JP2004123487A - Method for manufacturing nickel oxide powder - Google Patents

Method for manufacturing nickel oxide powder Download PDF

Info

Publication number
JP2004123487A
JP2004123487A JP2002293246A JP2002293246A JP2004123487A JP 2004123487 A JP2004123487 A JP 2004123487A JP 2002293246 A JP2002293246 A JP 2002293246A JP 2002293246 A JP2002293246 A JP 2002293246A JP 2004123487 A JP2004123487 A JP 2004123487A
Authority
JP
Japan
Prior art keywords
oxide powder
nickel oxide
furnace
nickel
nickel sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293246A
Other languages
Japanese (ja)
Inventor
Osamu Nakai
中井 修
Shigeki Matsuki
松木 茂喜
Nobuhiro Matsumoto
松本 伸弘
Nobumasa Iemori
家守 伸正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002293246A priority Critical patent/JP2004123487A/en
Publication of JP2004123487A publication Critical patent/JP2004123487A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing nickel oxide powder by which nickel oxide powder having a small mean particle diameter as well as a low sulfur content can stably be manufactured using nickel sulfate containing water of crystallization as a starting material and which has lower energy consumption than a conventional method and is economically advantageous. <P>SOLUTION: Two furnaces are used as the manufacturing furnace, in the first manufacturing furnace, nickel sulfate containing water of crystallization is calcined to form anhydrous nickel sulfate, and in the second manufacturing furnace, the anhydrous nickel sulfate is roasted at a maximum temperature of 950-1,040°C while forcing air to flow from the outlet side toward the inlet side at a flow rate of ≥20 mm/sec with respect to the cross-sectional area of the furnace. A calcining temperature in the first manufacturing furnace is preferably 450-600°C. The objective nickel oxide powder having a grain size of about 0.4-0.5 μm and a sulfur content of ≤100 ppm is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、結晶水を含有する硫酸ニッケルを原料とし、これを焙焼して酸化ニッケル粉末を製造する方法に関する。
【0002】
【従来の技術】
一般に、酸化ニッケルは、硫酸ニッケル、炭酸ニッケル、塩化ニッケル等のニッケル塩類を、キルン等の転動炉を用いて、酸化性雰囲気下で焙焼することによって製造される。これらの酸化ニッケル粉末は、他の材料と混合して焼結し、フェライト部品等として用いられている。
【0003】
従来から、結晶水を含有する硫酸ニッケルを原料とし、これをキルンで焙焼して酸化ニッケル粉末を製造する方法が一般的に行われてきた。しかし、結晶水を含有する硫酸ニッケルを焙焼すると、水蒸気と亜硫酸ガスが同時に発生して排ガス量が多くなり、キルン内のガスの流れや温度分布が不均一となるため、酸化ニッケル粉末中の硫黄品位が変動しやすく、また平均粒径も広範囲にバラツキやすかった。
【0004】
