JP2004184082A - Method for analyzing organic compound contained in porous inorganic compound - Google Patents

Method for analyzing organic compound contained in porous inorganic compound Download PDF

Info

Publication number
JP2004184082A
JP2004184082A JP2002347561A JP2002347561A JP2004184082A JP 2004184082 A JP2004184082 A JP 2004184082A JP 2002347561 A JP2002347561 A JP 2002347561A JP 2002347561 A JP2002347561 A JP 2002347561A JP 2004184082 A JP2004184082 A JP 2004184082A
Authority
JP
Japan
Prior art keywords
organic compound
porous inorganic
compound
inorganic compound
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347561A
Other languages
Japanese (ja)
Inventor
Akihiro Kondo
晃弘 近藤
Jun Yamamoto
純 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002347561A priority Critical patent/JP2004184082A/en
Publication of JP2004184082A publication Critical patent/JP2004184082A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring an organic compound contained in an porous inorganic compound accurately and precisely. <P>SOLUTION: The method for analyzing the organic compound (A) in the porous inorganic compound is adapted to the quantitative analysis of the organic compound (A) contained in the porous inorganic compound (C) containing the organic compound (A). An organic compound (B) different from the contained organic compound (A) is dissolved in a solvent and mixed with the porous inorganic compound (C) so as to reach a definite weight ratio and, after only the solvent is removed, a carbon 13-solid NMR spectrum is measured. Preferably, the solution prepared by dissolving the organic compound (B) in the solvent is mixed with the porous inorganic compound (C) by a pore filling method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質無機化合物(C)中に含有される有機化合物(A)の炭素13−固体NMRスペクトルによる定量分析方法に関するものである。
【0002】
【従来の技術】
多孔質無機化合物は、多くの細孔を持ち、大きな比表面積を有することから固体触媒、多孔質ガラス、多孔質シリコン、分析カラム充填剤等に広く使用されている(たとえば、非特許文献1参照。)。これら多孔質無機化合物の性能を向上させたり、機能を付与するため、有機化合物を含有させることが一般に行われている。この有機化合物の量は多孔質無機化合物の性能および機能を判断する重要な指標であり、それを正確に、かつ簡便に知ることは多孔質無機化合物を製造する上で重要である。
【0003】
