JP2004187717A - Balloon for catheter - Google Patents

Balloon for catheter Download PDF

Info

Publication number
JP2004187717A
JP2004187717A JP2002355659A JP2002355659A JP2004187717A JP 2004187717 A JP2004187717 A JP 2004187717A JP 2002355659 A JP2002355659 A JP 2002355659A JP 2002355659 A JP2002355659 A JP 2002355659A JP 2004187717 A JP2004187717 A JP 2004187717A
Authority
JP
Japan
Prior art keywords
balloon
thickness
neck portion
neck
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002355659A
Other languages
Japanese (ja)
Other versions
JP4713057B2 (en
Inventor
Masatoshi Yokoyama
正俊 横山
Naoki Matsumoto
直樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Covidien Ltd
Original Assignee
Nippon Covidien Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Covidien Ltd filed Critical Nippon Covidien Ltd
Priority to JP2002355659A priority Critical patent/JP4713057B2/en
Publication of JP2004187717A publication Critical patent/JP2004187717A/en
Application granted granted Critical
Publication of JP4713057B2 publication Critical patent/JP4713057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a balloon which is constructed to have both a capacity of softness at the distal end side of the balloon and the capacity of maintaining an enough connecting power at the proximal end side. <P>SOLUTION: A ratio (A/B) of the thickness A of a neck portion 3e at the distal end side of the balloon 3 which is installed at the distal end of a catheter to the thickness B of the neck portion 3f at the proximal end side is prescribed to come in a range of 1/3 to 1 so that the balloon with the structure to have both the capacity of softness at the distal end side and the capacity of maintaining the enough joining power at the proximal end side becomes obtainable. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、体内の管腔、例えば血管、消化管、泌尿器管などに発生した狭窄状態にある組織部位を物理的に拡張し、その末梢側の体液流通を改善するために使用されるカテーテル用バルーンに関する。
【0002】
【従来の技術】
体内の管腔に発生した狭窄状態にある組織部位を物理的に拡張するために使用されているバルーンカテーテルは、シャフト部の先端部に膨張可能なバルーンを備えたカテーテルを、体内の管腔の狭窄状態にある部位に挿入し、留置した後、体外より適当な加圧手段によりシャフト部を介してバルーンに流体を注入し、加圧して膨張させ、狭窄状態の組織部位を拡張するものである。このようなバルーンカテーテルを使用すれば、大がかりな手術を行なわずに狭窄状態の組織部位の拡張が可能であるため、最近多数の治療に適応されている(例えば特許文献1参照)。
【0003】
特に冠状動脈の狭窄状態にある部位を拡張するバルーンカテーテルは、PTCA(経皮的冠状動脈形成術)バルーンカテーテルと呼ばれている。PTCAバルーンカテーテルには、様々な形状があるが、主にオーバーザワイヤタイプとラピッドエクスチェンジタイプ(迅速交換タイプ)の2種類のものが広く使われている。
【0004】
図5はオーバーザワイヤタイプのPTCAバルーンカテーテルの一般的な構成を示す側面図、図6はラピッドエクスチェンジタイプのPTCAバルーンカテーテルの一般的な構成を示す側面図、図7はこれらPTCAバルーンカテーテルの先端側部分の詳細を示す断面図である。
【0005】
図5のオーバーザワイヤタイプのPTCAバルーンカテーテル1Aは、シャフト部2と、その先端側に設けられた円筒形のバルーン3と、シャフト部2の基端側に設けられバルーン3の膨張用の流体注入口4aおよびガイドワイヤ(図示せず)の挿入口4bを有するコネクタ部4とによって構成されている。
【0006】
図6のラピッドエクスチェンジタイプのPTCAバルーンカテーテル1Bは、ガイドワイヤの挿入口4bがシャフト部2の中間部に位置している点がオーバーザワイヤタイプのものと異なっており、それ以外の構成は基本的にオーバーザワイヤタイプのものと同様である。
【0007】
これら両タイプのものにおいて、シャフト部2の先端側は図7のように2重管構造になっている。これをオーバーザワイヤタイプを例に挙げて説明する。すなわち、シャフト部2のコネクタ部のガイドワイヤ挿入口4bから最先端部まで貫通し、ガイドワイヤが挿通される場合に使用される細孔(第1のルーメン)5aを有する内管5と、コネクタ部の液体注入口4aからバルーン3の内腔3aに連通し、バルーン3の膨張用液体の注入および加圧を行う場合に使用される細孔(第2のルーメン)6aを有する外管6とを備えた2重管構造に形成されている。そして、内管5のバルーン3の内腔3a内に位置する外壁には、X線透視下でバルーン3の位置を確認できるように、X線不透過マーカ7が装着されている。
【0008】
バルーン3は、図7のように円筒部3bとその両端側に円錐部3c,3d、さらにその両端側にネック部3e,3fを備えた形状を呈し、先端側のネック部3eが内管5に、基端側のネック部3fが外管6に、それぞれ接続されている。したがって、バルーン3の基端側ネック部3fの内径は、外管6と接合する関係で外管6の外径とほぼ等しいサイズに調整され、同様にバルーン3の先端側ネック部3eの内径は、内管5と接合する関係で内管5の外径とほぼ等しいサイズに調整され、それぞれ作製される。このため、バルーン3の基端側ネック部3fの内径は、バルーン3の先端側ネック部3eの内径より大きくなっている。
【0009】
このようなものにおいて、バルーン3は図8に示すバルーン金型8を用いて作製される。すなわち、まず押出成形により、高分子材料で単管チューブであるバルーン用パリソンを作製する。次いで、パリソンを80〜120℃の範囲の温度で加熱し、長軸方向に所定量延伸する。次に、延伸したパリソンをバルーン金型8に通し、加温した後、加温したパリソンをバルーン金型8内で適切な条件下でブロー成形によりバルーン3に作製する。
【0010】
すなわち、バルーン金型8は、図8のように円柱形状部8aとその両端側に円錐形状部8b,8c、さらにその両端側に小径の円柱形状部8d,8eを持つ空間を有し、90℃〜160℃、好ましくは110℃〜150℃の範囲内に加熱され、その温度は金型内にセットしたパリソンに伝熱される。そして、このような加熱条件の下で、パリソンに1.52〜4.56MPa、好ましくは2.94〜3.85MPaの窒素ガスを加えて拡張することで、バルーン形状を得る。その後、バルーンのネック部を適当な長さに切断し、カテーテルのシャフトなどとアッセンブリすることで、バルーンカテーテルができる。
【0011】
このように構成されたPTCAバルーンカテーテル1A又は1Bは、冠状動脈の狭窄部位を拡張する場合、ガイディングカテーテル(図示せず)とガイドワイヤとのセットで使用される。そして、その冠状動脈形成術は、まず、ガイディングカテーテルを例えば大腿動脈から挿入して大動脈を経て冠状動脈の入口に先端を位置させた後、バルーンカテーテル1A又は1Bの内管5を貫通したガイドワイヤを冠状動脈の狭窄部位を越えて前進させ、次いでバルーン3をきれいに折畳んだ状態で、バルーンカテーテル1A又は1Bをガイドワイヤに沿って前進させる。次に、バルーン3を狭窄部位に位置させた状態で、第2のルーメン6aを介して膨張用液体をバルーン3に注入して膨張させ、狭窄部位を拡張する。そして、バルーン3を収縮させた後、バルーンカテーテル1A又は1Bを体外に除去する。
【0012】
したがって、このようなバルーンカテーテルのバルーン3には、屈曲した血管、狭窄部、閉鎖部もスムーズに通過できる追従性(Trackbility :トラッカビリティ)が求められる。そして、優れた追従性を得るためには、バルーンカテーテルの最先端部分が柔軟である必要がある。そのため、先端チップ部分には、特に柔軟性が要求される。ここで、先端チップ部分とは、最先端からバルーン3の先端側ネック部3eまでを指す。故にバルーン3の先端側ネック部3eの柔軟性が追従性に大きく影響する。
【0013】
また、バルーン3は、より肉厚が均一で薄く、より耐圧が高い方が良い。もし、バルーン3の円筒部3bの肉厚にむらがあり、円筒部3bの他の部分に比べて肉厚の薄い箇所があると、膨張時にその部分で割れてしまう。すなわち、バルーン3の肉厚をできるだけ薄くし、かつ耐圧を向上させるためには、円筒部3bの肉厚が均一になるように成形して、円筒部3bの肉厚の不均一さを少なくする必要がある。同様に、円筒部3bの両端側の円錐部3c,3dの肉厚も互いに均等でなければならない。つまり、円錐部3c,3dの肉厚はいずれも円筒部3bからネック部に向かうにつれて厚くなるが、同じ肉厚の変化率で円錐部3c,3dの厚みが変化するようにしなければならない。そのためには、軸方向への延伸およびブロー成形による2軸延伸の際、両端側に等しい力、長軸方向への等しい延伸量を付与しなければならない。