更に近年においては、酸化ニッケル粉末と他の材料との焼結体をより高密度にし、またフェライト部品のインダクターに与える影響を低減させるために、比表面積が大きい、即ち結晶粒径が出来るだけ小さく、且つ硫黄品位が低い酸化ニッケル粉末が要求されるようになっている。
【0005】
そこで、例えば特開2001−32002号公報には、結晶水を含有する硫酸ニッケルを原料とし、第1段焙焼を950℃以上1000℃未満で及び第2段焙焼を1000℃以上1200℃未満で行う2段焙焼により、平均粒径が小さく且つ硫黄品位が低い酸化ニッケル粉末を製造する方法が提案されている。
【0006】
しかしながら、この方法においても、平均粒径と硫黄品位を所定の範囲内に安定して制御することは難しく、特にフェライト部品用として硫黄品位が低く同時に平均粒径の小さな酸化ニッケル粉末を得ることはできなかった。また、ほぼ1000℃以上の高温で2段の焙焼を行うため、エネルギー消費が大きくなり、経済的に不利であるという問題もあった。
【0007】
【特許文献1】
特開2001−32002号公報
【0008】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、結晶水を含有する硫酸ニッケルを原料として用い、硫黄品位が低く同時に平均粒径の小さい酸化ニッケル粉末を安定して得ることができ、しかもエネルギー消費が従来よりも少なく、経済的に有利な酸化ニッケル粉末の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する酸化ニッケル粉末の製造方法は、結晶水を含有する硫酸ニッケルを焙焼して酸化ニッケル粉末を製造する方法であって、製造炉として2炉を使用し、第1製造炉で結晶水を含有する硫酸ニッケルをか焼して無水硫酸ニッケルとし、続いて第2製造炉で出口側から入口側へ炉断面積に対して20mm/秒以上の流速にて強制的に空気を流しながら、該無水硫酸ニッケルを最高温度950〜1040℃で焙焼することを特徴とする。
【0010】
上記本発明の酸化ニッケル粉末の製造方法においては、前記第1製造炉でのか焼温度を450〜600℃とすることが好ましい。また、上記本発明の酸化ニッケル粉末の製造方法は、結晶粒径が約0.4〜0.5μmで、且つ硫黄品位が100ppm以下の酸化ニッケル粉末を得ることを特徴とする。
【0011】
【発明の実施の形態】
一般に、結晶水を含有する硫酸ニッケルを原料として、これを酸化性雰囲気中で焙焼すると、結晶水の分解による水蒸気の発生と、硫酸分の分解による亜硫酸ガスの発生が生じる。この水蒸気と亜硫酸ガスの発生による多量のガスのため、炉内のガス流や温度分布に乱れが生じ、得られる酸化ニッケル粉末の粒径及び硫黄品位にバラツキが生じるものと考えられる。
【0012】
本発明者らは、この結晶水を含有する硫酸ニッケルについて熱分析を実施した結果、95℃から200℃付近にかけて急激に重量が低下した後、450℃付近まで徐々に重量が低下する現象が認められた。更に温度を上昇させると、750℃から850℃付近にかけて再び重量が低下することが分った。
【0013】
この現象に関して、95℃から450℃付近までの最初の重量の減少率は約41%、そして750℃から850℃付近にかけての2段階の重量の減少率は約30%であることから、1段階目の反応は結晶水の分解であり、2段階目の反応は硫酸分の分解反応であると考えられる。
【0014】
上記の検討結果から、少なくとも450℃付近の温度でか焼することにより、原料中の結晶水を分解除去できることを見出し、本発明に至ったものである。即ち、本発明では、第1製造炉で結晶水を分解除去するためのか焼を行い、その後第2製造炉において強制的に送風しながら850℃以上の十分な温度で焙焼して硫酸分を分解し、酸化ニッケル粉末を製造する。
【0015】
第1製造炉でのか焼温度は、結晶水をほぼ完全に分解除去するため、450〜600℃の範囲が好ましい。また、第2製造炉では、焙焼温度を950〜1040℃に制御するが、その際に第2製造炉で出口側から入口側へ炉断面積に対して20mm/秒以上、好ましくは30mm/秒以上の流速にて、強制的に空気を送風する。尚、得られる酸化ニッケル粉末中の硫黄品位を低減させるためには焙焼温度を高くすることが有効であるが、温度が高くなるにつれて焼結が進行して平均粒径が大きくなるので注意を要する。
【0016】
かかる本発明の方法では、第1製造炉でのか焼により硫酸ニッケル原料中の結晶水を予め分解除去し、焙焼時には無水状態とすることができるため、焙焼温度及び炉内の気流が安定化する。しかも、第2製造炉での焙焼時における強制的な空気の送風によって、硫酸分の分解で発生する亜硫酸ガスを容易に置換することができる。
【0017】
そのため、第2製造炉での焙焼温度が950〜1040℃と比較的低い温度であっても、平均粒径が小さく且つ硫黄品位の低い酸化ニッケル粉末を得ることができる。具体的には、得られる酸化ニッケル粉末の結晶粒径を約0.4〜0.5μmとし、且つ硫黄品位を100ppm以下とすることができる。更には、第2製造炉での焙焼に先立って、第1製造炉において低温で結晶水の分解除去を行うため、エネルギーの消費が少なく、経済的にも有利である。
【0018】
【実施例】
結晶水を含有する硫酸ニッケルを原料とし、製造炉として2つの外熱式のキルンを使用して、酸化ニッケル粉末の製造を行った。使用した硫酸ニッケルの成分を下記表1に示した。また、か焼炉である第1製造炉の寸法は内径0.8m、長さ10.5mであり、焙焼炉である第2製造炉の寸法は内径0.7m、長さ9.0mである。
【0019】
【表1】

