JP2004181524A - Manufacturing method of steel wire, processing facility of wire rod and machine structural component - Google Patents

Manufacturing method of steel wire, processing facility of wire rod and machine structural component Download PDF

Info

Publication number
JP2004181524A
JP2004181524A JP2002355106A JP2002355106A JP2004181524A JP 2004181524 A JP2004181524 A JP 2004181524A JP 2002355106 A JP2002355106 A JP 2002355106A JP 2002355106 A JP2002355106 A JP 2002355106A JP 2004181524 A JP2004181524 A JP 2004181524A
Authority
JP
Japan
Prior art keywords
flaw
wire
flaws
steel wire
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002355106A
Other languages
Japanese (ja)
Inventor
Norimasa Ono
訓正 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002355106A priority Critical patent/JP2004181524A/en
Publication of JP2004181524A publication Critical patent/JP2004181524A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a steel wire with an excellent surface quality in a superb production yield. <P>SOLUTION: The manufacturing method of the steel wire comprises surface flaw detection of the wire rod by a flaw detector installed ahead of a processing device in a processing facility for the wire rod, removal of the detected surface flaw and a process to adjust the surface roughness in the flaw-removed portion to 13.0μm or less in the centerline surface roughness Ra, and a following finish processing by the processing device. It is preferable to adjust the surface roughness Ra in the flaw-removed portion to y or less on the μm unit, wherein y satisfies the equation (1):y=22.71×ä1-(d/d<SB>0</SB>)<SP>2</SP>}<SP>2</SP>+1.797×ä1-(d/d<SB>0</SB>)<SP>2</SP>}+6.0839. When y satisfies the equation (1) turns out to be 13.0μm or more, y is assumed to be 13.0μm whatever the calculation result is, so that the maximum of y is 13.0μm. In addition, do is the diameter of the wire rod material on the mm unit, while d is the diameter of the steel wire on the mm unit after the finish processing. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼線の製造方法、線材の加工設備及び機械構造部品に関し、詳しくは、耐摩耗性や耐疲労特性に優れた軸受、各種のOA機器用シャフト、精密ばね、スポークやアンテナなど美麗な表面性状が要求される機械構造部品とそれらの機械構造部品の素材となる表面性状の良好な鋼線の製造方法及び、前記鋼線を製造する際の線材を加工する設備に関する。
【0002】
【従来の技術】
従来、特許文献1に開示されているように、良好な表面性状が要求される鋼線1は、熱間圧延ままの、或いは熱間圧延後に球状化焼鈍や軟化焼鈍の熱処理を施した線材2を酸洗や機械的な方法で脱スケール処理し、これに潤滑処理を施した後、伸線加工や延伸加工による加工を施して所定のサイズに仕上げ、次いで、加工機の出側に設けた探傷器3で仕上げた鋼線1の表面疵4の検出を行い、表面性状が保証されていた。図1にその概要を示す。
【0003】
上記の場合、探傷器3により所定のサイズに仕上げた鋼線1に表面疵4が発見されると、その鋼線1から表面疵4を取り除き、表面疵4のない部分を製品にするか、表面疵4の手入れを行った後で更に細径に加工を行い、目的製品とは別の小さい製品(鋼線1)として転用することが一般的である。
【0004】
ここで、上述の「伸線加工」とは穴ダイスを用いた伸線加工を指す。又、「延伸加工」とは、ローラダイスを用いた引き抜き加工、いわゆる「2ロール圧延機」、「3ロール圧延機」や「4ロール圧延機」を用いた圧延加工を指し、通常の穴ダイスを用いた伸線加工を除いたものをいう。上述の図1は、穴ダイス5を用いて伸線加工する場合で、加工素材である線材2に表面疵4が存在する場合を示している。
【0005】
しかしながら、上記した従来の製造方法は、線材1を伸線加工や延伸加工によって所定のサイズの鋼線2に仕上げた後、インラインで探傷器3による表面疵4の検出を行うものであるため、表面疵4が検出された場合には疵が存在する部分を取り除いて製品とする必要があり、歩留まりが低下してしまう。又、歩留まりを高めるために表面疵4を手入れして所定サイズより小さな鋼線1に転用する場合は、加工回数の増加や中間段階での熱処理が必要となって、製造コストの増加が避けられない。
【0006】
このように伸線加工や延伸加工で所定のサイズに仕上げた後で疵の検出を行い、それによって表面疵4が検出された場合には、仕上げ加工後の疵手入れが必要となるため、「径不足」が生じたり表面に手入れ痕が残ったりして所望の表面品質が得られないし、所望の表面品質を得るためには更なる加工を施して鋼線の仕上げサイズを小さくすることが避けられない。
【0007】
図2は鋼線1の表面疵4の部分の断面を示す図で、(a)と(b)はそれぞれ表面疵4が小さい場合と大きい場合を示している。上記(a)の場合には、探傷器3の検出限界に近い表面疵4の場合は見逃されて製品である鋼線1に疵が残存することがある。一方、(b)に示すように表面疵4が大きな場合、これを手入れすると、図2(c)に示すように、所定の製品サイズが確保できないし、表面肌も手入れままの粗いものとなってしまう。
【0008】
【特許文献1】
特開平8−10825号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、歩留りよく表面性状の良好な鋼線を製造する方法、その製造に用いる線材の加工設備及び、当該方法で製造された鋼線を素材とする耐摩耗性や耐疲労特性に優れた軸受、各種のOA機器用シャフト、精密ばね、スポークやアンテナなど美麗な表面性状が要求される機械構造部品を提供することにある。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記(1)に示す鋼線の製造方法、(2)に示す線材の加工設備及び(3)に示す機械構造部品にある。
【0011】
(1)線材の加工設備の中の加工装置の前に設けた探傷器で線材の表面疵を検出し、検出した表面疵の除去と疵除去部の表面粗さを中心線表面粗さRaで13.0μm以下とする処理を行い、続いて加工装置を用いて仕上げ加工を行うことを特徴とする鋼線の製造方法。
【0012】
(2)探傷器、疵除去と疵除去部の表面の処理を行う装置及び加工装置がこの順で配置されている線材の加工設備。