一般に多孔質無機化合物に含まれる有機化合物の分析には固相上での赤外分光法を用いるか、固相上から抽出して、液相での分析を適用している。前者の場合、直接多孔質無機化合物を測定することができるが、特に定量分析を行う場合は、標準試料による検量線の作成が不可欠である上にスペクトルに複数の吸収が重なり合うことが多いため、精度の高い定量分析が困難である。後者の場合、固相上から溶媒などにより抽出した有機化合物をガスクロマトグラフィーもしくは液体クロマトグラフィーにより定量分析することが可能であるが、多孔質無機化合物に強く吸着された有機化合物もしくは化学結合により固定化された有機化合物等の場合、溶媒などによる全抽出が困難であるため、満足しうる方法ではなかった。
【0004】
一方、多孔質無機化合物のような固体物質をそのまま測定し、分析できる技術として、近年、固体NMR法が普及しているが、定量分析を行う場合、スペクトル中に濃度既知の内部標準となる信号を有することが必要となる。内部標準法としてもっとも簡便な方法の一つは、固体状の内部標準物質を固体試料に混合する方法であるが、固体と固体をそれぞれ固体状態のまま混合するため、液体の混合などと比較し、均一に混合するためには相当の攪拌が必要である。また、混合の程度を把握することが難しく、内部標準物質の多孔質無機化合物中への均一な分散が達成されないため、固体NMRを用いた内部標準法による定量分析の実現が困難であった。
【0005】
このような中で多孔質無機化合物に含有される有機化合物の量は該多孔質無機化合物の機能および性能等に及ぼす影響は極めて大きく、その種類および量、中でも、有効に作用する量を把握することは、機能材料開発又はその機能向上のための研究、さらには品質管理上において極めて重要であることから、多孔質無機化合物に含有される有機化合物の精度のよい分析技術の確立が期待されていた。
【0006】
【非特許文献1】
「多孔質体の性質とその応用」 竹内 雍監修 フジテクノシステム,1999
【0007】
【発明が解決しようとする課題】
かかる状況において、本発明の目的は、多孔質無機化合物の機能および性能を推定することのできる含有有機化合物の精度のよい定量分析方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、多孔質無機化合物に含有される有機化合物の分析について鋭意研究を重ねた結果、パルスシーケンスを適正化した炭素13核の固体NMR分析法を応用することによって、多孔質無機化合物に含有される有機化合物を、内部標準物質を多孔質無機化合物中に均一に混合することによって、固体状態のままで、直接測定し、定量分析が可能であることを見出し、本発明に到達した。
すなわち本発明は、有機化合物(A)を含有する多孔質無機化合物(C)に含有される有機化合物(A)の定量分析に際し、含有有機化合物(A)とは異なる有機化合物(B)を溶媒に溶解し、該多孔質無機化合物(C)に対し、有機化合物(B)が一定の重量比率となるよう混合し、溶媒のみ除去した後、炭素13−固体NMRスペクトルを測定することにより、有機化合物(A)を定量分析する多孔質無機材化合物中の有機化合物(A)の分析方法に係るものである。
【0009】
【発明の実施の形態】
本発明で言う多孔質無機化合物(C)とは、多くの細孔を持ち、比表面積の大きな固体であって、例えばシリカ、アルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛等の酸化物もしくはそれらの2種以上の混成化合物、ゼオライト、白土、粘土および珪藻土等を挙げることができる。このような多孔質無機化合物(C)に含有される有機化合物(A)は、特に限定されるものではない。
【0010】
本発明において有機化合物(A)を含有する多孔質無機化合物(C)とは、有機化合物(A)が多孔質無機化合物(C)の微小空間に包含されている多孔質無機化合物(C)を示す。有機化合物(A)が多孔質無機化合物(C)に共有結合していてもよい。
【0011】
本発明は炭素13−固体NMRにより、多孔質無機化合物(C)に含有される有機化合物(A)を定量することを特徴とするものである。多孔質無機化合物(C)に含有される有機化合物(A)をそのままの固体状態で炭素13−固体NMRスペクトルを測定すれば、多孔質無機化合物(C)には含有されず、有機化合物(A)にのみ含有される炭素13核に由来する信号が得られる。信号の位置、すなわち化学シフトは化学種の種類によって異なり、また信号の強度比は各化学種の存在比を示す。多孔質無機化合物(C)中に含有される有機化合物(A)を定量するため、多孔質無機化合物(C)に一定量の有機化合物(B)を内部標準物質として添加する。含有量既知の有機化合物(B)に対する有機化合物(A)の信号強度比から、有機化合物(A)の含有量を計算する。
【0012】
有機化合物(B)は、炭素13−固体NMRスペクトルにおいて、有機化合物(A)に由来する信号の少なくとも一つとは異なる化学シフトの信号を有し、炭素13−固体NMR測定温度において、固体であり、少なくとも1種類の溶媒に可溶であって、該溶媒の沸点より高い沸点を有することが好ましい。分析精度を考慮すれば、昇華性が低い方が好ましい。例えば、ドコサン、テトラコサン、ヘキサコサン、オクタコサン、などの脂肪族直鎖炭化水素、テトラメチルベンゼン、ペンタメチルベンゼンなどのアルキルベンゼン、デカンジオール、ドデカンジオールなどの2価アルコール、メチルフェノール、ジメチルフェノール、トリメチルフェノールなどのアルキルフェノール、ビフェニル、メチルビフェニルなどのアルキルビフェニル、アダマンタンなどを挙げることができる。
