するようにしてもよいし、図8に示すように、挿入部2と導入部3とを管状接続部材4aで接続する構成としてもよい。この場合、管状接続部材4aを複数個に分断する構成とすると、管状接続部材4aの曲順応性を図ることができる。
【0020】
上記のようにして構成された芯材1が、図2(a)に示すように、その全体に合成樹脂5で被覆されて、医療用カテーテルのガイドワイヤが製作される。
合成樹脂5の被覆に代えて、図2(b)に示すように、挿入部2のみを合成樹脂で被覆するようにしてもよい。なお、合成樹脂としては、ポリエチレン、ポリエステル、ポリプロピレン、ポリウレタン、シリコンゴムなどが適当である。
【0021】
次に、高珪素ステンレス鋼製の線材が、従来の医療用カテーテルのガイドワイヤ用の導入部を構成する線材として通常用いられているステンレス鋼に比べて、強度に優れ、かつ屈曲状態における捩じり応力伝達特性に優れた線材である点について実験例とともに説明する。
この実験には、次に述べる通りの高珪素ステンレス鋼製の線材が供された。
すなわち、この実験には、重量%で、C:0.08%以下、Si:3.0〜5.0%、Mn:3.0%以下、Ni:4.0〜12.0%、Cr:12.0〜24.0%、Mo:0.9〜2.0%、Cu:0.5〜2.0%、残部が鉄及び不可避的不純物からなる鋼線を、加工度90%以上とする最終伸線加工した後、100〜600°Cでの最終低温熱処理して製作された線材が供された。
以下に述べる実験結果の説明中、「高珪素ステンレス鋼製の線材(あるいは「線材」)」とは、上記の成分を有し、かつ上記の加工を施されたものをいう。
【0022】
図5のグラフは、直径2.6mmの高珪素ステンレス鋼製の線材を直径0.34mmに縮径し、これ(直径0.34mmの高珪素ステンレス鋼製の線材)を機械加工により真直化(真直加工)した後、0°C〜600°Cの温度下で、10分間保持する熱処理加工を行った結果を示すものである。同グラフにおいて、横軸は温度を縦軸は強度を示している。このグラフおよび表1に示す通り、直径0.34mmの高珪素ステンレス鋼製の線材を、300°C弱〜550°Cの温度下で約10分間保持する熱処理を行うことにより、2800MPa以上の高強度の真直ワイヤを得ることができる。以下このような加工を施されたもを、「ワイヤA」という。直径2.6mmの高珪素ステンレス鋼製の線材を直径0.30mmに縮径した線材に同様の熱処理を施したものについても同様の実験結果が得られた。以下このような加工を施されたものを、「ワイヤB」という。
【0023】
上記ワイヤAの熱処理による強度特性およびそのほかの特性は、表1に示す通りである。
【表1】

Figure 2004194768
なお、図5に示すデータは、線材を、0°〜600°Cの温度下で約10分間保持する熱処理を行った実験結果であるが、熱処理時間については、本発明者らは、次の通りの事実を実験により知得している。
すなわち、線材を、450〜500°Cのもとで、熱処理する場合、熱処理時間が長いほど高強度の線材が得られるが、熱処理時間を240分以上としてもそれ以上の強度の向上は得られない、ということが実験の結果判明した。つまり、線材を高温度下で0.5分で〜240分保持すれば、所望の強度が得られ、しかも保持時間(熱処理時間)を240分以上としてもそれ以上の強度の向上は得られない、ということが実験の結果判明した。
【0024】
さらに、生産性(熱処理時間が長いほど製造コストは高くなる)を考慮するとき、実用に際しては、熱処理時間は、20分〜60分が適当であるとの結論が得られた。
また、20分の熱処理加工したものと60分の熱処理加工したものとを比較すると、60分の熱処理加工したものの方が20分の熱処理加工したものよりも、「クセ」がつきにくいという結果が得られた。ここで、「クセ」とは、次のような性能のことをいう。
すなわち、「クセ」とは、ドクターがカテーテルを操作するとき、カテーテルの基端部側に加えられる回転が先端部に伝達されるときの「スムーズさ」(「操作のスムーズ性」)のことで、回転伝達がスムーズなほど、つまり基端部側に加えられる回転が、ぎくしゃくすることなく先端部に伝達されるほど「操作性が良好」であると判断され、操作性が良好なほど「クセ」がつきにくいと評価される。また、一般に、鋼線は、曲げた後に元に戻したとき、あるいは巻いた後に元に戻したときに、本来の直線形状に完全には戻らずに若干の変形が残る。この変形の量(本来の直線形状からのずれ)も「クセ」とよばれており、この変形量が少ないほど「クセ」がつきにくいとう評価される。そして、「クセ」のつきにくい性能は、ワイヤに求められる特性の一つである。
【0025】
つぎに、捩じり伝達力特性についての実験結果を示す。図3は、捩じり伝達力特性の実験のための装置を示している。
この捩じり伝達力測定装置10は、固定台11と、固定台11に固定された固定軸12を介して取り付けられた角度目盛り盤13と、固定軸12に巻装され基端部を固定台11に取り付けられるとともに先端部を角度目盛り盤13の中心開口部から突出する取り付け軸14に取り付けられたばね15とから構成されている。そして、この装置10の取り付け軸14に、長さ60mmのワイヤA20の基端部を固定し、ワイヤA20の先端部に捩じり力(180°回転力)を加え、固定軸12に取り付けられた基端部の回転角を、角度目盛り盤13で読み取ることにより測定して、ワイヤAの捩じり伝達力を測定した。
この測定装置により測定されたワイヤAの捩じり伝達力特性は、図6のグラフに示す通りである。図6中の矢AがワイヤAの計測値を示す。また、ワイヤAおよびワイヤBならびにピアノ線など他の材料についての測定結果は、表2に示す通りである。
