JP2004179557A - Electrostatic chuck and its manufacturing method - Google Patents

Electrostatic chuck and its manufacturing method Download PDF

Info

Publication number
JP2004179557A
JP2004179557A JP2002346541A JP2002346541A JP2004179557A JP 2004179557 A JP2004179557 A JP 2004179557A JP 2002346541 A JP2002346541 A JP 2002346541A JP 2002346541 A JP2002346541 A JP 2002346541A JP 2004179557 A JP2004179557 A JP 2004179557A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
concave portion
series
wafer
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002346541A
Other languages
Japanese (ja)
Other versions
JP3847253B2 (en
Inventor
Yohei Hori
陽平 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002346541A priority Critical patent/JP3847253B2/en
Publication of JP2004179557A publication Critical patent/JP2004179557A/en
Application granted granted Critical
Publication of JP3847253B2 publication Critical patent/JP3847253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck in which, on one main surface of a plate-shaped ceramic member, a series of recesses are formed, and which is excellent in the property that a wafer W is uniformly heated, and also to provide a method of manufacturing the chuck. <P>SOLUTION: In the electrostatic chuck 1, one main surface of a plate-shaped ceramic member 2 made of a nitride ceramic material is used as a surface 8 for mounting the wafer W thereon. A series of recesses 2a are made in the mounting surface 8, and a curved recess 9 is formed in the bottom of each of the series of recesses 2a. Variations in the depths of the series of recesses 2a with respect to the average depth of the series of recesses 2a are not larger than 20%, and the depths of the series of recesses 2a are within 10 to 500μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体や液晶の製造装置において半導体ウェハや液晶用ガラスなどのウェハを固定するのに使用する静電チャックに関するものである。
【0002】
【従来の技術】
従来、半導体の製造工程において、シリコンウェハ等のウェハに精度良く成膜やエッチング等の処理を施すには、ウェハの平坦度を保ちながら保持する必要があり、このような保持手段として、機械式チャック、真空チャック、静電チャックが提案されている。
【0003】
これらの保持手段の中で、静電気力によってウェハを保持する静電チャックは、成膜やエッチング等の各種処理に求められるウェハの平坦度を容易に実現することができ、また真空中で使用できるため、成膜装置やエッチング装置で多用されている。
【0004】
図5(a)は、静電チャック51の平面図の一例であり、(b)は、そのX−X線の断面図である。板状セラミック体52の主面をウェハWを載せる載置面58とし、その内部には一対の静電吸着用電極56を埋設し、更にその下には抵抗発熱体57をそれぞれ埋設してある。板状セラミック体52の下面には、一対の静電吸着用電極56及び抵抗発熱体57とを電気的に接続する一対の給電端子54、55がそれぞれ固定されている。そして、載置面58と静電吸着用電極56の間には絶縁層52bが設けられている。また、載置面58にはHeやAr等の不活性ガスを導入するガス導入口53とこのガス導入口53に連通する一連の凹部52aが形成されている。そして、この静電チャック51の給電端子54に500Vの直流電圧を印加すると、ウェハWと載置面58の間に静電吸着力が発現し、ウェハWを載置面58に吸着固定することができる。また、抵抗発熱体57に接続した給電端子55に電圧を印加すると、抵抗発熱体57が加熱され、載置面58を加熱するとともにウェハWを加熱することができる。
【0005】