【0013】
溶媒は、有機化合物(B)を溶解可能なものであれば、特に限定はされない。好ましくは沸点が10℃〜300℃の有機化合物であり、水、アルコール(メタノール、エタノール、イソプロパノールなど)、脂肪族炭化水素(例えばイソペンタン、n−ヘキサン、n−へプタン、n−オクタンなど)、脂肪族環状炭化水素(例えばシクロヘキサンなど)、芳香族炭化水素(例えばベンゼン、トルエン、キシレンなど)およびハロゲン化炭化水素(四塩化炭素、トリクロロエチレン)を例示することができる。有機化合物(B)が一定の重量比率となるよう混合する方法は、一定量を溶媒に溶解し、溶液として混合する方法であれば、特に限定はされない。有機化合物(B)の多孔質無機化合物(C)への均一な分散を考慮すれば、ポアフィリング法を採用するのが好ましい。ポアフィリング法では、あらかじめ多孔質無機化合物(C)の細孔容積を測定しておき、細孔容積とほぼ同等の量の有機化合物(B)の溶液を添加する。
【0014】
本発明において溶媒のみの除去、とは、有機化合物(B)を多孔質無機化合物(C)上に保持したまま、溶媒を除去することであり、操作の簡便さを考慮すれば、加熱および/または減圧下で溶媒のみ気化させ、除去する方法が好ましい。炭素13−固体NMRスペクトルの測定は固体NMRの測定に広く用いられている通常の測定法を適用すればよく、特に信号強度比が正しく現われるDD−MAS(Dipolar Decoupling Magic Angle Spinning)が好ましい。
【0015】
炭素13−固体NMRスペクトルにおける化学シフトにより、有機化合物(A)および有機化合物(B)に由来する信号を同定し、有機化合物(A)および有機化合物(B)に由来する信号の強度を測定する。有機化合物(A)に由来する信号強度をI、有機化合物(B)に由来する信号強度をI、有機化合物(B)の多孔質無機化合物(C)に対する重量比率をC[%]とすると、有機化合物(A)の多孔質無機化合物(C)に対する重量比率C[%]は、以下の式(1)で表される。
=C×(I/I) (1)
【0016】
式(1)に混合した溶液濃度と量より計算したCB[%]、炭素13−固体NMRスペクトルから求めたIA、IBを代入することにより、多孔質無機化合物(C)に対する有機化合物(A)の重量比率[%]を求めることができる。
【0017】
【実施例】
次に、実施例により本発明を説明する。
<試料の調製>
破砕状シリカ(CARiACT G−10:富士シリシア化学(株)製)4.0gをフラスコに入れ、ヘキサメチルジシラザン2.7g、トルエン40.0gを混合し、攪拌下、1.5時間加熱還流した。混合物から濾過により液を除き、120℃、10mmHgで2時間減圧乾燥することにより、表面がトリメチルシリル化された破砕状シリカを得た。
表面がトリメチルシリル化された破砕状シリカの細孔容積を測定するため、当該破砕状シリカをポアフィリングするのに必要なn−ヘキサンの容積を以下の方法で求めた。当該破砕状シリカ1gに対して、n−ヘキサンを徐々に滴下したところ、約1.7g(約2.6ml)でポアフィリングが完了した。当該破砕状シリカの細孔容積は約2.6mlである。
内部標準物質であるアダマンタン0.0097gをヘキサン1.7gに溶解したものに当該破砕状シリカ1.13gを徐々に加えた。その後、室温下130Paで20分間溶媒を減圧除去して、試料Aを得た。
【0018】
<炭素13−固体NMR測定>
測定条件を以下に示す。
装置 : ブルカー社製ASX300
測定モード:DDMAS法
試料管:7mmφローター
【0019】
実施例1
試料Aを固体NMR用7mmφローターに3回別々に採取し、各採取毎の試料S1−1,S1−2,S1−3について、炭素13−DDMAS−NMRを測定した。図1は試料A−1の炭素13−DDMAS−NMRスペクトルである。各試料について、式(1)により計算したトリメチルシリル基の重量%を表1に示す。3つの試料におけるトリメチルシリル基の量は5.7%のばらつきの中にある。
【0020】
比較例1
表面をトリメチルシリル化した破砕状シリカ0.88gにアダマンタン8.9mgを固体粉末状態のまま、めのう乳鉢で約5分間攪拌混合し、試料Bを得た。試料Bを固体NMR用7mmφローターに3回採取し、各採取毎の試料S2−1,S2−2,S2−3について、炭素13−DDMAS−NMRを測定した。図2は試料B−1の炭素13−DDMAS−NMRスペクトルである。各試料について、式(1)により計算したトリメチルシリル基の重量%を表1に示す。3つの試料におけるトリメチルシリル基の量は、13.6%のばらつきがあり、実施例におけるばらつきと比較し、顕著に大きい。ばらつきが大きい上に、固体状態での混合はどの程度均一に混合できているかどうかは不明である。
【0021】
【表1】