【表2】
Figure 2004194768
【0026】
さらに、曲げ応力下での捩じり伝達力特性についての実験結果を示す。この実験は、図4に示すように、長さ70mmの範囲に互いに若干の間隔をあけて直径30mmの円筒体22を3個一直線上に配設し、各円筒体22の外面に沿うように、パイプ21(パイプ21は血管を想定した)を屈曲するように、つまり中央の円筒体22の前後においてパイプ21が半円弧状に屈曲するように配設し、このように設定されたパイプ21内に、ワイヤBを挿通し、この状態でワイヤBの右端部に角度目盛り盤23を取り付ける一方、ワイヤBの左端部に回転力を付加することにより、トルク伝達(曲げ応力下での捩じり伝達力)を測定した。角度目盛り盤23は図3の角度目盛り盤13と同様の構成となっている。この測定装置により測定されたワイヤBの曲げ応力下での捩じり伝達力特性は、図7のグラフに示す通りである。図6中の矢BがワイヤBの計測値を示す。また、径0.20mm〜0.50mmの線材(径0.30mm線材がワイヤBである)およびピアノ線など他の素材についての測定結果は、表3に示す通りである。
【表3】
Figure 2004194768
【0027】
これらの実験結果によれば、ワイヤA,ワイヤBは、3100MPa以上の強度を有し、かつ、他の材料のものと比較して、捩じり伝達力特性および曲げ応力下での捩じり伝達力特性のおいて、優れていることを容易に理解できる。
【0028】
【発明の効果】
以上説明したように、本発明によれば、次のような効果が得られる。
(1)医療用カテーテルのガイドワイヤにおいて、その導入部3を構成する線材として、高珪素ステンレス鋼製の線材を用いたことにより、導入部を構成する線材としてステンレス鋼が用いられている従来の医療用カテーテルのガイドワイヤ用芯材に比べて、強度に優れ、捩じり伝達力特性および曲げ応力下での捩じり伝達力特性のおいて優れた特性を備えた芯材を得ることができる。
(2)上記(1)の効果により、この芯材を用いるとき、医療用カテーテルの細径化が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての医療用カテーテルのガイドワイヤ用
芯材の断面図。
【図2】(a)、(b)は図1の芯材を用いた医療用カテーテルのガイド
ワイヤの断面図。
【図3】捩じり伝達力測定装置の概略図。
【図4】屈曲状態における捩じり応力伝達測定装置の概略図。
【図5】熱処理効果を示すグラフ。
【図6】捩じり伝達力特性を示すグラフ。
【図7】屈曲状態における捩じり応力伝達を示すグラフ。
【図8】挿入部と導入部との接続部構造の1例を示す断面図。
【図9】従来の医療用カテーテルのガイドワイヤの1例を示す断面図。
【図10】従来の医療用カテーテルのガイドワイヤの他の例を示す断面図

【符号の説明】1:医療用カテーテルのガイドワイヤ用芯材、2:挿入部、
3:導入部、4:接合部、4a:管状接続部材、5:合成樹脂。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a guide wire for a medical catheter used to guide a thin tubular catheter to be introduced into a blood vessel, digestive tract, trachea, or other body cavity (hereinafter referred to as a tub requiring treatment) requiring treatment or examination. The present invention relates to a core material (hereinafter, also referred to as “core material”) and a guide wire of a medical catheter (hereinafter, also referred to as “guide wire”).
[0002]
[Prior art]
The structure of the guide wire of the medical catheter may be various depending on the application. In general, as shown in FIG. 9, a core material 010 having a predetermined length is covered with a synthetic resin 011. As shown in FIG. 10, a core material 012 having a predetermined length is surrounded by a coil spring 013. Then, as shown in FIGS. 9 and 10, the cores 010 and 012 are formed in a tapered shape in which the cross-sectional area gradually decreases in order to impart flexibility to an insertion portion as a guide wire. Have been.
[0003]