ところで、半導体素子の集積度の向上に伴って、半導体素子の特性安定化、歩留まり向上、単位時間当たりの処理枚数の増加などが強く求められている。その為、エッチングや成膜処理の際にウェハWをできるだけ早く目的の温度にまで加熱し、ウェハW表面の全体の均熱性を高めることが求められている。そこで、ウェハWを載せる載置面58に、HeやAr等の不活性ガスを導入するガス導入口53と、このガス導入口53に連通する一連の凹部52aを形成し、載置面58上にウェハWを吸着した時、ウェハWと一連の凹部52aとで形成される空間に上記ガス導入口53から不活性ガスを充填することにより、ウェハWと載置面58との間の熱伝達特性を高め、ウェハWの均熱化を図るようになっていた。
【0006】
例えば、特許文献1のように静電チャック51のウェハWを載せる載置面58にウェハW等と接触する多数の凸状体と一連の凹部52aを形成することにより、ウェハW等の被加熱物への熱の伝達が不活性ガスを介して行われるため、ウェハWを均一な温度とすることができる。
【0007】
また、上記一連の凹部52aの形状加工法としては、特許文献2のように10〜300μmの硬質粒子を使いブラスト加工する方法がある。そして、上記ブラスト加工では、上記硬質粒子と板状セラミック体52の加工を施す面との衝突から静電気が発生する。そして、発生した静電気の除去を図るために、被加工物を載せる台車等をアースする方法や、特許文献3のように砥粒にイオン化しにくい物質をコーティングし、上記加工物との衝突によって静電気を帯びることがない方法などがある。
【0008】
【特許文献1】
特開2002−237375号公報
【特許文献2】
特開平4−304941号公報
【特許文献3】
特開平9−216162号公報
【0009】
【発明が解決しようとする課題】
ところが、特許文献1に記載の静電チャック51は、ドリルを用いて窒化アルミニウムから成る板状セラミック体52に一連の凹部52aを形成している。しかし、上記一連の凹部52aの形状は矩形で、上記一連の凹部52aの底面が平面であることから、不活性ガスを充填する際に不活性ガスと一連の凹部52aの底面との摩擦が大きく、不活性ガスの流動性が悪くなり、ウェハW全体の均熱性が悪くなるとの課題があった。
【0010】
また、特許文献2のブラスト加工方法では一連の凹部52aの深さのバラツキが大きく、不活性ガスの充填量が一連の凹部52aごとに違うため、ウェハW全体の均熱性が悪くなるとの課題があった。
【0011】
また、上記のブラスト加工ではノズルより噴射された砥粒が加工面に衝突する際に加工面との衝突摩擦により加工面である一連の凹部52aに静電気が発生する。そして、この静電気の電位が大きくなると、凹部52aの底面の静電気が被加工物である板状セラミック体52内の静電吸着電極56との間で放電現象を発生させ、絶縁層52bが破損する事があった。
【0012】
また、特許文献3に記載の一連の凹部形成手段は、砥粒を繰り返し利用していくうちに、砥粒のコーティングした部分がはがれていき、砥粒が加工面と衝突した際にイオン化し、加工物の加工面に静電気を帯びてしまう。そして、その加工面に帯電した大きな電位の静電気は、凹部52aの底面から静電吸着用電極56の間で放電し、絶縁層52bが絶縁破壊する虞があった。
【0013】
【課題を解決するための手段】
窒化物セラミック体からなる板状セラミックス体の一方の主面をウェハを載せる載置面とし、上記載置面に一連の凹部が形成された静電チャックにおいて、上記一連の凹部の底面に凹曲面部を備え、上記凹部の平均深さに対して上記凹部の深さのバラツキが20%以下であり、上記凹部の平均深さが10〜500μmであることを特徴とする。
【0014】
また、上記静電チャックに、抵抗発熱体を備えたことを特徴とする。
【0015】
また、ブラスト加工により上記凹部を形成する方法において、ブラスト加工を施す前の表面の表面粗さRaが1.0μm以下であることを特徴とする。
【0016】
また、窒化物セラミック体からなる板状セラミックス体の一方の主面をウェハを載せる載置面とし、上記載置面に一連の凹部が形成された静電チャックの上記一連の凹部をブラスト加工により形成する方法において、ブラスト加工室と、その中に圧縮空気と砥粒の混合流体を噴射するノズルと被加工物を載せる台車とを備え、上記圧縮空気の圧力が0.3〜0.6MPaで、その水分の含有量が0.5〜5重量%であり、且つ上記砥粒の粒径が150〜500μmであり、被加工物に対する上記ノズルの移動速度が100〜300mm/秒であることを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
図1(a)は、本発明に係る静電チャック1の平面図の一例であり、(b)は、そのX−X線の断面図であり、(c)は、載置面8と凹部2aとの境界線に垂直な断面の拡大図である。板状セラミック体2の主面をウェハWを載せる載置面8とし、その内部には一対の静電吸着用電極6を埋設し、更にその下には抵抗発熱体7をそれぞれ埋設してある。板状セラミック体2の下面には、一対の静電吸着用電極6及び抵抗発熱体7とを電気的に接続する一対の給電端子4、5がそれぞれ固定されている。そして、載置面8と静電吸着用電極6との間には絶縁層2bが設けられている。また、載置面8にはHeやAr等の不活性ガスを導入するガス導入口3とこのガス導入口3に連通する一連の凹部2aが形成されている。そして、この静電チャック1の給電端子4に500Vの直流電圧を印加すると、ウェハWと載置面8の間に静電吸着力が発現し、ウェハWを載置面8に吸着固定することができる。また、抵抗発熱体7に接続した給電端子5に電圧を印加すると、抵抗発熱体7が加熱され、載置面8を加熱するとともにウェハWを加熱することができる。
【0018】
本発明の静電チャック1は、各部の凹部2aの底面の両側に凹曲面部9を備えることにより、不活性ガスを充填する際に、不活性ガスと凹部2aの底面の摩擦が少なくなり、不活性ガスが凹部2aをスムーズに流れ、凹部2aの断面において全ての不活性ガスがムラ無くウェハW裏面と熱交換できることから、ウェハWの均熱性がよくなることが判明した。一連の凹部2aの底面の各部の凹曲面部9の大きさは、曲率半径Rが100〜500μmであることがより好ましい。