【0013】
(3)上記(1)に記載の方法で製造された鋼線を素材とする機械構造部品。
【0014】
なお、「線材」とは、棒状に熱間圧延された鋼で、コイル状に巻かれた鋼材を指し、いわゆる「バーインコイル」を含むものである。
【0015】
「加工」とは「伸線加工」や「延伸加工」など線材を鋼線にする加工をいい、「加工装置」とはそのための「伸線加工装置」や「延伸加工装置」を指す。「線材の加工設備」とは上記の「加工」を行うための設備で、少なくとも探傷器、疵除去と疵除去部の表面処理を行う装置、加工装置を含むものであり、脱スケール処理や潤滑処理を行う設備を含んでいてもよい。なお、「疵の除去と疵除去部の表面の処理を行う装置」とは、疵の除去と疵を除去した部位の表面を所定の粗さに処理(加工)する装置をいい、疵の除去装置と疵除去部の表面の処理装置とがそれぞれ別の装置であってもよいし、疵の除去と疵除去部の表面の処理を複合して行う単独の装置であってもよい。
【0016】
本発明者らは、歩留りよく表面性状の良好な鋼線を得るための加工方法について調査・研究を重ねた。その結果、下記(a)〜(d)の知見を得た。
【0017】
(a)表面疵4には大きく分けて2種類のものがある。すなわち、図3に示す圧延疵41やダイス疵42のような長手方向に欠陥を持つ線状疵と、図4に示すヘゲ疵43や、搬送時に生じるいわゆる「ハンドリング疵44」のような周方向に幅を持った疵との2種類である。
【0018】
(b)上記いずれの疵も、所定サイズの鋼線1に仕上げ加工した後、探傷器3で表面疵4の検出を行う場合には、前記鋼線1に有害な疵が残存してしまう。そのため、有害な疵を除去するか、手入れ後更に加工を施して所定のサイズより小さな鋼線1に仕上げるしかない。
【0019】
(c)これに対して、線材2の段階で表面疵4の検出を行っておけば、鋼線1への加工の前に有害な疵を除去できるため、線材2の段階で存在する疵を無害化できる。
【0020】
(d)疵除去部の表面粗さを特定の状態にした後に仕上げ加工することによって、表面性状の良好な鋼線1が得られる。
【0021】
本発明は、上記の知見に基づいて完成されたものである。
【0022】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。
【0023】
(A)線材の表面疵の検出
線材の段階で表面疵を検出してこれを除去することが、表面疵のない表面性状の良好な鋼線を歩留りよく製造するために必要である。
【0024】
なお、検出して除去する表面疵は、深さが下記の (1)式で表されるto (mm)以上、幅が0.1mm以上、長さが下記の (2)式で表されるLo(mm)以上の疵とすればよい。
【0025】
to =t(do/0.82d)・・・(1)、
Lo=L(do/d) ・・・(2)。
【0026】
ここで、do は素材である線材のmm単位での直径、dは仕上げ加工した鋼線のmm単位での直径である。又、tとL はそれぞれ仕上げ加工した鋼線における産業界から要求されるmm単位での疵保証深さと疵保証長さであり、通常の場合には、tは0.03〜0.05mm、L は1〜5mmであることが多い。
【0027】
上記のto 、Loに達しない表面疵は、線材の段階で除去しなくてもよい。こうしたサイズの表面疵は、所定サイズに仕上げられた鋼線では無害である。なお、線材の表面疵の探傷器は表面疵をインラインで動的に検出できるものであればその種類を問わないが、現在の探傷技術の水準からすれば、渦流探傷型の探傷器を使用するのがよい。
(B)表面疵の除去と疵除去部の表面粗さの調整処理
前記した線材の段階での表面疵は、例えば、自動疵取り機を探傷器の出側に設置することで自動的に除去してもよいし、探傷器による疵の検出によって製造ラインを停止し、ハンドグラインダー等の研削工具を用いることで手動で除去してもよい。
【0028】
前記の表面疵を除去した後は、疵除去部の表面粗さを中心線平均粗さ(Ra)で13.0μm以下とする必要がある。Raが13.0μmを超える場合には、たとえ前記した疵を除去しても、表面性状の良好な鋼線が得られない場合がある。
【0029】
なお、図5に示すように、上記の疵除去部の表面粗さRaは、下記▲1▼式によって算出されるμm単位でのy以下とすることが好ましい。
【0030】
y=22.71×{1−(d/do)+1.797×{1−(d/do)}+6.0839・・・▲1▼。
【0031】
但し、▲1▼式で算出されるyの値が13.0μm以上となる場合は、一律にy=13.0μmと見なすものとし、yの上限を13.0μmとする。ここで、do が素材である線材のmm単位での直径、dが仕上げ加工した鋼線のmm単位での直径を示すことは既に述べたとおりである。
【0032】
上記の図5は後述する実施例1〜3の仕上げ鋼線の表面状態を、縦軸に疵除去部の表面粗さRa(μm)を、横軸に全減面率(%)をとって整理したもので、図中の「○」は、疵を処理した部位に疵の残りがなく、疵の発生していない部位と全く同様の状態であること、つまり、仕上げた鋼線に疵がなく、しかも、疵を処理した痕跡も認められない極めて良好な表面状態であることを示す。「●」は、疵を処理した部位に疵の残りがなく、疵を処理した痕跡がわずかにしか認められない良好な表面状態であることを、又、「△」は、疵を処理した部位に疵の残りはないものの、疵を処理した痕跡が残っている状態であることを示す。ここで上記の全減面率(%)は下記▲2▼式から求められるものである。
【0033】
全減面率(%)={1−(d/do)}×100・・・▲2▼。
【0034】
なお、疵除去部の表面粗さを中心線平均粗さ(Ra)で、その上限が13.0μmである前記yμm以下にするには、例えば、砥粒の番号が80以上である目の細かいペーパー砥石の付いたハンドグラインダーを用いればよい。
【0035】
表面疵の除去と疵除去部の表面粗さの調整処理は、線材の素材鋼が、いわゆる「炭素鋼」や「低合金鋼」などのように、通常の急冷処理によってオーステナイトからマルテンサイトやベイナイトに変態する鋼である場合には、素材鋼のAc 変態点以下の温度で行えばよい。前記処理温度が線材の素材鋼のAc 変態点を超える場合には、加工部は処理後に急冷されることになるため、そこにマルテンサイトやベイナイトの低温変態生成物が生成し、次に所定のサイズの鋼線に仕上げる加工を行うと、表面に加工限界を超えることによる割れ(つまり、加工割れ)に起因した疵が生じたり、断線してしまう場合があるからである。線材の素材鋼が、オーステナイト系ステンレス鋼やフェライト系ステンレス鋼である場合には、通常、加工部にマルテンサイトやベイナイトの低温変態生成物が生成することがないので、表面疵の除去と疵除去部の表面粗さの調整処理を行う温度域には特に制限はない。
【0036】
ここで、連続する加工工程で前記の表面疵を除去した部位の表面粗さRaを測定するには、例えば、ハンディータイプの粗さ測定器や高精度レーザー変位計を設置すればよい。
(C)加工装置による所定のサイズの鋼線への仕上げ加工
本発明においては、上記(B)の処理を行った線材を、加工装置を用いて所定のサイズの鋼線に仕上げ加工する。この仕上げ加工は伸線加工又は延伸加工のいずれか一方で行ってもよいし、伸線加工と延伸加工を組合せて行ってもよい。なお、仕上げ加工が伸線加工の場合、加工装置は伸線ダイス(穴ダイス)を1枚以上組み合わせたものを用いればよい。この場合のダイススタンドは1台としてもよいし、複数台としてもよい。仕上げ加工が延伸加工の場合、加工装置にはローラダイスを用いた引き抜き加工装置、いわゆる「2ロール圧延機」、「3ロール圧延機」や「4ロール圧延機」を用いた圧延加工装置をそれぞれ単独、又はこれらを組み合わせて用いればよい。なお、上記の伸線加工装置と延伸加工装置を組合せてもよい。
【0037】
上記の加工装置による仕上げ加工時の全減面率は、特に規定するものではない。しかし、仕上げ加工後の鋼線の表面性状、特に上記(B)の処理を行った部分の表面性状を良好なものとするために、全減面率は4.5%以上とすることが望ましい。なお、この仕上げ加工における全減面率は、被加工材の加工限界を超えることによる割れや破断を防止するために、95%以下とすることが望ましい。
【0038】
本発明が対象とする鋼線は、例えば、引張強度、疲労強度などの機械的性質や耐食性が確保できるように調整された化学組成を有する鋼を通常の方法で溶製して鋼片に加工した後、通常の方法で熱間圧延して線材に加工し、この線材に、(A)項の線材の表面疵の検出、(B)項の表面疵の除去と疵除去部の表面粗さの調整処理、(C)項の加工装置による仕上げ加工を施したり、前記熱間圧延した線材に軟化焼鈍や球状化焼鈍を施した後、(A)項の線材の表面疵の検出、(B)項の表面疵の除去と疵除去部の表面粗さの調整処理、(C)項の加工装置による仕上げ加工を施して製造される。