The important performance as a guidewire is that the guidewire can be smoothly inserted into the treatment tube by hand operation, and the catheter can be accurately guided and introduced to the target site. For this reason, the guide wire has a form adaptability (flexibility) that allows the insertion portion to be accommodated in a complicated meandering tube requiring treatment and inserted without damaging the inner wall of the tube requiring treatment. Is required to have a torque transmitting property (high strength) capable of accurately transmitting torque to the insertion section even with a delicate operation amount at hand. The above-mentioned torque transmission means a characteristic capable of accurately transmitting a delicate hand operation amount to the insertion portion (tip portion), and "excellent torque transmission" means that transmission torque and torsional rigidity are high. .
[0004]
And today, with the development of medical technology, in order to be applicable to complicated branch vessels, the core material of the guide wire is required to have high strength of the introduction part and flexibility of the insertion part. In particular, a straight wire having a high strength of 3000 MPa or more is desired for the introduction portion.
[0005]
As a core material of the guide wire, as a material having high strength of the introduction portion and flexibility of the insertion portion, the core material of the insertion portion is formed of, for example, a wire made of Ni-Ti alloy, and the core material of the introduction portion is made of, for example, stainless steel. A guide wire formed of a steel wire and connecting these two members has recently been proposed.
[0006]
[Patent Document 1] Japanese Patent No. 2729856 [Patent Document 2] Japanese Patent Publication No. 6-69495 [Patent Document 3] Japanese Patent Publication No. 4-2274 [0007]
[Problems to be solved by the invention]
By the way, the guide wire of the above-mentioned conventional example in which the core material of the introduction portion of the guide wire is formed of a stainless steel wire has a “distortion angle of the tip” and a “bending” as shown in Tables 2 and 3 described later. There is a disadvantage that the torsional transmission characteristics under stress (all of which will be described later) are inferior. Therefore, the torque transmission is weak, and the transmission of the torsional torque in a bent state as shown in FIG. There is a problem that it is low.
