JP2004181500A - Method for wire-drawing magnesium base alloy - Google Patents

Method for wire-drawing magnesium base alloy Download PDF

Info

Publication number
JP2004181500A
JP2004181500A JP2002352894A JP2002352894A JP2004181500A JP 2004181500 A JP2004181500 A JP 2004181500A JP 2002352894 A JP2002352894 A JP 2002352894A JP 2002352894 A JP2002352894 A JP 2002352894A JP 2004181500 A JP2004181500 A JP 2004181500A
Authority
JP
Japan
Prior art keywords
workpiece
magnesium
wire
based alloy
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352894A
Other languages
Japanese (ja)
Inventor
Yukihiro Oishi
幸広 大石
Nozomi Kawabe
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2002352894A priority Critical patent/JP2004181500A/en
Publication of JP2004181500A publication Critical patent/JP2004181500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for wire-drawing a magnesium alloy for obtaining a magnesium alloy wire having excellent strength and toughness. <P>SOLUTION: In this method, wire drawing of plural passes is performed by continuously passing the material to be worked of the magnesium base alloy through a plurality of dies. The material to be worked contains, by weight, 1.0-10.0% Zn. The wire drawing is performed after heating the material 20 to be worked with a heating means 11 on the upstream side of each die 13. It is preferable that the heating temperature is 150-350°C. It is preferable to install a cooling means 12 between the heating means 11 and the die 13. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はマグネシウム基合金の伸線方法に関するものである。特に、細線を容易に得ることができるマグネシウム基合金の伸線方法に関するものである。
【0002】
【従来の技術】
マグネシウム基合金は、アルミニウムよりも軽く、比強度、比剛性が鋼やアルミニウムよりも優れており、航空機部品、自動車部品などの他、各種電気製品のボディーなどにも広く利用されている。例えば、特許文献1には、Mg−Zn−X系(X:Y、Ce、Nd、Pr、Sm、Mm)の高強度のマグネシウム基合金が開示されている。
【0003】
【特許文献1】
特開平7−3375号公報
【0004】
【発明が解決しようとする課題】
しかし、Mgおよびその合金は、最密六方格子構造であるため延性に乏しく、塑性加工性が極めて悪い。そのため、Mgおよびその合金のワイヤを得ることは極めて困難であった。例えば、鋳造材の熱間圧延や熱間押出しによって丸棒が得られるものの、靭性が低く伸線することが難しい。
【0005】
また、特許文献1に記載の技術で得られる材料形状は、直径6mm、長さ270mmの短い棒材にすぎず、記述されている方法(粉末の押し出し)で長尺の線材を得ることはできない。特に、Y、La、Ce、Nd、Pr、Sm、Mm等の添加元素を数原子%オーダーで含むため、高コストであるだけでなく、リサイクル性にも劣る。
【0006】
従って、本発明の主目的は、強度と靭性に優れたマグネシウム基合金線を得ることができるマグネシウム基合金の伸線方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、複数パスの伸線を連続して行う際、各パスの伸線条件を特定することで上記の目的を達成する。
【0008】
すなわち、本発明マグネシウム基合金の伸線方法は、マグネシウム基合金の被加工材を複数枚のダイスに連続的に挿通して複数パスの伸線を行うマグネシウム基合金の伸線方法であって、前記被加工材は重量%でZn:1.0〜10.0%を含み、各ダイスよりも上流において被加工材を加熱して伸線を行うことを特徴とする。
【0009】
各パスにおいて被加工材を加熱して連続伸線を行うことで、延性に乏しいマグネシウム基合金が伸線できる。特に、加熱と伸線による塑性加工により、マグネシウム基合金の結晶粒径を微細かつ均一にし、多パスの伸線を可能にすることで、細径のワイヤを得ることができる。
【0010】
ここで、被加工材の加熱温度は150℃〜350℃とすることが好ましい。特に、ダイス直前の被加工材の温度を150℃〜350℃とすることが望ましい。このような温度範囲に被加工材の加熱温度を限定することで、複数パスの伸線を確実に行うことができる。特に、3パス以上、より好ましくは5パス以上の多パスの伸線を行うことができる。より好ましい加熱温度は200〜300℃である。
【0011】
上記被加工材の加熱手段は特に限定されないが、高周波加熱装置により加熱することが好ましい。高周波加熱装置によりインラインにて均一な被加工材の加熱を行うことができる。高周波の周波数は数kHz〜数百kHzとすることで所定温度に昇温することができる。加熱の効率を考えると高周波の周波数は100kHz程度が有効である。
【0012】
被加工材の加熱温度を200℃以上とした場合、加熱された被加工材をダイス挿入直前に200℃未満に冷却して各ダイスを通過させることが望ましい。加熱したままの被加工材では強度が低く、伸線すると断線しやすいが、加熱された被加工材を冷却することで、断線を生じることなくより多パスの伸線を行って、細径の線材を得ることができる。冷却の具体的手段は衝風や水冷が挙げられる。好ましい冷却速度は50℃/sec以上程度である。