【0039】
上記の本発明が対象とする鋼線を、探傷器、疵除去と疵除去部の表面の処理を行う装置及び加工装置がこの順で配置されている線材の加工設備を用いてインライン処理すれば、製造効率を高めることができる。
【0040】
更に、上記のようにして製造された鋼線は、次に、機械構造部品としての所定の製品形状への加工が施される。高い強度を必要とする製品には、最終工程としての焼入れ焼戻しなどの熱処理が施され、所望の特性を有する機械構造部品に仕上げられる。
【0041】
以下、実施例により本発明を詳しく説明する。
【0042】
【実施例】
(実施例1)
表1に示す化学組成を有する試験炉溶製したSUJ2(JIS G 4805(1990))相当鋼を供試鋼として、通常の方法で直径が8.2mmの線材を熱間圧延した。なお、表1には素材鋼のAc 変態点も併記した。
【0043】
【表1】

Figure 2004181524
【0044】
次いで、上記の線材に通常の方法で球状化焼鈍を施し、更に、酸洗によるデスケーリングと潤滑処理を行ってから線材コイルを2等分した。
【0045】
上記2等分した線材コイルの一方に、線材コイルから切り出し、周方向に幅を持った疵の例としてハンドリング疵を意図的に設けた短尺サンプルと、同じく線材コイルから切り出し、放電加工機を用いて深さと長さを変化させた線状疵を設けた短尺サンプルとを、通常の方法で溶接して接合した。
【0046】
上記の各疵は、溶接による接合の前にその寸法を測定した。すなわち、線状疵とハンドリング疵の長さはデジタルノギスを用いて測定した。線状疵の深さは、測定顕微鏡を用いて求めた。一方、ハンドリング疵については、ハンドグラインダーを用いて常温で手入れして疵を除去し、欠陥除去前後の直径の最大差を疵の深さとした。
【0047】
続いて、線状疵をハンドグラインダーを用いて常温で除去し、更に、ハンドリング疵及び線状疵を除去した部位の表面粗さを常温で砥粒の番号が80〜120のペーパー砥石付きのハンドグラインダーを用いて調整した。各部位の表面粗さはハンディータイプの粗さ測定器を用いて長手方向に測定した結果、中心線平均粗さ(Ra)で1.8〜15.0μmであった。ここで、直径が8.2mmの線材を後述の直径8.0mmまで加工する場合、▲1▼式から算出されるyは6.2μmである。
【0048】
上記の疵除去と表面粗さを調整した部位に通常の方法で潤滑処理を施し、前記短尺サンプルを接合した線材コイルを、室温で通常の方法によって1パスで直径8.0mmに伸線加工した。なお、この伸線加工における減面率は4.8%である。
表2に、上記のようにして直径8.0mmに仕上げ加工した鋼線の表面状態を調査した結果を示す。なお、表2には素材である直径6.4mmの線材における疵の状況も併せて示した。
【0049】
8.0mmの鋼線における疵の状況をチェックしたが、疵は残っていなかった。これを表2では、直径が8.0mmの鋼線における疵の状況として「−」で示した。なお、表2における直径8.0mmの鋼線の表面状態の「○」は、疵を処理した部位に疵の残りがなく、疵の発生していない部位と全く同様の状態であること、つまり、仕上げた鋼線に疵がなく、しかも、疵を処理した痕跡も認められない極めて良好な表面状態であることを示す。「●」は、疵を処理した部位に疵の残りがなく、疵を処理した痕跡もわずかにしか残っていない良好な表面状態を意味する。又、「△」は、疵を処理した部位に疵の残りはないものの、疵を処理した痕跡が残っている状態を意味している。
【0050】
【表2】
Figure 2004181524
【0051】
表2に示すように、本発明で規定する条件で加工の前に処理しておけば所定の直径8.0mmに仕上げた鋼線に疵はなく、しかも、処理後の疵除去部の表面粗さを中心線平均粗さ(Ra)で13.0μm以下にすることで疵を処理した痕跡もわずかにしか認められない良好な表面状態を有することが明らかである。又、処理後の疵除去部の表面粗さRaを前記▲1▼式で算出されるy(=6.2)μm以下とすることで、疵を処理した痕跡が認められない極めて良好な表面状態とすることができることも明らかである。
(比較例1)
前記の実施例1で2等分した酸洗・潤滑処理後の直径が8.2mmである線材コイルの残りの一方に、実施例1の場合と同様に、線材コイルから切り出し、放電加工機を用いて深さと長さを変化させた線状疵を設けた短尺サンプルを、通常の方法で溶接して接合した。
【0052】
上記の線状疵は、溶接による接合の前にその寸法を測定した。すなわち、線状疵の長さはデジタルノギスを用いて測定し、その深さは、測定顕微鏡を用いて調査した。
【0053】
次いで、前記短尺サンプルを接合した線材コイルを、室温で通常の方法によって1パスで伸線加工して直径8.0mmの鋼線にした後、設定探傷基準を深さ0.05mmとして、渦流探傷装置を用いて探傷し、探傷器で検出できなかった疵については寸法を測定した。線状疵の長さは、上記8.2mmの線材の場合と同様デジタルノギスを用いて測定した。一方、疵深さは、検出されなかった疵については上記8.2mmと同じ測定顕微鏡を用いた.但し、探傷器にて検出された疵についてはハンドグラインダーを用いて常温で手入れして疵を除去し、欠陥除去前後の直径の最大差を径不足とした。
上記のようにして直径8.0mmに仕上げ加工した鋼線の表面状態を調査した結果を表3に示す。なお、表3には素材である直径8.2mmの線材における疵の状況も併せて示した。ここで、表3における直径8.0mmの鋼線(製品)の表面状態である「○」は、疵が全くなく、しかも、偏肉(つまり、偏径差)が0.03mm未満である状態を示す。同様に、「△」は、疵は残っているものの偏肉が0.03mm未満である状態を、又、「×」は、断面に0.03mm以上の偏肉がある状態をそれぞれ意味する。
【0054】
【表3】
Figure 2004181524
【0055】
表3に示すように、加工によって鋼線にした後、探傷器による表面疵の検出を行う場合、探傷器の検出能限界に近い疵は見逃され、こうした疵が残ったまま仕上げ加工されて、所定サイズに仕上げられた鋼線に疵が残存したり、検出した疵の手入れを行う場合には所定のサイズが確保できないいわゆる「径不足」が生じ、したがって、製品としての鋼線サイズを小さくして対応しなければならないことが明らかである。
(実施例2)
表4に示す化学組成を有する試験炉溶製したSUS304(JIS G 4308(1998))相当鋼を供試鋼として、通常の方法で直径6.4mmの線材を熱間圧延した。
【0056】
【表4】
Figure 2004181524
【0057】
次いで、上記の線材に通常のフッ硝酸での酸洗によるデスケーリングを行い、実施例1の場合と同様に線材コイルから切り出し、周方向に幅を持った疵の例としてハンドリング疵を意図的に設けた短尺サンプルと、同じく線材コイルから切り出し、放電加工機を用いて深さと長さを変化させた線状疵を設けた短尺サンプルとを、通常の方法で溶接して接合した。
【0058】
上記の各疵は、溶接による接合の前にその寸法を測定した。すなわち、線状疵とハンドリング疵の長さはデジタルノギスを用いて測定した。線状疵の深さは、測定顕微鏡を用いて求めた。一方、ハンドリング疵については、ハンドグラインダーを用いて常温で手入れして疵を除去し、欠陥除去前後の直径の最大差を疵の深さとした。
【0059】
続いて、線状疵をハンドグラインダーを用いて常温で除去し、更に、ハンドリング疵及び線状疵を除去した部位の表面粗さを常温で砥粒の番号が100のペーパー砥石付きのハンドグラインダーを用いて調整した。各部位の表面粗さはハンディータイプの粗さ測定器を用いて長手方向に測定した結果、中心線平均粗さ(Ra)で4.0〜15.1μmであった。ここで、直径が6.4mmの線材を後述の直径4.60mmまで加工する場合、▲1▼式から算出されるyは12.3μmとなる。
【0060】
上述の疵除去と表面粗さを調整した短尺サンプルを溶接した線材に通常の方法で潤滑処理を施し、室温で伸線加工して直径4.60mmの鋼線に仕上げた。
【0061】
表5にパススケジュールの詳細を示す。この表5に示した全減面率は直径6.4mmからの全減面率を指す。
【0062】
上述の疵除去と表面粗さを調整した線材に通常の方法で潤滑処理を施し、室温で伸線加工して直径4.60mmの鋼線に仕上げた。
【0063】
表5にパススケジュールの詳細を示す。この表5に示した全減面率は直径6.4mmからの全減面率を指す。
【0064】
【表5】
Figure 2004181524
【0065】
上記のようにして直径4.60mmに仕上げ加工した鋼線の表面状態を調査した結果を表6に示す。なお、表6には素材である直径6.4mmの線材における疵の状況も併せて示した。ここで、表6における直径4.60mmの鋼線(製品)の表面状態の「○」、「●」及び「△」の各記号の意味は、実施例1における表2と同じである。