Figure 2004123487
【0020】
上記第1製造炉のか焼炉に、出口側から入口側に向かって強制的に空気を送風しながら、結晶水を含んだ硫酸ニッケルを108kg/hrの速度で供給し、得られた無水硫酸ニッケルを第2製造炉の焙焼炉に供給した。その際、第1製造炉と第2製造炉の反応管(SUS製)を1rpmの回転数で回転させ、第1製造炉と第2製造炉から発生する排ガスはそれぞれの炉に設置されている排ガス処理設備で処理した。
【0021】
第2製造炉の焙焼炉から排出された焙焼物は、常温まで冷却した後、アトマイザーで粉砕して酸化ニッケル粉末を得た。得られた酸化ニッケル粉末の硫黄品位を化学分析により求めると共に、酸化ニッケル粉末の平均粒径をフィッシャーサブシーブサイザー(Fsss)を用いて測定した。得られた結果を、第1製造炉でのか焼温度、並びに第2製造炉での焙焼温度及び炉断面積に対する空気流量と共に、下記表2に示した。
【0022】
【表2】
Figure 2004123487
【0023】
上記表2の結果から、第1製造炉でのか焼温度を450〜600℃、及び第2製造炉の焙焼温度を950〜1040℃とし、空気流量を20mm/秒以上とすることによって、硫黄品位が100ppm以下と低く、且つ平均粒径が0.4〜0.5μmと極めて小さい酸化ニッケル粉末が得られることが分る。尚、表2から分るとおり、第2製造炉の焙焼温度が高くなるに伴って硫酸分の分解が促進されるため硫黄品位は低い値を示すが、一方で焼結が進むため平均粒径は大きくなりやすい。
【0024】
また、第1製造炉でのか焼温度が450〜600℃であっても、第2製造炉の焙焼温度が950℃未満の試料11及び試料13では、酸化ニッケル粉末の平均粒径は小さいものの、硫黄品位が極めて高くなっている。一方、第2製造炉の焙焼温度が1040℃を超える試料12及び試料14では、焼結が進み過ぎるため酸化ニッケル粉末の平均粒径が大きくなっていることが分る。更に、第2製造炉での空気流量が20mm/秒未満の試料15では、か焼温度及び焙焼温度が適切であっても、100ppm以下の硫黄品位を達成できなかった。
【0025】
【発明の効果】
本発明によれば、原料として結晶水を含有する硫酸ニッケルを用いる焙焼法でありながら、硫黄品位が100ppm以下と低く、同時に平均粒径が0.4〜0.5μmと小さい酸化ニッケル粉末を安定して得ることができ、しかもエネルギー消費が従来よりも少なく、経済的に有利な酸化ニッケル粉末の製造方法を提供することを目的とする。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing nickel oxide powder by roasting nickel sulfate containing water of crystallization as a raw material.
[0002]
[Prior art]
In general, nickel oxide is produced by roasting nickel salts such as nickel sulfate, nickel carbonate and nickel chloride in a oxidizing atmosphere using a rolling furnace such as a kiln. These nickel oxide powders are mixed with other materials, sintered and used as ferrite parts and the like.
[0003]
Conventionally, a method of producing nickel oxide powder by using nickel sulfate containing water of crystallization as a raw material and roasting it in a kiln has been generally performed. However, when roasting nickel sulfate containing water of crystallization, water vapor and sulfurous acid gas are generated at the same time, the amount of exhaust gas increases, and the gas flow and temperature distribution in the kiln become non-uniform. The sulfur grade was liable to fluctuate, and the average particle size was also likely to vary widely.
[0004]
In recent years, the specific surface area is large, that is, the crystal grain size is as small as possible in order to increase the density of the sintered body of nickel oxide powder and other materials and reduce the influence on the inductor of the ferrite component. In addition, a nickel oxide powder having a low sulfur grade has been required.
[0005]
Therefore, for example, Japanese Patent Application Laid-Open No. 2001-32002 discloses a method in which nickel sulfate containing water of crystallization is used as a raw material, and the first-stage roasting is performed at 950 ° C. or higher and lower than 1000 ° C. A method for producing a nickel oxide powder having a small average particle size and a low sulfur grade by the two-stage roasting performed in the above.
[0006]
However, even in this method, it is difficult to stably control the average particle size and the sulfur grade within a predetermined range, and it is especially difficult to obtain a nickel oxide powder having a low sulfur grade and a small average grain size for ferrite parts. could not. In addition, since the two-stage roasting is performed at a high temperature of about 1000 ° C. or more, there is a problem in that energy consumption is increased, which is economically disadvantageous.
[0007]
[Patent Document 1]
JP 2001-32002 A
[Problems to be solved by the invention]
In view of such conventional circumstances, the present invention can stably obtain nickel oxide powder having low sulfur grade and small average particle size by using nickel sulfate containing water of crystallization as a raw material, and furthermore, energy consumption can be improved. It is an object of the present invention to provide a method for producing a nickel oxide powder which is less economical than conventional ones.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing nickel oxide powder provided by the present invention is a method for producing nickel oxide powder by roasting nickel sulfate containing water of crystallization, using two furnaces as a production furnace. Then, in the first production furnace, nickel sulfate containing water of crystallization is calcined to obtain anhydrous nickel sulfate. Then, in the second production furnace, the flow rate from the outlet side to the inlet side is 20 mm / sec or more with respect to the furnace cross-sectional area. The anhydrous nickel sulfate is roasted at a maximum temperature of 950 to 1040 ° C. while forcibly flowing air.
[0010]
In the method for producing a nickel oxide powder of the present invention, the calcination temperature in the first production furnace is preferably set to 450 to 600 ° C. Further, the method for producing a nickel oxide powder of the present invention is characterized in that a nickel oxide powder having a crystal grain size of about 0.4 to 0.5 μm and a sulfur grade of 100 ppm or less is obtained.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Generally, when nickel sulfate containing water of crystallization is used as a raw material and roasted in an oxidizing atmosphere, generation of water vapor due to decomposition of water of crystallization and generation of sulfur dioxide gas due to decomposition of sulfuric acid occur. It is considered that the gas flow and the temperature distribution in the furnace are disturbed due to the large amount of gas generated by the generation of the steam and the sulfurous acid gas, and the particle size and the sulfur quality of the obtained nickel oxide powder vary.
[0012]
The present inventors have conducted a thermal analysis on the nickel sulfate containing the water of crystallization. As a result, it was found that the weight suddenly decreased from 95 ° C. to around 200 ° C. and then gradually decreased to around 450 ° C. Was done. It was found that when the temperature was further increased, the weight decreased again from 750 ° C. to around 850 ° C.
[0013]
Regarding this phenomenon, the initial weight loss from 95 ° C to around 450 ° C is about 41%, and the two-stage weight loss from 750 ° C to around 850 ° C is about 30%. The second reaction is considered to be decomposition of water of crystallization, and the second reaction is decomposition of sulfuric acid.