【0014】
また、図9に示すようにバルーン作製時に一緒に形成されるバルーン3のネック部3e,3fのそれぞれの肉厚A,Bは、必然的に先端側ネック部3eの肉厚Aが基端側ネック部3fの肉厚Bより厚くなる。これは前記図7で説明したようにバルーン3の基端側ネック部3fをシャフト外管6に、先端側ネック部3eをシャフト内管5に接続する関係で、基端側のネック内径が先端側より大きくなるように作られるため、パリソンの径方向への拡張比が先端側の方が小さくなるからである。
【0015】
また、シャフト外管6と接合されるバルーン3の基端側ネック部3fは、先端側ネック部3eに比べて過剰な引張、バルーン3への高い加圧およびこの加圧状態下での引張にも耐えうる十分な強度を保った接合をしなければならない。このためには、バルーン3の基端側ネック部3fの肉厚Bは、強固な接合が可能となる厚みにする必要があり、薄すぎてはいけない。
【0016】
さらに、バルーン3の基端側ネック部3fの肉厚Bは、接合するシャフト外管6の外径サイズ(すなわちパリソンの拡張比)にも影響されるが、いずれのサイズでも十分な接合の強度を保つことができる程度の厚さを確保する必要がある。
【0017】
一方、バルーン3の基端側ネック部3fの肉厚Bを厚めに設定して、ブロー成形時に両端側に等しい力、等しい延伸量引っ張ってバルーンを作製すると、先端側ネック部3eの肉厚Aは基端側ネック部3fの肉厚Bよりさらに厚くなってしまう。このため、バルーン3の先端側ネック部3eの柔軟性失われ、追従性が悪くなってしまう。
【0018】
ところで、バルーンの追従性を求めた技術として、バルーンの円筒部の肉厚Cと円錐部(特に先端側の円錐部)の肉厚Dとの肉厚比が、D/C≦1.2となるようにして、血管の狭窄部への挿入を容易にできるようにしたものが提案されている(例えば特許文献2参照)。
【0019】
また、最先端の突き出し部分を、先端に行くに従って外径が小さくなる先端チップ構造にして、バルーン先端部の血管狭窄部への挿通性を向上させるようにした技術が提案されている(例えば特許文献3参照)が、このような先端チップ構造の作製は加工が困難であるだけでなく、バルーンの先端側ネック部の肉厚が元々厚い場合には、加工後も柔軟性を欠くのは否めない。
【0020】
また、バルーンとシャフト内管を接合後、バルーンの先端ネック部の肉厚を加工前の1/5〜4/5に研削加工することで、外嵌接合部における段差を無くし、バルーンの先端ネック部を薄くして、血管狭窄部へのスムーズな挿入を可能にした技術が提案されている(例えば特許文献4参照)が、この場合は、比較的に軟質材料であるバルーンの先端ネック部の肉を研削によって盗む加工は加工が困難である。
【0021】
また、バルーンの円筒部の肉厚Cと先端側ネック部の肉厚Aとの肉厚比が、A/C<2.5〜2.0となるようにして、バルーンの先端チップ部分の細径化および柔軟性を向上させ、血管の狭窄部への挿入を容易にできるようにした技術が提案されている(例えば特許文献5参照)が、この場合は、耐圧性の向上させるために円筒部の肉厚Cを厚くすると、ネック部も厚くなってしまい、追従性が悪くなってしまう。
【0022】
【特許文献1】
特開2001−87375号公報
【特許文献2】
特許番号2555298号公報
【特許文献3】
特開平11−33122号公報
【特許文献4】
特開2000−126299号公報
【特許文献5】
特開2000−217924号公報
【0023】
【発明が解決しようとする課題】
以上のように、バルーン円筒部の肉厚を均一にし、その両端側の円錐部が均等になるように、つまり既述したように各円錐部の肉厚がいずれも円筒部からネック部に向かうにつれて同じ肉厚の変化率で厚くなり、その両端の肉厚が同じとなるように両端側に等しい力、長軸方向への等しい延伸量を付与し、バルーンを作製すると、基端側ネック部と先端側ネック部の肉厚は、相関を持つ。そのため、基端側ネック部とシャフト外管の接合箇所が十分な強度を保つようにすると、先端側ネック部肉厚は厚くなり、バルーンカテーテルの追従性は、劣ることになってしまう。
【0024】
また、バルーンカテーテルのトラッカビリティを向上させるために、バルーン両端のネック部の肉厚を薄くすると、バルーン基端側の肉厚が薄くなりすぎて接合の強度を十分なものにすることができなくなる。
【0025】
したがって、従来のようにバルーンの円筒部の肉厚をバラツキが無いように、また各円錐部の肉厚がいずれも円筒部からネック部に向かうにつれて同じ肉厚の変化率で厚くなり、その両端の肉厚が同じとなるように作製したバルーンにおいては、バルーン先端側の柔軟性(追従性)とバルーン基端側の十分な接合の強度を保つことができる構造を併せ持つことができない。
【0026】
本発明の技術的課題は、バルーン先端側の柔軟性能とバルーン基端側の十分に高い接合の強度を保持できる性能を併せ持つ構造のバルーンを提供することができるようにすることにある。
【0027】
【課題を解決するための手段】
本発明に係るカテーテル用バルーンは、カテーテルの先端部に設けられるバルーンであって、その先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの比(A/B)が1/3〜1の範囲内に設定されてなるものである。
【0028】
また、このバルーンの材料が、ポリオレフィン、ポリオレフィンエラストマ、ポリオレフィンとポリオレフィンエラストマの混合物、ポリアミド、ポリアミドエラストマ、ポリアミドとポリアミドエラストマの混合物、ポリエステル、ポリエステルエラストマ、ポリエステルとポリエステルエラストマの混合物、ポリウレタン、ポリウレタンエラストマ、及びポリウレタンとポリウレタンエラストマの混合物の中から選択されてなるものである。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態について、実施例を用いて具体的に説明する。なお、本発明はその要旨を越えない限り、以下に説明する実施の形態に限定されるものではない。
【0030】
【実施例】
実施例1
まず、材料としてポリエーテルブロックアミドを用い、押出成形によりブロー成形用パリソンとなるチューブを作製した。ポリエーテルブロックアミドはポリアミドブロックコポリマの一種であり、ポリアミドブロックコポリマはポリアミドエラストマの一種である。ポリアミドエラストマは、高延伸可能であり、柔軟かつ高耐圧なバルーンの材料として適している。成形されたパリソンは、外径φ0.50mm、内径φ0.25mmの単管チューブである。
【0031】
次に、このパリソンを120℃程度に加熱した後、長軸方向に1.2〜2倍になるように延伸し、延伸したパリソンを、図1に示す金型8A内に通した。金型8Aは、円柱形状部8aとその両端側に円錐形状部8b,8c、さらにその両端側に小径の円柱形状部8d,8eを持つ空間を有し、かつその先端側の円錐形状部8bと小径円柱形状部8dの境界部分には断熱材9が設けられていて、円錐形状部8bを含む基端側の部分と小径円柱形状部8dを含む先端側の部分との間が熱的に遮断され、それぞれの部分が図2のように独自に温度コントロールできるように構成されている。
【0032】
金型8Aの諸元は以下の通りである。
バルーンの円筒部に相当する位置すなわち円柱形状部8aの内径φ1.5mm、長さ20mm、バルーンの基端側ネック部に相当する位置すなわち小径円柱形状部8eの内径φ0.90mm、先端側ネック部に相当する位置すなわち小径円柱形状部8dの内径φ0.60mm、各ネック部すなわち各小径円柱形状部8d,8eの長さはそれぞれ10mm、円筒部とネック部とに連なるバルーン円錐部に相当する位置すなわち円錐形状部8b,8cの中心軸線に対する傾斜角度15度である。
【0033】
次いで、金型8A内でパリソンを120℃程度に加温した後、3.55MPaの窒素ガスをパリソン内腔に送り込みながら、金型8Aから出ているパリソンの両端部分に7kgfの力でそれぞれ引張を加え、パリソンの両端側を等しい長さ(15mmずつ)引っ張った(第一段階延伸)。これにより、パリソンが拡張し、円筒部、円錐部、及びネック部を備えた第1のバルーン3A(図2)が作製された。なお、この第1のバルーン3Aは、ネック部3e,3fが形成されているものの、先端側ネック部3eの肉厚が基端側ネック部の肉厚に比べてまだ厚い状態(従来のバルーン形状と同じ状態)にある。
【0034】
次に、連続して金型8Aにおける第1のバルーン3Aの先端側ネック部3eに相当する小径円柱形状部8d側を図2の上段に示すように160℃に熱するとともに、金型8Aの他の部位を冷却水によって室温にまで冷却してから、第1のバルーン3Aの基端側ネック部3fから延出するネック延長部を固定し、第1のバルーン3Aに1.72MPaの内圧を加えて金型内にバルーンを保持した状態にて、第1のバルーン3Aの先端側ネック部3eから延出するネック延長部に7kgfの力で引張を加え、第1のバルーン3Aの先端側ネック部3eを80mm延伸させた(第二段階延伸)。これにより、第1のバルーン3Aの先端側ネック部3eのみを延伸させ、図2の下段に示すように従来実現できなかった先端側ネック部3eの肉厚(特に根元側肉厚)Aが基端側ネック部3fの肉厚Bとほぼ等しいかそれよりも薄い(A/B≦1)第2のバルーン3Bを作製した。
【0035】
その後、金型全体を室温まで冷却し、第2のバルーン3Bの両端側ネック部3e,3fを適切な長さでカットすることで、先端側ネック部3eにおいてはその先端厚肉部が除去されて、図3のように両端側ネック部3e,3fにおいてはその肉厚がそれぞれほぼ均一の厚さを有し、円筒部3bの外径がφ1.5mm、長さが20mmに成形されたバルーン3を作製した。
【0036】
以上のようにして製造されたバルーン3のネック部の肉厚は、先端側ネック部肉厚Aが0.031mm、基端側ネック部肉厚Bが0.050mmであり、先端側ネック部肉厚をA、基端側ネック部肉厚をBとすると、A/B<2/3であった。
【0037】
なお、前述した以外にも第二段階延伸時の長さをいろいろと変えた各種のバルーンを作製し、これらの先端側ネック部の肉厚Aと基端側ネック部の肉厚Bを測ったところ、これらの肉厚比(A/B)が1/3程度の薄さにまですることが可能であることがわかった。また、肉厚比(A/B)が1/3以下になるまで第二段階延伸を加えると、先端側ネック部が過剰な延伸に耐えられず破断することがわかった。これより、(A/B)>1/3であることが望ましいことがわかった。
【0038】
実施例2
