JP2004189530A - Method of manufacturing nickel oxide powder - Google Patents

Method of manufacturing nickel oxide powder Download PDF

Info

Publication number
JP2004189530A
JP2004189530A JP2002358889A JP2002358889A JP2004189530A JP 2004189530 A JP2004189530 A JP 2004189530A JP 2002358889 A JP2002358889 A JP 2002358889A JP 2002358889 A JP2002358889 A JP 2002358889A JP 2004189530 A JP2004189530 A JP 2004189530A
Authority
JP
Japan
Prior art keywords
oxide powder
nickel oxide
furnace
raw material
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002358889A
Other languages
Japanese (ja)
Inventor
Minoru Shirooka
稔 白岡
Taku Sugiura
卓 杉浦
Shigeki Matsuki
茂喜 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002358889A priority Critical patent/JP2004189530A/en
Publication of JP2004189530A publication Critical patent/JP2004189530A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stably manufacturing nickel oxide powder suitable as an electronic component material and having a little quantity of impurities and low sulfur grade by calcining a nickel sulfate raw material. <P>SOLUTION: Nickel sulfate used as the raw material is calcined at a maximum temperature of 900-1200°C using a horizontal rotary type manufacture furnace while forcibly blowing air into the furnace from the outlet side to the inlet side at a flow rate of ≥15 mm/sec to the furnace cross-sectional area. In the horizontal rotary type manufacture furnace, it is preferable that the ratio of (the length of a heating part):(the diameter of the heating part ) is ≥3:1. The sulfur grade in the resultant nickel oxide powder is stably controlled to ≤500 ppm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無水の硫酸ニッケルを原料とし、これを焙焼して硫黄品位の低い酸化ニッケル粉末を製造する方法に関する。
【0002】
【従来の技術】
一般に、酸化ニッケルは、硫酸ニッケル、炭酸ニッケル、水酸化ニッケル等のニッケル塩類を、キルン等の転動炉を用いて、酸化性雰囲気下で焙焼することによって製造される。これらの酸化ニッケル粉末は、他の材料と混合して焼結し、フェライト部品等として用いられている。
【0003】
更に近年においては、酸化ニッケル粉末について、フェライト部品以外の電子部品等にも用途が広がるに伴って、粒径の制御と共に、不純物品位の低下が求められている。特に、硫黄品位の低い、望ましくは500ppm以下の酸化ニッケル粉末が要求されるようになっている。
【0004】
従来から、酸化ニッケル粉末を製造するには、例えば特開2001−32002号公報に記載されるように、結晶水を含有する硫酸ニッケルを原料とし、キルンを用いて酸化性雰囲気中で焙焼する方法が一般的に行われてきた。
【0005】
しかし、結晶水を含有する硫酸ニッケル原料を焙焼すると、水蒸気と亜硫酸ガスが同時に発生して排ガス量が多くなり、キルン内のガスの流れや温度分布が不均一となるため、酸化ニッケル粉末中の硫黄品位が高くなり、且つ変動しやすかった。
【0006】
このように、原料の硫酸ニッケル中に主成分として含まれる硫黄を除去して、得られる酸化ニッケル粉末中の硫黄品位を安定的に1000ppm以下とする量産レベルでの焙焼条件は知られていなかった。
【0007】
【特許文献1】
特開2001−32002号公報
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、硫酸ニッケル原料の焙焼により、電極等の電子部品材料として好適な、不純物が少なく硫黄品位が500ppm以下の酸化ニッケル粉末を安定して製造できる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する酸化ニッケル粉末の製造方法は、横型回転式製造炉を使用し、無水の硫酸ニッケルを原料として、炉内に出口側から入口側に向かって強制的に空気を炉断面積に対して15mm/秒以上の流速で流しながら、最高温度900〜1200℃で焙焼することにより、硫黄品位500ppm以下の酸化ニッケル粉末を得ることを特徴とする。
【0009】
また、上記本発明の酸化ニッケル粉末の製造方法においては、前記横型回転式製造炉は、加熱部の長さ:径の比を3:1以上とすることが好ましい。
【0010】
【発明の実施の形態】
本発明方法では、結晶水を含有しない無水硫酸ニッケルを原料とし、横型回転式製造炉で焙焼する。無水硫酸ニッケルを原料とすることにより、空気雰囲気下での焙焼時に原料から発生するガスの量を少なくし、炉内の気流を安定化させることができるため、硫黄の除去が進んで酸化ニッケル粉末中の硫黄品位を低下させることが可能となる。
【0011】
尚、焙焼時には、比重差の大きいガスや、硫酸結露の原因となるガス成分などが、炉内ガス中に極力混ざらないことが望ましい。また、原料にアルカリやアルカリ土類の不純物が含まれていると、酸化ニッケル粉末中の残留硫黄品位が低下し難いため、不純物品位の低い無水硫酸ニッケルを用いることが必要である。
【0012】
また、本発明方法では、焙焼の際に硫酸ニッケル中の硫酸分の分解を効率的に行うため、焙焼温度は900〜1200℃とする。更に、空気雰囲気下において硫酸ニッケルを焙焼して硫黄品位の低い酸化ニッケル粉末を得るには、原料として無水硫酸ニッケルを用いることと共に、硫酸分の分解反応と同時に生成する亜硫酸ガスをスムースに置換することが必要である。
【0013】
そのため、本発明方法では、焙焼時の炉内に、出口側から入口側に向かって、炉断面積に対して15mm/秒以上の流速で、好ましくは20mm/秒以上の流速で、強制的に空気を流すことにより、亜硫酸ガスを置換する流れを確保する。空気の流速が15mm/秒未満では、原料として無水硫酸ニッケルを用いても、硫黄品位が500ppm以下の酸化ニッケル粉末を得ることができない。
【0014】
また、亜硫酸ガスの置換を更に効果的に進めるためには、横型回転式製造炉の加熱部の径に対する長さの割合を3以上とする、即ち加熱部の長さ:径の比を3:1以上とすることが好ましく、5:1以上とすることが更に好ましい。
【0015】
かかる本発明方法によれば、硫黄品位が500ppm以下、望ましくは300ppm以下の酸化ニッケル粉末を、安定的に製造することができる。また、横型回転式製造炉内のガスの流れが安定するため、酸化ニッケル粉末の平均粒径についても、0.5〜1.5μm程度に制御することが可能となる。
【0016】
【実施例】
無水硫酸ニッケルを原料とし、横型回転式円筒炉としてキルン(加熱部:直径700mm×長さ6000mm/6ゾーン)を使用して、酸化ニッケル粉末の製造を行った。原料として使用した無水硫酸ニッケルの成分組成を下記表1に示した。尚、比較のために、試料7および試料8では結晶水を含有する硫酸ニッケルを原料として用いたが、その成分組成は下記表1とほぼ同一とした。
【0017】
【表1】