【0019】
そして、一連の凹部2aの平均深さに対して各部の凹部2aの深さのバラツキが20%以下としたのは、各部の凹部2aの深さのバラツキを小さくすることによって、ウェハWと凹部2aとで形成される空間に充填される不活性ガスの量を一定にし、ウェハWの均熱性を高めることができるからである。また、一連の凹部2aの平均深さに対して各部の凹部2aの深さのバラツキは10%以下とすると更に好ましい。これは、一連の凹部2aの平均深さに対して各部の凹部2aの深さのバラツキを10%以下とすると、ウェハWの表面の温度差がより小さくなり好ましいからである。尚、載置面8が略円形である場合、載置面8の中心から放射状に4等分割する線と、載置面8を囲む円と、中心から載置面8の直径の0.7倍の円とで囲まれるそれぞれの領域で各2箇所の凹部2aの深さを測定し、合計16箇所の測定値を平均し平均深さとした。また、載置面8が四角形の場合、碁盤目状に16等分割しそれぞれ2箇所を測定し、合計32箇所の測定値の平均値を平均深さとした。なお、凹部2a深さhとは、載置面8と各部の凹部2aの境界線に垂直な断面において略中心の最大の深さhとした。
【0020】
また、一連の凹部2aの平均深さを10〜500μmとしたのは、凹部2aの平均深さが10μm未満ではウェハWと一連の凹部2aとで形成される空間に充填される不活性ガスの量が少なくなり、ウェハWの均熱性が悪くなるからである。また、一連の凹部2aの平均深さが500μmを超えてしまうと一連の凹部2aの深さのコントロールが難しくなり、各部の凹部2aの深さのバラツキが20%以上と大きくなるからである。よって、一連の凹部2aの平均深さは10〜500μmの範囲とすることがよい。
次に図2は本発明の静電チャック1の一連の凹部2aを加工するブラスト加工装置を示す概略断面図である。
このブラスト加工装置のブラスト加工室10の内部にはノズル11と被加工物16を載せる台車14が設置され、ノズル11には砥粒供給管12と送気管13が連結されている。またブラスト加工室10の下部には、砥粒回収管15が設置してあり、砥粒回収管15はサイクロン集塵装置18に連結している。砥粒供給管12から供給される砥粒17と送気管13から送られる圧縮空気とからなる混合流体をノズル11から被加工物16に吹き付けることによりブラスト加工を行うように構成されている。尚、使用した砥粒17は、砥粒回収管15を介して空気輸送によりサイクロン集塵装置18に回収し、加工屑等の不純物を除去して再利用することができる。
【0021】
図3は、ブラスト加工時のノズル11と被加工物16の関係を示す斜視図である。砥粒17と圧縮空気の混合流体を噴出するノズル11は、ブラスト加工を施す面20との距離を一定に保ち、被加工物16を載せた台車14はX軸方向に移動することができる。そして、ノズル11はY軸方向に移動できる。そして、前記混合流体を噴射しながらノズル11はY方向に移動し、被加工物16の表面を通過し、台車14がX軸方向に移動した後、ノズルは−Y方向に移動する。再び被加工物16を通過した後、台車14がX軸方向に移動する。そしてこれを繰り返し被加工物16の全面をブラスト加工できるように成っている。
図4は、本発明に係るマスク30のパターンの形状である。ブラスト加工を施す面20に一連の凹部2aを形成するマスク30を貼り一連の凹部2aの形状を決める事ができる。
【0022】
上記マスク30は、一連の凹部2aに対応した部分の厚みを小さくした樹脂製のシートで、感光性樹脂マスクなどを使用する。この感光性樹脂マスクは、載置面8の一連の凹部2aのパターンに合わせて作製したパターンフィルムを感光性樹脂層の上にセットし、蛍光灯やハロゲンランプなどで露光し作製することができる。
【0023】
本発明の静電チャック1は、各部の凹部2aの深さのバラツキが小さく載置面8に載せたウェハWの表面温度差を小さくすることができる。
【0024】
各部の凹部2aの深さのバラツキを小さくするには、板状セラミック体2のブラスト加工を施す前の表面をラップ盤にてラップ加工し(粗加工)、更にこのラップ面を研磨し(鏡面加工)、ブラスト加工を施す前の表面を表面粗さRa1.0μm以下とすることが好ましい。ブラスト加工を施す前の表面粗さをRa1.0μm以下とするのは、ブラスト加工を施す面20の凹凸を少なくし、ブラスト加工によって形成される各部の凹部2aの深さのバラツキを小さくできるからである。
【0025】
そして、上記のブラスト装置で、送気管13に供給する圧縮空気の圧力を0.3〜0.6MPa、圧縮空気の水分の含有量を0.5〜5重量%、砥粒17の粒径を150〜500μm、被加工物16に対する上記ノズル11の移動速度を100〜300mm/秒としてブラスト加工を行って一連の凹部2aを形成する。
【0026】
また、上記砥粒17としては例えば、アルミナ、炭化珪素、ガラスビーズなどがある。砥粒17の粒径とは、レーザー回折散乱法により測定した50%粒径である。レーザー回折散乱法とは、レーザー光を粒子に当てた時に、散乱される光の強度と散乱角度から、Mieの散乱理論より、粒径を求める方法である。
【0027】
また、上記のノズル11より噴射された砥粒17が加工面に衝突する際に加工面との衝突摩擦により加工面である凹部2aに静電気が発生する。そして、この静電気の電位が大きくなると、凹部2aの底面の静電気が被加工物16である板状セラミック体2内の静電吸着電極6との間で放電現象が発生し、絶縁層2bが破損する虞があることから、上記静電気の発生を抑え放電現象を発生させること無くブラスト加工することが重要である。
【0028】