【0013】
また、最初のパスと第2パス以降とで加熱後の冷却条件を変えても良い。つまり、最初のパスにおいて、被加工材の加熱温度を200℃以上とし、加熱された被加工材をダイス挿入直前に200℃未満50℃以上に冷却してダイスを通過させる。続いて、第2パス以降において、被加工材の加熱温度を200℃以上とし、加熱された被加工材をダイス挿入直前に200℃未満に冷却してダイスを通過させることが好ましい。特に、第2パス以降において、室温などの50℃未満にまで冷却しても伸線が可能である。
【0014】
通常、伸線前の母材には押出材が用いられる。押出材は結晶粒径やそのサイズのばらつきが大きく、冷間で伸線することができない。これに対し、一旦200℃以上に加熱して最初のパスでの伸線が行われると、その際の加熱と塑性加工によりマグネシウム基合金の結晶粒径を微細かつ均一にできる。そのため、第2パス以降では、200℃以上に加熱後、室温にまで冷却しても伸線を行うことができる。室温での伸線は、加熱した伸線に比べて線径精度に優れる。
【0015】
本発明方法による連続伸線において、1パスの加工度(断面減少率)は10%以上28%以下であることが好ましい。1パスの加工度が10%未満では加工効率が低く、逆に28%を超えると多パスでの加工が難しく、細径の線材を得ることが難しくなる。
【0016】
本発明方法において、伸線速度は数m〜数十mが好ましい。線径が細くなるほど速い速度で伸線できる傾向にある。実際の伸線速度は、線材の製造効率と断線の有無を考慮して適宜決定すれば良い。
【0017】
さらに、本発明方法では、被加工材に潤滑液が付着した状態で伸線することが好適である。潤滑液を用いることで、断線を抑制してより確実に細線にまで伸線することができる。被加工材に潤滑液を付着させる手段は、潤滑液中に被加工材及びダイスを浸漬したり、潤滑液を被加工材及びダイスにかけること等があげられる。その際、潤滑液が100℃以上に加熱されていることが望ましい。100℃以上に加熱した潤滑液を被加工材に付着させて伸線することで、多パスの伸線を行ってより細径の線材を得ることができる。特に、0.5mm以下のマグネシウム基合金線を得ることもできる。
【0018】
この伸線方法が適用されるマグネシウム基合金には、Zn:1.0〜10.0重量%を含有する鋳造用マグネシウム基合金と展伸用マグネシウム基合金のいずれも利用することができる。マグネシウム単体では十分な強度を得ることが難しいが、Znの含有量を上記のように限定したマグネシウム基合金は連続伸線を行うことで好ましい強度と靭性が得られる。特に、1.0〜10.0重量%のZnに加えて、重量%でMn:0.1〜2.0%、Zr:0.1〜2.0%および希土類元素:1.0〜3.0%から選択される元素を1種以上含むものが好適である。より具体的には、例えば、ASTM記号におけるZK系、EZ系などが利用できる。
【0019】
ZK系におけるZK60は、例えば、重量%でZn:4.8〜6.2%、Zr:0.4%以上を含有するマグネシウム基合金である。ZK40は、例えば、重量%で、Zn:3.5〜4.5%、Zr:0.45%以上を含有するマグネシウム基合金である。ZK10は、例えば、重量%でZn:0.8〜1.5%、Zr:0.4〜0.8%を含有するマグネシウム基合金である。
【0020】
EZ系におけるEZ33は、例えば、重量%でZn:2.0〜3.1%、Cu:0.1%以下、Ni:0.01%以下、RE:2.5〜4.0%、Zr:0.5〜1%を含有するマグネシウム基合金である。ここで、REは希土類元素であり、通常はPrとNdの混合物が利用されることが多い。
【0021】
上記化学成分の他にはMgおよび不純物が含まれる合金として利用されることが一般的である。不純物には、Fe、Si、Caなどが挙げられる。
【0022】
また、本発明伸線方法は、次のような伸線装置により伸線されることが好ましい。すなわち、被加工材が挿通されるダイスと、ダイスを通過した被加工材を巻き取る巻取り手段と、ダイスの上流において被加工材を加熱する加熱手段とを有し、これらダイス、巻取り手段及び加熱手段を1パスのユニットとして、複数ユニットが直列に配置されている伸線装置を用いる。
【0023】
加熱手段は被加工材を150〜350℃に加熱できるものが好適である。具体例としては、高周波加熱装置が挙げられる。
【0024】
さらに、ダイスと加熱手段との間に、加熱された被加工材を冷却する冷却手段を有することが好ましい。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(伸線装置)
まず、本発明方法を実施するための伸線装置を図1に基づいて説明する。図1は同装置の概略構成図である。この装置は、図示しないサプライより被加工材20が供給され、複数パスのユニット10を通って連続伸線が行われる。各パスのユニット10は、上流側から順に、加熱手段11、冷却手段12、ダイス13、巻取り手段14を具えている。加熱手段11は搬送される被加工材20を所定温度に加熱する高周波加熱装置である。冷却手段12は加熱手段で加熱された被加工材20を冷却する衝風冷却装置である。ダイス13は被加工材20を通過させることで減面加工を行う穴ダイスである。このダイス13の上流側には、潤滑油を供給する潤滑油ボックス15が一体化されている。巻取り手段14はダイス13を通過して減面された被加工材20を巻き取る巻取り釜である。図1では3パス分のみ伸線装置のユニットを示しているが、実際にはさらに複数のユニットが下流にも設けられている。
【0026】
このような装置を用いて、順次各ユニットに被加工材を通すことで線材を得る。なお、後述する各試験例において、伸線速度は最終線径φ3.2mmでは10m/min、φ2.4mmでは15m/min、φ1.75mmでは20m/min、φ1.2mmでは30m/min、φ0.8mmでは50m/minである。
【0027】
(試験例1)
ZK60合金、EZ33合金の押出材φ4.0mmを準備し、上記装置を用いて、以下のダイス系列に従って最大8パスの引抜き加工を実施した。
【0028】
ダイス系列:φ4.0→φ3.6→φ3.2→φ2.9→φ2.6→φ2.35→φ2.1→φ1.9→φ1.75(単位は全てmm)
【0029】
ここでは衝風冷却装置は用いず、高周波加熱装置の出口における被加工材の加熱温度を100〜400℃に変化させ、その後、自然放冷にて被加工材をダイスに導入して伸線加工を実施した。ダイス直前の被加工材の温度は加熱温度とほぼ同様のである。潤滑油は、常温のものを潤滑油ボックスに導入し、ダイスと被加工材に供給した。各条件において、連続伸線加工可能なパス数、最終線径、総断面減少率を調べ、伸線加工の可否を評価した。試験結果を表1、表2に示す。
【0030】
【表1】