ここでは、前述の実施例1のカテーテル用バルーンの製造方法を用いて実施例1とはサイズの異なるバルーンを作製した。押出成形したパリソンは、実施例1と同材料で、寸法は外径φ0.90mm、内径φ0.60mmの単管チューブである。
【0039】
まず、このパリソンを120℃程度に加熱した後、長軸方向に1.2〜2倍になるように延伸し、延伸したパリソンを、前述の実施例1の金型(図1、図2参照)と同様の構成を有する金型に通した。ここで使用した金型も、前述の実施例1と同様に円柱形状部とその両端側に円錐形状部、さらにその両端側に小径の円柱形状部を持つ空間を有し、かつその先端側の円錐形状部と小径円柱形状部の境界部分に断熱材が設けられ、この先端側円錐形状部より後方(基端側)の部分と先端側小径円柱形状部の部分との間が熱的に遮断され、それぞれの部分が独自に温度コントロールできるように構成されて成るものである。
【0040】
この金型の諸元は以下の通りである。
円柱形状部の内径φ3.0mm、長さ30mm、基端側小径円柱形状部の内径φ1.10mm、先端側小径円柱形状部の内径φ0.80mm、各小径円柱形状部の長さはそれぞれ10mm、円錐形状部の中心軸線に対する傾斜角度15度である。
【0041】
次いで、このような金型内でパリソンを120℃程度に加温した後、3.75MPaの窒素ガスをパリソン内腔に送り込みながら、金型から出ているパリソンの両端部分に8kgfの力でそれぞれ引張を加え、パリソンの両端側を等しい長さ(20mmずつ)引っ張った(第一段階延伸)。これにより、パリソンが拡張し、円筒部、円錐部、及びネック部を備えた第1のバルーンが作製された。なお、この第1のバルーンは、ネック部が形成されているものの、先端側ネック部の肉厚が基端側ネック部の肉厚に比べてまだ厚い状態(従来のバルーン形状と同じ状態)にある。
【0042】
次に、連続して金型における先端小径円柱形状部側を160℃に熱するとともに、金型の他の部位を冷却水によって室温にまで冷却してから、第1のバルーンの基端側ネック部から延出するネック延長部を固定し、第1のバルーンに1.72MPaの内圧を加えて金型内にバルーンを保持した状態にて、第1のバルーンの先端側ネック部から延出するネック延長部に8kgfの力で引張を加え、第1のバルーンの先端側ネック部を70mm延伸させた(第二段階延伸)。これにより、第1のバルーンの先端側ネック部のみを延伸させ、従来実現できなかった先端側ネック部の肉厚(特に根元側肉厚)Aが基端側ネック部の肉厚Bとほぼ等しいかそれよりも薄い(A/B≦1)第2のバルーンを作製した。
【0043】
その後、金型全体を室温まで冷却し、第2のバルーン両端側ネック部を適切な長さでカットすることで、先端側ネック部3eにおいてはその先端厚肉部が除去されて、両端側ネック部においてはその肉厚がそれぞれほぼ均一の厚さを有し、円筒部の外径φ3.0mm、長さが30mmに成形されたバルーンを作製した。
【0044】
以上のようにして製造されたバルーンのネック部の肉厚は、先端側ネック部肉厚Aが0.041mm、基端側ネック部肉厚Bが0.065mmであり、先端側ネック部肉厚をA、基端側ネック部肉厚をBとすると、A/B<2/3であった。
【0045】
なお、ここでも先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの肉厚比は、(A/B)>1/3であることが望ましいことは言うまでもない。
【0046】
比較例1−1
バルーンを図8に示すようなバルーン金型、つまり金型内の温度を、部分ごとに独自に設定することは不可能で、全ての部分でほぼ一定の温度になる金型を用いて作製した。作製手順は以下の通りである
a)まず材料としてポリアミドエラストマを用い、押出成形によりブロー成形用パリソンとなるチューブを作製した。
b)次に、パリソンを120℃程度に加熱した後、長軸方向に1.2〜2倍になるように延伸し、延伸したパリソンを、金型内に通した。この金型の諸元は以下の通りである。
円柱形状部の内径φ1.5mm、長さ20mm、基端側小径円柱形状部の内径φ0.90mm、先端側小径円柱形状部の内径φ0.60mm、各小径円柱形状部の長さはそれぞれ10mm、円錐形状部の中心軸線に対する傾斜角度15度である。
c)次いで、パリソンを120℃程度に加温した後、3.55MPaの窒素ガスをパリソン内腔に送り込みながら、金型から出ているパリソンの両端部分に7kgfの力でそれぞれ引張を加え、パリソンの両端側を等しい長さ(15mmずつ)引っ張った後、金型の全ての部位の温度を室温まで冷却した。これにより、円筒部、円錐部、及びネック部を有し、かつ円筒部の外径φ1.5mm、その長さ20mmの成形されたバルーンが得られた。
d)その後、バルーンのネック部を適切な長さでカットし、本比較例1−1のバルーンを得た。
【0047】
得られたバルーンのネック部の肉厚は、先端側が0.074mm、基端側が0.051mmであり、先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの肉厚比は、(A/B)>1であった。
【0048】
比較例1−2
比較例1−1と同じ金型、同じパリソン材質、同じ作製手順で、比較例1−1とはパリソンのサイズを変え、バルーンのネック部の肉厚が先端側0.030mm、基端側0.021mmで、円筒部の外径φ1.5mm、その長さ20mmのバルーンを作製した。
【0049】
すなわち、ここでは従来の作製方法で、先端側ネック部の肉厚が前述した実施例1とほぼ同じになるようにバルーンを作製したもので、得られたバルーンの先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの肉厚比は、(A/B)>1であった。
【0050】
比較例2−1
比較例1−1と同様の仕組みの金型、同じ作製手順で、パリソン材質・寸法、金型サイズは前述した実施例2と同じにして、外径φ3.0mm、長さ30mmのバルーンを作製した。
【0051】
得られたバルーンのネック部の肉厚は、先端側が0.101mm、基端側が0.066mmであり、先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの肉厚比は、(A/B)>1であった。
【0052】
比較例2−2
比較例2−1と同じ金型、同じパリソン材質、同じ作製手順で、比較例2−1とはパリソンのサイズを変え、バルーンのネック部の肉厚が先端側0.040mm、基端側0.026mmで、円筒部の外径φ3.0mm、その長さ30mmのバルーンを作製した。
【0053】
すなわち、ここでは従来の作製方法で、先端側ネック部の肉厚が前述した実施例2とほぼ同じになるようにバルーンを作製したもので、得られたバルーンの先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの肉厚比は、(A/B)>1であった。
【0054】
作製した実施例1,2、及び比較例1−1,1−2,2−1,2−2のバルーンを、以下に示す方法により、追従性、引張を測定し、その結果によりトラッカビリティと接合の強度を評価した。
【0055】
[追従性測定]
追従性の測定は、以下のとおり行った。その概略図を図4に示す。
a)まず実施例1,2、及び比較例1−1,1−2,2−1,2−2で作製したバルーンを用いて図4に示すような試験サンプル10を作製した。すなわち、シャフト外管として、バルーンと同材料でそれぞれのバルーンの基端側ネック部内径とほぼ同じ外径で、肉厚が0.08mm、長さが5cmの単管チューブをそれぞれ押出成形により作製した。同様にシャフト内管として、バルーンと同材料でそれぞれのバルーンの先端側ネック部内径とほぼ同じ外径で、肉厚が0.04mm、長さが9cmの単管チューブをそれぞれ押出成形により作製した。次いで、シャフト外管の内側にシャフト内管が位置するような二重管状に配置させ、バルーン基端側ネック部をシャフト外管と、バルーン先端側ネック部をシャフト内管とそれぞれ熱溶着接合させた。その後、シャフト基端側をポリカーボネート製アダプタと接着剤で接合させ、長さ10cm程度の試験サンプル10を作製した。
b)次に、測定のため、試験系を以下のとおり組み立てた。すなわち、図9のように外径0.35mm、長さ50cmのステンレス棒11を用意し、その中央部分を角度125°に屈曲させ、ステンレス棒11の一端を固定治具12に固定した。次いで、ステンレス棒11の他端に試験サンプル10のシャフト内管を先端側から通し、試験サンプル10の基端側にプッシュプル測定器(荷重計)13を装着した。
c)次いで、試験サンプル10に装着しているプッシュプル測定器13をステンレス棒に沿って100mm/minの速度で押込み、試験サンプル10を挿入する際の抵抗となる荷重値を測定した。ここでは、いずれもバルーン3の先端側ネック部がステンレス棒中央部の125°屈曲部を通過する時の最大荷重を測定した。結果を下表1,2に示す。
【0056】
【表1】

Figure 2004187717
【0057】
【表2】
Figure 2004187717
【0058】
表1,2から明らかなようにバルーン3の先端側ネック部の肉厚を薄く加工した実施例1,2のバルーンと比較例1−2,2−2のバルーンは、比較例1−1,2−1のバルーンと比べ、いずれもステンレス棒11の屈曲部を通過する際の荷重が大幅にダウンしたことが確認された。つまり、バルーン3の先端側ネック部の肉厚を薄く加工することにより、バルーンカテーテルの先端チップ部分が柔軟になり、血管への挿入性が大幅に向上した。
【0059】
[引張試験]
バルーンの基端側ネック部とシャフト外管との接合部の強度を測定した。
a)まず実施例1,2及び比較例1−1,1−2,2−1,2−2で作製したバルーンを用い、試験サンプルを作製した。すなわち、シャフト外管として、バルーンと同材料でそれぞれのバルーンの基端側ネック部内径とほぼ同じ外径で、肉厚が0.08mm、長さが10cmの単管チューブをそれぞれ押出成形により作製した。同様にシャフト内管として、バルーンと同材料でそれぞれのバルーンの先端側ネック部内径とほぼ同じ外径で、肉厚が0.05mm、長さが14cmの単管チューブをそれぞれ押出成形により作製した。次いで、シャフト外管の内側にシャフト内管が位置するような二重管状に配置させ、バルーン基端側ネック部をシャフト外管と、バルーン先端側ネック部をシャフト内管とそれぞれ熱溶着接合させた。その後、シャフト基端側をポリカーボネート製アダプタと接着剤で接合させ、長さ15cm程度の試験サンプルを作製した。
b)次に、測定のため、試験サンプルのコネクタから水を入れてバルーンを膨らませ、1.42MPaの内圧が加えられたところで、この内圧が保たれた状態にして密閉した。次いで、バルーン部分を適切な方法で固定した。
