JP7448468B2 - Manufacturing method of cold rolled steel plate - Google Patents

Manufacturing method of cold rolled steel plate Download PDF

Info

Publication number
JP7448468B2
JP7448468B2 JP2020208566A JP2020208566A JP7448468B2 JP 7448468 B2 JP7448468 B2 JP 7448468B2 JP 2020208566 A JP2020208566 A JP 2020208566A JP 2020208566 A JP2020208566 A JP 2020208566A JP 7448468 B2 JP7448468 B2 JP 7448468B2
Authority
JP
Japan
Prior art keywords
rolled steel
heating
steel plate
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020208566A
Other languages
Japanese (ja)
Other versions
JP2022095311A (en
Inventor
啓太 中山
俊夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020208566A priority Critical patent/JP7448468B2/en
Publication of JP2022095311A publication Critical patent/JP2022095311A/en
Application granted granted Critical
Publication of JP7448468B2 publication Critical patent/JP7448468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、冷間圧延鋼板の製造方法に関する。 The present invention relates to a method for manufacturing cold rolled steel sheets.

熱間圧延鋼板を冷間圧延すると、鋼板の幅方向端部に割れが発生することがある(これを「端部割れ」と称する)。端部割れは、特にMn(マンガン)等の焼入れ性を向上させる元素、すなわちγ鉄からα鉄への変態を遅らせる効果をもつ元素を多く含む鋼板に起こりやすい。端部割れが生じると、冷間圧延工程中またはその後の工程(例えば、焼き鈍し工程、メッキ工程等)において、端部割れを起点とした鋼板の破断が起こるおそれがある。 When a hot rolled steel plate is cold rolled, cracks may occur at the ends in the width direction of the steel plate (this is referred to as "end cracks"). End cracks are particularly likely to occur in steel sheets containing a large amount of elements that improve hardenability, such as Mn (manganese), that is, elements that have the effect of retarding the transformation of γ iron to α iron. When edge cracks occur, there is a risk that the steel plate may break starting from the edge cracks during the cold rolling process or in subsequent processes (for example, an annealing process, a plating process, etc.).

端部割れは、熱間圧延鋼板の巻取工程後の冷却過程で、熱間圧延鋼板の幅方向端部が急冷されることに起因すると考えられる。熱間圧延鋼板を巻き取ったコイルはその後冷却されるが、幅方向端部は外気に触れているため冷却速度が早くなる。そのため、冷却後の熱間圧延鋼板の幅方向端部は、マルテンサイトを比較的多く含む延性の低い組織となり、その後に実施される冷間圧延において鋼板に端部割れが発生する原因になると推測される。 It is thought that the end cracks are caused by the ends of the hot rolled steel sheet in the width direction being rapidly cooled during the cooling process after the hot rolled steel sheet is wound up. The coil wound with the hot-rolled steel plate is then cooled down, but the cooling rate is faster because the ends in the width direction are exposed to the outside air. Therefore, after cooling, the edges in the width direction of the hot-rolled steel sheet have a structure with low ductility that contains a relatively large amount of martensite, which is assumed to be the cause of edge cracks in the steel sheet during subsequent cold rolling. be done.

鋼板の端部割れを低減する手段として、特許文献1には、冷間圧延前に熱間圧延鋼板の幅方向端部(エッジ部)を誘導加熱するための加熱装置と、加熱前の熱間圧延鋼板の蛇行を修正する蛇行修正装置とを備える冷間圧延設備が開示されている。蛇行修正装置を備えることにより、熱間圧延鋼板の蛇行による誘導加熱がばらつくことが抑えられるので、端部割れの発生を低減できるとしている。 As a means for reducing edge cracking of a steel plate, Patent Document 1 discloses a heating device for induction heating the width direction end portion (edge portion) of a hot rolled steel plate before cold rolling, and a heating device for induction heating the widthwise end portion (edge portion) of a hot rolled steel plate before cold rolling. A cold rolling facility is disclosed that includes a meandering correction device for correcting meandering of a rolled steel plate. By providing a meandering correction device, it is possible to suppress variations in induction heating due to meandering of a hot rolled steel sheet, thereby reducing the occurrence of edge cracks.

また、特許文献2には、鋼板の幅方向両端部を鋼板材料のA1点以下400℃以上の温度に加熱して、幅方向両端部のミクロ組織内のマルテンサイトを焼戻しマルテンサイトにした後に、冷間圧延を行う方法が提案されている。 Further, Patent Document 2 discloses that after heating both widthwise ends of a steel plate to a temperature of 400°C or higher below the A1 point of the steel plate material to transform martensite in the microstructure at both widthwise ends into tempered martensite, A method of cold rolling has been proposed.

特開2015-139810号公報Japanese Patent Application Publication No. 2015-139810 特開2019-141888号公報JP 2019-141888 Publication

鋼板の端部割れを効果的に抑制するためには、冷間圧延前に熱間圧延鋼板の幅方向端部を十分に軟質化することが重要であり、冷間圧延前に幅方向端部を加熱して軟質化(熱処理)を行う際の加熱温度を十分に高くすることが有効である。しかしながら、高い加熱温度での熱処理を実現するためには、高額な設備投資と大きな消費電力が必要となり、鋼板の製造コスト上昇につながる。
製造コスト削減のために、低い加熱温度であっても幅方向端部を十分に軟質化できる方法が望まれているが、特許文献1、2には加熱温度を低くすることについて検討されていない。
In order to effectively suppress edge cracking of a steel plate, it is important to sufficiently soften the widthwise edges of a hot rolled steel plate before cold rolling. It is effective to make the heating temperature sufficiently high when softening (heat treatment) is performed by heating. However, in order to achieve heat treatment at a high heating temperature, expensive equipment investment and large power consumption are required, leading to an increase in the manufacturing cost of steel sheets.
In order to reduce manufacturing costs, there is a desire for a method that can sufficiently soften the ends in the width direction even at a low heating temperature, but Patent Documents 1 and 2 do not consider lowering the heating temperature. .

そこで、本発明は、冷間圧延前の幅方向端部の軟質化(熱処理)時の加熱温度を低くしつつ、鋼板の端部割れを抑制できる冷間圧延鋼板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a cold-rolled steel plate that can suppress edge cracking of the steel plate while lowering the heating temperature during softening (heat treatment) of the widthwise edges before cold rolling. purpose.

本発明の態様1は、
鋼片を熱間圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱間圧延鋼板を、幅方向端部の金属組織中のマルテンサイト分率が50%以下になるようにコイル状に巻き取る巻取工程と、
巻き取った熱間圧延鋼板をコイルから繰り出す繰出工程と、
繰り出された熱間圧延鋼板の幅方向端部を350~450℃の温度に加熱する加熱工程と、
前記加熱工程後の熱間圧延鋼板を冷間圧延する冷間圧延工程と、
を含む冷間圧延鋼板の製造方法である。
Aspect 1 of the present invention is
a hot rolling process of hot rolling a steel billet;
a winding step of winding the hot rolled steel sheet obtained in the hot rolling step into a coil shape so that the martensite fraction in the metal structure at the width direction end portion is 50% or less;
A feeding process in which the wound hot-rolled steel plate is fed out from the coil;
a heating step of heating the widthwise end portion of the unreeled hot rolled steel plate to a temperature of 350 to 450°C;
a cold rolling step of cold rolling the hot rolled steel plate after the heating step;
This is a method for manufacturing a cold rolled steel sheet.

本発明の態様2は、
前記巻取工程は、前記マルテンサイト分率が40%以下になるように巻き取ることを特徴とする態様1に記載の冷間圧延鋼板の製造方法である。
Aspect 2 of the present invention is
The method for producing a cold-rolled steel sheet according to aspect 1, wherein the winding step involves winding the steel sheet so that the martensite fraction is 40% or less.

