JP2001096338A - Method of manufacturing copper tube for refrigerator or air-conditioner - Google Patents

Method of manufacturing copper tube for refrigerator or air-conditioner

Info

Publication number
JP2001096338A
JP2001096338A JP27283299A JP27283299A JP2001096338A JP 2001096338 A JP2001096338 A JP 2001096338A JP 27283299 A JP27283299 A JP 27283299A JP 27283299 A JP27283299 A JP 27283299A JP 2001096338 A JP2001096338 A JP 2001096338A
Authority
JP
Japan
Prior art keywords
copper
copper tube
tube
refrigeration
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27283299A
Other languages
Japanese (ja)
Inventor
Masahiko Sasaki
正彦 佐々木
慶平 ▲冬▼
Kiyouhei Fuyu
Kiyoshi Oizumi
清 大泉
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Hitachi Cable Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Hitachi Cable Ltd
Priority to JP27283299A priority Critical patent/JP2001096338A/en
Publication of JP2001096338A publication Critical patent/JP2001096338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a qualified copper tube for a refrigerator or air-conditioner at low manufacturing cost. SOLUTION: A material copper tube is prepared by continuous casting process used a heating mold, and the material tube, having a directionally solidified structure, is processed to form the copper tube with <=10 mm of outer diameter for a refrigerator or air-conditioner by applying at least twice of cold drawing and annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍空調用銅管の
製造方法に関し、特に、低コストで、品質的にも安定し
た冷凍空調用銅管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a copper pipe for refrigeration and air conditioning, and more particularly to a method of manufacturing a copper pipe for refrigeration and air conditioning which is low in cost and stable in quality.

【0002】[0002]

【従来の技術】従来、冷凍機、あるいは空調機に使用さ
れる銅管の製造方法として、溶湯から鋳塊を製作し、こ
の鋳塊を加熱した後、熱間押出により銅の素管を作り、
これにチューブレデューサによる圧延と引き抜き加工を
繰り返し加えることによって所定のサイズの銅管を製造
する方法が知られている。
2. Description of the Related Art Conventionally, as a method of manufacturing a copper tube used in a refrigerator or an air conditioner, an ingot is manufactured from a molten metal, and after heating the ingot, a copper tube is formed by hot extrusion. ,
There is known a method of manufacturing a copper tube of a predetermined size by repeatedly adding rolling and drawing with a tube reducer.

【0003】また、従来の他の製造方法として、鋳塊に
熱間加工および冷間加工を施すことによって、一旦、所
望厚さの金属板を製造した後、これを所定のサイズの銅
管形状に曲げ加工し、合わせ目を溶接、あるいは鍛接等
によって接合する方法が知られている。
As another conventional manufacturing method, a metal plate having a desired thickness is once manufactured by subjecting an ingot to hot working and cold working, and then the metal plate is shaped into a copper pipe having a predetermined size. There is known a method in which the joint is bent by welding or forging.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら従来の
製造方法によると、前者の場合、高価な熱間押出設備等
が必要となるだけでなく、工程が複雑であることからコ
スト的に問題があり、また、押出ビレットの容量に限界
があるために製作可能な素管の長さに制約があり、この
点もコスト増の要因となっていた。
However, according to these conventional manufacturing methods, in the former case, not only expensive hot extrusion equipment is required, but also the process is complicated, so that there is a problem in cost. In addition, since the capacity of the extruded billet is limited, the length of the raw tube that can be manufactured is limited, which also causes an increase in cost.

【0005】一方、後者の製造方法においては、金属板
を得るための熱間および冷間圧延、管体形状にするため
の曲げ加工、あるいはその後に続く溶接、鍛接加工と工
程数が多く、従って、より高コストになるとともに、さ
らに、この方法の場合には、溶接部、あるいは鍛接部に
腐食が発生しやすいことからくる品質上の問題がある。
On the other hand, in the latter manufacturing method, hot and cold rolling for obtaining a metal plate, bending for forming a tubular body, or subsequent welding and forging are performed in a large number of steps. In addition, the cost becomes higher, and furthermore, this method has a quality problem due to the fact that corrosion tends to occur in the welded portion or the forged portion.