Figure 2004184082
ばらつき(%)Rは次の式(2)により、求めた。
R(%)={(XMAX−Xmin)/Xav}×100 (2)
【0022】
【発明の効果】
以上説明したとおり、本発明により、多孔質無機化合物に含まれる有機化合物の正確かつ精度のよい測定方法を提供することができた。
【図面の簡単な説明】
【図1】実施例1の試料S1−1の炭素13−DDMAS−NMRスペクトルである。
【図2】比較例1の試料S2−1の炭素13−DDMAS−NMRスペクトルである。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for quantitatively analyzing an organic compound (A) contained in a porous inorganic compound (C) by a carbon 13-solid NMR spectrum.
[0002]
[Prior art]
BACKGROUND ART Porous inorganic compounds have many pores and a large specific surface area, and thus are widely used in solid catalysts, porous glass, porous silicon, analytical column packings, and the like (for example, see Non-Patent Document 1). .). In order to improve the performance of these porous inorganic compounds or to impart functions, it is common to include organic compounds. The amount of the organic compound is an important index for judging the performance and function of the porous inorganic compound, and knowing it accurately and simply is important for producing the porous inorganic compound.
[0003]
In general, an organic compound contained in a porous inorganic compound is analyzed by infrared spectroscopy on a solid phase or extracted from the solid phase and analyzed in a liquid phase. In the former case, the porous inorganic compound can be measured directly.However, especially when performing quantitative analysis, it is necessary to prepare a calibration curve using a standard sample, and the spectrum often has a plurality of absorptions. It is difficult to perform high-precision quantitative analysis. In the latter case, it is possible to quantitatively analyze the organic compound extracted from the solid phase with a solvent or the like by gas chromatography or liquid chromatography, but the organic compound strongly adsorbed to the porous inorganic compound or immobilized by the chemical bond In the case of a converted organic compound or the like, it is not a satisfactory method because it is difficult to perform total extraction with a solvent or the like.
[0004]
On the other hand, in recent years, solid-state NMR has been widely used as a technique for directly measuring and analyzing a solid substance such as a porous inorganic compound, but when performing quantitative analysis, a signal serving as an internal standard having a known concentration in a spectrum is used. It is necessary to have One of the simplest methods of internal standard method is to mix a solid internal standard substance with a solid sample. In order to mix uniformly, considerable stirring is required. Further, it is difficult to grasp the degree of mixing, and uniform dispersion of the internal standard substance in the porous inorganic compound is not achieved, so that it has been difficult to realize quantitative analysis by the internal standard method using solid-state NMR.
[0005]
Under such circumstances, the amount of the organic compound contained in the porous inorganic compound has a very large effect on the function and performance of the porous inorganic compound, and the type and amount thereof, among them, grasp the amount that effectively acts. This is extremely important in the development of functional materials or research for improving their functions, and furthermore, in quality control.Therefore, it is expected to establish an accurate analysis technique for organic compounds contained in porous inorganic compounds. Was.
[0006]
[Non-patent document 1]
"Properties of porous materials and their applications" Takeuchi, supervised by Fuji Techno System, 1999
[0007]
[Problems to be solved by the invention]
In such a situation, an object of the present invention is to provide an accurate quantitative analysis method of a contained organic compound that can estimate the function and performance of a porous inorganic compound.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the analysis of organic compounds contained in the porous inorganic compound. As a result, by applying solid-state NMR analysis of carbon 13 nuclei with an optimized pulse sequence, the porous inorganic compound was obtained. The organic compound contained in, by uniformly mixing the internal standard substance in the porous inorganic compound, in the solid state, directly measured, found that quantitative analysis is possible, and arrived at the present invention .
That is, in the present invention, when the organic compound (A) contained in the porous inorganic compound (C) containing the organic compound (A) is quantitatively analyzed, an organic compound (B) different from the contained organic compound (A) is used as a solvent. The organic compound (B) is mixed with the porous inorganic compound (C) so as to have a constant weight ratio, and only the solvent is removed. The present invention relates to a method for quantitatively analyzing a compound (A) for an organic compound (A) in a porous inorganic material compound.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The porous inorganic compound (C) referred to in the present invention is a solid having many pores and a large specific surface area, for example, an oxide such as silica, alumina, titania, zirconia, magnesia, and zinc oxide, or an oxide thereof. Examples include two or more hybrid compounds, zeolite, clay, clay, and diatomaceous earth. The organic compound (A) contained in such a porous inorganic compound (C) is not particularly limited.
[0010]
In the present invention, the porous inorganic compound (C) containing the organic compound (A) is defined as a porous inorganic compound (C) in which the organic compound (A) is contained in a minute space of the porous inorganic compound (C). Show. The organic compound (A) may be covalently bonded to the porous inorganic compound (C).
[0011]
The present invention is characterized in that an organic compound (A) contained in a porous inorganic compound (C) is quantified by carbon 13-solid NMR. When the carbon 13-solid NMR spectrum of the organic compound (A) contained in the porous inorganic compound (C) is measured in a solid state as it is, the organic compound (A) is not contained in the porous inorganic compound (C) but is contained. ) Is obtained from the carbon 13 nucleus contained only in (1). The position of the signal, that is, the chemical shift differs depending on the type of the chemical species, and the intensity ratio of the signal indicates the abundance ratio of each chemical species. In order to quantify the organic compound (A) contained in the porous inorganic compound (C), a certain amount of the organic compound (B) is added to the porous inorganic compound (C) as an internal standard. The content of the organic compound (A) is calculated from the signal intensity ratio of the organic compound (A) to the known organic compound (B).