Figure 2004189530
【0018】
上記キルンに、出口側から入口側に向かって強制的に空気を送風しながら、原料の無水硫酸ニッケルを連続的に供給し、キルンの反応管(SUS製)を1rpmの回転数で回転させ、温度と保持時間を制御して焙焼した。その際、キルンの各ゾーンの加熱温度は、試料ごとに下記表2に示すように変化させた。また、発生する排ガスは設置されている排ガス処理設備で処理した。
【0019】
【表2】
Figure 2004189530
【0020】
キルンから排出された焙焼物は、常温まで冷却した後、アトマイザーで粉砕して酸化ニッケル粉末を得た。得られた酸化ニッケル粉末の硫黄品位を化学分析により求めると共に、酸化ニッケル粉末の平均粒径をフィッシャーサブシーブサイザー(Fsss)を用いて測定した。得られた結果を、原料投入量、キルンの炉断面積に対する空気流量と共に、下記表3に示した。
【0021】
【表3】
Figure 2004189530
【0022】
上記の結果から分るように、本発明例の試料1〜4では、15mm/秒以上の流速で強制的に空気を流しながら、900〜1200℃の温度で焙焼することにより、硫黄品位500ppm以下の酸化ニッケル粉末が得られた。また、空気の流速を高めるほど、硫黄品位が低下していることが分る。
【0023】
一方、比較例の試料5及び試料6は、原料と原料投入量、加熱温度は上記本発明例とほぼ同一条件であるが、空気の流量が10mm/秒以下と低いことから、得られる酸化ニッケル粉末の硫黄品位は700ppm以上となっている。また、結晶水を含有する硫酸ニッケルを原料とした比較例の試料7及び試料8においては、原料以外の条件が本発明例とほぼ同一である試料7で硫黄品位が12000ppm程度までしか低下せず、原料投入量を大幅に低下させた試料8においても硫黄品位は1700ppmであった。
【0024】
【発明の効果】
本発明によれば、無水硫酸ニッケルを原料とし、炉内に空気を強制的に流しながら焙焼することにより、不純物が少なく、硫黄品位を500ppm以下に抑えることができ、電子部品材料として好適な酸化ニッケル粉末を安定して製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing nickel oxide powder having low sulfur quality by roasting anhydrous nickel sulfate as a raw material.
[0002]
[Prior art]
Generally, nickel oxide is produced by roasting nickel salts such as nickel sulfate, nickel carbonate, and nickel hydroxide in a oxidizing atmosphere using a rolling furnace such as a kiln. These nickel oxide powders are mixed with other materials, sintered and used as ferrite parts and the like.
[0003]
Further, in recent years, as nickel oxide powder has been applied to electronic parts other than ferrite parts, it has been required to control the particle size and to lower the impurity quality. In particular, a nickel oxide powder having a low sulfur grade, desirably 500 ppm or less has been required.
[0004]
Conventionally, to produce nickel oxide powder, for example, as described in JP-A-2001-32002, using nickel sulfate containing water of crystallization as a raw material and roasting in an oxidizing atmosphere using a kiln The method has been generally performed.
[0005]
However, when roasting a nickel sulfate raw material containing water of crystallization, water vapor and sulfurous acid gas are generated simultaneously, the amount of exhaust gas increases, and the gas flow and temperature distribution in the kiln become non-uniform. Had a high sulfur grade and was easy to fluctuate.
[0006]
Thus, there is no known roasting condition at a mass production level in which sulfur contained as a main component in the raw material nickel sulfate is removed and the sulfur grade in the obtained nickel oxide powder is stably 1000 ppm or less. Was.
[0007]
[Patent Document 1]
JP 2001-32002 [Problems to be solved by the invention]
In view of such a conventional situation, the present invention provides a method for stably producing a nickel oxide powder having low impurities and a sulfur grade of 500 ppm or less, which is suitable as an electronic component material such as an electrode, by roasting a nickel sulfate raw material. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing nickel oxide powder provided by the present invention uses a horizontal rotary production furnace, using anhydrous nickel sulfate as a raw material, and forcibly moves from the outlet side to the entrance side in the furnace. By roasting at a maximum temperature of 900 to 1200 ° C. while flowing air at a flow rate of 15 mm / sec or more with respect to the furnace sectional area, nickel oxide powder having a sulfur grade of 500 ppm or less is obtained.
[0009]
In the method for producing a nickel oxide powder of the present invention, it is preferable that the horizontal rotary production furnace has a length: diameter ratio of the heating section of 3: 1 or more.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of the present invention, anhydrous nickel sulfate containing no water of crystallization is used as a raw material and roasted in a horizontal rotary production furnace. By using anhydrous nickel sulfate as a raw material, the amount of gas generated from the raw material during roasting in an air atmosphere can be reduced and the air flow in the furnace can be stabilized. It becomes possible to reduce the sulfur quality in the powder.
[0011]
At the time of roasting, it is desirable that a gas having a large specific gravity difference, a gas component causing sulfuric acid dew condensation, and the like are not mixed as much as possible in the furnace gas. In addition, if the raw material contains impurities such as alkali and alkaline earth, the residual sulfur quality in the nickel oxide powder is unlikely to decrease, so it is necessary to use anhydrous nickel sulfate having a low impurity quality.
[0012]