ここで、圧縮空気の圧力を0.3〜0.6MPaとしたのは、圧力が0.3MPa未満だと凹部2aのブラスト加工量が小さくなり、凹部2aの深さ10〜500μmを形成するのに同じ部分を何度も繰り返し加工しなくてはならなくなる。すると、同じ部分を繰り返し加工した面は大きな電位の静電気が帯電し、凹部2aの底面から静電吸着用電極6の間で放電し、絶縁層2bが絶縁破壊する虞がある。また、圧力が0.6MPaを超えると、砥粒17を吹き付ける力が強いので、凹部2aの底面の表面粗さが粗くなり、凹部2aの底面にマイクロクラックが発生する。マイクロクラックが発生すると、マイクロクラックの先端から静電吸着用電極6の間に大きな電位の静電気が加わり放電し、絶縁層2bが破壊する虞がある。よって、圧縮空気の圧力は0.3〜0.6MPaの範囲とすることがよい。
【0029】
また、圧縮空気の水分の含有量を0.5〜5重量%としたのは、水分の含有量が0.5重量%未満だと混合流体が乾燥しすぎて被加工物16に衝突した際、大きな電位の静電気が発生してしまうからである。また、圧縮空気の水分の含有量を5重量%超えてしまっては砥粒17が圧縮空気と混合した際に、砥粒17同士が固まって塊になってしまうことがあり、その砥粒17の塊がブラスト加工を施す面20に噴射されると、凹部2aの表面粗さRmaxが15μm以上と大きくなり、凹部2aの底面にマイクロクラックが発生するからである。よって、圧縮空気の水分の含有量は0.5〜5重量%の範囲とすることがよく、凹部2aの表面粗さRmaxは5.5μm以下が好ましい。
【0030】
砥粒17の粒径を150〜500μmとしたのは、砥粒17の粒径が150μm未満だと凹部2aのブラスト加工量が小さくなるからである。また、砥粒17の粒径が500μmを超えると凹部2aの表面粗さが粗くなり、凹部2aの底面にマイクロクラックが発生するからである。よって、砥粒17の粒径は150〜500μmの範囲とすることがよい。
【0031】
ノズル11の移動速度を100〜300mm/秒にしたのは、移動速度が100mm/秒未満だと、ノズル11の移動速度が小さいため、砥粒17とブラスト加工を施す凹部2aの摩擦が大きくなり、凹部2aに大きな電位の静電気を帯電させるためである。また、ノズル11の移動速度が300mm/秒を超えると、凹部2aを形成する際のブラスト加工量が小さくなるからである。よって、ノズル11の移動速度は100〜300mm/秒の範囲とすることがよい。
【0032】
また、ノズル11の口径としては、直径3〜15mmとすることが好ましい。これは、ノズル11の直径が5mm未満だと凹部2aの曲率半径Rが5μm以下となる虞があるとともに混合流体の噴出量が少なくなり、ブラスト加工量も小さくなり過ぎるからである。また、ノズル11の口径が15mmを超えてしまっては、噴射する混合流体が分散し、凹部2aの曲率半径Rが500μmを越える虞があるとともにブラスト加工量が小さくなるからである。更に好ましくは、ノズル11の口径を5〜15mmの範囲とすることがよい。
【0033】
また、ノズル11から噴射する炭化珪素からなる砥粒17の量は100〜900g/分とすることが好ましい。これは、砥粒17の量が100g/分未満だと、圧縮空気と混合した際に、混合流体全体の水分の含有量が多くなり、砥粒17が塊になってしまい、凹部2aの表面粗さが荒くなるからである。また、砥粒17の量が900g/分を超えてしまっては、圧縮空気と混合した際に、混合流体全体の水分の含有量が少なくなり、混合流体が乾燥してしまうからである。そして、ブラスト加工を施す面20に衝突した際に、静電気が帯電しやすくなるためである。より好ましくは、砥粒17の量は100〜900g/分の範囲とすることがよい。
【0034】
【実施例】
窒化アルミニウム粉末を板状に成形して成形体を作製した後、この成形体の上に、タングステンからなる静電吸着用電極を配置し、更にこの上に窒化アルミニウム粉末を充填し、再び成形した。そして、再び抵抗発熱体7を配設した後、窒化アルミニウム粉末を充填し成形し、内部電極を埋設した円盤状の成形体を作製した。次いで、この成形体を400℃で脱脂したあと、2000℃で窒素雰囲気で焼結することにより、板状セラミック体を得た。
【0035】
そして、上記のブラスト装置で、送気管13に供給する圧縮空気の圧力を0.2〜0.7MPa、圧縮空気の水分含有量を0.4〜6重量%、砥粒の粒径を140〜600μm、被加工物16に対する上記ノズルの移動速度を90〜350mm/秒に変えてブラスト加工を行って凹部を形成した。
【0036】
また、上記砥粒としては平均粒径180μmの炭化珪素製砥粒を用いた。
【0037】
(実施例1)
凹部の深さと凹部の深さのバラツキがそれぞれ異なる静電チャックと凹部の底面に凹曲面部がある静電チャックの載置面に、それぞれ8インチのウェハWを吸着固定し、抵抗発熱体によって静電チャックを200℃に加熱した時のウェハWの表面における温度分布を測定する実験を行った。ウェハWの温度分布は、ウェハWの表面における任意の9点をサーモビュアにて測定し、その最大値と最小値の差を温度分布とした。その測定結果を表1に示す。
【0038】
【表1】

Figure 2004179557
【0039】
この表1の測定結果から、試料No.1〜3のように、本発明の範囲外のものは、ウェハWの温度分布は2.5℃以上と均熱性が悪かった。また、試料No.9は凹部をドリル加工した静電チャックであり、凹部の底面に凹曲面部を備えてないものは3.2℃と均熱性が悪かった。
【0040】
これに対し、試料No.4〜8のように凹部2aの底面に凹曲面部9を備え、凹部2aの深さが10〜500μmの範囲で、凹部2aの平均深さに対する凹部2aの深さバラツキが20%以下のものは、ウェハWの温度分布を1.7℃以下に均一にすることができ、優れていた。この結果から、凹部2aの底面に凹曲面部9を備え、凹部2aの深さが10〜500μmの範囲で、凹部2aの平均深さに対する凹部2aの深さバラツキが20%以下とすることがよいことが分る。
【0041】
また、試料No.4、5のように凹部2aの深さのバラツキが10%以下であるウェハWの表面の温度差が1.2〜1.4℃と小さく更に好ましい事が分る。
(実施例2)