The present invention is intended to solve such a problem with the above-described conventional technology, and the present invention provides a guide wire core material of an introduction portion having high strength, that is, strong torque transmission, and particularly bent. An object of the present invention is to provide a guidewire core material of a medical catheter excellent in transmitting torsional torque in a state, and a guidewire of a medical catheter using the same.
[0008]
[Means for Solving the Problems]
The present invention provides a guide wire for a medical catheter comprising an insertion portion and an introduction portion connected to the insertion portion, wherein the core material forming the introduction portion is formed of a high-strength straight wire of 2800 MPa or more. This is a means of solving the problem.
[0009]
Further, a straight wire made of high silicon stainless steel is thermally processed to form a high-strength straight wire of 2800 MPa or more, which is a means for solving the problem.
[0010]
Further, the above-mentioned high silicon stainless steel wire is heat-treated at a temperature of slightly less than 300 ° C. to 550 ° C. for 0.5 to 240 minutes, thereby solving the problem.
[0011]
In addition, as a wire made of high silicon stainless steel, a wire having a diameter of 0.2 mm to 0.5 mm, preferably 0.30 mm to 0.35 mm is used as means for solving the problem.
[0012]
Furthermore, as a wire rod made of Kamikoshi stainless steel, C: 0.08% or less, Si: 3.0 to 5.0%, Mn: 3.0% or less, and Ni: 4.0 to 100% by weight. 12.0%, Cr: 12.0 to 24.0%, Mo: 0.9 to 2.0%, Cu: 0.5 to 2.0%, with the balance consisting of iron and unavoidable impurities. This is a means of solving the problem.
[0013]
The core material is covered with a synthetic resin, a composite material, or the like, or is covered with a coil spring, and is configured as a guide wire of a medical catheter to solve the problem.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a core material for a guide wire of a medical catheter according to an embodiment of the present invention, FIGS. 2A and 2B are cross-sectional views of a guide wire of the medical catheter, and FIG. FIG. 4 is a schematic diagram of a torsional stress transmission measuring device in a bending state, FIG. 5 is a graph showing a heat treatment effect, FIG. 6 is a graph showing a torsional transmission force characteristic, and FIG. 7 is a torsional stress transmission in a bending state. FIG. 8 is a cross-sectional view showing an example of the structure of the connecting portion between the insertion portion and the introduction portion.
[0015]
In FIG. 1, reference numeral 1 denotes a guidewire core (hereinafter, may be abbreviated as “core”) of a medical catheter having a predetermined length (for example, 2000 mm to 3000 mm). Is composed of a guide wire insertion portion 2 of a medical catheter and an introduction portion 3 integrally joined to the insertion portion 2. Reference numeral 4 indicates the joint.
Here, the elastic limit of the insertion part 2 is larger than the elastic limit of the introduction part 3, and the torsion stiffness of the introduction part 3 is larger than that of the insertion part. Be composed.
[0016]
Although the length of the insertion portion 2 is not particularly limited, it is usually about 100 mm to 300 mm, and the cross-sectional shape of the insertion portion 2 may be the same as the cross-sectional shape of the introduction portion 3, as shown in FIG. As described above, when the insertion portion 2 is formed in a tapered shape in which the cross-sectional area gradually decreases toward the distal end, the insertion portion 2 becomes more flexible, and the form adaptability can be improved.
[0017]
As a wire constituting the insertion portion 2, a conventional wire (for example, any alloy selected from Ti-Ni-based alloy, Cu-Al-Ni-based alloy, or Fe-Ni-Ti-based alloy is preferable) Is used.
In this embodiment, a wire made of high silicon stainless steel is used as a wire constituting the introduction portion 3.
[0018]
The reason why a wire made of high silicon stainless steel is suitable as a wire constituting the introduction portion 3 is as follows.
That is, as described later, a wire made of high silicon stainless steel is superior in strength and bending compared to stainless steel that is generally used as a wire constituting a guide wire introduction portion of a conventional medical catheter. This is because the wire is excellent in the torsional stress transmission characteristics in the state.