【0006】従って、本発明の目的は、低コストで、品
質的にも問題のない冷凍空調用銅管の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method of manufacturing a copper tube for refrigeration and air conditioning which is low in cost and has no problem in quality.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、銅の素管を延伸加工することによって所
定のサイズの冷凍空調用銅管を製造する冷凍空調用銅管
の製造方法において、一方向凝固組織を有する前記銅の
素管を加熱鋳型を使用した連続鋳造により製作し、製作
された前記銅の素管に冷間延伸加工と焼鈍処理とを少な
くとも2回にわたって施すことにより、外径10mm以
下の銅管とすることを特徴とする冷凍空調用銅管の製造
方法を提供するものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a method of manufacturing a copper tube for refrigeration and air conditioning, which is used to produce a copper tube for refrigeration and air conditioning of a predetermined size by stretching a copper tube. In the method, the copper tube having a unidirectional solidification structure is manufactured by continuous casting using a heating mold, and the manufactured copper tube is subjected to at least two times of cold drawing and annealing. Accordingly, the present invention provides a method for producing a copper pipe for refrigeration and air conditioning, which is characterized in that the copper pipe has an outer diameter of 10 mm or less.

【0008】上記の加熱鋳型を使用した連続鋳造とは、
溶湯を鋳型から連続的に排出させる鋳造方式を意味し、
鋳型として加熱型の鋳型を使用することにより鋳型の出
口の内壁面の温度を鋳造材の凝固点以上に保ち、これに
より鋳造殻の生成を防止した鋳造方式をいう。
[0008] Continuous casting using the above-mentioned heating mold is as follows.
Means a casting method that continuously discharges the molten metal from the mold,
A casting method in which the temperature of the inner wall surface at the outlet of the mold is maintained at a temperature equal to or higher than the freezing point of the cast material by using a heating mold as a mold, thereby preventing the formation of a casting shell.

【0009】本発明において最初に行われる焼鈍は、冷
間で延伸加工された鋳造組織を再結晶させるために行う
ものであるが、これにより生成される再結晶の粒径は大
きく、粒界も弱いことから、これを冷凍機、あるいは空
調機の熱交換器に適用することは不可能である。
In the present invention, the first annealing is performed in order to recrystallize the cast structure that has been cold-drawn, and the recrystallization produced thereby has a large grain size and a grain boundary. Due to its weakness, it is not possible to apply it to a refrigerator or a heat exchanger of an air conditioner.

【0010】冷凍機の熱交換器等に使用される銅管にお
いては、急激な曲げ加工が行われるため、10mm以下
の外径(断面円形)と50%以上の伸び特性を有してい
ることが必要であり、さらに、この伸び特性を確保する
ためには、結晶粒径を50μm以下に制御しなければな
らない。
[0010] A copper tube used for a heat exchanger of a refrigerator has an outer diameter (circular cross section) of 10 mm or less and an elongation characteristic of 50% or more because sharp bending is performed. Is necessary, and in order to secure this elongation characteristic, the crystal grain size must be controlled to 50 μm or less.

【0011】2回目の冷間延伸加工と焼鈍処理には、粗
い再結晶粒を50μm以下の細密な粒径に改質する性質
があり、これにより50%以上の伸び特性が確保される
ようになる。冷間延伸と焼鈍処理を2回を超えて実施し
たり、各焼鈍前における延伸加工を数回に分けて行うこ
とは差し支えない。
The second cold stretching and annealing treatments have the property of modifying coarse recrystallized grains to have a fine grain size of 50 μm or less, so that elongation characteristics of 50% or more can be secured. Become. The cold stretching and the annealing may be performed more than twice, or the stretching before each annealing may be performed in several times.

【0012】また、最初の焼鈍処理に関しては、650
〜900℃の温度範囲で行うことが好ましく、この温度
範囲は、均質で細密な再結晶組織の生成を保証する。処
理温度が650℃を下廻る場合には、均一な再結晶組織
の確保を難しくする。
[0012] Regarding the first annealing process, 650
It is preferably carried out in a temperature range of 900900 ° C., which ensures the production of a homogeneous and fine recrystallized structure. If the processing temperature is lower than 650 ° C., it is difficult to ensure a uniform recrystallized structure.