Figure 2004181500
【0031】
【表2】
Figure 2004181500
【0032】
表1、2から明らかなように、100℃の加熱温度では両合金において、3パスの加工しかできず、十分に連続伸線できるとは言えない。150℃では、6パスの加工が可能であった。更に200℃以上300℃の温度範囲では、すべての合金において、最終パスまで加工可能であった。この温度条件では更なる加工も可能である。また、350℃では6パスの加工が可能であり、400℃になると被加工材の強度不足による断線が生じてしまい、ほとんど加工できず、表面酸化も見受けられた。以上の結果から、ダイス上流における被加工材の温度を150℃〜350℃、好ましくは200℃〜300℃に加熱することにより連続伸線加工が可能であることがわかる。
【0033】
(試験例2)
次に、ZK60合金、EZ33合金の押出材φ4.0mmを準備し、以下のダイス系列に従って図1に示す連続伸線機を用いて最大8パスの引抜き加工を実施した。
【0034】
ダイス系列:φ4.0→φ3.6→φ3.2→φ2.9→φ2.6→φ2.35→φ2.1→φ1.9→φ1.75(単位は全てmm)
【0035】
ここでは、加熱装置出口の被加工材加熱温度を150〜400℃に変化させ、衝風冷却装置によりダイス挿入直前には200℃以下になるように被加工材の温度を調整した。本例においても、用いた潤滑油は常温である。そして、試験例1と同様に伸線加工の可否を評価した。各条件において、連続伸線加工可能なパス数、最終線径、総断面減少率を表3、表4に示す。
【0036】
【表3】
Figure 2004181500
【0037】
【表4】
Figure 2004181500
【0038】
表3、4に示すように、150℃の加熱温度ではZK60、EZ33の何れの合金においても、2パス以下の加工しかできず、十分に連続伸線できるとは言えない。しかし、200℃以上に加熱すると150℃以下のダイス直前の温度であっても、問題なく最終パスまでの加工ができた。更に、各パス間で被加工材を200℃以上に加熱すると、ダイス直前で室温まで低下させても、ZK60、EZ33の両合金において連続伸線可能であった。従って、各パス間の被加工材温度を200℃以上とし、ダイス挿入直前に200℃以下に冷却しても連続伸線加工は可能である。特に、冷却後の被加工材の温度が常温での加工であれば、線径精度の点で優れる。また、400℃まで昇温してもダイス直前に冷却手段を設けることで、連続伸線加工が可能である。
【0039】
さらに、最初のパスにおいて、被加工材を250℃に加熱し、ダイス直前の被加工材の温度を30℃または100℃にまで冷却し、第2パス以降において、被加工材を250℃に加熱し、ダイス直前の被加工材の温度を30℃とした伸線加工も行った。その結果、最初のパスにおいてダイス直前の温度を100℃としたものは8パスまで伸線可能であったが、同温度を30℃としたものは、異なる被加工材を使って複数回試験すると1パス目で断線することもあり、8パス目まで加工可能なときもあった。これは、最初のパスに導入される被加工材は結晶粒径が粗く、そのばらつきも大きい押出材であるため、加工可能な場合と加工できない場合があり、基本的にダイス直前の温度が常温では十分な伸線が難しいのに対し、第2パス以降は既に伸線された伸線材で、結晶粒径が微細かつ均一になっているためダイス直前の温度が常温でも伸線が可能になったものと推測される。
【0040】
(試験例3)
ZK60合金、EZ33合金の押出材φ4.0mmを準備し、以下のダイス系列に従って図1に示す連続伸線機を用いて最大8パスの引抜き加工を実施した。
【0041】
▲1▼ダイス系列:φ4.0→φ3.9→φ3.8→φ3.7→φ3.6→φ3.5→φ3.4→φ3.3→φ3.2(単位は全てmm、各断面減少率5〜6%)
▲2▼ダイス系列:φ4.0→φ3.8→φ3.6→φ3.4→φ3.2→φ3.0→φ2.8→φ2.6→φ2.4(単位は全てmm、断面減少率10〜15%)
▲3▼ダイス系列:φ4.0→φ3.6→φ3.2→φ2.9→φ2.6→φ2.35→φ2.1→φ1.9→φ1.75(単位は全てmm、各断面減少率15〜20%)
▲4▼ダイス系列:φ4.0→φ3.5→φ3.0→φ2.6→φ2.2→φ1.9→φ1.6→φ1.4→φ1.2(単位は全てmm、各断面減少率23〜30%)
▲5▼ダイス系列:φ4.0→φ3.3→φ2.7→φ2.2→φ1.8→φ1.5→φ1.2→φ1.0→φ0.8(単位は全てmm、各断面減少率30〜37%)
【0042】
ここでは、加熱装置出口の被加工材加熱温度を200℃とし、衝風冷却装置を用いることなく伸線加工を実施した。ダイス直前の被加工材の温度は加熱温度とほぼ同様の約200℃である。本例においても、用いた潤滑油は常温である。そして、試験例1と同様に伸線加工の可否を評価した。各条件において、連続伸線加工可能なパス数、最終線径、総断面減少率を表5、表6に示す。
【0043】
【表5】
Figure 2004181500
【0044】
【表6】
Figure 2004181500
【0045】
表5、6に示すように、ダイス系列が▲1▼▲2▼▲3▼では、すべての合金において、最終まで連続伸線加工が可能であった。しかし、各パスの断面減少率が大きいダイス系列▲5▼では、全く連続伸線できなかった。ダイス系列▲4▼では、すべての合金において5パスの加工が可能であった。6パス目の加工度を見ると29.1%あり、それまでの加工は可能であったことから、1パスの加工度が28%以下であれば連続伸線加工可能と考えられる。
【0046】
(試験例4)
ZK60、EZ33合金の押出材φ4.0mmを準備し、衝風冷却装置は用いることなく試験例1における加熱温度200℃の条件にて連続伸線を繰り返し、φ1.1mmのワイヤを得た。ダイス直前の被加工材の温度は加熱温度とほぼ同様の約200℃である。得られたワイヤを以下のダイス系列に従って、図1に示す湿式連続伸線機を用いて引抜き加工を実施した。
【0047】
ダイス系列:φ1.1→φ1.0→φ0.91→φ0.82→φ0.74→φ0.67→φ0.61→φ0.55→φ0.5→φ0.45→φ0.41→φ0.37→φ0.33→φ0.3→φ0.27→φ0.24→φ0.22→φ0.2(単位は全てmm)
【0048】
ここでは、湿式潤滑油を室温、100℃、150℃、200℃に加熱し、加熱した潤滑油を潤滑油ボックスに供給して上記連続伸線を実施した。その結果、すべての合金において、150℃以上の潤滑油温度では最終パスまで加工が可能であった。これに対し、潤滑油温度が100℃以下では、加工初期で断線した。試験例1では150℃の加熱では4〜6パスまでの加工しかできていないが、この試験で6パスを超える加工が可能になったのは、細線であることにより均一な加工が可能になったことや、潤滑油温度の違いなどが考えられる。従って、潤滑油を加熱して行う湿式連続伸線加工では、0.5mm以下の線径の伸線加工に有効である。
【0049】
【発明の効果】
以上説明したように、本発明伸線方法によれば、連続伸線を行う際に各パスのダイスの上流で被加工材の加熱を行うことにより、断線を生じることなく多パスの伸線を行うことができ、細径の線材を得ることができる。
【図面の簡単な説明】
【図1】本発明伸線方法に用いる伸線装置の概略構成図である。
【符号の説明】
10 ユニット
11 加熱手段
12 冷却手段
13 ダイス
14 手段
15 潤滑油ボックス
20 被加工材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for drawing a magnesium-based alloy. In particular, the present invention relates to a method for drawing a magnesium-based alloy that can easily obtain a thin wire.
[0002]
[Prior art]
Magnesium-based alloys are lighter than aluminum, have higher specific strength and specific rigidity than steel and aluminum, and are widely used for bodies of various electric products in addition to aircraft parts and automobile parts. For example, Patent Document 1 discloses a Mg-Zn-X-based (X: Y, Ce, Nd, Pr, Sm, Mm) high-strength magnesium-based alloy.
[0003]
[Patent Document 1]
JP-A-7-3375
[Problems to be solved by the invention]
However, Mg and its alloys have poor ductility due to their close-packed hexagonal lattice structure, and are extremely poor in plastic workability. Therefore, it has been extremely difficult to obtain wires of Mg and its alloys. For example, although a round bar can be obtained by hot rolling or hot extrusion of a cast material, it has low toughness and is difficult to draw.
[0005]
Further, the material shape obtained by the technique described in Patent Document 1 is only a short bar having a diameter of 6 mm and a length of 270 mm, and a long wire cannot be obtained by the described method (powder extrusion). . In particular, since additional elements such as Y, La, Ce, Nd, Pr, Sm, and Mm are contained in the order of several atomic%, not only the cost is high but also the recyclability is poor.
[0006]
Accordingly, a main object of the present invention is to provide a magnesium-based alloy drawing method capable of obtaining a magnesium-based alloy wire having excellent strength and toughness.
[0007]
[Means for Solving the Problems]
The present invention achieves the above object by specifying the drawing conditions of each pass when performing the drawing continuously for a plurality of passes.
[0008]
That is, the method of drawing a magnesium-based alloy of the present invention is a method of drawing a magnesium-based alloy in which a workpiece to be processed of the magnesium-based alloy is continuously inserted through a plurality of dies and drawn in a plurality of passes. The work material contains Zn: 1.0 to 10.0% by weight, and the work material is heated and drawn at a position upstream of each die.
[0009]
By performing continuous drawing by heating the workpiece in each pass, a magnesium-based alloy having poor ductility can be drawn. In particular, by heating and plastic working by wire drawing, the crystal grain size of the magnesium-based alloy is made fine and uniform, and multi-pass wire drawing is made possible, whereby a thin wire can be obtained.
[0010]