本発明の態様3は、
前記巻取工程は、巻取温度540℃以上で巻き取ることを含む、態様1または2に記載の冷間圧延鋼板の製造方法である。
Aspect 3 of the present invention is
The method for producing a cold rolled steel sheet according to aspect 1 or 2, wherein the winding step includes winding at a winding temperature of 540° C. or higher.

本発明の態様4は、
前記巻取温度が540℃~640℃である、態様3に記載の冷間圧延鋼板の製造方法である。
Aspect 4 of the present invention is
A method for producing a cold rolled steel sheet according to aspect 3, wherein the coiling temperature is 540°C to 640°C.

本発明の態様5は、
前記加熱工程より後で、前記冷間圧延工程より前に、前記熱間圧延鋼板を酸で洗浄する酸洗工程をさらに含む、態様1~4のいずれか1つに記載の冷間圧延鋼板の製造方法である。
Aspect 5 of the present invention is
The cold rolled steel sheet according to any one of aspects 1 to 4, further comprising a pickling step of washing the hot rolled steel sheet with acid after the heating step and before the cold rolling step. This is the manufacturing method.

本発明によれば、冷間圧延前の熱処理時の加熱温度を低くしつつ、鋼板の端部割れを抑制することができる。 According to the present invention, it is possible to suppress edge cracking of a steel sheet while lowering the heating temperature during heat treatment before cold rolling.

図1は、実施形態に係る冷間圧延鋼板の製造方法に使用できる冷間圧延装置1の概略図である。FIG. 1 is a schematic diagram of a cold rolling apparatus 1 that can be used in a method for manufacturing a cold rolled steel plate according to an embodiment. 図2は、鋼片を熱間圧延し、コイルに巻き取って冷却するまでを模擬してラボ実験した際の加工状態および温度変化を示すグラフである。FIG. 2 is a graph showing processing conditions and temperature changes during a lab experiment simulating hot rolling of a steel billet, winding it into a coil, and cooling it. 図3は、加熱時間の算出方法を説明するための加熱炉内の温度変化を示すグラフである。FIG. 3 is a graph showing the temperature change inside the heating furnace for explaining the method of calculating the heating time.

本発明者らは鋭意検討した結果、冷間圧延に用いる熱間圧延鋼板を製造する際に熱間圧延後の鋼板をコイル状に巻き取る巻取工程において、熱間圧延鋼板の幅方向端部の金属組織中のマルテンサイト分率が50%以下になるように制御することにより、冷間圧延の際の熱処理(幅方向端部の加熱)を350~450℃と比較的低い加熱温度で行っても、鋼板の端部割れを効果的に抑制できることを見いだしたて、本発明を完成するに至った。 As a result of extensive studies, the present inventors found that in the winding process of winding a hot-rolled steel plate into a coil shape when manufacturing a hot-rolled steel plate for use in cold rolling, the ends of the hot-rolled steel plate in the width direction By controlling the martensite fraction in the metal structure to be 50% or less, the heat treatment during cold rolling (heating of the width direction edges) is performed at a relatively low heating temperature of 350 to 450 ° C. However, the present invention was completed based on the discovery that edge cracking of steel plates can be effectively suppressed.

以下に、本発明の冷間圧延鋼板の製造方法について詳述する。
本発明の実施形態に係る冷間圧延鋼板の製造方法は、鋼片を熱間圧延する熱間圧延工程と、熱間圧延工程で得られた熱間圧延鋼板を巻き取る巻取工程と、熱間圧延鋼板をコイルから繰り出す繰出工程と、繰り出された熱間圧延鋼板の幅方向端部を所定の温度に加熱する加熱工程と、熱間圧延鋼板を冷間圧延する冷間圧延工程とを備える。また、加熱工程より後で、冷間圧延工程より前に、熱間圧延鋼板を酸で洗浄する酸洗工程をさらに含んでもよい。また、冷間圧延後の冷間圧延鋼板をコイル状に巻き取る第2の巻取工程をさらに含んでもよい。
Below, the method for manufacturing a cold rolled steel sheet of the present invention will be described in detail.
The method for manufacturing a cold rolled steel plate according to an embodiment of the present invention includes a hot rolling process of hot rolling a steel billet, a winding process of winding up a hot rolled steel plate obtained in the hot rolling process, and a hot rolling process of rolling a hot rolled steel plate obtained in the hot rolling process. The method includes a feeding process in which the hot rolled steel plate is fed out from a coil, a heating process in which the ends in the width direction of the fed hot rolled steel plate are heated to a predetermined temperature, and a cold rolling process in which the hot rolled steel plate is cold rolled. . Further, after the heating step and before the cold rolling step, the method may further include a pickling step of washing the hot rolled steel sheet with acid. Further, the method may further include a second winding step of winding the cold rolled steel sheet after cold rolling into a coil shape.

熱間圧延工程および巻取工程は、熱間圧延装置(図示せず)で連続して行うことができる。熱間圧延装置では、熱間圧延用の圧延機と、熱間圧延鋼板を巻き取るためのリールを備えることができる。
繰出工程、加熱工程、酸洗工程、冷間圧延工程および第2の巻取工程は、冷間圧延装置1(図1)で連続して行うことができる。図1の冷間圧延装置1では、熱間圧延鋼板2のコイル3を繰り出すためのリールと、熱間圧延鋼板の幅方向端部の加熱を行うための加熱装置5と、酸洗用の酸洗槽6と、冷間圧延用の連続圧延機10と、冷延鋼板を巻き取ってコイル11を形成するためのリールが、この順に配置されている。
The hot rolling process and the winding process can be performed continuously in a hot rolling apparatus (not shown). The hot rolling apparatus can include a rolling mill for hot rolling and a reel for winding up the hot rolled steel plate.
The feeding process, the heating process, the pickling process, the cold rolling process, and the second winding process can be performed continuously in the cold rolling apparatus 1 (FIG. 1). The cold rolling apparatus 1 shown in FIG. 1 includes a reel for unwinding a coil 3 of a hot rolled steel plate 2, a heating device 5 for heating the widthwise ends of the hot rolled steel plate, and an acid pickling device. A washing tank 6, a continuous rolling mill 10 for cold rolling, and a reel for winding up a cold rolled steel plate to form a coil 11 are arranged in this order.

[熱間圧延工程]
熱間圧延鋼板は、熱間圧延工程が施された帯状の鋼板である。この熱間圧延工程では、鋼片(スラブ)を加熱し、圧延機で圧延することで熱間圧延鋼板を形成する。具体例としては、これに限定されないが、まず加熱炉を用いてスラブを900℃以上1300℃以下の範囲で加熱し、このとき発生する1次スケールをデスケーラーで除去する。次に、この加熱したスラブを900℃以上1300℃以下の温度範囲で粗圧延した後、表面に発生する2次スケールをデスケーラーで除去する。さらに、粗圧延したスラブを800℃以上1100℃以下で仕上げ圧延を行って熱間圧延鋼板を得る。
[Hot rolling process]
A hot rolled steel plate is a strip-shaped steel plate that has been subjected to a hot rolling process. In this hot rolling process, a hot rolled steel plate is formed by heating a steel piece (slab) and rolling it in a rolling mill. As a specific example, but not limited to this, first, a slab is heated in a range of 900° C. or higher and 1300° C. or lower using a heating furnace, and the primary scale generated at this time is removed using a descaler. Next, this heated slab is roughly rolled in a temperature range of 900° C. or more and 1300° C. or less, and then secondary scale generated on the surface is removed by a descaler. Furthermore, the roughly rolled slab is finish rolled at a temperature of 800° C. or more and 1100° C. or less to obtain a hot rolled steel plate.