[0012]
The organic compound (B) has a chemical shift signal different from at least one of the signals derived from the organic compound (A) in the carbon 13-solid NMR spectrum, and is a solid at the carbon 13-solid NMR measurement temperature. It is preferably soluble in at least one kind of solvent and has a boiling point higher than the boiling point of the solvent. Considering the analysis accuracy, it is preferable that the sublimability is low. For example, aliphatic straight-chain hydrocarbons such as docosane, tetracosane, hexacosane, and octacosane; alkylbenzenes such as tetramethylbenzene and pentamethylbenzene; dihydric alcohols such as decanediol and dodecanediol; methylphenol; dimethylphenol; trimethylphenol; And alkyl biphenyls such as biphenyl and methyl biphenyl, and adamantane.
[0013]
The solvent is not particularly limited as long as it can dissolve the organic compound (B). Preferably, it is an organic compound having a boiling point of 10 ° C to 300 ° C, such as water, alcohol (such as methanol, ethanol and isopropanol), and aliphatic hydrocarbon (such as isopentane, n-hexane, n-heptane and n-octane). Examples include aliphatic cyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, etc.) and halogenated hydrocarbons (carbon tetrachloride, trichloroethylene). The method of mixing the organic compound (B) so as to have a constant weight ratio is not particularly limited, as long as a constant amount is dissolved in a solvent and mixed as a solution. In consideration of uniform dispersion of the organic compound (B) in the porous inorganic compound (C), it is preferable to employ a pore filling method. In the pore filling method, the pore volume of the porous inorganic compound (C) is measured in advance, and a solution of the organic compound (B) in an amount substantially equal to the pore volume is added.
[0014]
In the present invention, the removal of only the solvent means to remove the solvent while the organic compound (B) is kept on the porous inorganic compound (C). Considering the simplicity of the operation, heating and / or Alternatively, a method is preferred in which only the solvent is evaporated under reduced pressure to remove the solvent. The measurement of the carbon 13-solid NMR spectrum may be performed by a general measurement method widely used in the measurement of solid-state NMR, and in particular, DD-MAS (Dipolar Decoupling Magic Angle Spinning) in which the signal intensity ratio appears correctly is preferable.
[0015]
The signal derived from the organic compound (A) and the organic compound (B) is identified by the chemical shift in the carbon 13-solid NMR spectrum, and the intensity of the signal derived from the organic compound (A) and the organic compound (B) is measured. . Organic compounds signal strength derived from (A) to I A, the organic compound signal strength derived from (B) to I B, the organic compound porous inorganic compound C B [%] weight ratio (C) of (B) Then, the weight ratio C A [%] of the organic compound (A) to the porous inorganic compound (C) is represented by the following formula (1).
C A = C B × (I A / I B) (1)
[0016]
By substituting CB [%] calculated from the solution concentration and amount mixed in the formula (1) and IA and IB obtained from the carbon 13-solid NMR spectrum, the organic compound (A) relative to the porous inorganic compound (C) Weight ratio [%] can be determined.
[0017]
【Example】
Next, the present invention will be described with reference to examples.
<Preparation of sample>
4.0 g of crushed silica (CARiACT G-10: manufactured by Fuji Silysia Chemical Ltd.) is placed in a flask, and 2.7 g of hexamethyldisilazane and 40.0 g of toluene are mixed, and the mixture is heated under reflux with stirring for 1.5 hours. did. The liquid was removed from the mixture by filtration, and dried under reduced pressure at 120 ° C. and 10 mmHg for 2 hours to obtain crushed silica having a trimethylsilylated surface.
In order to measure the pore volume of the crushed silica whose surface was trimethylsilylated, the volume of n-hexane required for pore-filling the crushed silica was determined by the following method. To 1 g of the crushed silica, n-hexane was gradually dropped, and pore filling was completed in about 1.7 g (about 2.6 ml). The pore volume of the crushed silica is about 2.6 ml.
1.13 g of the crushed silica was gradually added to a solution prepared by dissolving 0.0097 g of adamantane as an internal standard substance in 1.7 g of hexane. Thereafter, the solvent was removed under reduced pressure at 130 Pa at room temperature for 20 minutes to obtain Sample A.
[0018]
<Carbon 13-solid NMR measurement>
The measurement conditions are shown below.
Apparatus: ASX300 manufactured by Bruker
Measurement mode: DDDMA method Sample tube: 7 mmφ rotor [0019]
Example 1
Sample A was separately sampled three times into a 7 mmφ rotor for solid-state NMR, and carbon S 13-DDMAS-NMR was measured for each sample S1-1, S1-2, and S1-3. FIG. 1 is a carbon-13-DDMAS-NMR spectrum of Sample A-1. Table 1 shows the weight percent of trimethylsilyl groups calculated by the formula (1) for each sample. The amount of trimethylsilyl groups in the three samples is within a 5.7% variation.
[0020]
Comparative Example 1
In a solid powder state, 8.9 mg of adamantane was stirred and mixed with 0.88 g of the crushed silica whose surface was trimethylsilylated in an agate mortar for about 5 minutes to obtain a sample B. Sample B was sampled three times into a 7 mmφ rotor for solid-state NMR, and carbon S-DDDMAS-NMR was measured for each sample S2-1, S2-2, and S2-3. FIG. 2 is a carbon-13-DDMAS-NMR spectrum of Sample B-1. Table 1 shows the weight percent of trimethylsilyl groups calculated by the formula (1) for each sample. The amount of the trimethylsilyl group in the three samples has a variation of 13.6%, which is significantly larger than the variation in the examples. In addition to the large variability, it is unclear how well the mixing in the solid state could be mixed.
[0021]
[Table 1]
Figure 2004184082
The variation (%) R was obtained by the following equation (2).
R (%) = {(X MAX −X min ) / X av } × 100 (2)
[0022]
【The invention's effect】
As described above, according to the present invention, a method for accurately and accurately measuring an organic compound contained in a porous inorganic compound can be provided.
[Brief description of the drawings]
FIG. 1 is a carbon-13-DDMAS-NMR spectrum of a sample S1-1 of Example 1.
FIG. 2 is a carbon-13-DDMAS-NMR spectrum of Sample S2-1 of Comparative Example 1.