ブラスト加工を施す前の表面の表面粗さ以外は同様にして作製したそれぞれの静電チャック1の凹部2aの深さを16点測定し、その凹部2aの平均深さに対する凹部2aの深さバラツキを測定した。尚、バラツキとは測定値の最大値と最小値の差を深さの平均で除した値とした。その測定結果を表2に示す。
【0042】
【表2】
Figure 2004179557
【0043】
この表2の測定結果から、試料No.21、22のように、ブラスト加工を施す表面の表面粗さRaが3μm、2μmであるものは、凹部2aの深さバラツキが17%、15%とバラツキがやや大きいことがわかる。
【0044】
これに対し、試料No.23、24はブラスト加工を施す面の表面粗さRaが1μm以下であることから凹部2aの深さバラツキが7%、10%と非常に小さく優れていることが分った。
【0045】
従って、ブラスト加工を施す面20をRaが1.0μm以下とすると、凹部2aの深さのバラツキがより小さい静電チャック1を作製できることが分る。
(実施例3)
圧縮空気の圧力、圧縮空気の水分の含有量、砥粒の粒径、ノズル11の移動速度をそれぞれの条件で加工し、加工後凹部2aの底面に帯電した静電気の電位を表面電位計にて測定するとともに絶縁層2bの状態を確認する実験を行った。この測定結果を表3に示す。
【0046】
【表3】
Figure 2004179557
【0047】
この表3の測定結果から、試料No.32〜34、37〜39、42〜44、47〜49のように、圧縮空気の圧力を0.3〜0.6MPa、圧縮空気の水含有量を0.5〜5重量%、砥粒17の粒径を150〜500μm、ノズル11の移動速度を100〜300mm/秒の範囲のものはいずれも、加工面に帯電している静電気の電位が121〜452Vと小さく、絶縁層2bに絶縁破壊もしていない。これに対し、本発明の範囲外の試料No.31、36、41、46、50は、加工面に帯電している静電気の電位が747〜852Vと大きく、絶縁層が絶縁破壊している。
【0048】
また、試料No.35、40、45のように本発明範囲外のもので、加工面に帯電している静電気の電位が110〜155Vと小さいものもあるが、いずれも凹部2aの底面の表面粗さRmaxが11.4〜15.0μmと大きく、マイクロクラックが発生している。これは、マイクロクラックの先端から静電吸着用電極6の間に静電気が加わり放電し、絶縁層2bが絶縁破壊している。従って、圧縮空気の圧力を0.3〜0.6MPa、圧縮空気の水含有量を0.5〜5重量%、砥粒17の粒径を150〜500μm、ノズル11の移動速度を100〜300mm/秒の条件にてブラスト加工を行うと、凹部2aを形成する際に、静電チャック1が絶縁破壊することを防止するのに有効だということが分る。また、同時に凹部2aの底面にマイクロクラックが発生するのも防止することができると分る。
【0049】
【発明の効果】
本発明によれば、窒化物セラミック体からなる板状セラミックス体2の一方の主面に凹部2aが形成された静電チャック1であって、ウェハWの均熱性に優れた静電チャック1を提供することができ、また、凹部2aをブラスト加工によって形成する際に、静電チャック1の凹部2aの形成面に静電気が発生して絶縁層2bが絶縁破壊することを防止する静電チャック1の製造方法を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明に係る静電チャック1の平面図であり、(b)は(a)のX−X線の断面図であり、(c)は載置面8と凹部2aとの境界線に垂直な断面の拡大図である。
【図2】本発明の静電チャック1の製造方法を示す概略構成図である。
【図3】ブラスト加工時の各機器の動作を示している斜視図である。
【図4】本発明に係るマスク30の凹部2aのパターン形状である。
【図5】(a)は従来の静電チャックの平面図であり、(b)は(a)のX−X線断面図である。
【符号の説明】
1、51:静電チャック
2、52:板状セラミック
2a、52a:凹部
2b、52b:絶縁層
3、53:ガス導入口
4、5、54、55:給電端子
6、56:静電吸着用電極
7、57:抵抗発熱体
8、58:載置面
9:凹曲面部
10:ブラスト加工室
11:ノズル
12:砥粒供給管
13:送気管
14:台車
15:砥粒回収管
16:被加工物
17:砥粒
18:サイクロン集塵機装置
20:ブラスト加工を施す面
30:マスク
30a:マスクの膜厚が大きい部分
30b:マスクの膜厚が小さい部分
W:ウェハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrostatic chuck used for fixing a wafer such as a semiconductor wafer or a glass for a liquid crystal in a semiconductor or liquid crystal manufacturing apparatus.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, in order to accurately perform processing such as film formation or etching on a wafer such as a silicon wafer, it is necessary to hold the wafer while maintaining its flatness. A chuck, a vacuum chuck, and an electrostatic chuck have been proposed.
[0003]