熱間圧延鋼板の成分組成は特に限定されないが、例えば炭素、ケイ素、マンガン、アルミニウム、チタン、ニオブ、クロム、ニッケル、モリブデン及び銅、並びに残部が鉄及び不可避的不純物である成分組成を有する。なお、リン、硫黄は不可避的不純物として含まれ得る。成分組成の好ましい範囲は以下の通りである。
C:0.1~0.5質量%
Si:0.4~2.5質量%
Mn:1.2~3.0質量%
Al:0~1.6質量%
Ti:0~0.2質量%
Nb:0~0.2質量%
Mo:0~1.0質量%
Cr:0~1.0質量%
Ni:0~1.0質量%
Cu:0~1.0質量%
残部:鉄および不可避的不純物
The composition of the hot-rolled steel sheet is not particularly limited, but includes, for example, carbon, silicon, manganese, aluminum, titanium, niobium, chromium, nickel, molybdenum, and copper, with the balance being iron and inevitable impurities. Note that phosphorus and sulfur may be included as inevitable impurities. The preferred range of component composition is as follows.
C: 0.1 to 0.5% by mass
Si: 0.4-2.5% by mass
Mn: 1.2 to 3.0% by mass
Al: 0 to 1.6% by mass
Ti: 0 to 0.2% by mass
Nb: 0 to 0.2% by mass
Mo: 0 to 1.0% by mass
Cr: 0 to 1.0% by mass
Ni: 0 to 1.0% by mass
Cu: 0 to 1.0% by mass
Balance: iron and unavoidable impurities

また、下記式(1)によって示される焼入性倍数Fが20以上であるような成分組成を有する熱間圧延鋼板は、冷間圧延時に端部割れが生じやすいため、Fが20以上の鋼板を製造する場合は、端部割れを抑制できる本発明の製造方法が好適である。
なお、下記式(1)中、C、Si、Mn、P、S、Cr、Ni、Mo及びCuは、それぞれ鋼板における炭素元素、ケイ素元素、マンガン元素、リン元素、硫黄元素、クロム元素、ニッケル元素、モリブデン元素及び銅元素の含有量(質量%)を意味する。

F=(1+1.5×(0.9-C))×(1+0.64×Si)×(1+4.1×Mn)
×(1+2.83×P)×(1-0.62×S)×(1+2.33×Cr)×(1+0.52×Ni)×(1+3.14×Mo)×(1+0.27×Cu)・・・(1)
In addition, hot-rolled steel sheets having a composition with a hardenability multiple F of 20 or more, as shown by the following formula (1), are susceptible to edge cracking during cold rolling, so steel sheets with F of 20 or more The manufacturing method of the present invention, which can suppress edge cracking, is suitable for manufacturing.
In addition, in the following formula (1), C, Si, Mn, P, S, Cr, Ni, Mo, and Cu are carbon element, silicon element, manganese element, phosphorus element, sulfur element, chromium element, and nickel in the steel sheet, respectively. Means the content (% by mass) of elements, molybdenum element and copper element.

F=(1+1.5×(0.9-C))×(1+0.64×Si)×(1+4.1×Mn)
×(1+2.83×P)×(1-0.62×S)×(1+2.33×Cr)×(1+0.52×Ni)×(1+3.14×Mo)×(1+0.27×Cu) ...(1)

熱間圧延工程では、熱間圧延鋼板の厚み(仕上げ厚み)が所望厚みとなるようにスラブを圧延する。例えば、所定の厚さ(例えば230mm)のスラブを、仕上げ厚みが1.2mm以上6.0mm以下となるよう圧延することができる。仕上げ厚みの上限としては、4.5mmがより好ましい。また、仕上げ厚みの下限としては、2.0mmがより好ましい。 In the hot rolling process, the slab is rolled so that the thickness (finished thickness) of the hot rolled steel plate becomes a desired thickness. For example, a slab with a predetermined thickness (for example, 230 mm) can be rolled so that the finished thickness is 1.2 mm or more and 6.0 mm or less. The upper limit of the finished thickness is more preferably 4.5 mm. Further, the lower limit of the finished thickness is more preferably 2.0 mm.

[巻取工程]
巻取工程では、リールにより熱間圧延鋼板をコイル状に巻き取る。本発明の実施形態に適した熱間圧延鋼板については後述する。
本発明では、幅方向端部の金属組織中のマルテンサイト分率が50%以下になるように巻き取ることが重要である。幅方向端部のマルテンサイト分率を低くすることにより幅方向端部の延性をある程度確保できるので、冷間圧延前に行う加熱工程における加熱温度を低く設定しても、幅方向端部の延性を十分に高くすることができ、冷間圧延による端部割れの発生を抑制できる。
幅方向端部の金属組織中のマルテンサイト分率は、好ましくは40%以下、さらに好ましくは30%以下とする。
[Winding process]
In the winding process, the hot rolled steel plate is wound into a coil using a reel. A hot rolled steel plate suitable for embodiments of the present invention will be described later.
In the present invention, it is important to wind the material so that the martensite fraction in the metal structure at the width direction end portion is 50% or less. By lowering the martensite fraction at the widthwise edges, the ductility at the widthwise edges can be secured to a certain extent, so even if the heating temperature in the heating process performed before cold rolling is set low, the ductility at the widthwise edges can be maintained. can be made sufficiently high, and the occurrence of edge cracks due to cold rolling can be suppressed.
The martensite fraction in the metal structure at the width direction end portion is preferably 40% or less, more preferably 30% or less.

幅方向端部のマルテンサイト分率は、鋼の成分組成と、巻取温度と、巻き取ったコイルの冷却速度によって制御することができる。例えば、上述した成分組成を有するの鋼の場合、巻取温度540℃以上で巻き取ることで、マルテンサイト分率を50%以下にすることができる。なお、巻き取ったコイルの冷却速度は、おおむね2.4℃/分となる。
巻取温度は、好ましくは550℃以上、さらに好ましくは560℃以上である。巻取温度の上限は特に限定されないが、高すぎると冷却時間が長くなり生産性が低下することから、例えば640℃以下とする。
The martensite fraction at the ends in the width direction can be controlled by the composition of the steel, the winding temperature, and the cooling rate of the wound coil. For example, in the case of steel having the above-mentioned composition, the martensite fraction can be reduced to 50% or less by winding at a winding temperature of 540° C. or higher. Note that the cooling rate of the wound coil is approximately 2.4° C./min.
The winding temperature is preferably 550°C or higher, more preferably 560°C or higher. The upper limit of the winding temperature is not particularly limited, but if it is too high, the cooling time becomes longer and productivity decreases, so it is set to, for example, 640° C. or lower.

マルテンサイト分率の測定は、コイルに巻き取って冷却した後の熱間圧延鋼板を用いて行う。
熱間圧延鋼板の幅方向端部の一部を切り出した試験片を、圧延方向と垂直な断面で切断する。その切断面を研磨してナイタール腐食した後、幅方向端部から幅方向に1mm、厚さ方向に1/4t(tは板厚)の位置を、走査型電子顕微鏡(SEM)にて倍率1000倍で観察する。観察面における金属組織は、腐食されずに残った領域をマルテンサイト、腐食された領域をフェライトおよびパーライトと定義する。SEM像中の任意の一視野(1視野のサイズは90μm×120μm)に、縦方向に10本、横方向に10本の線を等間隔に引き、それらの網目状に引いた線の交点のうちマルテンサイト組織上に位置する交点の数を数えて、全交点の数(100交点)で割ることにより、マルテンサイト組織の面積率を求める。この面積率をマルテンサイト分率とする。
The martensite fraction is measured using a hot-rolled steel plate that has been wound into a coil and cooled.
A test piece obtained by cutting out a part of the widthwise end of a hot rolled steel plate is cut in a cross section perpendicular to the rolling direction. After polishing the cut surface and corroding it with nital, a scanning electron microscope (SEM) was used at a position 1 mm in the width direction and 1/4 t in the thickness direction (t is the plate thickness) from the end in the width direction at a magnification of 1000. Observe at double magnification. Regarding the metallographic structure on the observation surface, the remaining uncorroded region is defined as martensite, and the corroded region is defined as ferrite and pearlite. Draw 10 lines in the vertical direction and 10 lines in the horizontal direction at equal intervals in any one field of view (the size of one field of view is 90 μm x 120 μm) in the SEM image, and calculate the intersection of the lines drawn in a mesh pattern. The area ratio of the martensitic structure is determined by counting the number of intersections located on the martensitic structure and dividing by the total number of intersections (100 intersections). This area ratio is defined as the martensite fraction.