[0019]
Also in this embodiment, the joining of the core material of the insertion section 2 and the core material of the introduction section 3 is the same as that of a conventional one, for example, for both the wires constituting the insertion section 2 and the introduction section 3. It is joined via a low-melting brazing metal having properties.
In addition, the two wires may be joined by laser welding or electron beam welding, or as shown in FIG. 8, the insertion portion 2 and the introduction portion 3 may be connected by a tubular connection member 4a. In this case, if the tubular connecting member 4a is configured to be divided into a plurality of pieces, the flexibility of the tubular connecting member 4a can be improved.
[0020]
As shown in FIG. 2A, the core material 1 configured as described above is entirely coated with a synthetic resin 5 to manufacture a guide wire of a medical catheter.
Instead of coating with the synthetic resin 5, as shown in FIG. 2B, only the insertion portion 2 may be coated with a synthetic resin. As the synthetic resin, polyethylene, polyester, polypropylene, polyurethane, silicone rubber and the like are suitable.
[0021]
Next, a wire made of high silicon stainless steel is superior in strength and twisting in a bent state as compared with stainless steel which is usually used as a wire constituting a guide wire introduction portion of a conventional medical catheter. The fact that the wire is excellent in stress transfer characteristics will be described with experimental examples.
In this experiment, a wire made of high silicon stainless steel as described below was provided.
That is, in this experiment, C: 0.08% or less, Si: 3.0 to 5.0%, Mn: 3.0% or less, Ni: 4.0 to 12.0%, Cr: : 12.0 to 24.0%, Mo: 0.9 to 2.0%, Cu: 0.5 to 2.0%, steel wire consisting of iron and unavoidable impurities, with a workability of 90% or more After the final wire drawing, a wire rod manufactured by final low-temperature heat treatment at 100 to 600 ° C. was provided.
In the description of the experimental results described below, the term “wire made of high silicon stainless steel (or“ wire ”)” refers to a wire having the above components and being subjected to the above processing.
[0022]
The graph in FIG. 5 shows that a wire made of high silicon stainless steel having a diameter of 2.6 mm is reduced in diameter to 0.34 mm, and this (a wire made of high silicon stainless steel having a diameter of 0.34 mm) is straightened by machining. It shows the result of performing a heat treatment at a temperature of 0 ° C. to 600 ° C. for 10 minutes. In the graph, the horizontal axis indicates temperature and the vertical axis indicates intensity. As shown in this graph and Table 1, by performing a heat treatment of holding a wire made of high silicon stainless steel having a diameter of 0.34 mm at a temperature of slightly below 300 ° C. to 550 ° C. for about 10 minutes, a high temperature of 2800 MPa or more is obtained. A strong straight wire can be obtained. Hereinafter, the wire that has been subjected to such processing is referred to as “wire A”. Similar experimental results were obtained for a wire made of high silicon stainless steel having a diameter of 2.6 mm and reduced in diameter to 0.30 mm and subjected to the same heat treatment. Hereinafter, the wire that has been subjected to such processing is referred to as “wire B”.
[0023]
The strength characteristics and other characteristics of the wire A by the heat treatment are as shown in Table 1.
[Table 1]
Figure 2004194768
The data shown in FIG. 5 is an experimental result obtained by performing a heat treatment of holding the wire at a temperature of 0 ° C. to 600 ° C. for about 10 minutes. We know the facts through experiments.
That is, when the wire is heat-treated at a temperature of 450 to 500 ° C., the longer the heat treatment time, the higher the strength of the wire. However, even if the heat treatment time is 240 minutes or longer, the strength can be further improved. No, as a result of the experiment. In other words, if the wire is held at a high temperature for 0.5 minute to 240 minutes, the desired strength can be obtained, and even if the holding time (heat treatment time) is 240 minutes or longer, no further improvement in strength can be obtained. As a result of the experiment, it turned out.
[0024]
Furthermore, in consideration of productivity (the longer the heat treatment time, the higher the production cost), it was concluded that, in practical use, a heat treatment time of 20 minutes to 60 minutes is appropriate.