Here, the heating temperature of the workpiece is preferably set to 150 ° C. to 350 ° C. In particular, it is desirable that the temperature of the workpiece just before the die is set to 150 ° C. to 350 ° C. By limiting the heating temperature of the workpiece to such a temperature range, wire drawing in a plurality of passes can be reliably performed. In particular, multi-pass drawing of three or more passes, more preferably five or more passes can be performed. A more preferred heating temperature is 200 to 300 ° C.
[0011]
The means for heating the workpiece is not particularly limited, but is preferably heated by a high-frequency heating device. The workpiece can be uniformly heated in-line by the high-frequency heating device. By setting the frequency of the high frequency to several kHz to several hundred kHz, the temperature can be raised to a predetermined temperature. Considering the heating efficiency, it is effective that the high frequency is about 100 kHz.
[0012]
When the heating temperature of the workpiece is set to 200 ° C. or higher, it is desirable to cool the heated workpiece to less than 200 ° C. immediately before inserting the dies and pass through the dies. The strength of the work material as it is heated is low, and it is easy to break when drawn, but by cooling the heated work material, it is possible to draw more passes without breaking and to reduce the diameter. A wire can be obtained. Specific means of cooling include blast and water cooling. A preferred cooling rate is about 50 ° C./sec or more.
[0013]
The cooling condition after heating may be changed between the first pass and the second and subsequent passes. That is, in the first pass, the heating temperature of the workpiece is set to 200 ° C. or higher, and the heated workpiece is cooled to less than 200 ° C. and 50 ° C. or higher immediately before inserting the dies and passed through the dies. Subsequently, after the second pass, the heating temperature of the workpiece is preferably set to 200 ° C. or higher, and the heated workpiece is preferably cooled to less than 200 ° C. and passed through the dies immediately before inserting the dies. In particular, after the second pass, drawing can be performed even if the temperature is cooled to less than 50 ° C. such as room temperature.
[0014]
Usually, an extruded material is used as a base material before drawing. Extruded materials have large variations in crystal grain size and size, and cannot be drawn in a cold state. On the other hand, once the wire is heated to 200 ° C. or more and drawn in the first pass, the crystal grain size of the magnesium-based alloy can be made fine and uniform by heating and plastic working at that time. Therefore, after the second pass, wire drawing can be performed even after heating to 200 ° C. or higher and then cooling to room temperature. Wire drawing at room temperature is superior in wire diameter accuracy as compared with heated wire drawing.
[0015]
In the continuous drawing by the method of the present invention, the degree of work (cross-section reduction rate) in one pass is preferably 10% or more and 28% or less. If the degree of processing in one pass is less than 10%, the processing efficiency is low, and if it exceeds 28%, processing in multiple passes is difficult, and it is difficult to obtain a wire having a small diameter.
[0016]
In the method of the present invention, the drawing speed is preferably several meters to several tens of meters. As the wire diameter becomes smaller, the wire tends to be drawn at a higher speed. The actual drawing speed may be appropriately determined in consideration of the production efficiency of the wire and the presence / absence of disconnection.
[0017]
Further, in the method of the present invention, it is preferable that the wire is drawn in a state where the lubricating liquid is attached to the workpiece. By using the lubricating liquid, disconnection can be suppressed and the wire can be more reliably drawn to a fine wire. Means for adhering the lubricating liquid to the workpiece include immersing the workpiece and the die in the lubricating liquid, and applying the lubricating liquid to the workpiece and the die. At this time, it is desirable that the lubricating liquid is heated to 100 ° C. or higher. By attaching the lubricating liquid heated to 100 ° C. or higher to the workpiece and drawing the wire, multi-pass drawing can be performed to obtain a thinner wire. In particular, a magnesium-based alloy wire of 0.5 mm or less can be obtained.
[0018]
As the magnesium-based alloy to which the wire drawing method is applied, any of a magnesium-based alloy for casting and a magnesium-based alloy for drawing and drawing containing Zn: 1.0 to 10.0% by weight can be used. Although it is difficult to obtain sufficient strength with magnesium alone, a magnesium-based alloy with a limited Zn content as described above can obtain preferable strength and toughness by performing continuous drawing. In particular, in addition to Zn of 1.0 to 10.0% by weight, Mn: 0.1 to 2.0%, Zr: 0.1 to 2.0% and rare earth element: 1.0 to 3 by weight%. Those containing one or more elements selected from 0.0% are preferable. More specifically, for example, the ZK system and the EZ system in the ASTM symbol can be used.
[0019]
ZK60 in the ZK system is, for example, a magnesium-based alloy containing 4.8 to 6.2% of Zn and 0.4% or more of Zr by weight%. ZK40 is, for example, a magnesium-based alloy containing 3.5 to 4.5% of Zn and 0.45% or more of Zr by weight. ZK10 is, for example, a magnesium-based alloy containing Zn: 0.8 to 1.5% and Zr: 0.4 to 0.8% by weight.
[0020]
EZ33 in the EZ system is, for example, Zn: 2.0 to 3.1%, Cu: 0.1% or less, Ni: 0.01% or less, RE: 2.5 to 4.0%, Zr by weight%. : Magnesium based alloy containing 0.5 to 1%. Here, RE is a rare earth element, and usually a mixture of Pr and Nd is often used.
[0021]
In general, it is used as an alloy containing Mg and impurities in addition to the above chemical components. The impurities include Fe, Si, Ca and the like.