c)次いで、シャフト外管を引張試験機のチャックで掴み、100mm/minの速度で引張り、基端側ネック部が破断するまでの最大荷重を測定した。結果を前記表1,2に示す。
【0060】
強い引張り等の過剰な負荷にも耐えうるような安全な接合の基準として少なくとも0.50kgfの引張最大荷重が必要である。表1,2から明らかなように実施例1,2のバルーンと比較例1−1,2−1のバルーンは、比較例1−2,2−2に比べて十分な接合の強度を持っていることが確認された。つまり、比較例1−2,2−2のバルーンの基端側ネック部の肉厚では接合の強度が足りず、安全な接合の強度を保持するためには、実施例1,2と比較例1−1,2−1程度の基端側ネック部の肉厚が必要である。
【0061】
すなわち、表1,2から明らかなように実施例1,2のバルーンは、追従性(トラッカビリティ)と十分な接合の強度の両方を同時に満足させているのに対し、比較例1−1,1−2,2−1,2−2のバルーンでは、追従性(トラッカビリティ)と十分な接合の強度のいずれか一方の性能を求めると、他方の性能が犠牲となり、使用に耐えうるものではなくなってしまうことがわかった。
【0062】
基端側ネック部とシャフト外管の熱溶着を行い易くするためには、基端側ネック部肉厚は、安全な強度を保持できる接合が可能な範囲で、できる限り薄い方が良い。したがって、前述の実施例1,2で説明したバルーン作製時の第一段階延伸工程で、どの程度延伸すればよいか決まり、第一段階延伸後の基端側、先端側双方のネック部の肉厚が決定される。よって、バルーン基端側ネック部肉厚は、第二段階延伸時にバルーンの先端側ネック部を延伸する際の肉厚の基準となる。すなわち、
a.第二段階延伸後の先端側ネック部の肉厚は、第二段階延伸前(第一段階延伸後)の肉厚と比較でき、関連付けられる。
b.第一段階延伸後の先端側ネック部の肉厚は、本発明で説明した方法で作製するならば、第一段階延伸後の基端側ネック部の肉厚と関連付けられる。
c.よって、第二段階延伸後の先端側ネック部の肉厚は、第二段階延伸前(第一段階延伸後)の基端側ネック部の肉厚と関連付けられる。
d.前記a〜cより、先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの関係を使用できる。
【0063】
【発明の効果】
以上述べたように、本発明によれば、カテーテルの先端部に設けられるバルーンの先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの比(A/B)が1/3〜1の範囲内になるように設定したので、バルーン先端側の柔軟性能とバルーン基端側の十分に高い接合の強度を保持できる性能を併せ持つ構造のバルーンを得ることができた。
【図面の簡単な説明】
【図1】本発明に係るカテーテル用バルーンを作製する場合に用いられる金型の断面図である。
【図2】図1の作用説明図である。
【図3】本発明に係るカテーテル用バルーンの断面図である。
【図4】トラッカビリティ評価のために用いられる試験装置および試料となるバルーンの作用説明図である。
【図5】オーバーザワイヤタイプのPTCAバルーンカテーテルの一般的な形状を示す側面図である。
【図6】ラピッドエクスチェンジタイプのPTCAバルーンカテーテルの一般的な構成を示す側面図である。
【図7】PTCAバルーンカテーテルの先端側部分の詳細を示す断面図である。
【図8】従来のカテーテル用バルーンを作製する場合に用いられる金型の断面図である。
【図9】従来のカテーテル用バルーンの断面図である。
【符号の説明】
1A,1B PTCAバルーンカテーテル
3 バルーン
3e 先端側ネック部
3f 基端側ネック部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catheter used for physically expanding a stenotic tissue site generated in a body lumen, for example, a blood vessel, a digestive tract, a urinary tract, and the like, and improving a fluid flow on a peripheral side thereof. About balloons.
[0002]
[Prior art]
A balloon catheter used for physically expanding a stenotic tissue site generated in a body lumen is a catheter having an inflatable balloon at the distal end of a shaft portion. After being inserted into a stenotic site and placed in place, fluid is injected into the balloon from outside the body via a shaft by an appropriate pressurizing means, and the balloon is pressurized and expanded to expand the stenotic tissue site. . If such a balloon catheter is used, it is possible to expand a stenotic tissue site without performing a large-scale operation, so that it has recently been applied to many treatments (for example, see Patent Document 1).
[0003]
In particular, a balloon catheter that dilates a coronary artery in a stenotic region is called a PTCA (percutaneous coronary angioplasty) balloon catheter. Although PTCA balloon catheters have various shapes, mainly two types of over-the-wire type and rapid exchange type (rapid exchange type) are widely used.
[0004]
5 is a side view showing a general configuration of an over-the-wire type PTCA balloon catheter, FIG. 6 is a side view showing a general configuration of a rapid exchange type PTCA balloon catheter, and FIG. It is sectional drawing which shows the detail of a part.
[0005]
The PTCA balloon catheter 1A of the over-the-wire type shown in FIG. 5 has a shaft portion 2, a cylindrical balloon 3 provided on the distal end side thereof, and a fluid injection for inflation of the balloon 3 provided on the proximal end side of the shaft portion 2. A connector 4 having an entrance 4a and an insertion opening 4b for a guide wire (not shown).
[0006]
The rapid exchange type PTCA balloon catheter 1B shown in FIG. 6 is different from the over-the-wire type in that the insertion port 4b for the guide wire is located in the middle of the shaft portion 2, and the other configuration is basically the same. This is similar to the over-the-wire type.
[0007]
In both of these types, the distal end side of the shaft portion 2 has a double pipe structure as shown in FIG. This will be described using the over-the-wire type as an example. That is, an inner tube 5 having a fine hole (first lumen) 5a that penetrates from the guide wire insertion opening 4b of the connector portion of the shaft portion 2 to the foremost portion and is used when a guide wire is inserted, An outer tube 6 having pores (second lumen) 6a which communicates with the inner cavity 3a of the balloon 3 from the liquid inlet 4a of the portion and is used when injecting and pressurizing the inflation liquid of the balloon 3; It is formed in a double pipe structure provided with. An X-ray opaque marker 7 is attached to the outer wall of the inner tube 5 located inside the lumen 3a of the balloon 3 so that the position of the balloon 3 can be confirmed under fluoroscopy.