【0066】
【表6】
Figure 2004181524
【0067】
表6に示すように、本発明で規定する条件で加工の前に処理しておけば所定の直径4.60mmに仕上げた鋼線に疵はなく、しかも、処理後の疵除去部の表面粗さを中心線平均粗さ(Ra)で13.0μm以下にすることで疵を処理した痕跡もわずかにしか認められない良好な表面状態を有することが明らかである。又、処理後の疵除去部の表面粗さRaを前記▲1▼式で算出されるy(=12.3)μm以下とすることで、疵を処理した痕跡が認められない極めて良好な表面状態とすることができることも明らかである。
(実施例3)
表7に示す化学組成を有する試験炉溶製した SCM435(JIS G 4105((1979))相当鋼を供試鋼として、通常の方法で直径8.0mmの線材を熱間圧延した。なお、表7には素材鋼のAc 変態点も併記した。
【0068】
【表7】
Figure 2004181524
【0069】
次いで、上記の線材に通常の方法で球状化焼鈍を施し、更に、通常の酸洗によるデスケーリングを行い、実施例1の場合と同様に線材コイルから切り出し、周方向に幅を持った疵の例としてハンドリング疵を意図的に設けた短尺サンプルと、同じく線材コイルから切り出し、放電加工機を用いて深さと長さを変化させた線状疵を設けた短尺サンプルとを、通常の方法で溶接して接合した。
【0070】
上記の各疵は、溶接による接合の前にその寸法を測定した。すなわち、線状疵とハンドリング疵の長さはデジタルノギスを用いて測定した。線状疵の深さは、測定顕微鏡を用いて求めた。一方、ハンドリング疵については、ハンドグラインダーを用いて常温で手入れして疵を除去し、欠陥除去前後の直径の最大差を疵の深さとした。
【0071】
続いて、線状疵をハンドグラインダーを用いて常温で除去し、更に、ハンドリング疵及び線状疵を除去した部位の表面粗さを常温で砥粒の番号が100のペーパー砥石付きのハンドグラインダーを用いて調整した。各部位の表面粗さはハンディータイプの粗さ測定器を用いて長手方向に測定した結果、中心線平均粗さ(Ra)で5.6〜18.0μmであった。ここで、直径が8.0mmの線材を後述の直径6.80mmまで加工する場合、▲1▼式から算出されるyは8.3μmとなる。
【0072】
上述の疵除去と表面粗さを調整した短尺サンプルを溶接した線材に通常の方法で潤滑処理を施し、室温で伸線加工して直径6.80mmの鋼線に仕上げた。
【0073】
表8にパススケジュールの詳細を示す。この表8に示した全減面率は直径8.0mmからの全減面率を指す。
【0074】
【表8】
Figure 2004181524
【0075】
上記のようにして直径6.80mmに仕上げ加工した鋼線の表面状態を調査した結果を表9に示す。なお、表9には素材である直径8.0mmの線材における疵の状況も併せて示した。ここで、表8における直径6.80mmの鋼線(製品)の表面状態の「○」、「●」及び「△」の各記号の意味は、実施例1における表2と同じである。
【0076】
【表9】
Figure 2004181524
【0077】
表9に示すように、本発明で規定する条件で加工の前に処理しておけば所定の直径6.80mmに仕上げた鋼線に疵はなく、しかも、処理後の疵除去部の表面粗さを中心線平均粗さ(Ra)で13.0μm以下にすることで疵を処理した痕跡もわずかにしか認められない良好な表面状態を有することが明らかである。又、処理後の疵除去部の表面粗さRaを前記▲1▼式で算出されるy(=8.3)μm以下とすることで、疵を処理した痕跡が認められない極めて良好な表面状態とすることができることも明らかである。
【0078】
【発明の効果】
本発明の方法によれば、歩留りよく表面性状の良好な鋼線を製造することができる。本発明の機械構造部品の素材となる鋼線は、本発明の線材の加工設備を用いた本発明の方法によって比較的容易に製造できる。なお、本発明の方法によれば、従来の加工後に疵除去を行う場合に所定のサイズが確保できないいわゆる「径不足」が生じることもないので、製造歩留まりを改善できるという効果も得られる。
【図面の簡単な説明】
【図1】加工後に疵除去を行う従来の鋼線の製造方法を説明する図である。
【図2】鋼線の表面疵の部分の断面を説明する図で、(a)と(b)はそれぞれ表面疵が小さい場合と大きい場合を示し、(c)は大きな表面疵を手入れした場合に所定の製品サイズが確保できず、表面肌も手入れままの粗いものとなることを示す図である。
【図3】圧延疵やダイス疵のような線状疵を説明する図である。
【図4】ヘゲ疵や、搬送時に生ずるいわゆる「ハンドリング疵」のような周方向に幅を持った疵を説明する図である。
【図5】実施例1〜3の仕上げ鋼線の表面状態を、縦軸に疵除去部の表面粗さRa(μm)を、横軸に全減面率(%)をとって整理した図である。
【符号の説明】
1:鋼線、
2:線材、
3:探傷器
4:表面疵、
41:圧延疵、
42:ダイス疵、
43:ヘゲ疵、
44:ハンドリング疵、
5:穴ダイス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a steel wire, a wire rod processing facility, and a mechanical structure component. More specifically, a bearing having excellent wear resistance and fatigue resistance, a shaft for various OA equipment, a precision spring, a spoke, an antenna, etc. TECHNICAL FIELD The present invention relates to a mechanical structure component requiring a high surface property, a method for producing a steel wire having a good surface property as a material for the mechanical structure component, and a facility for processing a wire rod when producing the steel wire.
[0002]
[Prior art]
Conventionally, as disclosed in Patent Document 1, a steel wire 1 requiring good surface properties is a wire rod 2 which is subjected to heat treatment of as-hot rolled or spheroidized annealing or softening annealing after hot rolling. After being descaled by pickling or a mechanical method, subjected to a lubrication treatment, processed by wire drawing or drawing to a predetermined size, and then provided on the output side of the processing machine. The surface flaw 4 of the steel wire 1 finished by the flaw detector 3 was detected, and the surface properties were guaranteed. FIG. 1 shows the outline.
[0003]
In the above case, when the surface flaw 4 is found on the steel wire 1 finished to a predetermined size by the flaw detector 3, the surface flaw 4 is removed from the steel wire 1 and a part without the surface flaw 4 is made into a product, It is general that after treating the surface flaws 4, the workpiece is further processed into a smaller diameter and diverted as a small product (steel wire 1) different from the target product.