Claims (2)

有機化合物(A)を含有する多孔質無機化合物(C)に含有される有機化合物(A)の定量分析に際し、含有有機化合物(A)とは異なる有機化合物(B)を溶媒に溶解し、該多孔質無機化合物(C)に対し、有機化合物(B)が一定の重量比率となるよう混合し、溶媒のみ除去した後、炭素13−固体NMRスペクトルを測定することにより、有機化合物(A)を定量分析する多孔質無機材化合物中の有機化合物(A)の分析方法。Upon quantitative analysis of the organic compound (A) contained in the porous inorganic compound (C) containing the organic compound (A), an organic compound (B) different from the contained organic compound (A) is dissolved in a solvent, and The organic compound (A) was mixed with the porous inorganic compound (C) so that the organic compound (B) was mixed at a constant weight ratio, and after removing only the solvent, the carbon 13-solid NMR spectrum was measured. Analysis method of organic compound (A) in porous inorganic material compound to be quantitatively analyzed. 有機化合物(B)を溶媒に溶解して調製した溶液を、ポアフィリング法により該多孔質無機化合物(C)に混合する請求項1記載の分析方法。The analysis method according to claim 1, wherein a solution prepared by dissolving the organic compound (B) in a solvent is mixed with the porous inorganic compound (C) by a pore filling method.
JP2002347561A 2002-11-29 2002-11-29 Method for analyzing organic compound contained in porous inorganic compound Pending JP2004184082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347561A JP2004184082A (en) 2002-11-29 2002-11-29 Method for analyzing organic compound contained in porous inorganic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347561A JP2004184082A (en) 2002-11-29 2002-11-29 Method for analyzing organic compound contained in porous inorganic compound