[0014]
From the above examination results, it has been found that calcination at least at a temperature of around 450 ° C. can decompose and remove the water of crystallization in the raw material, leading to the present invention. That is, in the present invention, calcination for decomposing and removing crystallization water is performed in the first production furnace, and then roasted at a sufficient temperature of 850 ° C. or more while forcibly blowing air in the second production furnace to remove sulfuric acid. Decomposes to produce nickel oxide powder.
[0015]
The calcination temperature in the first production furnace is preferably in the range of 450 to 600 ° C. in order to almost completely decompose and remove water of crystallization. In the second production furnace, the roasting temperature is controlled at 950 to 1040 ° C., and at that time, the second production furnace is at least 20 mm / sec, preferably 30 mm / sec, from the outlet side to the inlet side with respect to the furnace cross-sectional area. Air is forcibly blown at a flow rate of 2 seconds or more. It is effective to increase the roasting temperature in order to reduce the sulfur quality in the obtained nickel oxide powder, but it should be noted that as the temperature increases, sintering progresses and the average particle size increases. It costs.
[0016]
In the method of the present invention, the crystallization water in the nickel sulfate raw material can be decomposed and removed in advance by calcining in the first production furnace, and the anhydrous state can be obtained during roasting. Therefore, the roasting temperature and the airflow in the furnace are stable. Become In addition, sulfur dioxide gas generated by decomposition of sulfuric acid can be easily replaced by forced air blowing during roasting in the second production furnace.
[0017]
Therefore, even if the roasting temperature in the second production furnace is a relatively low temperature of 950 to 1040 ° C., it is possible to obtain a nickel oxide powder having a small average particle size and a low sulfur grade. Specifically, the crystal grain size of the obtained nickel oxide powder can be about 0.4 to 0.5 μm, and the sulfur quality can be 100 ppm or less. Further, prior to the roasting in the second production furnace, the first production furnace decomposes and removes the water of crystallization at a low temperature, which consumes less energy and is economically advantageous.
[0018]
【Example】
Using nickel sulfate containing water of crystallization as a raw material, two externally heated kilns were used as production furnaces to produce nickel oxide powder. The components of nickel sulfate used are shown in Table 1 below. The dimensions of the first production furnace, which is a calciner, are 0.8 m in inner diameter and 10.5 m in length, and the dimensions of the second production furnace, which is a roasting furnace, are 0.7 m in inner diameter and 9.0 m in length. is there.
[0019]
[Table 1]
Figure 2004123487
[0020]
Nickel sulfate containing crystallization water was supplied at a rate of 108 kg / hr to the calciner of the first production furnace while forcibly blowing air from the outlet side to the inlet side, and the obtained anhydrous nickel sulfate was obtained. Was supplied to the roasting furnace of the second production furnace. At that time, the reaction tubes (made of SUS) of the first production furnace and the second production furnace are rotated at a rotation speed of 1 rpm, and the exhaust gas generated from the first production furnace and the second production furnace is installed in each furnace. Processed in an exhaust gas treatment facility.
[0021]
The roasted product discharged from the roasting furnace of the second manufacturing furnace was cooled to room temperature, and then pulverized with an atomizer to obtain nickel oxide powder. The sulfur quality of the obtained nickel oxide powder was determined by chemical analysis, and the average particle size of the nickel oxide powder was measured using a Fischer subsieve sizer (Fsss). The results obtained are shown in Table 2 below, together with the calcination temperature in the first production furnace, the roasting temperature in the second production furnace, and the air flow rate with respect to the furnace sectional area.
[0022]
[Table 2]
Figure 2004123487
[0023]
From the results in Table 2 above, by setting the calcination temperature in the first production furnace to 450 to 600 ° C, the roasting temperature in the second production furnace to 950 to 1040 ° C, and the air flow rate to 20 mm / sec or more, It can be seen that a nickel oxide powder having a low quality of 100 ppm or less and an extremely small average particle size of 0.4 to 0.5 μm can be obtained. As can be seen from Table 2, as the roasting temperature in the second production furnace increases, the decomposition of sulfuric acid is promoted, so that the sulfur grade shows a low value. The diameter tends to be large.
[0024]
In addition, even though the calcining temperature in the first production furnace is 450 to 600 ° C, the average particle size of the nickel oxide powder is small in Samples 11 and 13 in which the roasting temperature in the second production furnace is less than 950 ° C. , The sulfur grade is extremely high. On the other hand, in the samples 12 and 14 in which the roasting temperature of the second production furnace exceeds 1040 ° C., the average particle size of the nickel oxide powder is large because the sintering proceeds too much. Further, in Sample 15 in which the air flow rate in the second production furnace was less than 20 mm / sec, even if the calcination temperature and the roasting temperature were appropriate, a sulfur grade of 100 ppm or less could not be achieved.
[0025]
【The invention's effect】
According to the present invention, while a roasting method using nickel sulfate containing water of crystallization as a raw material, a nickel oxide powder having a low sulfur grade of 100 ppm or less and a small average particle size of 0.4 to 0.5 μm at the same time is used. An object of the present invention is to provide a method for producing a nickel oxide powder which can be obtained stably, consumes less energy than before, and is economically advantageous.