[0004]
Here, the above-mentioned “wire drawing” refers to wire drawing using a hole die. The term “stretching” refers to drawing using a roller die, that is, rolling using a so-called “two-roll rolling mill”, “three-roll rolling mill”, or “four-roll rolling mill”. Means that the wire drawing process using is excluded. FIG. 1 described above shows a case where wire drawing is performed using a hole die 5 and a case where a surface flaw 4 is present on a wire 2 which is a processing material.
[0005]
However, in the above-described conventional manufacturing method, after the wire 1 is finished into a steel wire 2 having a predetermined size by wire drawing or drawing, the surface flaw 4 is detected by the flaw detector 3 in-line. When the surface flaw 4 is detected, it is necessary to remove the part where the flaw is present to obtain a product, which lowers the yield. Further, when the surface flaws 4 are trimmed to improve the yield and are diverted to a steel wire 1 smaller than a predetermined size, an increase in the number of working times and a heat treatment in an intermediate stage are required, so that an increase in manufacturing cost can be avoided. Absent.
[0006]
As described above, flaw detection is performed after finishing to a predetermined size by wire drawing or stretching, and if surface flaws 4 are detected thereby, flaw care after finishing processing is necessary. The desired surface quality is not obtained due to `` insufficient diameter '' or a care mark left on the surface.To obtain the desired surface quality, avoid further processing to reduce the finished size of the steel wire. I can't.
[0007]
FIG. 2 is a view showing a cross section of the surface flaw 4 of the steel wire 1, and FIGS. 2A and 2B show a case where the surface flaw 4 is small and a case where it is large, respectively. In the case of the above (a), in the case of the surface flaw 4 close to the detection limit of the flaw detector 3, it may be overlooked and the flaw may remain on the steel wire 1 as a product. On the other hand, when the surface flaws 4 are large as shown in FIG. 2B, if the surface flaws are cleaned, as shown in FIG. 2C, a predetermined product size cannot be secured, and the surface skin becomes rough as it is. Would.
[0008]
[Patent Document 1]
JP-A-8-10825
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and has as its object a method of manufacturing a steel wire having a good surface property with a good yield, a wire rod processing facility used for the manufacturing, and a steel wire manufactured by the method. It is an object of the present invention to provide a mechanical structure component requiring a beautiful surface property such as a bearing having excellent wear resistance and fatigue resistance, a shaft for various OA equipment, a precision spring, a spoke, an antenna, and the like.
[0010]
[Means for Solving the Problems]
The gist of the present invention resides in a method for manufacturing a steel wire as described in the following (1), a wire rod processing facility as shown in (2), and a mechanical structure component as shown in (3).
[0011]
(1) The surface flaw of the wire is detected by a flaw detector provided in front of the processing device in the wire processing equipment, and the detected surface flaw is removed and the surface roughness of the flaw removing portion is determined by the center line surface roughness Ra. A method for producing a steel wire, comprising: performing a process of 13.0 μm or less, and subsequently performing finishing using a processing device.
[0012]
(2) A wire rod processing equipment in which a flaw detector, a device for performing flaw removal and a surface treatment of the flaw removing unit, and a processing device are arranged in this order.
[0013]
(3) A machine structural part made of a steel wire manufactured by the method according to (1).
[0014]
The term “wire” refers to steel that has been hot-rolled into a bar and refers to a steel that is wound into a coil, and includes a so-called “bar-in coil”.
[0015]
“Processing” refers to a process of turning a wire into a steel wire, such as “drawing process” or “drawing process”, and “processing device” refers to a “drawing device” or “drawing device” for that purpose. "Wire processing equipment" is equipment for performing the above-mentioned "processing", and includes at least a flaw detector, a device for performing flaw removal and surface treatment of the flaw removing unit, and a processing device. Equipment for performing the treatment may be included. The "device for removing a flaw and treating the surface of the flaw removing section" refers to a device for removing (removing) the flaw and processing (working) the surface of the part from which the flaw has been removed to a predetermined roughness. The device and the treatment device for the surface of the flaw removing unit may be different devices, respectively, or may be a single device that performs combined removal of the flaw and treatment of the surface of the flaw removing unit.
[0016]
The present inventors have repeatedly investigated and studied a processing method for obtaining a steel wire having a good surface property with a good yield. As a result, the following findings (a) to (d) were obtained.
[0017]
(A) There are roughly two types of surface flaws 4. That is, a linear flaw having a defect in the longitudinal direction such as a rolling flaw 41 or a die flaw 42 shown in FIG. 3 and a peripheral flaw 43 shown in FIG. Flaws having a width in the direction.
[0018]
(B) When the surface flaw 4 is detected by the flaw detector 3 after finishing any of the flaws into the steel wire 1 of a predetermined size, harmful flaws remain on the steel wire 1. Therefore, there is no other choice but to remove harmful flaws or to further process the steel wire 1 after cleaning to finish it into a steel wire 1 smaller than a predetermined size.
[0019]
(C) On the other hand, if the surface flaw 4 is detected at the stage of the wire 2, harmful flaws can be removed before the steel wire 1 is processed. Can be harmless.
[0020]
(D) The steel wire 1 having a good surface property can be obtained by finishing after setting the surface roughness of the flaw removing portion to a specific state.
[0021]
The present invention has been completed based on the above findings.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail.
[0023]
(A) Detection of wire surface flaws
It is necessary to detect and remove surface flaws at the wire rod stage in order to produce a steel wire having good surface properties without surface flaws with good yield.
[0024]
The surface flaw to be detected and removed has a depth of at least to (mm) represented by the following formula (1), a width of 0.1 mm or more, and a length of at least the following formula (2). What is necessary is just to make a flaw more than Lo (mm).
[0025]
to = t (do / 0.82d) (1),
Lo = L (do / d) 2 ... (2).
[0026]
Here, do is the diameter in mm of the wire rod as a material, and d is the diameter of the finished steel wire in mm. Further, t and L are a flaw guaranteed depth and a flaw guaranteed length in mm units required by the industry in the finished steel wire, respectively. In a normal case, t is 0.03 to 0.05 mm, L 1 is often 1 to 5 mm.
[0027]
The above-mentioned surface flaws that do not reach to and Lo need not be removed at the wire rod stage. Such surface flaws are harmless for steel wires finished to a predetermined size. The flaw detector for surface flaws of a wire can be of any type as long as it can dynamically detect surface flaws in-line, but from the current level of flaw detection technology, an eddy current flaw detector is used. Is good.
(B) Removal of surface flaws and adjustment of the surface roughness of the flaw removal part
Surface flaws at the stage of the wire rod may be automatically removed, for example, by installing an automatic flaw remover on the exit side of the flaw detector, or stopping the production line by detecting flaws with the flaw detector. It may be manually removed by using a grinding tool such as a hand grinder.
[0028]
After removing the surface flaws, the surface roughness of the flaw-removed portion needs to be 13.0 μm or less in center line average roughness (Ra). When Ra exceeds 13.0 μm, a steel wire having good surface properties may not be obtained even if the above-mentioned flaw is removed.
[0029]
As shown in FIG. 5, the surface roughness Ra of the flaw-removed portion is preferably equal to or smaller than y in μm calculated by the following equation (1).
[0030]
y = 22.71 × {1− (d / do) 22 + 1.797 × {1- (d / do) 2 } +6.0839 ... (1).
[0031]
However, when the value of y calculated by the formula (1) is 13.0 μm or more, it is assumed that y = 13.0 μm, and the upper limit of y is 13.0 μm. Here, as described above, do represents the diameter in mm of the wire rod as the raw material, and d represents the diameter in mm of the finished steel wire.