Also, a comparison between the heat-treated for 20 minutes and the heat-treated for 60 minutes shows that the heat-treated for 60 minutes is less likely to have a habit than the heat-treated for 20 minutes. Obtained. Here, the “habit” refers to the following performance.
In other words, the “habit” is “smoothness” (“smoothness of operation”) when rotation applied to the proximal end side of the catheter is transmitted to the distal end when the doctor operates the catheter. It is determined that the smoother the rotation transmission, that is, the more the rotation applied to the base end side is transmitted to the distal end without jerking, the better the operability is. Is evaluated as difficult to attach. In general, when the steel wire is returned to its original state after being bent or wound, it is not completely restored to its original linear shape, but slightly deformed. The amount of this deformation (deviation from the original linear shape) is also called “habit”, and it is evaluated that the smaller the amount of deformation, the less “habit”. In addition, the performance in which the “habit” is hard to be attached is one of the characteristics required for the wire.
[0025]
Next, experimental results on torsional transmission force characteristics will be shown. FIG. 3 shows an apparatus for an experiment of torsional transmission force characteristics.
This torsional transmission force measuring device 10 includes a fixed base 11, an angle scale 13 mounted via a fixed shaft 12 fixed to the fixed base 11, and a base end portion wound around the fixed shaft 12 and fixed. A spring 15 is attached to a mounting shaft 14 that is attached to the base 11 and protrudes from the center opening of the angle scale 13 at the distal end. Then, the base end of the wire A20 having a length of 60 mm is fixed to the mounting shaft 14 of the device 10, and a torsional force (180 ° rotational force) is applied to the distal end of the wire A20 to be mounted on the fixed shaft 12. The rotation angle of the base end was measured by reading it with an angle scale 13 to measure the torsional transmission force of the wire A.
The torsional transmission force characteristics of the wire A measured by this measuring device are as shown in the graph of FIG. Arrow A in FIG. 6 indicates the measured value of wire A. Table 2 shows the measurement results of the wire A, the wire B, and other materials such as a piano wire.
[Table 2]
Figure 2004194768
[0026]
Further, experimental results on torsional transmission force characteristics under bending stress are shown. In this experiment, as shown in FIG. 4, three cylinders 22 each having a diameter of 30 mm were arranged in a straight line at a slight distance from each other in a range of 70 mm so as to be along the outer surface of each cylinder 22. The pipe 21 (the pipe 21 is assumed to be a blood vessel) is arranged so as to be bent, that is, the pipe 21 is bent in a semi-circular shape before and after the central cylindrical body 22. In this state, the angle scale 23 is attached to the right end of the wire B, and a torque is applied to the left end of the wire B to transmit torque (torsion under bending stress). Transmission force) was measured. The angle dial 23 has the same configuration as the angle dial 13 in FIG. The torsional transmission force characteristics under the bending stress of the wire B measured by this measuring device are as shown in the graph of FIG. Arrows B in FIG. 6 indicate measured values of the wire B. Table 3 shows the measurement results of other materials such as a wire having a diameter of 0.20 mm to 0.50 mm (the wire having a diameter of 0.30 mm is the wire B) and a piano wire.
[Table 3]
Figure 2004194768
[0027]
According to these experimental results, the wire A and the wire B have a strength of 3100 MPa or more, and have a torsional transmission force characteristic and a torsion under bending stress, which are higher than those of other materials. It is easy to understand that the transmission force characteristics are excellent.
[0028]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) In a guide wire of a medical catheter, a high-silicon stainless steel wire is used as a wire constituting the introduction portion 3 of the guide wire, so that stainless steel is used as a wire constituting the introduction portion. It is possible to obtain a core material which is superior in strength and has excellent characteristics in torsional transmission force characteristics and torsional transmission force characteristics under bending stress as compared with a guidewire core material of a medical catheter. it can.