[0008]
As shown in FIG. 7, the balloon 3 has a cylindrical portion 3b, conical portions 3c and 3d at both ends thereof, and necks 3e and 3f at both ends thereof. The proximal neck 3 f is connected to the outer tube 6. Therefore, the inner diameter of the proximal end neck portion 3f of the balloon 3 is adjusted to a size substantially equal to the outer diameter of the outer tube 6 due to the joining with the outer tube 6, and similarly, the inner diameter of the distal end neck portion 3e of the balloon 3 becomes , Are adjusted to a size substantially equal to the outer diameter of the inner tube 5 in connection with the inner tube 5 and are manufactured. For this reason, the inner diameter of the proximal neck 3 f of the balloon 3 is larger than the inner diameter of the distal neck 3 e of the balloon 3.
[0009]
In such a case, the balloon 3 is manufactured using a balloon mold 8 shown in FIG. That is, first, a balloon parison, which is a single-tube tube, is made of a polymer material by extrusion molding. Next, the parison is heated at a temperature in the range of 80 to 120 ° C., and is stretched by a predetermined amount in the major axis direction. Next, the stretched parison is passed through a balloon mold 8 and heated, and then the heated parison is formed in the balloon 3 by blow molding under appropriate conditions in the balloon mold 8.
[0010]
That is, as shown in FIG. 8, the balloon mold 8 has a space having a columnar portion 8a, conical portions 8b and 8c at both ends thereof, and small-diameter columnar portions 8d and 8e at both ends thereof. C. to 160.degree. C., preferably 110.degree. C. to 150.degree. C., and the temperature is transferred to a parison set in a mold. Then, under such heating conditions, a balloon shape is obtained by adding a nitrogen gas of 1.52 to 4.56 MPa, preferably 2.94 to 3.85 MPa to the parison and expanding the parison. Thereafter, the neck portion of the balloon is cut to an appropriate length and assembled with a catheter shaft or the like, whereby a balloon catheter can be obtained.
[0011]
The PTCA balloon catheter 1A or 1B configured as described above is used as a set of a guiding catheter (not shown) and a guide wire when dilating a stenosis site of a coronary artery. In the coronary angioplasty, first, a guiding catheter is inserted from, for example, the femoral artery, and the distal end is positioned at the entrance of the coronary artery via the aorta. Then, the guide penetrating the inner tube 5 of the balloon catheter 1A or 1B is used. The wire is advanced over the coronary artery stenosis, and then the balloon catheter 1A or 1B is advanced over the guidewire with the balloon 3 folded clean. Next, in a state where the balloon 3 is located at the stenosis site, an inflation liquid is injected into the balloon 3 via the second lumen 6a to inflate the balloon 3, thereby expanding the stenosis site. After the balloon 3 is deflated, the balloon catheter 1A or 1B is removed from the body.
[0012]
Therefore, the balloon 3 of such a balloon catheter is required to have a trackability (trackability) capable of smoothly passing a bent blood vessel, a stenosis part, and a closed part. And, in order to obtain excellent followability, the leading end portion of the balloon catheter needs to be flexible. Therefore, flexibility is particularly required for the tip portion. Here, the distal tip portion refers to a portion from the most distal end to the distal neck portion 3 e of the balloon 3. Therefore, the flexibility of the neck portion 3e on the distal end side of the balloon 3 greatly affects the followability.
[0013]
Further, it is better that the balloon 3 has a more uniform and thinner thickness and a higher pressure resistance. If the thickness of the cylindrical portion 3b of the balloon 3 is uneven and there is a portion having a smaller thickness than other portions of the cylindrical portion 3b, the portion will be broken at the time of inflation. That is, in order to reduce the thickness of the balloon 3 as much as possible and to improve the pressure resistance, the balloon 3 is formed so that the thickness of the cylindrical portion 3b becomes uniform, and the unevenness of the thickness of the cylindrical portion 3b is reduced. There is a need. Similarly, the thicknesses of the conical portions 3c and 3d at both ends of the cylindrical portion 3b must be equal to each other. That is, the thickness of each of the conical portions 3c and 3d increases from the cylindrical portion 3b toward the neck portion, but the thickness of the conical portions 3c and 3d must be changed at the same rate of change in thickness. For that purpose, in biaxial stretching by stretching in the axial direction and by blow molding, the same force and the same amount of stretching in the major axis direction must be applied to both ends.
[0014]
Further, as shown in FIG. 9, the wall thicknesses A and B of the neck portions 3e and 3f of the balloon 3 which are formed together when the balloon is manufactured are inevitably the thickness A of the distal side neck portion 3e. It becomes thicker than the thickness B of the neck portion 3f. This is because the proximal neck 3f of the balloon 3 is connected to the shaft outer tube 6 and the distal neck 3e is connected to the shaft inner tube 5 as described with reference to FIG. Because the parison is made to be larger than the side, the expansion ratio of the parison in the radial direction becomes smaller on the tip side.
[0015]
Further, the proximal neck 3f of the balloon 3 joined to the outer shaft tube 6 has an excessive tension compared to the distal neck 3e, a high pressurization of the balloon 3, and a tension under this pressurized state. It must be joined with sufficient strength to endure. For this purpose, the thickness B of the proximal end neck portion 3f of the balloon 3 needs to be a thickness that enables strong bonding, and should not be too thin.
[0016]
Further, the wall thickness B of the proximal end neck portion 3f of the balloon 3 is also affected by the outer diameter size of the shaft outer tube 6 to be joined (that is, the expansion ratio of the parison). It is necessary to secure a thickness that can maintain the thickness.
[0017]
On the other hand, if the thickness B of the proximal end neck portion 3f of the balloon 3 is set to be relatively large and the balloon is manufactured by pulling the same force and the same amount of stretching at both ends during blow molding, the thickness A of the distal end neck portion 3e is obtained. Becomes thicker than the thickness B of the base-side neck portion 3f. For this reason, the flexibility of the distal end neck portion 3e of the balloon 3 is lost, and the followability is deteriorated.
[0018]
By the way, as a technique for obtaining the followability of the balloon, the thickness ratio of the thickness C of the cylindrical portion of the balloon to the thickness D of the conical portion (particularly, the conical portion on the distal end side) is D / C ≦ 1.2. In order to facilitate insertion of a blood vessel into a stenosis, a technique has been proposed (for example, see Patent Document 2).
[0019]
In addition, a technique has been proposed in which the tip of the most protruding portion has a distal tip structure in which the outer diameter decreases toward the distal end so as to improve the penetrability of the distal end of the balloon into a vascular stenosis (for example, see Patents). However, the fabrication of such a tip structure is not only difficult to process, but if the neck portion of the balloon is originally thick, the flexibility is still lacking after the process. Absent.
[0020]
Also, after joining the balloon and the inner tube of the shaft, the thickness of the distal end neck portion of the balloon is ground to 5〜 to の of the thickness before processing to eliminate a step at the outer fitting joint portion, and the distal end neck of the balloon is removed. A technique has been proposed in which the portion is thinned to enable smooth insertion into a vascular stenosis portion (see, for example, Patent Document 4). In this case, however, the distal neck portion of a balloon which is a relatively soft material is used. Processing to steal meat by grinding is difficult.
[0021]
In addition, the thickness ratio of the thickness C of the cylindrical portion of the balloon to the thickness A of the distal end neck portion is set so that A / C <2.5 to 2.0, so that the tip portion of the distal end portion of the balloon is thin. A technique has been proposed in which the diameter and flexibility are improved and insertion into a stenotic portion of a blood vessel is facilitated (for example, see Patent Document 5). In this case, a cylinder is used to improve pressure resistance. When the thickness C of the portion is increased, the neck portion also becomes thicker, and the followability is deteriorated.
[0022]
[Patent Document 1]
JP 2001-87375 A
[Patent Document 2]
Patent No. 2555298
[Patent Document 3]
JP-A-11-33122
[Patent Document 4]
JP-A-2000-126299
[Patent Document 5]
JP 2000-217924 A
[0023]
[Problems to be solved by the invention]
As described above, the thickness of the balloon cylindrical portion is made uniform, and the conical portions on both ends thereof are made uniform, that is, as described above, the thickness of each conical portion goes from the cylindrical portion to the neck portion. As the thickness increases at the same rate of change in thickness, the same thickness is applied to both ends so that the thickness at both ends is the same, and the same amount of stretching in the long axis direction is applied. The thickness of the neck portion at the tip has a correlation with the thickness. Therefore, if the joint portion between the proximal end neck portion and the outer tube of the shaft is made to have sufficient strength, the thickness of the distal end neck portion is increased, and the followability of the balloon catheter is inferior.
[0024]
In addition, when the thickness of the neck portion at both ends of the balloon is reduced in order to improve the trackability of the balloon catheter, the thickness at the proximal end side of the balloon becomes too thin, and the bonding strength cannot be sufficient. .
[0025]
Therefore, the thickness of the cylindrical portion of the balloon does not vary as in the conventional case, and the thickness of each conical portion increases at the same rate of change in the thickness from the cylindrical portion toward the neck portion. In the balloon manufactured so that the thickness of the balloon is the same, it is not possible to have both the flexibility (followability) at the balloon distal end and a structure capable of maintaining sufficient bonding strength at the balloon proximal end.
[0026]
It is an object of the present invention to provide a balloon having a structure having both flexibility at the distal end side of the balloon and performance to maintain sufficiently high bonding strength at the proximal end side of the balloon.