Publications (1)

Publication Number Publication Date
JP2004184082A true JP2004184082A (en) 2004-07-02

Family

ID=32750722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347561A Pending JP2004184082A (en) 2002-11-29 2002-11-29 Method for analyzing organic compound contained in porous inorganic compound

Country Status (1)

Country Link
JP (1) JP2004184082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534984A (en) * 2005-04-05 2008-08-28 本田技研工業株式会社 Method for measuring the content of single-walled carbon nanotubes in carbon soot
WO2019132269A1 (en) * 2017-12-27 2019-07-04 한화케미칼 주식회사 Method for measuring aromatic content in hydrocarbon-containing solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534984A (en) * 2005-04-05 2008-08-28 本田技研工業株式会社 Method for measuring the content of single-walled carbon nanotubes in carbon soot
WO2019132269A1 (en) * 2017-12-27 2019-07-04 한화케미칼 주식회사 Method for measuring aromatic content in hydrocarbon-containing solution
US11391684B2 (en) 2017-12-27 2022-07-19 Hanwha Solutions Corporation Method for measuring aromatic contents in hydrocarbon solution

Similar Documents

Publication Publication Date Title
Olcer et al. Thin film microextraction: Towards faster and more sensitive microextraction
Zeng et al. Solid-phase microextraction of monocyclic aromatic amines using novel fibers coated with crown ether
Moein et al. Solid phase microextraction and related techniques for drugs in biological samples
EP1382963B1 (en) Method and instrument for extracting trace component in solid phase
CN107817302B (en) Gas chromatography analysis method for petroleum hydrocarbon components
Junaid et al. Natural zeolites for oilsands bitumen cracking: Structure and acidity
CN103399096B (en) Method for detecting content of malachite green and metabolin thereof in sediment of aquaculture environment
CN103926347B (en) Quantitative detection method for organophosphorus pesticide in soil
Hu et al. Enhancing enrichment ability of a nanoporous carbon based solid-phase microextraction device by a morphological modulation strategy
Wetzel et al. Microstructural investigations on the skinning of ultra-high performance concrete
Wang et al. Application of sol–gel based octyl-functionalized mesoporous materials coated fiber for solid-phase microextraction
Sun et al. Determination of sulfamethoxazole in milk using molecularly imprinted polymer monolith microextraction coupled to HPLC
Feng et al. Development, validation and comparison of three detection methods for 9 volatile methylsiloxanes in food-contact silicone rubber products
Xie et al. High-throughput polymer monolith in-tip SPME fiber preparation and application in drug analysis
JP4700372B2 (en) Method for accurately analyzing oil content in soil
Wang et al. Zeolite-loaded poly (dimethylsiloxane) hybrid films for highly efficient thin-film microextraction of organic volatiles in water
JP2004184082A (en) Method for analyzing organic compound contained in porous inorganic compound
Zhang et al. Comparison of two ionic liquid-based pretreatment methods for three steroids' separation and determination in water samples by HPLC
CN113504333A (en) Method for detecting organic matter migration amount in paper packaging material
Dobrzyńska et al. Needle‐trap device for the sampling and determination of chlorinated volatile compounds
CN109459506A (en) A kind of quick sample pretreatment method detected for Polychlorinated biphenyls in tealeaves
Liu et al. On-line SPE using ionic liquid-based monolithic column for the determination of antihypertensives in human plasma
CN103127910A (en) Magnetic graphene as well as preparation method and application thereof
Forzano et al. In situ silanization for continuous stationary phase gradients on particle packed LC columns
CN104458945B (en) The method of separating and assaying of a kind of besifloxacin hydrochloride and isomeride thereof