[0022]
In the wire drawing method of the present invention, the wire is preferably drawn by the following wire drawing apparatus. That is, it has a die into which the workpiece is inserted, winding means for winding the workpiece passed through the die, and heating means for heating the workpiece upstream of the die. A wire drawing device in which a plurality of units are arranged in series with a heating unit as a one-pass unit is used.
[0023]
The heating means is preferably one capable of heating the workpiece to 150 to 350 ° C. A specific example is a high-frequency heating device.
[0024]
Further, it is preferable that a cooling means for cooling the heated workpiece is provided between the die and the heating means.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Drawing equipment)
First, a wire drawing apparatus for carrying out the method of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of the apparatus. In this apparatus, a workpiece 20 is supplied from a supply (not shown), and continuous drawing is performed through a unit 10 having a plurality of passes. The unit 10 of each pass includes a heating unit 11, a cooling unit 12, a die 13, and a winding unit 14 in order from the upstream side. The heating means 11 is a high-frequency heating device for heating the conveyed workpiece 20 to a predetermined temperature. The cooling means 12 is an blast cooling device that cools the workpiece 20 heated by the heating means. The die 13 is a hole die for reducing the surface area by passing the workpiece 20 through. A lubricating oil box 15 for supplying lubricating oil is integrated on the upstream side of the die 13. The take-up means 14 is a take-up pot that passes through the die 13 and takes up the reduced workpiece 20. Although FIG. 1 shows the units of the wire drawing apparatus for only three passes, a plurality of units are actually provided downstream.
[0026]
Using such an apparatus, a wire is obtained by sequentially passing a workpiece through each unit. In each of the test examples described below, the drawing speed was 10 m / min for a final wire diameter of 3.2 mm, 15 m / min for a diameter of 2.4 mm, 20 m / min for a diameter of 1.75 mm, and 30 m / min for a diameter of 1.2 mm. At 8 mm, it is 50 m / min.
[0027]
(Test Example 1)
An extruded material φ4.0 mm of a ZK60 alloy and an EZ33 alloy was prepared, and a maximum of eight passes were drawn using the above-described apparatus in accordance with the following die series.
[0028]
Die series: φ4.0 → φ3.6 → φ3.2 → φ2.9 → φ2.6 → φ2.35 → φ2.1 → φ1.9 → φ1.75 (all units are mm)
[0029]
Here, the blast cooling device was not used, the heating temperature of the workpiece at the outlet of the high-frequency heating device was changed to 100 to 400 ° C., and then the workpiece was introduced into a die by natural cooling, followed by wire drawing. Was carried out. The temperature of the workpiece just before the die is almost the same as the heating temperature. The lubricating oil was introduced at normal temperature into the lubricating oil box and supplied to the die and the workpiece. Under each condition, the number of passes that can be continuously drawn, the final wire diameter, and the total cross-sectional reduction rate were examined, and the possibility of drawing was evaluated. The test results are shown in Tables 1 and 2.
[0030]
[Table 1]
Figure 2004181500
[0031]
[Table 2]
Figure 2004181500
[0032]
As is clear from Tables 1 and 2, at a heating temperature of 100 ° C., both alloys can be processed only in three passes, and it cannot be said that continuous drawing can be sufficiently performed. At 150 ° C., six passes of processing were possible. Further, in the temperature range of 200 ° C. or more and 300 ° C., all alloys could be processed up to the final pass. Further processing is possible under this temperature condition. At 350 ° C., six passes of processing were possible, and at 400 ° C., disconnection occurred due to insufficient strength of the workpiece, hardly processing was possible, and surface oxidation was observed. From the above results, it can be seen that continuous drawing can be performed by heating the temperature of the workpiece upstream of the die to 150 ° C. to 350 ° C., preferably 200 ° C. to 300 ° C.
[0033]
(Test Example 2)
Next, a 4.0 mm extruded material of a ZK60 alloy and an EZ33 alloy was prepared, and a maximum of eight passes were drawn using a continuous wire drawing machine shown in FIG. 1 in accordance with the following die series.
[0034]
Die series: φ4.0 → φ3.6 → φ3.2 → φ2.9 → φ2.6 → φ2.35 → φ2.1 → φ1.9 → φ1.75 (all units are mm)
[0035]
Here, the heating temperature of the workpiece at the outlet of the heating device was changed to 150 to 400 ° C., and the temperature of the workpiece was adjusted to 200 ° C. or less immediately before the die was inserted by the blast cooling device. Also in this example, the lubricating oil used is at room temperature. Then, similar to Test Example 1, the possibility of wire drawing was evaluated. Tables 3 and 4 show the number of passes that can be continuously drawn, the final wire diameter, and the total cross-sectional reduction rate under each condition.
[0036]
[Table 3]
Figure 2004181500
[0037]
[Table 4]
Figure 2004181500
[0038]
As shown in Tables 3 and 4, at a heating temperature of 150 ° C., in any of ZK60 and EZ33, only two passes or less can be processed, and it cannot be said that continuous drawing can be sufficiently performed. However, when heated to 200 ° C. or higher, processing up to the final pass was performed without any problem even at a temperature immediately before the die of 150 ° C. or lower. Furthermore, when the workpiece was heated to 200 ° C. or more between each pass, continuous drawing was possible in both alloys ZK60 and EZ33 even if the temperature was lowered to room temperature immediately before the die. Therefore, continuous wire drawing can be performed even when the temperature of the workpiece between each pass is set to 200 ° C. or more and the temperature is cooled to 200 ° C. or less immediately before the die is inserted. In particular, if the temperature of the workpiece after cooling is normal temperature, it is excellent in terms of wire diameter accuracy. Further, even if the temperature is raised to 400 ° C., continuous wire drawing can be performed by providing a cooling means immediately before the die.