[0027]
[Means for Solving the Problems]
The balloon for a catheter according to the present invention is a balloon provided at the distal end portion of the catheter, wherein the ratio (A / B) of the thickness A of the distal side neck portion to the thickness B of the proximal side neck portion is 1 /. It is set within the range of 3-1.
[0028]
Further, the material of the balloon is a polyolefin, a polyolefin elastomer, a mixture of a polyolefin and a polyolefin elastomer, a polyamide, a polyamide elastomer, a mixture of a polyamide and a polyamide elastomer, a polyester, a polyester elastomer, a mixture of a polyester and a polyester elastomer, a polyurethane, a polyurethane elastomer, and It is selected from a mixture of polyurethane and polyurethane elastomer.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described using examples. The present invention is not limited to the embodiments described below unless departing from the gist thereof.
[0030]
【Example】
Example 1
First, using a polyether block amide as a material, a tube to be a parison for blow molding was prepared by extrusion molding. Polyether block amide is a kind of polyamide block copolymer, and polyamide block copolymer is a kind of polyamide elastomer. Polyamide elastomer is highly stretchable and is suitable as a material for a flexible and high pressure resistant balloon. The molded parison is a single tube having an outer diameter of 0.50 mm and an inner diameter of 0.25 mm.
[0031]
Next, this parison was heated to about 120 ° C., and then stretched in the longitudinal direction so as to be 1.2 to 2 times, and the stretched parison was passed through a mold 8A shown in FIG. The mold 8A has a space having a cylindrical portion 8a, conical portions 8b and 8c at both ends thereof, and small-diameter cylindrical portions 8d and 8e at both ends thereof. A heat insulating material 9 is provided at a boundary portion between the small-diameter cylindrical portion 8d and the base portion including the conical portion 8b and the distal portion including the small-diameter cylindrical portion 8d. It is shut off and each part is configured to be able to independently control the temperature as shown in FIG.
[0032]
The specifications of the mold 8A are as follows.
A position corresponding to the cylindrical portion of the balloon, that is, the inner diameter φ1.5 mm and the length of the cylindrical portion 8a, length 20 mm, a position corresponding to the proximal neck portion of the balloon, ie, the inner diameter φ0.90 mm of the small-diameter cylindrical portion 8e, the distal neck portion Ie, the inner diameter φ0.60 mm of the small-diameter cylindrical shape portion 8d, the length of each neck portion, ie, each of the small-diameter cylindrical shape portions 8d and 8e is 10 mm, and the position corresponding to the balloon cone portion connected to the cylindrical portion and the neck portion. That is, the inclination angle of the conical portions 8b and 8c with respect to the central axis is 15 degrees.
[0033]
Next, the parison is heated to about 120 ° C. in the mold 8A, and then, while a nitrogen gas of 3.55 MPa is fed into the parison lumen, tension is applied to both ends of the parison coming out of the mold 8A with a force of 7 kgf. Was added, and both ends of the parison were pulled by an equal length (15 mm each) (first-stage stretching). Thereby, the parison was expanded, and the first balloon 3A (FIG. 2) including the cylindrical portion, the conical portion, and the neck portion was produced. Although the first balloon 3A has the neck portions 3e and 3f, the thickness of the distal neck portion 3e is still thicker than the thickness of the proximal neck portion (the conventional balloon shape). In the same state).
[0034]
Next, the small-diameter cylindrical portion 8d corresponding to the distal end neck 3e of the first balloon 3A in the mold 8A is continuously heated to 160 ° C. as shown in the upper part of FIG. After cooling the other part to room temperature with the cooling water, the neck extension extending from the proximal neck part 3f of the first balloon 3A is fixed, and the internal pressure of 1.72 MPa is applied to the first balloon 3A. In addition, while holding the balloon in the mold, a tension of 7 kgf is applied to the neck extension extending from the distal neck 3e of the first balloon 3A to apply a distal neck of the first balloon 3A. The portion 3e was stretched by 80 mm (second stage stretching). As a result, only the distal end neck 3e of the first balloon 3A is extended, and as shown in the lower part of FIG. 2, the thickness A (particularly the root thickness) of the distal end neck 3e, which could not be realized conventionally, is based. A second balloon 3B was manufactured which was substantially equal to or thinner than the thickness B of the end side neck portion 3f (A / B ≦ 1).
[0035]
Thereafter, the entire mold is cooled to room temperature, and both end side neck portions 3e and 3f of the second balloon 3B are cut at an appropriate length, so that the tip end thick portion of the tip side neck portion 3e is removed. As shown in FIG. 3, the balloon is formed such that the neck portions 3e and 3f at both ends have substantially uniform thicknesses, and the cylindrical portion 3b has an outer diameter of 1.5 mm and a length of 20 mm. 3 was produced.
[0036]
The neck portion of the balloon 3 manufactured as described above has a distal neck thickness A of 0.031 mm, a proximal neck thickness B of 0.050 mm, and a distal neck thickness. Assuming that the thickness is A and the thickness of the base side neck portion is B, A / B <2/3.
[0037]
In addition, in addition to the above, various balloons having various lengths at the time of the second stage stretching were produced, and the thickness A of the distal side neck portion and the thickness B of the proximal side neck portion were measured. However, it has been found that the thickness ratio (A / B) can be reduced to about 1/3. In addition, it was found that when the second stage stretching was performed until the thickness ratio (A / B) became 1/3 or less, the neck portion on the distal end side could not withstand excessive stretching and was broken. From this, it was found that (A / B)> 1 / was desirable.
[0038]
Example 2
Here, a balloon having a size different from that of Example 1 was manufactured using the method for manufacturing a catheter balloon of Example 1 described above. The extruded parison is the same material as in Example 1 and is a single tube having an outer diameter of 0.90 mm and an inner diameter of 0.60 mm.
[0039]
First, after heating this parison to about 120 ° C., it is stretched to 1.2 to 2 times in the major axis direction, and the stretched parison is used for the mold of the above-mentioned Example 1 (see FIGS. 1 and 2). ). The mold used here also has a space having a cylindrical portion, a conical portion at both ends thereof, and a small-diameter cylindrical portion at both ends thereof, as in the first embodiment. A heat insulating material is provided at the boundary between the conical portion and the small-diameter cylindrical portion, and the portion between the rear (proximal side) of the distal-side conical portion and the small-diameter cylindrical portion on the distal side is thermally insulated. Each part is configured to be able to independently control the temperature.
[0040]
The specifications of this mold are as follows.
The inner diameter of the columnar portion is 3.0 mm, the length is 30 mm, the inner diameter of the base side small-diameter columnar portion is 1.10 mm, the inner diameter of the distal side small-diameter columnar portion is 0.80 mm, and the length of each small-diameter columnar portion is 10 mm. The angle of inclination of the conical portion with respect to the central axis is 15 degrees.
[0041]
Next, the parison is heated to about 120 ° C. in such a mold, and then a nitrogen gas of 3.75 MPa is fed into the inner space of the parison while applying force of 8 kgf to both ends of the parison coming out of the mold. Tensile force was applied and both ends of the parison were pulled equal lengths (20 mm each) (first stage stretching). This expanded the parison, creating a first balloon with a cylinder, cone, and neck. In this first balloon, although the neck portion is formed, the thickness of the distal side neck portion is still thicker than the thickness of the proximal side neck portion (the same state as the conventional balloon shape). is there.
[0042]
Next, while continuously heating the tip small-diameter cylindrical shape side of the mold to 160 ° C. and cooling other parts of the mold to room temperature with cooling water, the proximal end neck of the first balloon is cooled. The neck extension extending from the portion is fixed, and while the balloon is held in the mold by applying an internal pressure of 1.72 MPa to the first balloon, the neck is extended from the distal end neck of the first balloon. Tensile force was applied to the neck extension with a force of 8 kgf to extend the neck portion on the distal end side of the first balloon by 70 mm (second stage stretching). As a result, only the distal neck portion of the first balloon is stretched, and the wall thickness (particularly, the root wall thickness) A of the distal neck portion, which has not been realized conventionally, is substantially equal to the wall thickness B of the proximal neck portion. A second balloon (A / B ≦ 1) thinner than that was prepared.
[0043]
Thereafter, the entire mold is cooled to room temperature, and the neck portions at both ends on both ends of the second balloon are cut at an appropriate length. In each of the portions, a balloon having a substantially uniform thickness and a cylindrical portion having an outer diameter of φ3.0 mm and a length of 30 mm was produced.
[0044]
The thickness of the neck portion of the balloon manufactured as described above is such that the tip side neck portion thickness A is 0.041 mm, the base end portion neck thickness B is 0.065 mm, and the tip side neck portion thickness is Is A, and A / B <2/3, where A is the thickness of the proximal end neck portion and B is the thickness.
[0045]
Here, it is needless to say that the thickness ratio of the thickness A of the distal neck portion to the thickness B of the proximal neck portion is preferably (A / B)> 1 /.
[0046]
Comparative Example 1-1
The balloon was manufactured using a balloon mold as shown in FIG. 8, that is, it was impossible to set the temperature in the mold independently for each part, and the temperature was almost constant in all parts. . The fabrication procedure is as follows
a) First, using a polyamide elastomer as a material, a tube serving as a parison for blow molding was prepared by extrusion molding.
b) Next, the parison was heated to about 120 ° C., and then stretched in the longitudinal direction so as to be 1.2 to 2 times, and the stretched parison was passed through a mold. The specifications of this mold are as follows.