(2) Due to the effect of the above (1), when this core material is used, the diameter of the medical catheter can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a core material for a guide wire of a medical catheter as one embodiment of the present invention.
FIGS. 2A and 2B are cross-sectional views of a guide wire of a medical catheter using the core material of FIG.
FIG. 3 is a schematic diagram of a torsional transmission force measuring device.
FIG. 4 is a schematic diagram of a torsional stress transmission measuring device in a bent state.
FIG. 5 is a graph showing a heat treatment effect.
FIG. 6 is a graph showing torsional transmission force characteristics.
FIG. 7 is a graph showing torsional stress transmission in a bent state.
FIG. 8 is a sectional view showing an example of a structure of a connecting portion between an insertion portion and an introduction portion.
FIG. 9 is a sectional view showing an example of a guide wire of a conventional medical catheter.
FIG. 10 is a cross-sectional view showing another example of a guide wire of a conventional medical catheter.
[Description of Signs] 1: core material for guide wire of medical catheter, 2: insertion part,
3: Introduction part, 4: Joint part, 4a: Tubular connecting member, 5: Synthetic resin.

Claims (6)

挿入部と同挿入部に連接される導入部とからなる医療用カテーテルのガイドワイヤにおいて、上記導入部を形成する芯材が、2800MPa以上の高強度の真直ワイヤで構成されていることを特徴とする医療用カテーテルのガイドワイヤ芯材。In a guide wire of a medical catheter comprising an insertion portion and an introduction portion connected to the insertion portion, a core material forming the introduction portion is formed of a high-strength straight wire of 2800 MPa or more. Guidewire core material for medical catheters. 上記2800MPa以上の高強度の真直ワイヤが、高珪素ステンレス鋼製の真直線材を熱加工したものであることを特徴とする請求項1記載の医療用カテーテルのガイドワイヤ芯材。2. The guide wire core material for a medical catheter according to claim 1, wherein the straight wire having a high strength of 2800 MPa or more is obtained by thermally processing a straight wire made of high silicon stainless steel. 上記高珪素ステンレス鋼製の線材の上記熱加工が、同線材を300°C弱〜550°Cの温度下で0.5〜240分保持する熱処理工程を含むことを特徴とする請求項2記載の医療用カテーテルのガイドワイヤ芯材。The thermal processing of the high silicon stainless steel wire includes a heat treatment step of holding the wire at a temperature of slightly less than 300 ° C to 550 ° C for 0.5 to 240 minutes. Guidewire core material for medical catheters. 上記高珪素ステンレス鋼製の線材が、直径0.2mm〜0.5mmであることを特徴とする請求項1乃至請求項3のいずれか1項記載の医療用カテーテルのガイドワイヤ芯材。The guide wire core of a medical catheter according to any one of claims 1 to 3, wherein the high silicon stainless steel wire has a diameter of 0.2 mm to 0.5 mm. 上高珪素ステンレス鋼製の線材の成分が、重量%で、C:0.08%以下、Si:3.0〜5.0%、Mn:3.0%以下、Ni:4.0〜12.0%、Cr:12.0〜24.0%、Mo:0.9〜2.0%、Cu:0.5〜2.0%、残部が鉄及び不可避的不純物であることを特徴とする請求項1乃至請求項4のいずれか1項記載の医療用カテーテルのガイドワイヤ芯材。The components of the wire made of Kamikoka stainless steel are, in terms of% by weight, C: 0.08% or less, Si: 3.0 to 5.0%, Mn: 3.0% or less, Ni: 4.0 to 12 0.0%, Cr: 12.0 to 24.0%, Mo: 0.9 to 2.0%, Cu: 0.5 to 2.0%, with the balance being iron and inevitable impurities. The guidewire core material of the medical catheter according to any one of claims 1 to 4, wherein 請求項1乃至請求項5のいずれか1項に記載の芯材が、合成樹脂や複合材料などで被覆されたり、あるいはコイルスプリングで被包されたりして構成されたことを特徴とする医療用カテーテルのガイドワイヤ。6. The medical device according to claim 1, wherein the core material according to claim 1 is covered with a synthetic resin, a composite material, or the like, or is covered with a coil spring. Catheter guidewire.