Among these holding means, an electrostatic chuck that holds a wafer by electrostatic force can easily realize the flatness of a wafer required for various processes such as film formation and etching, and can be used in a vacuum. Therefore, they are frequently used in film forming apparatuses and etching apparatuses.
[0004]
FIG. 5A is an example of a plan view of the electrostatic chuck 51, and FIG. 5B is a cross-sectional view taken along line XX. The main surface of the plate-shaped ceramic body 52 is a mounting surface 58 on which the wafer W is mounted, inside which a pair of electrodes 56 for electrostatic adsorption are buried, and further below that, a resistance heating element 57 is buried. . A pair of power supply terminals 54 and 55 for electrically connecting the pair of electrostatic attraction electrodes 56 and the resistance heating element 57 are fixed to the lower surface of the plate-shaped ceramic body 52, respectively. An insulating layer 52b is provided between the mounting surface 58 and the electrode 56 for electrostatic attraction. The mounting surface 58 is formed with a gas inlet 53 for introducing an inert gas such as He or Ar, and a series of recesses 52 a communicating with the gas inlet 53. When a DC voltage of 500 V is applied to the power supply terminal 54 of the electrostatic chuck 51, an electrostatic attraction force is generated between the wafer W and the mounting surface 58, and the wafer W is fixed to the mounting surface 58 by suction. Can be. When a voltage is applied to the power supply terminal 55 connected to the resistance heating element 57, the resistance heating element 57 is heated, so that the mounting surface 58 can be heated and the wafer W can be heated.
[0005]
By the way, with the improvement of the degree of integration of semiconductor devices, there is a strong demand for stabilization of characteristics of semiconductor devices, improvement of yield, increase in the number of processed wafers per unit time, and the like. Therefore, it is required to heat the wafer W to a target temperature as quickly as possible during the etching or film forming process, and to improve the uniformity of the entire surface of the wafer W. Therefore, a gas inlet 53 for introducing an inert gas such as He or Ar and a series of recesses 52a communicating with the gas inlet 53 are formed on the mounting surface 58 on which the wafer W is mounted. When the wafer W is adsorbed on the wafer W, the space formed by the wafer W and the series of recesses 52a is filled with the inert gas from the gas inlet 53 so that the heat transfer between the wafer W and the mounting surface 58 is performed. The characteristics have been improved, and the temperature of the wafer W has been increased.