Inner diameter φ1.5mm of cylindrical shape part, length 20mm, inner diameter φ0.90mm of proximal small diameter cylindrical shape part, inner diameter φ0.60mm of distal small diameter cylindrical shape part, length of each small diameter cylindrical shape part is 10mm, The angle of inclination of the conical portion with respect to the central axis is 15 degrees.
c) Next, the parison was heated to about 120 ° C., and while the nitrogen gas of 3.55 MPa was fed into the inner space of the parison, a tension of 7 kgf was applied to both ends of the parison coming out of the mold with a force of 7 kgf. After pulling the both ends of the mold by an equal length (15 mm each), the temperature of all parts of the mold was cooled to room temperature. As a result, a molded balloon having a cylindrical portion, a conical portion, and a neck portion, and having a cylindrical portion having an outer diameter of 1.5 mm and a length of 20 mm was obtained.
d) Thereafter, the neck portion of the balloon was cut at an appropriate length to obtain a balloon of Comparative Example 1-1.
[0047]
The thickness of the neck portion of the obtained balloon is 0.074 mm on the distal side and 0.051 mm on the proximal side, and the thickness ratio of the thickness A of the distal side neck to the thickness B of the proximal side neck is: , (A / B)> 1.
[0048]
Comparative Example 1-2
With the same mold, the same parison material, and the same manufacturing procedure as those of Comparative Example 1-1, the parison size was changed from that of Comparative Example 1-1, and the thickness of the neck portion of the balloon was 0.030 mm at the distal end and 0 at the proximal end. A balloon having a diameter of 0.021 mm, an outer diameter of the cylindrical portion of φ1.5 mm, and a length of 20 mm was produced.
[0049]
That is, here, the balloon is manufactured by the conventional manufacturing method so that the thickness of the distal end neck portion is substantially the same as that of the first embodiment described above. The thickness A of the distal end neck portion of the obtained balloon is obtained. And the thickness ratio of the thickness B of the base side neck portion was (A / B)> 1.
[0050]
Comparative Example 2-1
A mold having the same structure as that of Comparative Example 1-1 and the same manufacturing procedure were used, and the parison material, dimensions, and mold size were the same as those in Example 2 described above, and a balloon having an outer diameter of 3.0 mm and a length of 30 mm was manufactured. did.
[0051]
The thickness of the neck portion of the obtained balloon is 0.101 mm on the distal side and 0.066 mm on the proximal side, and the thickness ratio of the thickness A of the distal side neck to the thickness B of the proximal side neck is: , (A / B)> 1.
[0052]
Comparative Example 2-2
With the same mold, the same parison material, and the same manufacturing procedure as in Comparative Example 2-1, the parison size was changed from that in Comparative Example 2-1, and the thickness of the neck portion of the balloon was 0.040 mm at the distal end and 0 at the proximal end. A balloon having a diameter of 0.026 mm, an outer diameter of the cylindrical portion of 3.0 mm, and a length of 30 mm was produced.
[0053]
That is, here, the balloon is manufactured by the conventional manufacturing method such that the thickness of the distal end neck portion is substantially the same as that of the above-described Example 2. The thickness A of the distal end neck portion of the obtained balloon is obtained. And the thickness ratio of the thickness B of the base side neck portion was (A / B)> 1.
[0054]
For the balloons of Examples 1 and 2, and Comparative Examples 1-1, 1-2, 2-1 and 2-2, the followability and the tensile force were measured by the following method, and the trackability and the result were measured. The strength of the joint was evaluated.
[0055]
[Followability measurement]
The followability was measured as follows. The schematic diagram is shown in FIG.
a) First, a test sample 10 as shown in FIG. 4 was produced using the balloons produced in Examples 1 and 2 and Comparative Examples 1-1, 1-2, 2-1 and 2-2. That is, as the outer tube of the shaft, a single tube tube of the same material as the balloon, having an outer diameter substantially equal to the inner diameter of the proximal end neck portion of each balloon, a wall thickness of 0.08 mm, and a length of 5 cm is produced by extrusion molding. did. Similarly, as the inner tube of the shaft, a single tube tube of the same material as the balloon, having an outer diameter substantially the same as the inner diameter of the neck portion on the distal end side of each balloon, a wall thickness of 0.04 mm, and a length of 9 cm was prepared by extrusion molding. . Then, the inner tube of the shaft is arranged in a double tube such that the inner tube of the shaft is located inside the outer tube of the shaft. Was. Thereafter, the base end side of the shaft was bonded to a polycarbonate adapter with an adhesive to prepare a test sample 10 having a length of about 10 cm.
b) Next, the test system was assembled as follows for measurement. That is, as shown in FIG. 9, a stainless steel rod 11 having an outer diameter of 0.35 mm and a length of 50 cm was prepared, the central portion thereof was bent at an angle of 125 °, and one end of the stainless steel rod 11 was fixed to a fixing jig 12. Next, the inner tube of the test sample 10 was passed through the other end of the stainless steel rod 11 from the distal end side, and a push-pull measuring device (load meter) 13 was attached to the proximal end side of the test sample 10.
c) Next, the push-pull measuring device 13 attached to the test sample 10 was pushed in at a speed of 100 mm / min along a stainless steel bar, and a load value serving as a resistance when the test sample 10 was inserted was measured. Here, in each case, the maximum load was measured when the distal end neck of the balloon 3 passed through the 125 ° bent portion at the center of the stainless steel rod. The results are shown in Tables 1 and 2 below.
[0056]
[Table 1]
Figure 2004187717
[0057]
[Table 2]
Figure 2004187717
[0058]
As is clear from Tables 1 and 2, the balloons of Examples 1 and 2 and the balloons of Comparative Examples 1-2 and 2-2 in which the thickness of the neck portion on the distal end side of the balloon 3 was thinned are Comparative Examples 1-1 and 1-2. It was confirmed that the load when passing through the bent portion of the stainless steel rod 11 was significantly reduced as compared with the balloon of 2-1. That is, by processing the distal end neck portion of the balloon 3 to be thin, the distal tip portion of the balloon catheter becomes flexible, and the insertability into the blood vessel is greatly improved.
[0059]
[Tensile test]
The strength of the joint between the proximal neck portion of the balloon and the outer tube of the shaft was measured.
a) First, test samples were produced using the balloons produced in Examples 1 and 2 and Comparative Examples 1-1, 1-2, 2-1 and 2-2. That is, as the outer tube of the shaft, a single tube tube of the same material as the balloon, having an outer diameter substantially equal to the inner diameter of the proximal end neck portion of each balloon, a wall thickness of 0.08 mm, and a length of 10 cm is produced by extrusion molding. did. Similarly, as the inner tube of the shaft, a single tube tube of the same material as the balloon, having the same outer diameter as the inner diameter of the neck portion on the distal end side of each balloon, a thickness of 0.05 mm, and a length of 14 cm was prepared by extrusion molding. . Then, the inner tube of the shaft is arranged in a double tube such that the inner tube of the shaft is located inside the outer tube of the shaft. Was. Thereafter, the base end side of the shaft was joined to a polycarbonate adapter with an adhesive to prepare a test sample having a length of about 15 cm.
b) Next, for measurement, water was poured from the connector of the test sample to inflate the balloon, and when an internal pressure of 1.42 MPa was applied, the internal pressure was maintained and the container was sealed. The balloon portion was then fixed in a suitable manner.
c) Next, the outer tube of the shaft was gripped by a chuck of a tensile tester, pulled at a speed of 100 mm / min, and the maximum load until the proximal neck portion was broken was measured. The results are shown in Tables 1 and 2 above.
[0060]
A maximum tensile load of at least 0.50 kgf is required as a standard for safe joining that can withstand excessive loads such as strong tension. As is clear from Tables 1 and 2, the balloons of Examples 1 and 2 and the balloons of Comparative Examples 1-1 and 2-1 have sufficient bonding strength as compared with Comparative Examples 1-2 and 2-2. Was confirmed. In other words, the thickness of the proximal end neck portion of the balloon of Comparative Examples 1-2 and 2-2 is insufficient in the strength of the joint. The thickness of the base side neck portion of about 1-1 and 2-1 is required.
[0061]
That is, as is clear from Tables 1 and 2, the balloons of Examples 1 and 2 satisfy both the followability (trackability) and the sufficient bonding strength at the same time. In the balloons 1-2, 2-1 and 2-2, if one of the following performance (trackability) and a sufficient bonding strength is required, the other performance is sacrificed and the balloon cannot be used. It turned out to be gone.