[0032]
FIG. 5 shows the surface condition of the finished steel wires of Examples 1 to 3 described below, the vertical axis represents the surface roughness Ra (μm) of the flaw removing portion, and the horizontal axis represents the total area reduction rate (%). In the figure, “○” in the figure indicates that there is no remaining flaw in the part where the flaw was processed and the state is exactly the same as the part where no flaw is generated. It shows that the surface condition is extremely good without any trace of flaw treatment. "●" indicates that the surface where the flaw was processed has no flaws remaining, and that the surface of the flaw has been processed with only a few traces of the flaw processed. "△" indicates that the flaw has been processed. Shows that there is no flaw left, but traces of processing the flaw remain. Here, the total area reduction rate (%) is obtained from the following equation (2).
[0033]
Total area reduction rate (%) = {1- (d / do) 2 } × 100 ・ ・ ・ ▲ 2 ▼.
[0034]
In order to make the surface roughness of the flaw-removed portion equal to or less than the above-mentioned yμm whose upper limit is 13.0 μm in terms of the center line average roughness (Ra), for example, a fine grain whose abrasive grain number is 80 or more is used. What is necessary is just to use a hand grinder with a paper whetstone.
[0035]
The removal of surface flaws and the adjustment of the surface roughness of the flaw-removed parts are carried out by using a normal quenching process such as so-called "carbon steel" or "low alloy steel" to convert austenite to martensite or bainite. If the steel is transformed to 1 The temperature may be lower than the transformation point. The treatment temperature is Ac of the material steel of the wire rod. 1 If the transformation point is exceeded, the processed part will be quenched after the treatment, so that a low-temperature transformation product of martensite or bainite is generated there, and then processing to finish the steel wire of a predetermined size is performed. This is because cracks due to exceeding the processing limit on the surface (that is, processing cracks) may occur, or the wire may be disconnected. When the material steel of the wire is austenitic stainless steel or ferritic stainless steel, since the low-temperature transformation products of martensite and bainite do not usually occur in the processed part, removal of surface flaws and removal of flaws There is no particular limitation on the temperature range in which the surface roughness of the part is adjusted.
[0036]
Here, in order to measure the surface roughness Ra of the portion from which the surface flaw is removed in a continuous processing step, for example, a handy-type roughness measuring instrument or a high-precision laser displacement meter may be installed.
(C) Finishing of steel wire of specified size by processing equipment
In the present invention, the wire rod that has been subjected to the process (B) is finish-processed into a steel wire of a predetermined size using a processing device. This finishing may be performed either by wire drawing or stretching, or by a combination of wire drawing and stretching. In the case where the finishing process is a wire drawing process, a device in which one or more wire drawing dies (hole dies) are combined may be used. In this case, the number of the die stands may be one or more. When the finishing process is a stretching process, the processing device includes a drawing device using a roller die, a so-called “2 roll rolling machine”, a “roll rolling machine” using a “3 roll rolling machine” or a “4 roll rolling machine”, respectively. These may be used alone or in combination. In addition, you may combine the above-mentioned wire drawing apparatus and a stretching apparatus.
[0037]
The total area reduction rate at the time of finishing processing by the above processing apparatus is not particularly specified. However, in order to improve the surface properties of the steel wire after the finish processing, particularly the surface properties of the portion subjected to the treatment (B), the total area reduction rate is desirably 4.5% or more. . The total area reduction rate in this finishing is desirably 95% or less in order to prevent cracking or breakage due to exceeding the processing limit of the workpiece.
[0038]
The steel wire targeted by the present invention is, for example, a steel having a chemical composition adjusted to ensure mechanical properties such as tensile strength and fatigue strength and corrosion resistance is melted by a usual method and processed into a slab. Then, it is hot rolled and processed into a wire by an ordinary method, and the wire is subjected to the detection of the surface flaw of the wire (A), the removal of the surface flaw of the item (B), and the surface roughness of the flaw removing portion. After performing the finishing process by the processing device described in (C), performing the softening annealing or the spheroidizing annealing on the hot-rolled wire, detecting the surface flaw of the wire in (A), (B) The surface scratches are removed and the surface roughness of the flaw-removed portion is adjusted, and the finishing device is used to perform the finishing process.
[0039]
If the steel wire targeted by the present invention described above is subjected to in-line processing using a wire detector in which a flaw detector, a device for performing flaw removal and processing of the surface of the flaw removing unit and a processing device are arranged in this order. The manufacturing efficiency can be improved.
[0040]
Further, the steel wire manufactured as described above is then processed into a predetermined product shape as a mechanical structural component. Products requiring high strength are subjected to heat treatment such as quenching and tempering as a final step, and are finished into mechanical structural parts having desired characteristics.
[0041]
Hereinafter, the present invention will be described in detail with reference to examples.
[0042]
【Example】
(Example 1)
As a test steel, SUJ2 (JIS G 4805 (1990)) or equivalent steel having the chemical composition shown in Table 1 was used as a test steel, and a wire having a diameter of 8.2 mm was hot-rolled by an ordinary method. Table 1 shows that the material steel Ac 1 The transformation point is also shown.
[0043]
[Table 1]
Figure 2004181524
[0044]
Next, the wire was subjected to spheroidizing annealing by a usual method, and further subjected to descaling and lubrication by pickling, and then the wire coil was bisected.
[0045]
On one of the bisected wire rods, cut out from the wire coil, and a short sample intentionally provided with a handling flaw as an example of a flaw having a width in the circumferential direction, and similarly cut out from the wire coil, using an electric discharge machine. A short sample provided with linear flaws having different depths and lengths was welded and joined by an ordinary method.
[0046]
The dimensions of the above-mentioned flaws were measured before joining by welding. That is, the lengths of the linear flaw and the handling flaw were measured using a digital caliper. The depth of the linear flaw was determined using a measuring microscope. On the other hand, for handling flaws, the flaw was removed by using a hand grinder at room temperature to remove the flaw, and the maximum difference in diameter before and after the flaw was removed was defined as the flaw depth.
[0047]
Subsequently, the linear flaws are removed at room temperature using a hand grinder, and the surface roughness of the portion from which the handling flaws and linear flaws have been removed is at room temperature and the number of abrasive grains is 80 to 120. It was adjusted using a grinder. The surface roughness of each part was measured in the longitudinal direction using a handy type roughness meter, and as a result, the center line average roughness (Ra) was 1.8 to 15.0 μm. Here, when a wire having a diameter of 8.2 mm is processed to a diameter of 8.0 mm, which will be described later, y calculated from Expression (1) is 6.2 μm.
[0048]
A lubricating treatment was applied to the portion where the above-mentioned flaw removal and surface roughness were adjusted by a normal method, and the wire coil to which the short sample was joined was drawn to a diameter of 8.0 mm in one pass at room temperature by a normal method. . The area reduction rate in this wire drawing is 4.8%.
Table 2 shows the results of investigating the surface condition of the steel wire finished to 8.0 mm in diameter as described above. Table 2 also shows the state of flaws in the wire having a diameter of 6.4 mm, which is a material.
[0049]
The condition of the flaws in the 8.0 mm steel wire was checked, but no flaws remained. In Table 2, this is indicated by "-" as the state of flaws in a steel wire having a diameter of 8.0 mm. In Table 2, “○” in the surface state of the steel wire having a diameter of 8.0 mm indicates that there is no remaining flaw in the part where the flaw is processed, and that the state is exactly the same as that of the part where no flaw is generated. This indicates that the finished steel wire has no flaws, and that it has an extremely good surface condition in which no trace of the flaws is recognized. “●” means a good surface state in which no flaw remains at the portion where the flaw was processed and only a trace of the flaw has been left. Further, “△” means a state in which no flaw remains at the portion where the flaw has been processed, but a trace where the flaw has been processed remains.