【0013】これは、加熱鋳型を使用した連続鋳造によ
り製造された銅の素管が、特有の一方向凝固組織を有し
ていることから、延伸加工された後も再結晶しにくいか
らであり、一方、処理温度を900℃を超えて設定する
と、再結晶組織が粗大化しやすくなり、細密な結晶組織
の確保が困難になる。
[0013] This is because a copper tube manufactured by continuous casting using a heating mold has a unique unidirectional solidification structure, and thus is difficult to recrystallize even after being stretched. On the other hand, if the processing temperature is set to be higher than 900 ° C., the recrystallized structure tends to be coarse, and it is difficult to secure a fine crystal structure.

【0014】銅の素管を鋳造する銅材料の中にPを含有
させて脱酸効果を持たせることは実際的である。Pの含
有量は0.015〜0.04重量%の範囲に設定するこ
とが好ましく、この範囲を下廻ると脱酸効果に充分な結
果が得られず、超過すると鋳造割れが生ずるようにな
る。このPと銅の組み合わせにおいて、銅材料中に不可
避的な不純物が混入することは差し支えない。
It is practical to add P to a copper material for casting a copper tube to have a deoxidizing effect. The content of P is preferably set in the range of 0.015 to 0.04% by weight. If the content is less than this range, a sufficient result for the deoxidizing effect cannot be obtained. . In this combination of P and copper, inevitable impurities may be mixed into the copper material.

【0015】本発明において必要とされる加工設備は、
連続鋳造装置とこれに取り付けられる加熱鋳型、および
延伸加工のための、たとえば、簡便なフローティングプ
ラグを使用した引き抜き加工装置等で充分であり、いず
れも広く普及し、あるいは価格も安価な設備である。従
来において、この種の銅管を製造するのに不可欠とされ
てきた熱間押出装置のような特別な設備は一切必要とし
ない。
The processing equipment required in the present invention includes:
A continuous casting apparatus and a heating mold attached thereto, and a drawing apparatus using a simple floating plug for stretching, for example, are sufficient, all of which are widely spread or inexpensive facilities. . No special equipment such as a hot extruder, which has heretofore been indispensable for producing this type of copper tube, is required.

【0016】本発明により製造される銅管は、50μm
以下の結晶組織とこれに基づく50%以上の高い伸び特
性とによって特徴づけられ、さらに、外径が10mm以
下に設定される。急激な曲げ加工が前提となる冷凍機、
あるいは空調機用の熱交換器のための配管材において
は、以上の結晶組織と伸び、および外径寸法が必須要件
となる。
The copper tube manufactured according to the present invention has a thickness of 50 μm.
It is characterized by the following crystal structure and high elongation characteristics of 50% or more based on the crystal structure, and further, the outer diameter is set to 10 mm or less. Refrigerators that require rapid bending
Alternatively, in a piping material for a heat exchanger for an air conditioner, the above crystal structure, elongation, and outer diameter are essential requirements.

【0017】[0017]

【発明の実施の形態】次に、本発明による冷凍空調用銅
管の製造方法の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a method for manufacturing a copper pipe for refrigeration and air conditioning according to the present invention will be described.

【実施例1】1050℃に加熱されて上下に開口した黒
鉛の鋳型と、中子をこの鋳型の中心に位置させた縦型連
続鋳造装置を使用し、さらに、銅材料として0.017
重量%のPを含有する銅を使用し、鋳造速度を250m
m/分に設定することによって、36mmの外径と2m
mの肉厚を有したリン脱酸銅の素管(断面円形。以下同
じ)を連続鋳造した。
EXAMPLE 1 A graphite mold heated to 1050 ° C. and opened vertically and a vertical continuous casting apparatus having a core positioned at the center of the mold were used.
Using copper containing weight% of P, casting speed of 250 m
m / min, an outer diameter of 36 mm and 2 m
A phosphor-deoxidized copper tube having a wall thickness of m (circular in cross section; the same applies hereinafter) was continuously cast.