本明細書において、巻取温度(本明細書では「T4」と記載することがある)は、巻取り直後のコイルの端部の温度のことであり、例えば、放射温度計等の非接触型温度計を用いて測定する。
冷却速度は、コイル端部の温度が、巻取り直後の巻取温度T4(℃)から400℃まで冷却されるのに要する時間X(分)と、それらの温度差(T4-400(℃))とから求めた平均冷却温度である。つまり、冷却速度は下式で求める。

冷却速度(℃/分)=(T4-400(℃))/X(分)
In this specification, the winding temperature (sometimes referred to as "T4" in this specification) refers to the temperature at the end of the coil immediately after winding. Measure using a thermometer.
The cooling rate is determined by the time X (minutes) required for the temperature at the end of the coil to cool down from the winding temperature T4 (℃) immediately after winding to 400℃, and the temperature difference between them (T4 - 400 (℃) ) is the average cooling temperature determined from In other words, the cooling rate is determined by the formula below.

Cooling rate (°C/min) = (T4-400 (°C))/X (min)

[繰出工程]
図1は、巻き取ったコイルを冷間圧延するための冷間圧延装置1の概略図である。冷間圧延装置1では、リールに巻き取られて冷却された熱間圧延鋼板2をコイル3から繰り出して、連続圧延機10を通過後の冷間圧延鋼板を他方のリールに巻き取る。これにより、コイル3から繰り出された熱間圧延鋼板2は、通板方向Rに走行する。
繰出工程では、冷却後のコイル3から、熱間圧延鋼板2を通板方向Rに繰り出す。
[Feeding process]
FIG. 1 is a schematic diagram of a cold rolling apparatus 1 for cold rolling a wound coil. In the cold rolling apparatus 1, a hot rolled steel plate 2 that has been wound onto a reel and cooled is unwound from a coil 3, and the cold rolled steel plate after passing through a continuous rolling mill 10 is wound onto the other reel. Thereby, the hot rolled steel sheet 2 unwound from the coil 3 travels in the sheet passing direction R.
In the feeding process, the hot rolled steel plate 2 is fed out in the sheet passing direction R from the cooled coil 3.

[加熱工程]
加熱工程では、繰出工程でコイル3から繰り出された熱間圧延鋼板2の幅方向端部を、加熱装置5で加熱する。熱間圧延鋼板2の幅方向端部を加熱することで、熱間圧延鋼板2の幅方向端部に適度な延性を付与し、その後の冷間圧延工程において端部割れを抑制できる。
[Heating process]
In the heating step, the heating device 5 heats the widthwise end portion of the hot rolled steel plate 2 that has been fed out from the coil 3 in the feeding step. By heating the widthwise ends of the hot rolled steel plate 2, appropriate ductility can be imparted to the widthwise ends of the hot rolled steel plate 2, thereby suppressing end cracks in the subsequent cold rolling process.

本発明では、巻取工程において熱間圧延鋼板の幅方向端部の金属組織中におけるマルテンサイト分率を50%以下に調整しているため、加熱工程前の段階でも、幅方向端部はある程度の延性を有している。そのため、加熱工程において求められる延性の改善の程度は、従来に比べて低い。つまり、加熱工程における加熱温度は、従来より低くすることができる。本発明の加熱工程では、熱間圧延鋼板の幅方向端部を350~450℃の温度に加熱する。この温度範囲で加熱であれば冷間圧延で端部割れを抑制するのに十分な延性を付与することができる。 In the present invention, since the martensite fraction in the metal structure of the widthwise ends of the hot rolled steel sheet is adjusted to 50% or less in the winding process, even before the heating process, the widthwise ends are to some extent It has a ductility of Therefore, the degree of improvement in ductility required in the heating step is lower than in the past. That is, the heating temperature in the heating step can be lower than conventionally. In the heating step of the present invention, the widthwise ends of the hot rolled steel plate are heated to a temperature of 350 to 450°C. If heated within this temperature range, sufficient ductility can be imparted to suppress end cracks during cold rolling.

特に、350℃以上400℃未満の加熱温度の場合には、従来より加熱温度が低いので、廉価な加熱装置を用いることができ、かつ加熱時に消費される電力を抑えることができる点で有利である。一方、400~450℃の加熱温度の場合には、従来に比べて短時間で処理を終えることができるので、加熱時の消費電力を抑えることができる。
加熱温度は、好ましくは380℃以上であり、さらに好ましくは400℃以上である。また、加熱温度は、好ましくは430℃以下である。
In particular, in the case of a heating temperature of 350°C or more and less than 400°C, the heating temperature is lower than conventional ones, so it is advantageous in that inexpensive heating equipment can be used and the power consumed during heating can be suppressed. be. On the other hand, in the case of a heating temperature of 400 to 450° C., the treatment can be completed in a shorter time than in the past, so power consumption during heating can be suppressed.
The heating temperature is preferably 380°C or higher, more preferably 400°C or higher. Further, the heating temperature is preferably 430°C or lower.

加熱温度は、加熱装置5の内部において、熱間圧延鋼板2の端部で測定する。温度測定には、例えば、放射温度計等の非接触型温度計を用いる。加熱温度は、加熱装置5内の出側近傍(加熱帯の出側)に設置した温度計で測定した温度を指す。測定された加熱温度は、熱間圧延鋼板2の端部の温度履歴における最高温度となる。
加熱時間は、幅方向端部の延性が十分に付与される時間とすればよく、好ましい加熱時間は、0.0001秒~20分である。なお、生産性の観点では、加熱温度が長時間となると生産性が低下するため、5分以下であるのが好ましい。
The heating temperature is measured at the end of the hot rolled steel plate 2 inside the heating device 5. For temperature measurement, for example, a non-contact thermometer such as a radiation thermometer is used. The heating temperature refers to the temperature measured with a thermometer installed near the exit side of the heating device 5 (on the exit side of the heating zone). The measured heating temperature is the highest temperature in the temperature history of the end of the hot rolled steel plate 2.
The heating time may be a time that provides sufficient ductility to the ends in the width direction, and the preferred heating time is 0.0001 seconds to 20 minutes. In addition, from the viewpoint of productivity, if the heating temperature becomes long, the productivity decreases, so it is preferable that the heating time is 5 minutes or less.