[0006]
For example, by forming a large number of convex bodies and a series of concave portions 52a in contact with the wafer W or the like on the mounting surface 58 of the electrostatic chuck 51 on which the wafer W is mounted as in Patent Document 1, the wafer W or the like can be heated. Since heat is transferred to the object through the inert gas, the temperature of the wafer W can be made uniform.
[0007]
As a method of processing the series of concave portions 52a, there is a method of performing blast processing using hard particles of 10 to 300 μm as disclosed in Patent Document 2. In the blasting, static electricity is generated due to collision between the hard particles and the surface on which the plate-shaped ceramic body 52 is processed. Then, in order to remove the generated static electricity, a method of grounding a cart or the like on which the workpiece is mounted, or coating the abrasive with a substance which is hardly ionizable as in Patent Document 3, There are methods that do not take on.
[0008]
[Patent Document 1]
JP 2002-237375 A [Patent Document 2]
JP-A-4-304941 [Patent Document 3]
JP-A-9-216162
[Problems to be solved by the invention]
However, in the electrostatic chuck 51 described in Patent Document 1, a series of recesses 52a are formed in a plate-shaped ceramic body 52 made of aluminum nitride using a drill. However, since the shape of the series of concave portions 52a is rectangular and the bottom surface of the series of concave portions 52a is flat, friction between the inert gas and the bottom surface of the series of concave portions 52a is large when the inert gas is filled. In addition, there is a problem that the fluidity of the inert gas is deteriorated and the uniformity of the entire wafer W is deteriorated.
[0010]
Further, in the blasting method of Patent Document 2, there is a large variation in the depth of the series of recesses 52a, and the filling amount of the inert gas differs for each series of recesses 52a. there were.
[0011]
Further, in the above-described blast processing, when the abrasive particles ejected from the nozzle collide with the processing surface, static electricity is generated in the series of concave portions 52a which are the processing surface due to the collision friction with the processing surface. When the potential of the static electricity increases, the static electricity on the bottom surface of the concave portion 52a causes a discharge phenomenon between itself and the electrostatic attraction electrode 56 in the plate-shaped ceramic body 52 as a workpiece, and the insulating layer 52b is damaged. There was a thing.
[0012]
Further, a series of concave portion forming means described in Patent Document 3 is that, while repeatedly using abrasive grains, the coated portion of the abrasive grains is peeled off, and when the abrasive grains collide with the processing surface, they are ionized, The processed surface of the workpiece is charged with static electricity. Then, the large potential static electricity charged on the processed surface is discharged from the bottom surface of the concave portion 52a to between the electrostatic attraction electrodes 56, and the insulating layer 52b may be broken down.
[0013]
[Means for Solving the Problems]
One principal surface of a plate-shaped ceramic body made of a nitride ceramic body is a mounting surface on which a wafer is mounted, and in the electrostatic chuck having a series of concave portions formed on the mounting surface, a concave curved surface is formed on the bottom surface of the series of concave portions. A variation in the depth of the concave portion with respect to the average depth of the concave portion is 20% or less, and the average depth of the concave portion is 10 to 500 μm.
[0014]
Further, the electrostatic chuck is provided with a resistance heating element.
[0015]
Further, in the method of forming the recess by blasting, the surface roughness Ra before blasting is 1.0 μm or less.
[0016]
Further, one main surface of the plate-shaped ceramic body made of a nitride ceramic body is used as a mounting surface on which a wafer is mounted, and the series of concave portions of the electrostatic chuck in which a series of concave portions are formed on the mounting surface is subjected to blast processing. In the forming method, a blast processing chamber, a nozzle for injecting a mixed fluid of compressed air and abrasive grains therein and a carriage for mounting a workpiece thereon are provided, and the pressure of the compressed air is 0.3 to 0.6 MPa. The water content is 0.5 to 5% by weight, the grain size of the abrasive grains is 150 to 500 μm, and the moving speed of the nozzle with respect to the workpiece is 100 to 300 mm / sec. Features.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1A is an example of a plan view of an electrostatic chuck 1 according to the present invention, FIG. 1B is a cross-sectional view taken along line XX, and FIG. It is an enlarged view of a section perpendicular to a boundary line with 2a. The main surface of the plate-shaped ceramic body 2 is a mounting surface 8 on which the wafer W is mounted, inside which a pair of electrodes 6 for electrostatic attraction are buried, and further below the resistance heating elements 7 are buried. . A pair of power supply terminals 4 and 5 for electrically connecting the pair of electrostatic attraction electrodes 6 and the resistance heating element 7 are fixed to the lower surface of the plate-shaped ceramic body 2. An insulating layer 2b is provided between the mounting surface 8 and the electrode 6 for electrostatic attraction. Further, the mounting surface 8 is formed with a gas inlet 3 for introducing an inert gas such as He or Ar and a series of concave portions 2 a communicating with the gas inlet 3. When a DC voltage of 500 V is applied to the power supply terminal 4 of the electrostatic chuck 1, an electrostatic attraction force is generated between the wafer W and the mounting surface 8, and the wafer W is fixed to the mounting surface 8 by suction. Can be. When a voltage is applied to the power supply terminal 5 connected to the resistance heating element 7, the resistance heating element 7 is heated, so that the mounting surface 8 can be heated and the wafer W can be heated.