Claims (3)

結晶水を含有する硫酸ニッケルを焙焼して酸化ニッケル粉末を製造する方法であって、製造炉として2炉を使用し、第1製造炉で結晶水を含有する硫酸ニッケルをか焼して無水硫酸ニッケルとし、続いて第2製造炉で出口側から入口側へ炉断面積に対して20mm/秒以上の流速にて強制的に空気を流しながら、該無水硫酸ニッケルを最高温度950〜1040℃で焙焼することを特徴とする酸化ニッケル粉末の製造方法。A method for producing nickel oxide powder by roasting nickel sulfate containing water of crystallization, wherein two furnaces are used as production furnaces, and nickel sulfate containing water of crystallization is calcined in a first production furnace. The nickel sulfate is then made into the second production furnace, and the anhydrous nickel sulfate is heated to a maximum temperature of 950 to 1040 ° C. while forcibly flowing air from the outlet side to the inlet side at a flow rate of 20 mm / sec or more with respect to the furnace sectional area. A method for producing a nickel oxide powder, comprising roasting at a temperature. 前記第1製造炉でのか焼温度を450〜600℃とすることを特徴とする、請求項1に記載の酸化ニッケル粉末の製造方法。The method for producing nickel oxide powder according to claim 1, wherein the calcination temperature in the first production furnace is 450 to 600C. 結晶粒径が約0.4〜0.5μmで、且つ硫黄品位が100ppm以下の酸化ニッケル粉末を得ることを特徴とする、請求項1又は2に記載の酸化ニッケル粉末の製造方法。The method for producing nickel oxide powder according to claim 1, wherein a nickel oxide powder having a crystal grain size of about 0.4 to 0.5 μm and a sulfur grade of 100 ppm or less is obtained.
JP2002293246A 2002-10-07 2002-10-07 Method for manufacturing nickel oxide powder Pending JP2004123487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293246A JP2004123487A (en) 2002-10-07 2002-10-07 Method for manufacturing nickel oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293246A JP2004123487A (en) 2002-10-07 2002-10-07 Method for manufacturing nickel oxide powder