[0050]
[Table 2]
Figure 2004181524
[0051]
As shown in Table 2, the steel wire finished to a predetermined diameter of 8.0 mm has no flaws if it is processed before processing under the conditions specified in the present invention, and the surface roughness of the flaw-removed part after the processing. It is apparent that by setting the center line average roughness (Ra) to 13.0 μm or less, the surface has a good surface state in which traces of flaws are little recognized. Further, by setting the surface roughness Ra of the flaw-removed portion after the treatment to y (= 6.2) μm or less calculated by the above formula (1), an extremely good surface on which no trace of the flaw is recognized is observed. It is also clear that the state can be set.
(Comparative Example 1)
In the same manner as in the first embodiment, the remaining one of the wire coils having a diameter of 8.2 mm after the pickling and lubrication treatment, which is divided into two equal parts in the first embodiment, is cut out from the wire coil, and an electric discharge machine is mounted. A short sample provided with linear flaws having different depths and lengths was welded and joined by an ordinary method.
[0052]
The dimensions of the linear flaws were measured before joining by welding. That is, the length of the linear flaw was measured using a digital caliper, and the depth was examined using a measuring microscope.
[0053]
Next, the wire coil to which the short sample was joined was drawn in one pass at room temperature by a normal method to form a steel wire having a diameter of 8.0 mm. Flaws were detected using the apparatus, and dimensions of flaws that could not be detected by the flaw detector were measured. The length of the linear flaw was measured using a digital caliper as in the case of the 8.2 mm wire. On the other hand, the flaw depth was measured using the same measuring microscope as the above 8.2 mm for flaws not detected. However, the flaws detected by the flaw detector were cleaned at room temperature using a hand grinder to remove the flaws, and the maximum difference between the diameters before and after the removal of the defects was determined to be insufficient.
Table 3 shows the results of investigating the surface condition of the steel wire finished to a diameter of 8.0 mm as described above. Table 3 also shows the state of flaws in the wire having a diameter of 8.2 mm as a material. Here, “○” which is the surface state of a steel wire (product) having a diameter of 8.0 mm in Table 3 indicates that there are no scratches and that the uneven thickness (that is, the uneven diameter difference) is less than 0.03 mm. Is shown. Similarly, “△” indicates a state where the flaw remains but the thickness deviation is less than 0.03 mm, and “×” indicates a state where the cross section has a thickness deviation of 0.03 mm or more.
[0054]
[Table 3]
Figure 2004181524
[0055]
As shown in Table 3, when a surface defect is detected by a flaw detector after forming into a steel wire by processing, a flaw close to the detection limit of the flaw detector is overlooked, and finish processing is performed with such flaws remaining. When a flaw remains on a steel wire finished to a predetermined size, or when the detected flaw is taken care of, a so-called “insufficient diameter” occurs in which a predetermined size cannot be secured, and therefore, the steel wire size as a product is reduced. It is clear that we have to respond.
(Example 2)
A 6.4 mm-diameter wire rod was hot-rolled by a conventional method using SUS304 (JIS G 4308 (1998)) or equivalent steel produced by a test furnace having the chemical composition shown in Table 4 as a test steel.
[0056]
[Table 4]
Figure 2004181524
[0057]
Next, descaling is performed on the wire by pickling with ordinary hydrofluoric acid, and the wire is cut out from the wire coil in the same manner as in Example 1, and a handling flaw is intentionally used as an example of a flaw having a width in the circumferential direction. The provided short sample and a short sample having a linear flaw similarly cut out from a wire coil and having a depth and a length changed by using an electric discharge machine were welded and joined by an ordinary method.
[0058]
The dimensions of the above-mentioned flaws were measured before joining by welding. That is, the lengths of the linear flaw and the handling flaw were measured using a digital caliper. The depth of the linear flaw was determined using a measuring microscope. On the other hand, for handling flaws, the flaw was removed by using a hand grinder at room temperature to remove the flaw, and the maximum difference in diameter before and after the flaw was removed was defined as the flaw depth.
[0059]
Subsequently, the linear flaws were removed at room temperature using a hand grinder, and the surface roughness of the portion from which the handling flaws and linear flaws were removed was removed at room temperature using a hand grinder with a paper grindstone having an abrasive grain number of 100. And adjusted. The surface roughness of each part was measured in the longitudinal direction using a handy type roughness meter, and as a result, the center line average roughness (Ra) was 4.0 to 15.1 μm. Here, when a wire having a diameter of 6.4 mm is processed to a diameter of 4.60 mm described later, y calculated from Expression (1) is 12.3 μm.
[0060]
A lubricating treatment was applied to the wire obtained by welding the short sample having the above-described flaw removal and surface roughness adjusted by a usual method, and was drawn at room temperature to finish a steel wire having a diameter of 4.60 mm.
[0061]
Table 5 shows the details of the pass schedule. The total area reduction rate shown in Table 5 indicates the total area reduction rate from a diameter of 6.4 mm.
[0062]
A lubricating treatment was applied to the wire rod with the above-mentioned flaw removal and surface roughness adjusted by an ordinary method, and was drawn at room temperature to finish a steel wire having a diameter of 4.60 mm.
[0063]
Table 5 shows the details of the pass schedule. The total area reduction rate shown in Table 5 indicates the total area reduction rate from a diameter of 6.4 mm.
[0064]
[Table 5]
Figure 2004181524
[0065]
Table 6 shows the results of investigation of the surface condition of the steel wire finished to a diameter of 4.60 mm as described above. Table 6 also shows the state of flaws in the wire having a diameter of 6.4 mm, which is a material. Here, the meanings of the symbols “記号”, “●” and “△” in the surface state of the steel wire (product) having a diameter of 4.60 mm in Table 6 are the same as those in Table 2 in Example 1.
[0066]
[Table 6]
Figure 2004181524
[0067]
As shown in Table 6, the steel wire finished to a predetermined diameter of 4.60 mm has no flaws if it is treated before processing under the conditions specified in the present invention, and the surface roughness of the flaw-removed part after the treatment It is apparent that by setting the center line average roughness (Ra) to 13.0 μm or less, the surface has a good surface state in which traces of flaws are little recognized. Also, by setting the surface roughness Ra of the flaw-removed portion after the treatment to y (= 12.3) μm or less calculated by the above equation (1), an extremely good surface on which no trace of the flaw is recognized is observed. It is also clear that the state can be set.
(Example 3)
As a test steel, SCM435 (JIS G 4105 ((1979))) equivalent steel produced from a test furnace having a chemical composition shown in Table 7 was used as a test steel, and a wire rod having a diameter of 8.0 mm was hot-rolled by a usual method. 7 is the material steel Ac 1 The transformation point is also shown.
[0068]
[Table 7]
Figure 2004181524
[0069]
Next, the wire is subjected to spheroidizing annealing by a normal method, and further descaling is performed by normal pickling, and cut out from the wire coil in the same manner as in Example 1 to remove a flaw having a width in the circumferential direction. As an example, a short sample intentionally provided with handling flaws, and a short sample provided with linear flaws cut out of the wire coil and changed in depth and length using an electric discharge machine, are welded by a normal method. And joined.
[0070]
The dimensions of the above-mentioned flaws were measured before joining by welding. That is, the lengths of the linear flaw and the handling flaw were measured using a digital caliper. The depth of the linear flaw was determined using a measuring microscope. On the other hand, for handling flaws, the flaw was removed by using a hand grinder at room temperature to remove the flaw, and the maximum difference in diameter before and after the flaw was removed was defined as the flaw depth.