加熱時間は、熱間圧延鋼板2の端部の温度が(目標加熱温度-10(℃))以上で保持されている時間のことをいう。
加熱時間は、以下の仮定i)~ii)に基づく温度履歴のシミュレーションから概算できる。これらの仮定に基づいた圧延鋼板の温度変化のグラフを、図3に示す。

i) 熱間圧延鋼板2の端部の温度は、加熱装置5の加熱帯内部でのみ上昇し、加熱帯に入る温度(室温Troom)から、加熱帯の出側で測定した温度(出側温度計の計測温度Tout)に到達するまで、線形に温度上昇する。
ii) 加熱帯から出ると直ちに冷却されて、室温Troomとなる。
The heating time refers to the time during which the temperature of the end of the hot rolled steel plate 2 is maintained at (target heating temperature -10 (° C.)) or higher.
The heating time can be roughly estimated from temperature history simulation based on the following assumptions i) to ii). A graph of the temperature change of the rolled steel plate based on these assumptions is shown in FIG.

i) The temperature at the end of the hot rolled steel sheet 2 rises only inside the heating zone of the heating device 5, and changes from the temperature entering the heating zone (room temperature T room ) to the temperature measured at the exit side of the heating zone (exit side The temperature increases linearly until reaching the temperature T out ) measured by the thermometer.
ii) Immediately after leaving the heating zone, it is cooled down to room temperature T room .

図3のグラフにおいて、2つの相似な三角形を想定する。第1の三角形は、加熱帯の通過時間Lheat/Vline(加熱帯の長さLheatとライン速度Vlineから算出)を底辺とし、室温Troomと出側温度計の計測温度Toutとの差(Tout-Troom)を高さとした大きい直角三角形であり、第2の三角形は、加熱時間theatを底辺とし、(目標温度Ttarget-10℃)と出側温度計の計測温度Toutとの差(Tout-(Ttarget-10℃))を高さとした小さい直角三角形である。2つの相似形の三角形の関係式を整理すると、図3に示す加熱温度theatの算出式を導くことができる。この式を用いて、加熱時間を算出できる。 In the graph of FIG. 3, two similar triangles are assumed. The base of the first triangle is the heating zone passage time L heat /V line (calculated from the heating zone length L heat and line speed V line ), and the room temperature T room and the temperature T out measured by the outlet thermometer. The second triangle is a large right - angled triangle whose height is the difference between It is a small right triangle whose height is the difference from T out (T out - (T target - 10°C)). By rearranging the relational expressions between two similar triangles, it is possible to derive the calculation expression for the heating temperature t heat shown in FIG. 3. Using this formula, the heating time can be calculated.

加熱工程において幅方向端部を加熱する際は、少なくとも当該端部の端面が加熱できれば十分であるが、端部割れを抑制する観点から、熱間圧延鋼板2の幅方向の端面(側端面)から、ある程度の幅の範囲(これを「加熱幅」と称する)まで加熱することが好ましい。例えば、加熱幅を1mm以上にすると、端部割れの抑制効果が顕著になる。加熱幅は、好ましくは100mm以下、より好ましくは50mm以下であり、加熱幅の拡張による加熱コストを不必要に増加させずに、端部割れの抑制効果を十分に発揮することができる。 When heating the widthwise end portion in the heating process, it is sufficient if at least the end face of the end portion can be heated, but from the viewpoint of suppressing end cracking, the widthwise end face (side end face) of the hot rolled steel plate 2. It is preferable to heat to a certain width range (this is referred to as the "heating width"). For example, when the heating width is set to 1 mm or more, the effect of suppressing edge cracking becomes significant. The heating width is preferably 100 mm or less, more preferably 50 mm or less, and the effect of suppressing end cracking can be sufficiently exhibited without unnecessarily increasing the heating cost due to expansion of the heating width.

加熱装置5は、熱間圧延鋼板2の幅方向端部のみを加熱可能であれば特に限定されず、バーナ、誘導加熱装置等が用いられる。 The heating device 5 is not particularly limited as long as it can heat only the ends in the width direction of the hot rolled steel plate 2, and a burner, an induction heating device, or the like may be used.

加熱工程後は、熱間圧延鋼板2の冷却を行う。冷却手段は特に限定されず、空冷、エアブロー等、公知の手段を用いることができる。 After the heating process, the hot rolled steel plate 2 is cooled. The cooling means is not particularly limited, and known means such as air cooling and air blowing can be used.

[酸洗工程]
加熱工程より後で、冷間圧延工程より前に、熱間圧延鋼板2を酸で洗浄する酸洗工程をさらに含んでもよい。
酸洗工程では、加熱工程後の熱間圧延鋼板2を酸洗槽6を通過させて、酸洗槽6内に保持した酸によって洗浄する。酸洗工程を行うことで、加熱工程で形成された熱間圧延鋼板2の表面の酸化皮膜を、酸で溶解して除去する。よって、この後の冷間圧延工程において、連続圧延機10の圧延ロールが酸化膜等で汚染するのを防ぐことができる。
また、加熱工程では、幅方向端部のみを加熱するために鋼板幅方向に温度が不均一となるが、酸洗槽6を通過することにより温度を均一にすることができる。酸洗工程を行うことで、鋼板幅方向の温度不均一による不均一な変形抵抗が解消されるので、冷間圧延工程に不均一な変形抵抗に起因する形状不良を抑制することができる。
[Acid washing process]
After the heating step and before the cold rolling step, the method may further include a pickling step of washing the hot rolled steel sheet 2 with acid.
In the pickling process, the hot rolled steel plate 2 after the heating process is passed through the pickling tank 6 and cleaned with acid held in the pickling tank 6. By performing the pickling process, the oxide film on the surface of the hot rolled steel sheet 2 formed in the heating process is dissolved and removed with acid. Therefore, in the subsequent cold rolling process, it is possible to prevent the rolling rolls of the continuous rolling mill 10 from being contaminated with oxide films or the like.
Further, in the heating step, only the ends in the width direction are heated, so the temperature becomes non-uniform in the width direction of the steel sheet, but by passing through the pickling tank 6, the temperature can be made uniform. By performing the pickling process, uneven deformation resistance due to uneven temperature in the width direction of the steel sheet is eliminated, so it is possible to suppress shape defects caused by uneven deformation resistance during the cold rolling process.

[冷間圧延工程]
冷間圧延工程では、熱間圧延鋼板2を冷間圧延する。冷間圧延には、図1に示すように熱間圧延鋼板2の通板方向Rに複数対の冷間圧延ロールを配置させた連続圧延機10を用いてもよく、または1基のミルで繰り返し圧延するリバース圧延機などの公知の圧延機を用いてもよい。図1の例では、熱間圧延鋼板2は、通板中に連続圧延機10の圧延ロールに挟まれて圧下されことで、冷間圧延が行われる。
[Cold rolling process]
In the cold rolling process, the hot rolled steel plate 2 is cold rolled. For cold rolling, a continuous rolling mill 10 having a plurality of pairs of cold rolling rolls arranged in the passing direction R of the hot rolled steel sheet 2 as shown in FIG. 1 may be used, or a single mill may be used. A known rolling mill such as a reverse rolling mill that performs repeated rolling may be used. In the example of FIG. 1, the hot-rolled steel sheet 2 is sandwiched between rolling rolls of the continuous rolling mill 10 and rolled down during sheet passing, thereby performing cold rolling.

冷間圧延工程では、熱間圧延鋼板2を任意の圧下率で冷間圧延する。例えば、圧下率は好ましくは20%以上であり、より好ましくは30%以上である。また、圧下率は、好ましくは70%以下、より好ましくは60%である。本発明の製造方法では、冷間圧延工程より前に、熱間圧延鋼板2の幅方向端部の延性が十分担保されているため、冷間圧延工程における圧下率が上記範囲内であれば鋼板の端部割れは発生し難い。
ここで「圧下率」とは、冷間圧延前の板厚をh0、冷間圧延後(2段階以上の圧下を行う場合には最終段階)の板厚をh1としたとき、(h0-h1)/h0で表される板厚の変化率を意味する。圧下率の数値が大きいほど、冷間圧延による板厚の変化率が大きいことを示している。
In the cold rolling process, the hot rolled steel plate 2 is cold rolled at an arbitrary rolling reduction ratio. For example, the rolling reduction ratio is preferably 20% or more, more preferably 30% or more. Further, the rolling reduction ratio is preferably 70% or less, more preferably 60%. In the manufacturing method of the present invention, the ductility of the width direction end portion of the hot rolled steel plate 2 is sufficiently ensured before the cold rolling process, so that if the rolling reduction rate in the cold rolling process is within the above range, the steel plate End cracks are less likely to occur.
Here, the "rolling reduction ratio" means (h0 - h1 )/h0 means the rate of change in plate thickness. The larger the numerical value of the rolling reduction ratio, the greater the rate of change in plate thickness due to cold rolling.