[0062]
In order to facilitate the thermal welding of the proximal neck portion and the outer tube of the shaft, it is preferable that the proximal neck portion be as thin as possible within a range in which bonding that can maintain safe strength is possible. Therefore, the extent of stretching in the first stage stretching step during balloon production described in the first and second embodiments is determined, and the thickness of the neck portion on both the proximal side and the distal side after the first stage stretching is determined. The thickness is determined. Therefore, the thickness of the balloon proximal end neck portion is a reference for the thickness at the time of extending the distal end neck portion of the balloon during the second stage stretching. That is,
a. The thickness of the distal-side neck portion after the second-stage stretching can be compared with the thickness before the second-stage stretching (after the first-stage stretching) and is associated therewith.
b. The thickness of the distal-side neck portion after the first-stage stretching is related to the thickness of the proximal-side neck portion after the first-stage stretching if it is manufactured by the method described in the present invention.
c. Therefore, the thickness of the distal-side neck portion after the second-stage stretching is associated with the thickness of the proximal-side neck portion before the second-stage stretching (after the first-stage stretching).
d. From the above a to c, the relationship between the thickness A of the distal neck portion and the thickness B of the proximal neck portion can be used.
[0063]
【The invention's effect】
As described above, according to the present invention, the ratio (A / B) of the thickness A of the distal neck portion to the thickness B of the proximal neck portion of the balloon provided at the distal portion of the catheter is 1/3. Since the setting was made so as to fall within the range of 11, a balloon having a structure having both flexibility at the distal end side of the balloon and performance to maintain sufficiently high bonding strength at the proximal end side of the balloon could be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a mold used for producing a catheter balloon according to the present invention.
FIG. 2 is an operation explanatory view of FIG. 1;
FIG. 3 is a cross-sectional view of a catheter balloon according to the present invention.
FIG. 4 is an operation explanatory view of a test device used for trackability evaluation and a balloon serving as a sample.
FIG. 5 is a side view showing a general shape of an over-the-wire type PTCA balloon catheter.
FIG. 6 is a side view showing a general configuration of a rapid exchange type PTCA balloon catheter.
FIG. 7 is a cross-sectional view showing details of a distal end portion of the PTCA balloon catheter.
FIG. 8 is a cross-sectional view of a mold used for producing a conventional catheter balloon.
FIG. 9 is a cross-sectional view of a conventional catheter balloon.
[Explanation of symbols]
1A, 1B PTCA balloon catheter
3 balloon
3e Tip side neck
3f proximal end neck

Claims (2)

カテーテルの先端部に設けられるバルーンであって、その先端側ネック部の肉厚Aと基端側ネック部の肉厚Bの比(A/B)が1/3〜1の範囲内に設定されてなることを特徴とするカテーテル用バルーン。A balloon provided at a distal end portion of a catheter, wherein a ratio (A / B) of a thickness A of a distal side neck portion and a thickness B of a proximal side neck portion is set in a range of 1/3 to 1. A balloon for a catheter, comprising: バルーンの材料が、ポリオレフィン、ポリオレフィンエラストマ、ポリオレフィンとポリオレフィンエラストマの混合物、ポリアミド、ポリアミドエラストマ、ポリアミドとポリアミドエラストマの混合物、ポリエステル、ポリエステルエラストマ、ポリエステルとポリエステルエラストマの混合物、ポリウレタン、ポリウレタンエラストマ、及びポリウレタンとポリウレタンエラストマの混合物の中から選択されてなることを特徴とする請求項1記載のカテーテル用バルーン。The material of the balloon is polyolefin, polyolefin elastomer, mixture of polyolefin and polyolefin elastomer, polyamide, polyamide elastomer, mixture of polyamide and polyamide elastomer, polyester, polyester elastomer, mixture of polyester and polyester elastomer, polyurethane, polyurethane elastomer, and polyurethane and polyurethane. 2. The catheter balloon according to claim 1, wherein the balloon is selected from a mixture of elastomers.
JP2002355659A 2002-12-06 2002-12-06 Catheter balloon and method for manufacturing the same Expired - Lifetime JP4713057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355659A JP4713057B2 (en) 2002-12-06 2002-12-06 Catheter balloon and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355659A JP4713057B2 (en) 2002-12-06 2002-12-06 Catheter balloon and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004187717A true JP2004187717A (en) 2004-07-08
JP4713057B2 JP4713057B2 (en) 2011-06-29

Family

ID=32756290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355659A Expired - Lifetime JP4713057B2 (en) 2002-12-06 2002-12-06 Catheter balloon and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4713057B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023270A (en) * 2006-07-25 2008-02-07 Nipro Corp Balloon for catheter and its manufacturing method
JP2009291501A (en) * 2008-06-06 2009-12-17 Kaneka Corp Balloon for balloon catheter
JP2011500249A (en) * 2007-10-22 2011-01-06 エンドクロス リミテッド Balloon and balloon catheter system for treating vascular occlusion
JP2013111089A (en) * 2011-11-25 2013-06-10 Goodman Co Ltd Balloon catheter
WO2016021633A1 (en) * 2014-08-05 2016-02-11 国立大学法人東京医科歯科大学 Biomagnetism measurement device
JP2018171389A (en) * 2017-03-31 2018-11-08 日本ゼオン株式会社 Balloon catheter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035705A (en) * 1989-01-13 1991-07-30 Scimed Life Systems, Inc. Method of purging a balloon catheter
JPH04176473A (en) * 1990-11-10 1992-06-24 Terumo Corp Balloon for catheter, manufacture thereof and balloon catheter
US5387225A (en) * 1988-02-29 1995-02-07 Scimed Life Systems, Inc. Dilatation catheter with transition member
JP2000217924A (en) * 1999-02-01 2000-08-08 Kanegafuchi Chem Ind Co Ltd Extended body for extended catheter and its manufacture
JP2001238954A (en) * 2000-02-29 2001-09-04 Nippon Zeon Co Ltd Balloon catheter
JP2002239009A (en) * 2001-02-22 2002-08-27 Terumo Corp Balloon catheter and method of manufacturing balloon catheter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387225A (en) * 1988-02-29 1995-02-07 Scimed Life Systems, Inc. Dilatation catheter with transition member
US5035705A (en) * 1989-01-13 1991-07-30 Scimed Life Systems, Inc. Method of purging a balloon catheter
JPH04176473A (en) * 1990-11-10 1992-06-24 Terumo Corp Balloon for catheter, manufacture thereof and balloon catheter
JP2000217924A (en) * 1999-02-01 2000-08-08 Kanegafuchi Chem Ind Co Ltd Extended body for extended catheter and its manufacture
JP2001238954A (en) * 2000-02-29 2001-09-04 Nippon Zeon Co Ltd Balloon catheter
JP2002239009A (en) * 2001-02-22 2002-08-27 Terumo Corp Balloon catheter and method of manufacturing balloon catheter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023270A (en) * 2006-07-25 2008-02-07 Nipro Corp Balloon for catheter and its manufacturing method
JP2011500249A (en) * 2007-10-22 2011-01-06 エンドクロス リミテッド Balloon and balloon catheter system for treating vascular occlusion
JP2009291501A (en) * 2008-06-06 2009-12-17 Kaneka Corp Balloon for balloon catheter
JP2013111089A (en) * 2011-11-25 2013-06-10 Goodman Co Ltd Balloon catheter
WO2016021633A1 (en) * 2014-08-05 2016-02-11 国立大学法人東京医科歯科大学 Biomagnetism measurement device
JPWO2016021633A1 (en) * 2014-08-05 2017-08-03 国立大学法人 東京医科歯科大学 Biomagnetic measurement device
US10952631B2 (en) 2014-08-05 2021-03-23 National University Corporation Tokyo Medical And Dental University Biomagnetism measurement device
JP2018171389A (en) * 2017-03-31 2018-11-08 日本ゼオン株式会社 Balloon catheter
JP2022093711A (en) * 2017-03-31 2022-06-23 日本ゼオン株式会社 Balloon catheter

Also Published As

Publication number Publication date
JP4713057B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
US4820349A (en) Dilatation catheter with collapsible outer diameter
US5411477A (en) High-strength, thin-walled single piece catheters
US6544224B1 (en) Lobed balloon catheter and method of use
US6491711B1 (en) Balloon catheter with non-circular balloon taper and method of use
US6620127B2 (en) Medical device balloon
US6620128B1 (en) Balloon blowing process with metered volumetric inflation
US5645789A (en) Distensible pet balloon and method of manufacture
US8303539B2 (en) Preform and balloon having a non-uniform thickness
US8840743B2 (en) Soft tip balloon catheter
US6589226B1 (en) Catheter shaft and method of making a catheter shaft
JP6259560B2 (en) Balloon for balloon catheter
JP4713057B2 (en) Catheter balloon and method for manufacturing the same
US20090234282A1 (en) Outer Catheter Shaft to Balloon Joint
CN107106819A (en) The reduction method of intravascular dilation conduit
US6712833B1 (en) Method of making a catheter balloon
JPH05305146A (en) Medical balloon catheter
US20020171180A1 (en) Method of making a catheter balloon
JP6078371B2 (en) Method for manufacturing balloon for balloon catheter
JP2004298354A (en) Dilation balloon, and balloon catheter equipped with the same
JP6184070B2 (en) Method for manufacturing balloon for balloon catheter
JP6134154B2 (en) Balloon for balloon catheter
JP2004298356A (en) Balloon for dilation and balloon catheter with the same
JP2003144553A (en) Balloon and balloon catheter
JP4402218B2 (en) Balloon catheter
JPH11244385A (en) Medical baloon catheter shaft and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091007

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term