[0071]
Subsequently, the linear flaws were removed at room temperature using a hand grinder, and the surface roughness of the portion from which the handling flaws and linear flaws were removed was removed at room temperature using a hand grinder with a paper grindstone having an abrasive grain number of 100. And adjusted. The surface roughness of each part was measured in the longitudinal direction using a handy type roughness meter, and as a result, the center line average roughness (Ra) was 5.6 to 18.0 μm. Here, when a wire rod having a diameter of 8.0 mm is processed to a diameter of 6.80 mm to be described later, y calculated from Expression (1) is 8.3 μm.
[0072]
A wire rod obtained by welding a short sample having the above-described flaw removal and surface roughness adjusted was subjected to a lubricating treatment by an ordinary method, and was drawn at room temperature to finish a steel wire having a diameter of 6.80 mm.
[0073]
Table 8 shows details of the pass schedule. The total area reduction rate shown in Table 8 indicates the total area reduction rate from a diameter of 8.0 mm.
[0074]
[Table 8]
Figure 2004181524
[0075]
Table 9 shows the results of investigation of the surface condition of the steel wire finished to have a diameter of 6.80 mm as described above. Table 9 also shows the state of flaws in the wire having a diameter of 8.0 mm as a material. Here, the meanings of the symbols “記号”, “●” and “△” in the surface state of the steel wire (product) having a diameter of 6.80 mm in Table 8 are the same as those in Table 2 in Example 1.
[0076]
[Table 9]
Figure 2004181524
[0077]
As shown in Table 9, the steel wire finished to a predetermined diameter of 6.80 mm has no flaws if it is processed before processing under the conditions specified in the present invention, and the surface roughness of the flaw-removed part after the processing It is apparent that by setting the center line average roughness (Ra) to 13.0 μm or less, the surface has a good surface state in which traces of flaws are little recognized. Further, by setting the surface roughness Ra of the flaw-removed portion after the treatment to y (= 8.3) μm or less calculated by the above equation (1), an extremely good surface on which no trace of the flaw is recognized is observed. It is also clear that the state can be set.
[0078]
【The invention's effect】
According to the method of the present invention, it is possible to manufacture a steel wire having a good surface property with a good yield. The steel wire used as the material of the mechanical structural component of the present invention can be relatively easily manufactured by the method of the present invention using the wire rod processing equipment of the present invention. According to the method of the present invention, there is no so-called “insufficient diameter” in which a predetermined size cannot be secured when flaws are removed after conventional processing, so that an effect of improving the manufacturing yield can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a conventional method for manufacturing a steel wire in which flaws are removed after processing.
FIGS. 2A and 2B are diagrams illustrating a cross section of a surface flaw portion of a steel wire, where FIGS. 2A and 2B show a case where a surface flaw is small and a case where it is large, and FIG. FIG. 4 is a diagram showing that a predetermined product size cannot be ensured, and the surface skin becomes rough with care.
FIG. 3 is a diagram illustrating linear flaws such as rolling flaws and die flaws.
FIG. 4 is a view for explaining flaws having a width in the circumferential direction, such as barbed flaws and so-called “handling flaws” generated during conveyance.
FIG. 5 is a diagram in which the surface condition of the finished steel wires of Examples 1 to 3, the surface roughness Ra (μm) of the flaw-removed portion is plotted on the vertical axis, and the total area reduction rate (%) is plotted on the horizontal axis. It is.
[Explanation of symbols]
1: steel wire,
2: wire rod,
3: Flaw detector
4: surface flaw
41: rolling scratch
42: Die scratch
43: Scratch flaw
44: Handling flaw
5: Hole die

Claims (3)

線材の加工設備の中の加工装置の前に設けた探傷器で線材の表面疵を検出し、検出した表面疵の除去と疵除去部の表面粗さを中心線表面粗さRaで13.0μm以下とする処理を行い、続いて加工装置を用いて仕上げ加工を行うことを特徴とする鋼線の製造方法。Surface flaws of the wire are detected by a flaw detector provided in front of the processing device in the wire processing equipment, and the detected surface flaws are removed and the surface roughness of the flaw-removed portion is determined as a center line surface roughness Ra of 13.0 μm. A method for producing a steel wire, comprising performing the following processing, and subsequently performing finishing processing using a processing apparatus. 探傷器、疵除去と疵除去部の表面の処理を行う装置及び加工装置がこの順で配置されている線材の加工設備。A wire processing facility in which a flaw detector, a device for removing flaws, and a device for processing the surface of the flaw removal unit and a processing device are arranged in this order. 請求項1に記載の方法で製造された鋼線を素材とする機械構造部品。A machine structural part made from a steel wire manufactured by the method according to claim 1.
JP2002355106A 2002-12-06 2002-12-06 Manufacturing method of steel wire, processing facility of wire rod and machine structural component Withdrawn JP2004181524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355106A JP2004181524A (en) 2002-12-06 2002-12-06 Manufacturing method of steel wire, processing facility of wire rod and machine structural component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355106A JP2004181524A (en) 2002-12-06 2002-12-06 Manufacturing method of steel wire, processing facility of wire rod and machine structural component

Publications (1)

Publication Number Publication Date
JP2004181524A true JP2004181524A (en) 2004-07-02

Family

ID=32755895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355106A Withdrawn JP2004181524A (en) 2002-12-06 2002-12-06 Manufacturing method of steel wire, processing facility of wire rod and machine structural component

Country Status (1)

Country Link
JP (1) JP2004181524A (en)

Similar Documents

Publication Publication Date Title
EP1712306B1 (en) Cold-finished seamless steel pipe
CN110052792B (en) Manufacturing method of cylinder barrel for hydraulic cylinder
CN107931331B (en) A kind of production method of two roller cold rolling seamless steel of high-precision
JP4274177B2 (en) Steel pipe for bearing element parts, manufacturing method and cutting method thereof
KR100644843B1 (en) Seamless steel tube for drive shaft and method of manufacturing the same
JP3796949B2 (en) Manufacturing method of steel wire rod for bearing
JP4462440B2 (en) Method for producing hot-rolled bearing steel
JP2004181524A (en) Manufacturing method of steel wire, processing facility of wire rod and machine structural component
JP2012177154A (en) High-carbon steel pipe excellent in cold workability, machinability and hardenability, and method for producing the same
JPH0531663A (en) Treating method for belt-like metallic substance
JP2002361318A (en) Method for manufacturing steel wire, intermediate processing equipment line of wire rod, and machine structural component
CN114370536A (en) Cold-hardened pressure-resistant flaring-free connection stainless steel seamless steel pipe and manufacturing method thereof
JP2003053420A (en) Manufacturing method of steel wire, intermediate working equipment train for wire rod and machine structural parts
JP5614219B2 (en) Cold rolled steel sheet manufacturing method
JPH04111907A (en) Production of austenitic stainless seamless steel pipe
JP3895121B2 (en) Manufacturing method for austenitic free-cutting stainless steel products
CN112404130B (en) Method for controlling S45C decarburization
JP2002256472A (en) Ferritic stainless steel-sheet and manufacturing method therefor
JP7448468B2 (en) Manufacturing method of cold rolled steel plate
JP6857308B2 (en) Steel strip manufacturing method
KR100940658B1 (en) A Manufacturing Method of Hot Rolled Wire Rod Having Excellent Ability of Descaling
JPH0847710A (en) Manufacture of cold finished steel bar made of high-speed tool steel
JPH07266207A (en) Processing method and processing device line for stainless steel band
JP3562084B2 (en) Hot rolled steel sheet manufacturing method
JP2002167619A (en) Ferritic stainless steel wire rod and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060904