また、上記冷間圧延工程における真ひずみは、好ましくは0.20以上、より好ましくは0.35以上である。また、真ひずみの上限としては、好ましくは1.30以下であり、より好ましくは1.10以下である。
ここで真ひずみは下式で求めることができる。

真ひずみ= -ln(h1/h0)
Further, the true strain in the cold rolling step is preferably 0.20 or more, more preferably 0.35 or more. Further, the upper limit of the true strain is preferably 1.30 or less, more preferably 1.10 or less.
Here, the true strain can be calculated using the following formula.

True strain = -ln (h1/h0)

[第2の巻取工程(冷間圧延工程後の巻取工程)]
冷間圧延工程後の冷間圧延鋼板を、第2の巻取工程によって巻き取ってもよい。図1では、冷間圧延鋼板がリールに巻き取られて冷間圧延鋼板のコイル11が形成される。
[Second winding process (winding process after cold rolling process)]
The cold rolled steel plate after the cold rolling process may be wound up in a second winding process. In FIG. 1, a cold rolled steel sheet is wound onto a reel to form a coil 11 of cold rolled steel sheet.

本明細書に開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed in this specification should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is not limited to the configuration of the above-described embodiments, but is indicated by the claims, and is intended to include all changes within the meaning and scope equivalent to the claims. Ru.

上記実施形態においては、加熱工程と、酸洗工程と、冷間圧延工程が1つの冷間圧延装置1内で連続して行われていたが、酸洗工程後の熱間圧延鋼板を巻き取ってコイルとし、そのコイルを別に用意した冷間圧延装置に運んで冷間圧延工程を実施してもよい。 In the above embodiment, the heating process, the pickling process, and the cold rolling process were performed continuously in one cold rolling apparatus 1, but the hot rolled steel plate after the pickling process is rolled up. Alternatively, the coil may be made into a coil, and the coil may be transported to a separately prepared cold rolling apparatus to perform a cold rolling process.

1.巻取温度とマルテンサイト分率との関係
表1に示す成分組成を有する鋼材から、以下の手順でφ8mm×H12mmの加工フォーマスタサンプルを2本作製した。厚さ30mmの熱延スラブから、厚さ方向と平行にφ12mm×H30mmの円柱サンプルを切り出した後、H方向の上端面および下端面から表層1mmを除去し、さらにH方向の中心部から4mmを除去して2分割することにより、φ12mm×H12mmの加工フォーマスタサンプルを2本得た。
1. Relationship between coiling temperature and martensite fraction Two processed former samples of 8 mm in diameter and 12 mm in height were produced from steel having the composition shown in Table 1 in the following procedure. After cutting out a cylindrical sample of φ12 mm x H30 mm parallel to the thickness direction from a hot-rolled slab with a thickness of 30 mm, 1 mm of the surface layer was removed from the upper and lower end surfaces in the H direction, and a further 4 mm was cut from the center in the H direction. By removing and dividing into two, two processed former samples of φ12 mm x H12 mm were obtained.

2本のサンプル(サンプルNo.1、No.2)を、図2および表2に示すような熱間圧延を模擬した条件で加工および熱処理を施した。熱間圧延の模試には、加工フォーマスタ試験機を用い、熱処理時の温度は、加工フォーマスタサンプルの表面に熱電対を接触させて、サンプル表面温度を測定した。なお、表2の「圧縮1」および「圧縮2」は熱間圧延に相当し、「冷却3」の「停止温度(T4)」(℃)は、巻取工程の巻取温度に相当し、「冷却4」の「速度」は、巻取工程におけるコイルの冷却速度に相当する。サンプルNo.1とNo.2は、「冷却3」の「停止温度(T4)」のみが異なり、その他の加工および熱処理条件は同一とした。 Two samples (Samples No. 1 and No. 2) were processed and heat treated under conditions simulating hot rolling as shown in FIG. 2 and Table 2. A processing Formaster tester was used for the hot rolling mock test, and the temperature during the heat treatment was measured by bringing a thermocouple into contact with the surface of the processing Formaster sample to measure the sample surface temperature. In addition, "compression 1" and "compression 2" in Table 2 correspond to hot rolling, "stop temperature (T4)" (°C) of "cooling 3" corresponds to the coiling temperature of the coiling process, The "speed" of "Cooling 4" corresponds to the cooling speed of the coil in the winding process. Sample No. 1 and no. Sample No. 2 differs from Cooling Sample No. 3 only in the "stopping temperature (T4)" and the other processing and heat treatment conditions are the same.

熱間圧延を模試し、さらに室温まで冷却した後の加工フォーマスタサンプル(以下「熱間圧延サンプル」と称することがある)中の金属組織を走査型電子顕微鏡で観察し、点算法(JIS G0555 付属書1)によってマルテンサイト分率を測定した。詳しい測定手順は以下の通りであった。 After performing a hot rolling test and further cooling to room temperature, the metallographic structure in the processed former sample (hereinafter sometimes referred to as "hot rolled sample") was observed using a scanning electron microscope, and the point counting method (JIS G0555 The martensite fraction was measured according to Appendix 1). The detailed measurement procedure was as follows.

円柱状の熱間圧延サンプルを、上面(円形)の直径を通り、かつ円柱の高さ方向と平行な切断面で切断した。切断面は、縦が高さH、横が直径の長方形であった。長方形の切断面を研磨してナイタール腐食した後、縦方向(高さ方向)に1/2H(Hは熱間圧延サンプルの高さ)で、幅方向(直径方向)の端部から1/4D(Dは熱間圧延サンプルの上面(円形)の直径)の位置で、走査型電子顕微鏡(SEM)にて1000倍で観察を行った。観察面における金属組織は、腐食されずに残った領域をマルテンサイト、腐食された領域をフェライトおよびパーライトと定義した。SEM像中の任意の一視野(1視野のサイズは90μm×120μm)に、縦方向に10本、横方向に10本の線を等間隔に引き、それらの網目状に引いた線の交点のうちマルテンサイト組織上に位置する交点の数を数えて、全交点の数(100交点)で割ることにより、マルテンサイト組織の面積率を求めた。この面積率を、マルテンサイト分率として表2に示す。 A cylindrical hot rolled sample was cut with a cutting plane passing through the diameter of the upper surface (circular) and parallel to the height direction of the cylinder. The cut surface was a rectangle with a height H in length and a diameter in width. After polishing the rectangular cut surface and corroding it with nital, it is 1/2H in the longitudinal direction (height direction) (H is the height of the hot rolled sample) and 1/4D from the end in the width direction (diameter direction). At the position (D is the diameter of the top surface (circle) of the hot-rolled sample), observation was performed using a scanning electron microscope (SEM) at a magnification of 1000 times. Regarding the metallographic structure on the observed surface, the region that remained uncorroded was defined as martensite, and the corroded regions were defined as ferrite and pearlite. Draw 10 lines in the vertical direction and 10 lines in the horizontal direction at equal intervals in one arbitrary field of view (the size of one field of view is 90 μm x 120 μm) in the SEM image, and then calculate the intersection of the lines drawn in a mesh pattern. The area ratio of the martensitic structure was determined by counting the number of intersections located on the martensitic structure and dividing by the total number of intersections (100 intersections). This area ratio is shown in Table 2 as the martensite fraction.