In the method of the present invention, the roasting temperature is set to 900 to 1200 ° C. in order to efficiently decompose the sulfuric acid component in the nickel sulfate during roasting. In addition, in order to obtain nickel oxide powder with low sulfur quality by roasting nickel sulfate in an air atmosphere, anhydrous nickel sulfate is used as a raw material and sulfur dioxide gas generated simultaneously with the decomposition reaction of sulfuric acid is replaced with smooth gas. It is necessary to.
[0013]
Therefore, in the method of the present invention, in the furnace at the time of roasting, from the outlet side to the inlet side, forcibly at a flow rate of 15 mm / sec or more, preferably 20 mm / sec or more with respect to the furnace sectional area. A flow for replacing the sulfurous acid gas is secured by flowing air through the air. If the air flow rate is less than 15 mm / sec, it is not possible to obtain a nickel oxide powder having a sulfur grade of 500 ppm or less even when anhydrous nickel sulfate is used as a raw material.
[0014]
Further, in order to promote the replacement of the sulfur dioxide gas more effectively, the ratio of the length to the diameter of the heating portion of the horizontal rotary manufacturing furnace is set to 3 or more, that is, the ratio of the length to the diameter of the heating portion is set to 3: It is preferably at least 1, more preferably at least 5: 1.
[0015]
According to the method of the present invention, a nickel oxide powder having a sulfur grade of 500 ppm or less, desirably 300 ppm or less can be stably produced. Further, since the gas flow in the horizontal rotary manufacturing furnace is stabilized, the average particle size of the nickel oxide powder can be controlled to about 0.5 to 1.5 μm.
[0016]
【Example】
Nickel oxide powder was manufactured using anhydrous nickel sulfate as a raw material and using a kiln (heating unit: 700 mm in diameter x 6000 mm in length / 6 zone) as a horizontal rotary cylindrical furnace. The composition of the anhydrous nickel sulfate used as the raw material is shown in Table 1 below. For comparison, in Samples 7 and 8, nickel sulfate containing water of crystallization was used as a raw material, and the component composition was almost the same as in Table 1 below.
[0017]
[Table 1]
Figure 2004189530
[0018]
While forcibly blowing air from the outlet side to the inlet side to the kiln, raw material anhydrous nickel sulfate is continuously supplied, and the kiln reaction tube (made of SUS) is rotated at a rotation speed of 1 rpm. The roasting was performed by controlling the temperature and the holding time. At that time, the heating temperature of each zone of the kiln was changed as shown in Table 2 below for each sample. The generated exhaust gas was treated by an installed exhaust gas treatment facility.
[0019]
[Table 2]
Figure 2004189530
[0020]
The roasted material discharged from the kiln was cooled to room temperature, and then pulverized with an atomizer to obtain a nickel oxide powder. The sulfur quality of the obtained nickel oxide powder was determined by chemical analysis, and the average particle size of the nickel oxide powder was measured using a Fischer subsieve sizer (Fsss). The results obtained are shown in Table 3 below, together with the raw material input amount and the air flow rate with respect to the furnace cross-sectional area of the kiln.
[0021]
[Table 3]
Figure 2004189530
[0022]
As can be seen from the above results, in Samples 1 to 4 of the present invention, the sulfur grade was 500 ppm by roasting at a temperature of 900 to 1200 ° C. while forcibly flowing air at a flow rate of 15 mm / sec or more. The following nickel oxide powder was obtained. Also, it can be seen that the higher the air velocity, the lower the sulfur quality.
[0023]
On the other hand, in Samples 5 and 6 of Comparative Examples, the raw material, the raw material input amount, and the heating temperature were almost the same as those of the present invention, but the nickel oxide obtained was low because the air flow rate was as low as 10 mm / sec or less. The sulfur grade of the powder is 700 ppm or more. Further, in Samples 7 and 8 of Comparative Examples using nickel sulfate containing water of crystallization as a raw material, Sample 7 whose conditions other than the raw material are almost the same as those of the present invention, the sulfur grade is reduced only to about 12000 ppm. Also, in Sample 8 in which the raw material input amount was significantly reduced, the sulfur grade was 1700 ppm.
[0024]
【The invention's effect】
According to the present invention, anhydrous nickel sulfate is used as a raw material, and roasting is performed while forcibly flowing air into a furnace, so that impurities are reduced and the sulfur quality can be suppressed to 500 ppm or less, which is suitable as an electronic component material. Nickel oxide powder can be manufactured stably.