[0039]
Further, in the first pass, the workpiece is heated to 250 ° C., the temperature of the workpiece immediately before the die is cooled to 30 ° C. or 100 ° C., and in the second and subsequent passes, the workpiece is heated to 250 ° C. Then, wire drawing was performed with the temperature of the workpiece just before the die set to 30 ° C. As a result, when the temperature immediately before the die was 100 ° C. in the first pass, wire drawing could be performed up to 8 passes, but when the temperature was 30 ° C., the test was performed several times using different workpieces. In some cases, disconnection occurred in the first pass, and processing was possible up to the eighth pass. This is because the work material introduced into the first pass is an extruded material having a large crystal grain size and a large variation, so that there are cases where processing is possible and processing is not possible. Although it is difficult to draw wire sufficiently in the second pass, it is possible to draw wire at the normal temperature just before the die because the wire is already drawn from the second pass and the crystal grain size is fine and uniform. It is presumed that it was.
[0040]
(Test Example 3)
An extruded material φ4.0 mm of a ZK60 alloy and an EZ33 alloy was prepared, and a maximum of eight passes were drawn using a continuous wire drawing machine shown in FIG. 1 in accordance with the following die series.
[0041]
(1) Die series: φ4.0 → φ3.9 → φ3.8 → φ3.7 → φ3.6 → φ3.5 → φ3.4 → φ3.3 → φ3.2 (All units are mm, each section is reduced Rate 5-6%)
(2) Die series: φ4.0 → φ3.8 → φ3.6 → φ3.4 → φ3.2 → φ3.0 → φ2.8 → φ2.6 → φ2.4 (All units are mm, cross-section reduction rate 10-15%)
(3) Die series: φ4.0 → φ3.6 → φ3.2 → φ2.9 → φ2.6 → φ2.35 → φ2.1 → φ1.9 → φ1.75 (All units are mm, each section is reduced. Rate 15-20%)
(4) Die series: φ4.0 → φ3.5 → φ3.0 → φ2.6 → φ2.2 → φ1.9 → φ1.6 → φ1.4 → φ1.2 (All units are mm, each section is reduced. Rate 23-30%)
(5) Die series: φ4.0 → φ3.3 → φ2.7 → φ2.2 → φ1.8 → φ1.5 → φ1.2 → φ1.0 → φ0.8 (All units are mm, each cross section is reduced.) Rate 30-37%)
[0042]
Here, the heating temperature of the workpiece at the outlet of the heating device was set to 200 ° C., and the wire drawing was performed without using the blast cooling device. The temperature of the workpiece immediately before the die is about 200 ° C., which is almost the same as the heating temperature. Also in this example, the lubricating oil used is at room temperature. Then, similar to Test Example 1, the possibility of wire drawing was evaluated. Tables 5 and 6 show the number of passes that can be continuously drawn, the final wire diameter, and the total cross-section reduction rate under each condition.
[0043]
[Table 5]
Figure 2004181500
[0044]
[Table 6]
Figure 2004181500
[0045]
As shown in Tables 5 and 6, when the die series was (1), (2) and (3), continuous drawing was possible to the end in all alloys. However, in the die series (5) in which the cross-sectional reduction rate of each pass was large, continuous drawing could not be performed at all. In the die series (4), five passes were possible for all alloys. Looking at the degree of processing in the sixth pass, it was 29.1%, and processing up to that point was possible. Therefore, if the degree of processing in one pass is 28% or less, it is considered that continuous drawing can be performed.
[0046]
(Test Example 4)
An extruded material φ4.0 mm of ZK60 and EZ33 alloys was prepared, and continuous drawing was repeated under the condition of a heating temperature of 200 ° C. in Test Example 1 without using a blast cooling device to obtain a wire of φ1.1 mm. The temperature of the workpiece immediately before the die is about 200 ° C., which is almost the same as the heating temperature. The obtained wire was subjected to drawing using a wet continuous wire drawing machine shown in FIG. 1 in accordance with the following die series.
[0047]
Die series: φ1.1 → φ1.0 → φ0.91 → φ0.82 → φ0.74 → φ0.67 → φ0.61 → φ0.55 → φ0.5 → φ0.45 → φ0.41 → φ0.37 → φ0.33 → φ0.3 → φ0.27 → φ0.24 → φ0.22 → φ0.2 (All units are mm)
[0048]
Here, the wet lubricating oil was heated to room temperature, 100 ° C., 150 ° C., and 200 ° C., and the heated lubricating oil was supplied to a lubricating oil box to perform the continuous drawing. As a result, in all the alloys, processing was possible up to the final pass at a lubricating oil temperature of 150 ° C. or higher. On the other hand, when the lubricating oil temperature was 100 ° C. or less, disconnection occurred at the beginning of processing. In Test Example 1, heating at 150 ° C. could only perform processing up to 4 to 6 passes. However, in this test, processing that exceeded 6 passes was possible because thin wires enable uniform processing. And the difference in lubricating oil temperature. Therefore, wet continuous wire drawing performed by heating lubricating oil is effective for wire drawing with a wire diameter of 0.5 mm or less.
[0049]
【The invention's effect】
As described above, according to the wire drawing method of the present invention, when performing continuous wire drawing, by heating the workpiece upstream of the dies of each pass, multi-pass wire drawing can be performed without disconnection. And a wire having a small diameter can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a wire drawing apparatus used in the wire drawing method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Unit 11 Heating means 12 Cooling means 13 Dice 14 Means 15 Lubricating oil box 20 Workpiece