表2から分かるとおり、冷却3の冷却停止温度(T4)(巻取温度に相当)を540℃以上としたサンプルNo.1では、マルテンサイト分率が50%以下となっているのに対し、T4を540℃未満としたサンプルNo.2では、マルテンサイト分率が50%を超えていた。 As can be seen from Table 2, sample No. 3 had a cooling stop temperature (T4) (corresponding to the winding temperature) of 540° C. or higher in cooling 3. Sample No. 1 had a martensite fraction of 50% or less, whereas sample No. 1 had a T4 of less than 540°C. In No. 2, the martensite fraction exceeded 50%.

2.マルテンサイト分率と端部割れの関係
表1に示す成分組成を有する熱間圧延鋼板(厚さ2.3mm)の幅方向端部から、長さ(圧延方向と一致)300mm×幅60mm×厚さ2.3mmの鋼片を4枚ずつ切り出しした。2枚の鋼片を、900℃のソルトバスに10分間浸漬した後、600℃のソルトバスに8分浸漬し、その後空冷することにより、マルテンサイト分率が39%の鋼片を2枚作製した。また、残りの2枚の鋼片を、900℃のソルトバスに10分間浸漬した後、600℃のソルトバスに20分浸漬時間し、その後空冷することによりマルテンサイト分率が73%の鋼片を2枚作製した。
2. Relationship between martensite fraction and edge cracking From the widthwise end of a hot rolled steel plate (thickness 2.3mm) having the composition shown in Table 1, length (coinciding with the rolling direction) 300mm x width 60mm x thickness Four pieces of steel each having a diameter of 2.3 mm were cut out. By immersing two steel pieces in a 900°C salt bath for 10 minutes, then immersing them in a 600°C salt bath for 8 minutes, and then cooling them in air, two steel pieces with a martensite fraction of 39% were produced. did. In addition, the remaining two steel pieces were immersed in a 900°C salt bath for 10 minutes, then 20 minutes in a 600°C salt bath, and then air cooled to obtain a steel piece with a martensite fraction of 73%. Two pieces were made.

マルテンサイト分率が異なる複数の鋼片について、熱処理として、幅方向端部から10mmまでの範囲のみソルトバスに浸漬した。1枚の鋼片において、2つの端部の各々で熱処理温度を異ならせて2つの試験を行うことにより、4枚の鋼片を用いて8つの試験(表3お試験No.1~8)を行った。つまり、マルテンサイト分率が39%の2枚の鋼片を用いて試験No.2、4、6および8を行い、マルテンサイト分率が73%の2枚の鋼片を用いて試験No.1、3、5および7を行った。 For heat treatment, a plurality of steel pieces having different martensite fractions were immersed in a salt bath only within a range of 10 mm from the ends in the width direction. By conducting two tests with different heat treatment temperatures on each of the two ends of one steel piece, eight tests were conducted using four steel pieces (Table 3 Test Nos. 1 to 8). I did it. In other words, using two steel pieces with a martensite fraction of 39%, test No. Test No. 2, 4, 6 and 8 were conducted using two steel pieces with a martensite fraction of 73%. 1, 3, 5 and 7 were performed.

熱処理では、幅方向端部に熱電対を接触させた状態で幅方向端部をソルトバスに浸漬し、測定温度が所定の熱処理温度に到達したら、鋼片をソルトバスから取り出して空冷した。熱処理温度を表3に示す。なお、試験No.1、No.2は熱処理を行わなかった。
端部を熱処理した鋼片を、鋼片の長手方向に1パス当たり圧下率約0.25で、厚さ0.9mmまで冷間圧延した。冷間圧延後に、熱処理を行った幅方向端部を目視観察し、端部割れの有無を確認した。
In the heat treatment, the width direction end portion was immersed in a salt bath with a thermocouple in contact with the width direction end portion, and when the measured temperature reached a predetermined heat treatment temperature, the steel billet was taken out from the salt bath and air cooled. The heat treatment temperatures are shown in Table 3. In addition, test No. 1.No. No. 2 was not subjected to heat treatment.
The steel billet with heat-treated ends was cold rolled in the longitudinal direction of the steel billet at a reduction rate of about 0.25 per pass to a thickness of 0.9 mm. After cold rolling, the heat-treated ends in the width direction were visually observed to confirm the presence or absence of end cracks.

圧延面の幅方向端面近傍を観察し、0.5mm以上の端部割れが発生している場合に、端部割れが「あり」と判断した。0.5mm未満の端部割れのみであった場合、または端部割れが確認できなかった場合に、端部割れが「なし」と判断した。生産性は、熱処理温度から判断した。熱処理温度が450℃以下を生産性が「良」、450℃超を「不良」とした。450℃超の加熱が必要な場合、高額な設備投資と大きな消費電力が必要となり、鋼板の製造コスト上昇につながるためである。
表3に、端部割れおよび生産性の評価結果を示す。
The vicinity of the end face in the width direction of the rolled surface was observed, and if an end crack of 0.5 mm or more had occurred, it was determined that there was an end crack. When there was only an end crack of less than 0.5 mm, or when no end crack could be confirmed, it was determined that there was no end crack. Productivity was determined from the heat treatment temperature. The productivity was evaluated as "good" when the heat treatment temperature was 450.degree. C. or lower, and as "poor" when the heat treatment temperature exceeded 450.degree. This is because if heating above 450° C. is required, expensive equipment investment and large power consumption are required, leading to an increase in the manufacturing cost of the steel plate.
Table 3 shows the evaluation results of end cracking and productivity.

表3の結果から分かるとおり、試験No.4は、マルテンサイト分率が50%以下であり、かつ、幅方向端部の熱処理温度が350~450℃であったため、端部割れが生じず(つまり、耐エッジ割れ性が良好)、かつ生産性が高かった。
試験No.1、2は、幅方向端部を熱処理しなかったので、端部割れが生じていた(つまり、耐エッジ割れ性が悪い)。
試験No.3は、マルテンサイト分率が50%を超えていたため、端部割れが生じていた(つまり、耐エッジ割れ性が悪い)。
試験No.5~8は、熱処理温度(焼戻し温度)が500℃以上と高かったため端部割れは生じなかったものの(つまり、耐エッジ割れ性が良好)、熱処理温度が高いため、生産性が悪かった。
As can be seen from the results in Table 3, test no. In No. 4, the martensite fraction was 50% or less, and the heat treatment temperature at the edges in the width direction was 350 to 450°C, so no edge cracking occurred (that is, good edge cracking resistance), and Productivity was high.
Test No. In Nos. 1 and 2, the edges in the width direction were not heat-treated, so edge cracks occurred (that is, the edge crack resistance was poor).
Test No. In No. 3, edge cracking occurred because the martensite fraction exceeded 50% (that is, edge cracking resistance was poor).
Test No. In samples Nos. 5 to 8, the heat treatment temperature (tempering temperature) was as high as 500°C or higher, so no edge cracking occurred (that is, good edge cracking resistance), but the productivity was poor due to the high heat treatment temperature.