Claims (2)

横型回転式製造炉を使用し、無水の硫酸ニッケルを原料として、炉内に出口側から入口側に向かって強制的に空気を炉断面積に対して15mm/秒以上の流速で流しながら、最高温度900〜1200℃で焙焼することにより、硫黄品位500ppm以下の酸化ニッケル粉末を得ることを特徴とする酸化ニッケル粉末の製造方法。Using a horizontal rotary manufacturing furnace, using anhydrous nickel sulfate as a raw material, while forcibly flowing air from the outlet side to the inlet side at a flow rate of 15 mm / sec or more with respect to the furnace cross-section, A method for producing a nickel oxide powder, comprising obtaining a nickel oxide powder having a sulfur grade of 500 ppm or less by roasting at a temperature of 900 to 1200 ° C. 前記横型回転式製造炉は、加熱部の長さ:径の比を3:1以上とすることを特徴とする、請求項1に記載の酸化ニッケル粉末の製造方法。The method for producing nickel oxide powder according to claim 1, wherein the horizontal rotary production furnace has a length: diameter ratio of the heating unit of 3: 1 or more.
JP2002358889A 2002-12-11 2002-12-11 Method of manufacturing nickel oxide powder Pending JP2004189530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358889A JP2004189530A (en) 2002-12-11 2002-12-11 Method of manufacturing nickel oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358889A JP2004189530A (en) 2002-12-11 2002-12-11 Method of manufacturing nickel oxide powder