Claims (9)

マグネシウム基合金の被加工材を複数枚のダイスに連続的に挿通して複数パスの伸線を行うマグネシウム基合金の伸線方法であって、
前記被加工材は重量%でZn:1.0〜10.0%を含み、
各ダイスよりも上流において被加工材を加熱して伸線を行うことを特徴とするマグネシウム基合金の伸線方法。
A magnesium-based alloy drawing method in which a workpiece of a magnesium-based alloy is continuously inserted through a plurality of dies and drawn in multiple passes.
The work material contains Zn: 1.0 to 10.0% by weight.
A method for drawing a magnesium-based alloy, comprising heating a work material upstream of each die and drawing.
被加工材の加熱温度が150℃〜350℃であることを特徴とする請求項1に記載のマグネシウム基合金の伸線方法。The method for drawing a magnesium-based alloy according to claim 1, wherein the heating temperature of the workpiece is 150C to 350C. 被加工材の加熱温度が200℃以上であり、加熱された被加工材をダイス挿入直前に200℃未満に冷却して各ダイスを通過させることを特徴とする請求項1に記載のマグネシウム基合金の伸線方法。The magnesium-based alloy according to claim 1, wherein a heating temperature of the workpiece is equal to or higher than 200 ° C, and the heated workpiece is cooled to less than 200 ° C and passed through each die immediately before inserting the dies. Wire drawing method. 最初のパスにおいて、被加工材の加熱温度が200℃以上であり、加熱された被加工材をダイス挿入直前に200℃未満50℃以上に冷却してダイスを通過させ、
第2パス以降において、被加工材の加熱温度が200℃以上であり、加熱された被加工材をダイス挿入直前に200℃未満に冷却してダイスを通過させることを特徴とする請求項1に記載のマグネシウム基合金の伸線方法。
In the first pass, the heating temperature of the work material is 200 ° C. or more, and the heated work material is cooled to 50 ° C. or more below 200 ° C. and passed through the dies immediately before the dies are inserted,
2. The method according to claim 1, wherein, after the second pass, the heating temperature of the workpiece is 200 ° C. or higher, and the heated workpiece is cooled to less than 200 ° C. and passed through the dies immediately before inserting the dies. A method for drawing a magnesium-based alloy according to the above.
高周波加熱装置により被加工材を加熱することを特徴とする請求項1〜4のいずれかに記載のマグネシウム基合金の伸線方法。The method of drawing a magnesium-based alloy according to any one of claims 1 to 4, wherein the workpiece is heated by a high-frequency heating device. 1パスの加工度(断面減少率)が10%以上28%以下であることを特徴とする請求項1〜5のいずれかに記載のマグネシウム基合金の伸線方法。The method of drawing a magnesium-based alloy according to any one of claims 1 to 5, wherein a workability (cross-section reduction rate) in one pass is 10% or more and 28% or less. 被加工材に潤滑液が付着した状態で伸線され、この潤滑液が100℃以上に加熱されていることを特徴とする請求項1に記載のマグネシウム基合金の伸線方法。2. The method for drawing a magnesium-based alloy according to claim 1, wherein the wire is drawn in a state where the lubricating liquid is attached to the workpiece, and the lubricating liquid is heated to 100 ° C. or higher. 最終線径が0.5mm以下であることを特徴とする請求項7に記載のマグネシウム基合金の伸線方法。The method for drawing a magnesium-based alloy according to claim 7, wherein the final wire diameter is 0.5 mm or less. さらに、重量%でMn:0.1〜2.0%、Zr:0.1〜2.0%および希土類元素:1.0〜3.0%から選択される元素を1種以上含むことを特徴とする請求項1〜8のいずれかに記載のマグネシウム基合金の伸線方法。Furthermore, it is necessary that at least one element selected from the group consisting of Mn: 0.1 to 2.0%, Zr: 0.1 to 2.0% and rare earth element: 1.0 to 3.0% by weight is included. The method for drawing a magnesium-based alloy according to any one of claims 1 to 8, wherein:
JP2002352894A 2002-12-04 2002-12-04 Method for wire-drawing magnesium base alloy Pending JP2004181500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352894A JP2004181500A (en) 2002-12-04 2002-12-04 Method for wire-drawing magnesium base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352894A JP2004181500A (en) 2002-12-04 2002-12-04 Method for wire-drawing magnesium base alloy