Publications (1)

Publication Number Publication Date
JP2004123487A true JP2004123487A (en) 2004-04-22

Family

ID=32284215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293246A Pending JP2004123487A (en) 2002-10-07 2002-10-07 Method for manufacturing nickel oxide powder

Country Status (1)

Country Link
JP (1) JP2004123487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156134A (en) * 2006-12-21 2008-07-10 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
JP2008266071A (en) * 2007-04-19 2008-11-06 Sumitomo Metal Mining Co Ltd Method for producing nickel oxide powder
JP2009155194A (en) * 2007-12-28 2009-07-16 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
US8142078B2 (en) 2004-10-04 2012-03-27 Kyoraku Co., Ltd. Material-filled package
JP2017014040A (en) * 2015-06-30 2017-01-19 住友金属鉱山株式会社 Method for producing nickel oxide powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142078B2 (en) 2004-10-04 2012-03-27 Kyoraku Co., Ltd. Material-filled package
JP2008156134A (en) * 2006-12-21 2008-07-10 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
JP2008266071A (en) * 2007-04-19 2008-11-06 Sumitomo Metal Mining Co Ltd Method for producing nickel oxide powder
JP2009155194A (en) * 2007-12-28 2009-07-16 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
JP2017014040A (en) * 2015-06-30 2017-01-19 住友金属鉱山株式会社 Method for producing nickel oxide powder

Similar Documents

Publication Publication Date Title
JP5442260B2 (en) Method for producing densified molybdenum metal powder
CN107851794B (en) Method for producing positive electrode active material for lithium secondary battery
CN111170750A (en) Method for producing refractory material by innocent treatment of secondary aluminum ash
US20080190243A1 (en) Method for producing molybdenum metal and molybdenum metal
WO2010043968A2 (en) Production of molybdenum metal powder
JP2019075253A (en) Method for manufacturing positive electrode active material for lithium secondary battery
JP5168070B2 (en) Nickel oxide powder and method for producing the same
JP5007667B2 (en) Nickel oxide powder and method for producing the same
JP4858153B2 (en) Nickel oxide powder and manufacturing method thereof
JP2004123487A (en) Method for manufacturing nickel oxide powder
JPH11217203A (en) Production of metal oxide powder
JP2004123488A (en) Method for manufacturing nickel oxide powder
JP2001017857A (en) Spray pyrolytic apparatus
CN111094189A (en) Method for preparing electrode active material
JP2002206120A (en) Pellet for use in reducing furnace, its manufacturing method, and method for reducing oxidized metal
JP2018016516A (en) Method for producing nickel oxide and fluidized roasting furnace
JP2004189531A (en) Manufacturing method of nickel oxide powder
KR100626437B1 (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
JP2018012624A (en) Method for producing nickel oxide and fluidization calcinating furnace
JP2004189530A (en) Method of manufacturing nickel oxide powder
JP6969120B2 (en) Manufacturing method of nickel oxide fine powder
JPS63288913A (en) Production of zinc oxide
JP6708038B2 (en) Method for producing nickel oxide
JP7098919B2 (en) Manufacturing method of nickel oxide fine powder
JP6888270B2 (en) Manufacturing method of nickel oxide powder