JP2002364613A 2002-12-17 2002-12-17 Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it Pending JP2004194768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364613A JP2004194768A (en) 2002-12-17 2002-12-17 Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364613A JP2004194768A (en) 2002-12-17 2002-12-17 Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it

Publications (1)

Publication Number Publication Date
JP2004194768A true JP2004194768A (en) 2004-07-15

Family

ID=32762380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364613A Pending JP2004194768A (en) 2002-12-17 2002-12-17 Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it

Country Status (1)

Country Link
JP (1) JP2004194768A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181139A (en) * 2004-12-28 2006-07-13 Nachi Fujikoshi Corp Guide wire and catheter
JP2006204710A (en) * 2005-01-31 2006-08-10 Tokusen Kogyo Co Ltd Medical guide wire
JP2009172229A (en) * 2008-01-25 2009-08-06 Kanai Hiroaki Guide wire core, manufacturing method of this core, and medical guide wire using this core
JP2011062344A (en) * 2009-09-17 2011-03-31 Patentstra Co Ltd Medical guide wire and method of manufacturing the same, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter
EP2402051A1 (en) 2010-06-30 2012-01-04 PatentStra Co. Ltd. Medical guide wire
JP2012075532A (en) * 2010-09-30 2012-04-19 Patentstra Co Ltd Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181139A (en) * 2004-12-28 2006-07-13 Nachi Fujikoshi Corp Guide wire and catheter
JP2006204710A (en) * 2005-01-31 2006-08-10 Tokusen Kogyo Co Ltd Medical guide wire
JP2009172229A (en) * 2008-01-25 2009-08-06 Kanai Hiroaki Guide wire core, manufacturing method of this core, and medical guide wire using this core
JP2011062344A (en) * 2009-09-17 2011-03-31 Patentstra Co Ltd Medical guide wire and method of manufacturing the same, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter
EP2402051A1 (en) 2010-06-30 2012-01-04 PatentStra Co. Ltd. Medical guide wire
US8845551B2 (en) 2010-06-30 2014-09-30 Asahi Intecc Co., Ltd. Medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire, and an assembly of ballooncatheter and guiding catheter combined with the medical guide wire
JP2012075532A (en) * 2010-09-30 2012-04-19 Patentstra Co Ltd Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter

Similar Documents

Publication Publication Date Title
US7117703B2 (en) Wire-stranded hollow coil body, a medical equipment made therefrom and a method of making the same
US8652119B2 (en) Guidewire
US8608670B2 (en) Guidewire
US8622932B2 (en) Guidewire
US8585612B2 (en) Guidewire
JP2004298635A (en) Composite guidewire with linear elastic distal portion
US20100318065A1 (en) Medical guidewire
US20130110002A1 (en) Guidewire
EP2689795A1 (en) Guidewire
JP2013503025A (en) High Young&#39;s modulus superelastic alloy wire for medical and dental purposes
JP2004194768A (en) Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it
JP2003159333A (en) Core material for guide wire for medical treatment and guide wire for medical treatment
TW201325642A (en) Medical guide wire
JP4136370B2 (en) Method for producing core material for medical guide wire and medical guide wire
JP7050175B2 (en) Medical equipment
JP2006055245A (en) Medical guide wire
JP3736864B2 (en) Insertion tool for tubular organ
JP7509922B2 (en) Guidewires
JPH0342935Y2 (en)
JP2003342696A (en) Guide wire core material for medical treatment, its production method, and guide wire for medical treatment
JP7184890B2 (en) guide wire
JP4608518B2 (en) Tubular member and endoscope treatment tool
WO2021038770A1 (en) Guide wire
WO2020261542A1 (en) Guide wire
JP4141576B2 (en) Medical catheter

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318