【0018】次に、この銅の素管を加工度60%の条件
下で冷間延伸して外径21mm、肉厚1.4mmの銅管
に加工した後、1回目の焼鈍処理を800℃の温度で1
時間実施し、引き続きこれを延伸加工することにより外
径9.53mm、肉厚0.4mmの目標サイズまで加工
し、次いで、450℃で20分間の焼鈍処理を行うこと
により所定の冷凍空調用銅管を製造した。
Next, the copper tube was cold-drawn under the condition of a working degree of 60% to form a copper tube having an outer diameter of 21 mm and a wall thickness of 1.4 mm. At the temperature of 1
This is carried out for a predetermined time, and then stretched to form a target size having an outer diameter of 9.53 mm and a wall thickness of 0.4 mm. Tubes were manufactured.

【0019】[0019]

【実施例2】実施例1において、黒鉛鋳型の加熱温度を
1070℃、P含有量を0.023重量%、および鋳造
速度を200mm/分にそれぞれ設定することにより、
外径51mm、肉厚2.6mmの銅の素管を製造し、次
いで、この素管を、加工度を52.5%に設定した冷間
延伸によって外径35mm、肉厚1.8mmの銅管に加
工し、さらに、これに800℃で30分間の焼鈍処理を
施した後、再び冷間延伸加工を行って外径9mm、肉厚
0.5mmの目標サイズまで加工し、最後に、450℃
で30分間の焼鈍処理を施すことにより所定の冷凍空調
用銅管を製造した。
Example 2 In Example 1, the heating temperature of the graphite mold was set at 1070 ° C., the P content was set at 0.023% by weight, and the casting speed was set at 200 mm / min.
A copper tube having an outer diameter of 51 mm and a wall thickness of 2.6 mm was manufactured, and then this copper tube was subjected to cold drawing at a working ratio of 52.5% to form a copper tube having an outer diameter of 35 mm and a wall thickness of 1.8 mm. After being processed into a tube and further subjected to an annealing treatment at 800 ° C. for 30 minutes, it is again subjected to cold drawing to be processed to a target size of 9 mm in outer diameter and 0.5 mm in wall thickness. ° C
By performing an annealing treatment for 30 minutes, a copper pipe for refrigeration and air conditioning was manufactured.

【0020】[0020]

【実施例3】実施例1において、黒鉛鋳型の加熱温度を
1080℃、P含有量を0.03重量%、および鋳造速
度を200mm/分にそれぞれ設定することにより、外
径42mm、肉厚2.2mmの銅の素管を製造し、次い
で、この素管を、加工度を55.4%に設定した冷間延
伸によって外径26mm、肉厚1.6mmの銅管に加工
し、さらに、これに780℃で1時間の焼鈍処理を施し
た後、再度冷間延伸を行って外径9.53mm、肉厚
0.4mmまで縮管し、最後に、これに500℃で20
分間の焼鈍処理を施すことによって所定の冷凍空調用銅
管を製造した。
Example 3 In Example 1, the heating temperature of the graphite mold was set at 1080 ° C., the P content was set at 0.03% by weight, and the casting speed was set at 200 mm / min. A copper tube of 0.2 mm was manufactured, and then the tube was formed into a copper tube having an outer diameter of 26 mm and a wall thickness of 1.6 mm by cold drawing with a working ratio set to 55.4%. After performing an annealing treatment at 780 ° C. for 1 hour, cold drawing was performed again to reduce the tube to an outer diameter of 9.53 mm and a wall thickness of 0.4 mm.
A predetermined copper tube for refrigeration and air conditioning was manufactured by performing an annealing treatment for 10 minutes.

【0021】[0021]

【参考例1】実施例1の連続鋳造において、Pの含有量
を0.05重量%に設定し、他を同一条件に設定して連
続鋳造を行ったところ、鋳造された素管の表面に割れが
発生した。
REFERENCE EXAMPLE 1 In the continuous casting of Example 1, the content of P was set to 0.05% by weight, and the other conditions were set to the same conditions, and continuous casting was performed. Cracks occurred.

【0022】[0022]

【参考例2】1回目の焼鈍処理の前のすべての条件を実
施例1と同じ条件に設定し、1回目の焼鈍を640℃で
1時間実施したところ、2回目の冷間延伸加工において
断管が発生した。結晶組織を確認した結果、結晶が混粒
状態を呈していた。
Reference Example 2 All the conditions before the first annealing were set to the same conditions as in Example 1, and the first annealing was performed at 640 ° C. for 1 hour. A tube has developed. As a result of confirming the crystal structure, the crystals were in a mixed particle state.