1 冷間圧延装置
2 熱間圧延鋼板
3 熱間圧延鋼板のコイル
5 加熱装置
6 酸洗槽
10 連続圧延機
11 冷間圧延鋼板のコイル
1 Cold rolling equipment 2 Hot rolled steel plate 3 Coil of hot rolled steel plate 5 Heating device 6 Pickling tank 10 Continuous rolling mill 11 Coil of cold rolled steel plate

Claims (5)

鋼片を熱間圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱間圧延鋼板を、幅方向端部の金属組織中のマルテンサイト分率が50%以下になるようにコイル状に巻き取る巻取工程と、
巻き取った熱間圧延鋼板をコイルから繰り出す繰出工程と、
繰り出された熱間圧延鋼板の幅方向端部を350~450℃の温度に加熱する加熱工程と、
前記加熱工程後の熱間圧延鋼板を冷間圧延する冷間圧延工程と、
を含む冷間圧延鋼板の製造方法。
a hot rolling process of hot rolling a steel billet;
a winding step of winding the hot rolled steel sheet obtained in the hot rolling step into a coil shape so that the martensite fraction in the metal structure at the width direction end portion is 50% or less;
A feeding process in which the wound hot rolled steel plate is fed out from the coil;
a heating step of heating the widthwise end portion of the unreeled hot rolled steel plate to a temperature of 350 to 450°C;
a cold rolling step of cold rolling the hot rolled steel plate after the heating step;
A method of manufacturing cold rolled steel sheet including.
前記巻取工程は、前記マルテンサイト分率が40%以下になるように巻き取ることを特徴とする請求項1に記載の冷間圧延鋼板の製造方法。 2. The method for manufacturing a cold rolled steel sheet according to claim 1, wherein in the winding step, winding is performed so that the martensite fraction is 40% or less. 前記巻取工程は、巻取温度540℃以上で巻き取ることを含む、請求項1または2に記載の冷間圧延鋼板の製造方法。 The method for manufacturing a cold rolled steel sheet according to claim 1 or 2, wherein the winding step includes winding at a winding temperature of 540°C or higher. 前記加熱工程において、前記熱間圧延鋼板の幅方向端部を加熱する温度が350℃以上400℃未満である、請求項1~3のいずれか1項に記載の冷間圧延鋼板の製造方法。The method for producing a cold-rolled steel sheet according to any one of claims 1 to 3, wherein in the heating step, the temperature at which the widthwise end portion of the hot-rolled steel sheet is heated is 350° C. or higher and lower than 400° C. 前記加熱工程より後で、前記冷間圧延工程より前に、前記熱間圧延鋼板を酸で洗浄する酸洗工程をさらに含む、請求項1~4のいずれか1項に記載の冷間圧延鋼板の製造方法。 The cold rolled steel sheet according to any one of claims 1 to 4, further comprising a pickling step of washing the hot rolled steel sheet with acid after the heating step and before the cold rolling step. manufacturing method.
JP2020208566A 2020-12-16 2020-12-16 Manufacturing method of cold rolled steel plate Active JP7448468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020208566A JP7448468B2 (en) 2020-12-16 2020-12-16 Manufacturing method of cold rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020208566A JP7448468B2 (en) 2020-12-16 2020-12-16 Manufacturing method of cold rolled steel plate

Publications (2)

Publication Number Publication Date
JP2022095311A JP2022095311A (en) 2022-06-28
JP7448468B2 true JP7448468B2 (en) 2024-03-12

Family

ID=82163144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020208566A Active JP7448468B2 (en) 2020-12-16 2020-12-16 Manufacturing method of cold rolled steel plate

Country Status (1)

Country Link
JP (1) JP7448468B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105514A (en) 2001-10-01 2003-04-09 Nippon Steel Corp High strength galvannealed steel sheet having excellent workability, and production method therefor
JP2011032549A (en) 2009-08-04 2011-02-17 Jfe Steel Corp High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof
JP2012148310A (en) 2011-01-19 2012-08-09 Jfe Steel Corp Method for heating steel plate edge part
JP2014025133A (en) 2012-07-30 2014-02-06 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and method for producing the same
JP2014159615A (en) 2013-02-19 2014-09-04 Nisshin Steel Co Ltd Cold rolled steel sheet for automatic transmission member and method of manufacturing the same
JP2015139810A (en) 2014-01-29 2015-08-03 Jfeスチール株式会社 cold rolling facility and cold rolling method
JP2015196843A (en) 2014-03-31 2015-11-09 Jfeスチール株式会社 High strength hot-dip galvannealed steel strip having small variation in material quality in steel strip and excellent in formability and production method therefor
WO2019151017A1 (en) 2018-01-31 2019-08-08 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP2019141888A (en) 2018-02-21 2019-08-29 株式会社神戸製鋼所 Cold rolling method
JP2020116587A (en) 2019-01-21 2020-08-06 日本製鉄株式会社 Rolling facility and rolling method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218404A (en) * 1993-01-25 1994-08-09 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel sheet having small edge drop

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105514A (en) 2001-10-01 2003-04-09 Nippon Steel Corp High strength galvannealed steel sheet having excellent workability, and production method therefor
JP2011032549A (en) 2009-08-04 2011-02-17 Jfe Steel Corp High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof
JP2012148310A (en) 2011-01-19 2012-08-09 Jfe Steel Corp Method for heating steel plate edge part
JP2014025133A (en) 2012-07-30 2014-02-06 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and method for producing the same
JP2014159615A (en) 2013-02-19 2014-09-04 Nisshin Steel Co Ltd Cold rolled steel sheet for automatic transmission member and method of manufacturing the same
JP2015139810A (en) 2014-01-29 2015-08-03 Jfeスチール株式会社 cold rolling facility and cold rolling method
JP2015196843A (en) 2014-03-31 2015-11-09 Jfeスチール株式会社 High strength hot-dip galvannealed steel strip having small variation in material quality in steel strip and excellent in formability and production method therefor
WO2019151017A1 (en) 2018-01-31 2019-08-08 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP2019141888A (en) 2018-02-21 2019-08-29 株式会社神戸製鋼所 Cold rolling method
JP2020116587A (en) 2019-01-21 2020-08-06 日本製鉄株式会社 Rolling facility and rolling method

Also Published As

Publication number Publication date
JP2022095311A (en) 2022-06-28

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
EP3181714B1 (en) Material for cold-rolled stainless steel sheets
JP4728710B2 (en) Hot-rolled steel sheet having excellent workability and manufacturing method thereof
JP7008532B2 (en) Cold rolling method
JP6760425B2 (en) Hot-rolled steel sheet with excellent scale adhesion and its manufacturing method
JP4082205B2 (en) Ferritic stainless steel sheet excellent in workability and ridging resistance and method for producing the same
JP6835046B2 (en) Thin steel sheet and its manufacturing method
JP6620522B2 (en) Hot rolled steel strip for non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP7317100B2 (en) hot rolled steel
TWI596217B (en) Cold-rolled steel sheet and its manufacturing method
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
JP7448468B2 (en) Manufacturing method of cold rolled steel plate
JP6948565B2 (en) Manufacturing method of martensitic stainless steel strip
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JP2011189394A (en) Method for manufacturing hot rolled steel sheet having excellent surface property
JP7192378B2 (en) Rolling equipment and steel plate rolling method
JP3598981B2 (en) Ferritic stainless steel sheet and its manufacturing method
RU2526345C2 (en) Cold-rolled steel sheet with perfect pliability and method of its production
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
WO2024147359A1 (en) Grain-oriented electrical steel sheet
JP5012052B2 (en) Method for producing galvannealed steel sheet
JP2017144483A (en) Cold Rolling Method
JP2010001504A (en) Stock for cold rolled stainless steel sheet capable of suppressing occurrence of roping and ear crack can be suppressed, and method for producing the same
KR20210153033A (en) Method for manufacturing steel strip and steel strip produced thereby
JP2020084228A (en) Ferritic stainless steel cold cast slab and producing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240229

R151 Written notification of patent or utility model registration

Ref document number: 7448468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151