Publications (1)

Publication Number Publication Date
JP2004181500A true JP2004181500A (en) 2004-07-02

Family

ID=32754365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352894A Pending JP2004181500A (en) 2002-12-04 2002-12-04 Method for wire-drawing magnesium base alloy

Country Status (1)

Country Link
JP (1) JP2004181500A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248018A (en) * 2011-05-31 2011-11-23 内蒙古五二特种材料工程技术研究中心 Method for preparing magnesium alloy welding wires
CN103624094A (en) * 2013-12-10 2014-03-12 宁波中和汽配有限公司 No-pickling cold drawing processing method of steel wire
CN104259228A (en) * 2014-07-29 2015-01-07 安徽乾元管业有限公司 Efficient prestress wire drawing and wire guiding integrated system for tubular pile
CN110193525A (en) * 2019-06-06 2019-09-03 哈尔滨理工大学 A method of quickly preparing magnesium alloy fine grain silk material and ultra-fine magnesium alloy silk material based on drawing process
JP2019194356A (en) * 2018-04-25 2019-11-07 東邦金属株式会社 Wire of magnesium alloy, and manufacturing method thereof
JP2019194355A (en) * 2018-04-25 2019-11-07 東邦金属株式会社 Wire of magnesium alloy, and manufacturing method thereof
CN111744977A (en) * 2020-06-17 2020-10-09 上海电机学院 Electro-plastic continuous drawing device for magnesium alloy wire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248018A (en) * 2011-05-31 2011-11-23 内蒙古五二特种材料工程技术研究中心 Method for preparing magnesium alloy welding wires
CN103624094A (en) * 2013-12-10 2014-03-12 宁波中和汽配有限公司 No-pickling cold drawing processing method of steel wire
CN103624094B (en) * 2013-12-10 2015-07-22 宁波中和汽配有限公司 No-pickling cold drawing processing method of steel wire
CN104259228A (en) * 2014-07-29 2015-01-07 安徽乾元管业有限公司 Efficient prestress wire drawing and wire guiding integrated system for tubular pile
CN104259228B (en) * 2014-07-29 2015-12-30 安徽乾元管业有限公司 The wire drawing of high efficient prestress pile tube, seal wire integral system
JP2019194356A (en) * 2018-04-25 2019-11-07 東邦金属株式会社 Wire of magnesium alloy, and manufacturing method thereof
JP2019194355A (en) * 2018-04-25 2019-11-07 東邦金属株式会社 Wire of magnesium alloy, and manufacturing method thereof
JP7370166B2 (en) 2018-04-25 2023-10-27 東邦金属株式会社 Magnesium alloy wire and its manufacturing method
JP7370167B2 (en) 2018-04-25 2023-10-27 東邦金属株式会社 Magnesium alloy wire and its manufacturing method
CN110193525A (en) * 2019-06-06 2019-09-03 哈尔滨理工大学 A method of quickly preparing magnesium alloy fine grain silk material and ultra-fine magnesium alloy silk material based on drawing process
CN111744977A (en) * 2020-06-17 2020-10-09 上海电机学院 Electro-plastic continuous drawing device for magnesium alloy wire

Similar Documents

Publication Publication Date Title
CA2706199C (en) High strength and high conductivity copper alloy pipe, rod, or wire
CN101151119B (en) Method of manufacturing a consumable filler metal for use in a welding operation
US9045816B2 (en) Magnesium welding wire
JP5975493B2 (en) Method for producing copper alloy wire
CN100569977C (en) The magnesium-zincium-manganese based magnesium alloy that contains cerium
EP1645651B1 (en) Method for producing magnesium base alloy formed article
JP2004181500A (en) Method for wire-drawing magnesium base alloy
JP4782987B2 (en) Magnesium-based alloy screw manufacturing method
EP2803423B1 (en) Copper tube for the construction industry and process for preparing it
CN102031433A (en) Magnesium-zinc-manganese-cerium magnesium alloy material with high zinc content
JP2004181501A (en) Method and apparatus for wiredrawing magnesium based alloy
JP4697657B2 (en) Manufacturing method of magnesium long material
CN109790612B (en) Method for producing a deformed semifinished product from an aluminium-based alloy
KR20080082092A (en) Ag-cu alloy for processing fine wire and method for manufacturing the same
US20230256491A1 (en) 6xxx aluminum alloys
JPH11293431A (en) Production of copper alloy extra fine wire
JP2015014046A (en) Magnesium alloy wire and method for producing the same
JPH08199308A (en) Invar alloy wire rod and its production
JP2010222692A (en) Copper alloy seamless pipe for supplying water and hot water
JP2004017149A (en) Magnesium based alloy filament body and its manufacturing method
JP2004017114A (en) Production method for magnesium alloy wire material
JP3735101B2 (en) Magnesium-based alloy pipe manufacturing method
JP2011141032A (en) Magnesium-base alloy screw
JP3568945B1 (en) Magnesium-based alloy pipe and method of manufacturing the same
JP2001096338A (en) Method of manufacturing copper tube for refrigerator or air-conditioner

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050622

A977 Report on retrieval

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080326

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A02