【0023】[0023]

【参考例3】実施例1において、P含有量を0.03重
量%に設定した以外、1回目の焼鈍処理を行う前の諸条
件を実施例1と同一条件に設定して加工を進めた後、1
回目の焼鈍を920℃で1時間実施したところ、2回目
の延伸加工において断管が発生した。結晶組織を確認し
た結果、再結晶組織の肥大化が認められた。
Reference Example 3 In Example 1, the processing was carried out under the same conditions as in Example 1 except that the P content was set to 0.03% by weight, before the first annealing treatment. Later, 1
When the second annealing was performed at 920 ° C. for 1 hour, a tube break occurred in the second stretching process. As a result of confirming the crystal structure, enlargement of the recrystallized structure was observed.

【0024】表1に、以上の実施例および参考例におけ
る主要点と、これら各例によって得られた冷凍空調用銅
管の結晶粒径の観察結果と伸び特性を示す。
Table 1 shows the main points in the above Examples and Reference Examples, the results of observation of the crystal grain size of the copper tubes for refrigeration and air conditioning obtained in each of these Examples, and the elongation characteristics.

【0025】[0025]

【表1】 [Table 1]

【0026】表1によると、実施例により製造された冷
凍空調用銅管が、いずれも50μm以下の細密な結晶組
織を有し、従って、50%を超える高い伸び特性を示し
ていることが認められる。参考例が、伸び特性を評価す
る段階に至っていない理由は、参考例1がPの含有量が
過剰であること、参考例2が1回目の焼鈍処理が温度不
足であること、参考例3が1回目の焼鈍処理が高温に過
ぎることによる。本発明の実施に当たっては、P含有量
と1回目の焼鈍処理温度に配慮する必要がある。
According to Table 1, it is recognized that all of the copper tubes for refrigerating and air-conditioning manufactured according to the examples have a fine crystal structure of 50 μm or less and therefore exhibit high elongation characteristics exceeding 50%. Can be The reason why the reference example has not reached the stage of evaluating the elongation property is that the reference example 1 has an excessive P content, the reference example 2 is that the first annealing treatment is insufficient in temperature, and the reference example 3 is that the reference temperature is insufficient. This is because the first annealing treatment is too hot. In carrying out the present invention, it is necessary to consider the P content and the first annealing temperature.

【0027】[0027]

【発明の効果】以上説明したように、本発明による冷凍
空調用銅管の製造方法によれば、銅の素管を加熱鋳型を
利用した連続鋳造によって鋳造し、これにより鋳造され
た銅の素管における特異な一方向凝固組織を考慮して、
冷間延伸と焼鈍処理とを少なくとも2回にわたって行
い、これによって50μm以下の細密結晶組織に裏付け
られた50%以上の高い伸び特性を有する冷凍空調用銅
管を製造するものであり、従って、冷凍機、あるいは空
調機用熱交換器の配管材として、最適な銅管を提供する
ことができる。
As described above, according to the method for manufacturing a copper tube for refrigeration and air conditioning according to the present invention, a copper tube is cast by continuous casting using a heating mold, and the copper material thus cast is cast. Considering the unique unidirectionally coagulated tissue in the tube,
Cold drawing and annealing are performed at least twice, thereby producing a copper tube for refrigeration and air conditioning having high elongation characteristics of 50% or more, which is supported by a fine crystal structure of 50 μm or less. An optimal copper pipe can be provided as a piping material for a heat exchanger for an air conditioner or an air conditioner.