Publications (1)

Publication Number Publication Date
JP2004189530A true JP2004189530A (en) 2004-07-08

Family

ID=32758445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358889A Pending JP2004189530A (en) 2002-12-11 2002-12-11 Method of manufacturing nickel oxide powder

Country Status (1)

Country Link
JP (1) JP2004189530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266071A (en) * 2007-04-19 2008-11-06 Sumitomo Metal Mining Co Ltd Method for producing nickel oxide powder
WO2013021974A1 (en) 2011-08-06 2013-02-14 住友金属鉱山株式会社 Nickel oxide micropowder and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032002A (en) * 1999-07-16 2001-02-06 Sumitomo Metal Mining Co Ltd Production of nickel oxide powder
JP2001097720A (en) * 1999-09-30 2001-04-10 Sumitomo Metal Mining Co Ltd Method for producing nickel oxide powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032002A (en) * 1999-07-16 2001-02-06 Sumitomo Metal Mining Co Ltd Production of nickel oxide powder
JP2001097720A (en) * 1999-09-30 2001-04-10 Sumitomo Metal Mining Co Ltd Method for producing nickel oxide powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266071A (en) * 2007-04-19 2008-11-06 Sumitomo Metal Mining Co Ltd Method for producing nickel oxide powder
WO2013021974A1 (en) 2011-08-06 2013-02-14 住友金属鉱山株式会社 Nickel oxide micropowder and method for producing same
KR20140052003A (en) 2011-08-06 2014-05-02 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel oxide micropowder and method for producing same
CN104843806A (en) * 2011-08-06 2015-08-19 住友金属矿山株式会社 Nickel oxide fine powder
US9790099B2 (en) 2011-08-06 2017-10-17 Sumitomo Metal Mining Co., Ltd. Nickel oxide micropowder and method for producing same
US10329163B2 (en) 2011-08-06 2019-06-25 Sumitomo Metal Mining Co., Ltd. Nickel oxide micropowder and method for producing same

Similar Documents

Publication Publication Date Title
CN102369075B (en) Production of molybdenum metal powder
JP5442260B2 (en) Method for producing densified molybdenum metal powder
US20080247931A1 (en) Method for Producing Multi-Constituent, Metal Oxide Compounds Containing Alkali Metals,and thus Produced Metal Oxide Compounds
US11198914B2 (en) Raw material for direct reduction, method of producing raw material for direct reduction, and method of producing reduced iron
CN109415207B (en) Apparatus for producing metal oxide and method for producing the same
JP2003193152A (en) Molybdenum metal and production thereof
JP2009155194A (en) Nickel oxide powder and method for manufacturing the same
JPH11217203A (en) Production of metal oxide powder
JP2010089988A (en) Nickel oxide fine powder and method of producing the same
JP4858153B2 (en) Nickel oxide powder and manufacturing method thereof
SU1011527A1 (en) Process for producing tin dioxide
JP2001017857A (en) Spray pyrolytic apparatus
JP4249115B2 (en) Method for producing strontium carbonate fine particles
JP2004189530A (en) Method of manufacturing nickel oxide powder
JP2004123487A (en) Method for manufacturing nickel oxide powder
JP2004123488A (en) Method for manufacturing nickel oxide powder
KR102061677B1 (en) Method for Preparing Powdered Composite Carbide of Tungsten and Titanium
WO2020195721A1 (en) Spinel powder
JP2004189531A (en) Manufacturing method of nickel oxide powder
CN109457107B (en) Method for removing fluorine from tungsten-containing solid
KR20060059272A (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
JP6969120B2 (en) Manufacturing method of nickel oxide fine powder
CN112969544A (en) Method for preparing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder prepared by same
JPH0517143A (en) Production of ultra-fine-particle zinc oxide
JP4545357B2 (en) Method for producing aluminum nitride powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304