【0028】しかも、鋳造から所定の銅管を得るまでの
製造過程において、熱間押出装置のような特別な設備を
一切必要とせず、工程も簡潔であり、また、鋳造によっ
て銅の素管を製作するものであることから、熱間押出方
式におけるようなビレットの容量制限からくる銅素管の
長さの制約もなく、従って、これらの低コスト要因に基
づいた安価な冷凍空調用銅管の製造が可能となる。金属
板を曲げ加工して、溶接、鍛接する従来の方法における
ような品質上の問題は、もちろんない。
Further, in the manufacturing process from casting to obtaining a predetermined copper tube, no special equipment such as a hot extrusion device is required, the process is simple, and the copper tube is formed by casting. Since it is manufactured, there is no restriction on the length of the copper tube due to the capacity limitation of the billet as in the hot extrusion method, and therefore, an inexpensive copper tube for refrigeration and air conditioning based on these low cost factors is used. Manufacturing becomes possible. Of course, there is no quality problem as in the conventional method of bending and welding and forging a metal plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 691 C22F 1/00 691B 1/08 1/08 A (72)発明者 ▲冬▼ 慶平 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 (72)発明者 大泉 清 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 (72)発明者 佐々木 元 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 Fターム(参考) 4E004 AC03 CA00 NB05 NC07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 691 C22F 1/00 691B 1/08 1/08 A (72) Inventor ▲ Winter ▼ Keihei 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable, Ltd.System Materials Research Laboratories (72) Inventor Kiyoshi Oizumi 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable, Ltd. 3550 No. Ichikida-cho F-term (reference) 4E004 AC03 CA00 NB05 NC07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】銅の素管を延伸加工することによって所定
のサイズの冷凍空調用銅管を製造する冷凍空調用銅管の
製造方法において、 一方向凝固組織を有する前記銅の素管を加熱鋳型を使用
した連続鋳造により製作し、 製作された前記銅の素管に冷間延伸加工と焼鈍処理を少
なくとも2回にわたって施すことにより、外径10mm
以下の銅管とすることを特徴とする冷凍空調用銅管の製
造方法。
1. A method for manufacturing a copper tube for refrigeration and air conditioning, wherein a copper tube for refrigeration and air conditioning having a predetermined size is produced by stretching a copper tube. It is manufactured by continuous casting using a mold, and subjected to cold drawing and annealing at least twice for the manufactured copper base tube, so that the outer diameter is 10 mm.
A method for producing a copper tube for refrigeration and air conditioning, comprising the following copper tube.
【請求項2】前記焼鈍処理は、初回の焼鈍温度を650
〜900℃に設定して行うことを特徴とする請求項第1
項記載の冷凍空調用銅管の製造方法。
2. The annealing treatment according to claim 1, wherein the first annealing temperature is 650.
2. The method according to claim 1, wherein the temperature is set to about 900 ° C.
The method for producing a copper pipe for refrigeration and air conditioning according to the above item.
【請求項3】前記銅管は、50μm以下の平均結晶粒径
と50%以上の伸びを有することによって特徴づけられ
る請求項第1項あるいは第2項記載の冷凍空調用銅管の
製造方法。
3. The method according to claim 1, wherein the copper tube has an average crystal grain size of 50 μm or less and an elongation of 50% or more.
【請求項4】前記銅の素管は、0.015〜0.04重
量%のPと残部が銅から成る銅材料により鋳造されるこ
とを特徴とする請求項第1項ないし第3項のいずれかに
記載の冷凍空調用銅管の製造方法。
4. The copper pipe according to claim 1, wherein said copper pipe is cast from a copper material comprising 0.015 to 0.04% by weight of P and the balance copper. The method for producing a copper pipe for refrigeration and air conditioning according to any one of the above.
JP27283299A 1999-09-27 1999-09-27 Method of manufacturing copper tube for refrigerator or air-conditioner Pending JP2001096338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27283299A JP2001096338A (en) 1999-09-27 1999-09-27 Method of manufacturing copper tube for refrigerator or air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27283299A JP2001096338A (en) 1999-09-27 1999-09-27 Method of manufacturing copper tube for refrigerator or air-conditioner

Publications (1)

Publication Number Publication Date
JP2001096338A true JP2001096338A (en) 2001-04-10

Family

ID=17519402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27283299A Pending JP2001096338A (en) 1999-09-27 1999-09-27 Method of manufacturing copper tube for refrigerator or air-conditioner

Country Status (1)

Country Link
JP (1) JP2001096338A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512247A (en) * 2006-12-14 2010-04-22 シーティーエー・テクノロジー・プロプリエタリー・リミテッド Multi-channel copper pipe manufacturing method and apparatus for manufacturing the pipe
CN102039323A (en) * 2010-12-02 2011-05-04 金川集团有限公司 Heated-mold continuous casting-continuous drawing method for brass alloy condenser pipe
JP2011168846A (en) * 2010-02-19 2011-09-01 Kobe Steel Ltd Copper tube for heat exchanger having excellent fracture strength and bending workability
WO2012128240A1 (en) * 2011-03-23 2012-09-27 株式会社住軽伸銅 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN109175283A (en) * 2018-10-29 2019-01-11 福建紫金铜业有限公司 A kind of heat pipe material pipe processing technique

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869874B2 (en) 2006-12-14 2014-10-28 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
US8336604B2 (en) 2006-12-14 2012-12-25 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
KR101280173B1 (en) 2006-12-14 2013-06-28 미츠비시 마테리알 가부시키가이샤 Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
JP2010512247A (en) * 2006-12-14 2010-04-22 シーティーエー・テクノロジー・プロプリエタリー・リミテッド Multi-channel copper pipe manufacturing method and apparatus for manufacturing the pipe
JP2011168846A (en) * 2010-02-19 2011-09-01 Kobe Steel Ltd Copper tube for heat exchanger having excellent fracture strength and bending workability
CN102039323A (en) * 2010-12-02 2011-05-04 金川集团有限公司 Heated-mold continuous casting-continuous drawing method for brass alloy condenser pipe
WO2012128240A1 (en) * 2011-03-23 2012-09-27 株式会社住軽伸銅 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
JP5132845B2 (en) * 2011-03-23 2013-01-30 株式会社住軽伸銅 Seamless tube, coil, level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
CN103415643A (en) * 2011-03-23 2013-11-27 株式会社住轻伸铜 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
KR101385801B1 (en) 2011-03-23 2014-04-16 가부시키가이샤 스미케이 신도 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN103415643B (en) * 2011-03-23 2015-06-10 株式会社住轻伸铜 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN109175283A (en) * 2018-10-29 2019-01-11 福建紫金铜业有限公司 A kind of heat pipe material pipe processing technique
CN109175283B (en) * 2018-10-29 2020-05-01 福建紫金铜业有限公司 Heat pipe material pipe processing technology

Similar Documents

Publication Publication Date Title
CN109355538B (en) Production process of high-strength 7-series aluminum alloy pipe
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
Cha et al. Effects of homogenization temperature on microstructure and mechanical properties of high-speed-extruded Mg–5Bi–3Al alloy
CN112813367B (en) Preparation method of 7XXX series aluminum alloy bar based on mechanical ultrasonic vibration aging
CN107488800B (en) Al-Zn alloy containing precipitates with improved strength and elongation and method for producing same
WO2022160456A1 (en) High-strength, high-plasticity light alloy material, preparation method therefor, and application thereof
US3827917A (en) Aluminum electrical conductor and process for making the same
CN111004950A (en) 2000 aluminium alloy section bar and its manufacturing method
Lee et al. Effect of pre-homogenization deformation treatment on the workability and mechanical properties of AlMg5Si2Mn alloy
Han et al. Strength-ductility balance of AZ31 magnesium alloy via accumulated extrusion bonding combined with two-stage artificial cooling
JPH01242750A (en) Production of al base alloy and al base alloy product
US4659396A (en) Metal working method
JP2001096338A (en) Method of manufacturing copper tube for refrigerator or air-conditioner
CN108385008B (en) Medium-strength high-energy-absorption magnesium alloy and preparation device and method of deeply-cold-bent pipe
Pang et al. Dynamic recrystallization mechanism and precipitation behavior of Mg-6Gd-3Y-3Sm-0.5 Zr alloy during hot compression
JP2001096337A (en) Method of manufacturing copper tube
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
JPS6358907B2 (en)
US20230256491A1 (en) 6xxx aluminum alloys
Chia et al. Application of subgrain control to aluminum wire products
JP5968816B2 (en) High strength copper alloy tube and manufacturing method thereof
JP4179737B2 (en) Method for producing high-strength Al-Mg-Si-based aluminum alloy extruded material and its processing method
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
Lu et al. Double extrusion of Mg-Al-Zn alloys
JP2004052008A (en) Titanium-copper alloy and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603