[0018]
Since the electrostatic chuck 1 of the present invention includes the concave curved surface portions 9 on both sides of the bottom surface of the concave portion 2a of each part, when filling the inert gas, the friction between the inert gas and the bottom surface of the concave portion 2a is reduced, Since the inert gas smoothly flows through the concave portion 2a and all the inert gas can exchange heat with the back surface of the wafer W without unevenness in the cross section of the concave portion 2a, it has been found that the uniformity of the wafer W is improved. As for the size of the concave curved surface portion 9 of each portion on the bottom surface of the series of concave portions 2a, it is more preferable that the curvature radius R is 100 to 500 μm.
[0019]
The reason why the variation in the depth of the concave portion 2a in each portion is set to 20% or less with respect to the average depth of the series of concave portions 2a is that the variation in the depth of the concave portion 2a in each portion is reduced, so that the wafer W and the concave portion are reduced. This is because the amount of the inert gas filling the space formed by 2a can be made constant, and the uniformity of the wafer W can be improved. Further, it is more preferable that the variation in the depth of the concave portion 2a of each part is 10% or less with respect to the average depth of the series of concave portions 2a. This is because it is preferable that the variation in the depth of the concave portions 2a of each part be 10% or less with respect to the average depth of the series of concave portions 2a because the temperature difference on the surface of the wafer W becomes smaller. When the mounting surface 8 is substantially circular, a line radially dividing the mounting surface 8 into four equal parts, a circle surrounding the mounting surface 8, and 0.7 mm of the diameter of the mounting surface 8 from the center. The depth of each of the two concave portions 2a was measured in each region surrounded by the double circle, and the measured values at a total of 16 positions were averaged to obtain an average depth. In the case where the mounting surface 8 was rectangular, the surface was equally divided into 16 sections in a grid pattern, and two sections were measured. The average value of the measured values at a total of 32 sections was defined as the average depth. The depth h of the concave portion 2a is a maximum depth h substantially at the center of the section perpendicular to the boundary between the mounting surface 8 and the concave portion 2a of each part.
[0020]
Further, the reason why the average depth of the series of recesses 2a is set to 10 to 500 μm is that if the average depth of the recesses 2a is less than 10 μm, the inert gas filled in the space formed by the wafer W and the series of recesses 2a is This is because the amount decreases and the uniformity of the wafer W deteriorates. Further, if the average depth of the series of recesses 2a exceeds 500 μm, it is difficult to control the depth of the series of recesses 2a, and the variation in the depth of the recesses 2a in each part becomes as large as 20% or more. Therefore, the average depth of the series of recesses 2a is preferably in the range of 10 to 500 μm.
Next, FIG. 2 is a schematic sectional view showing a blast processing apparatus for processing a series of concave portions 2a of the electrostatic chuck 1 of the present invention.
A trolley 14 on which a nozzle 11 and a workpiece 16 are placed is installed inside a blast processing chamber 10 of the blast processing apparatus, and an abrasive supply pipe 12 and an air supply pipe 13 are connected to the nozzle 11. An abrasive grain collection pipe 15 is provided below the blasting chamber 10, and the abrasive grain collection pipe 15 is connected to a cyclone dust collecting device 18. Blasting is performed by spraying a mixed fluid comprising abrasive grains 17 supplied from the abrasive grain supply pipe 12 and compressed air sent from the air supply pipe 13 from the nozzle 11 to the workpiece 16. The used abrasive grains 17 can be collected in the cyclone dust collecting apparatus 18 by pneumatic transportation through the abrasive grain collection pipe 15, and can be reused after removing impurities such as processing waste.
[0021]
FIG. 3 is a perspective view showing the relationship between the nozzle 11 and the workpiece 16 during blasting. The nozzle 11 for ejecting the mixed fluid of the abrasive grains 17 and the compressed air keeps a constant distance from the surface 20 to be blasted, and the carriage 14 on which the workpiece 16 is placed can move in the X-axis direction. Then, the nozzle 11 can move in the Y-axis direction. Then, the nozzle 11 moves in the Y direction while ejecting the mixed fluid, passes through the surface of the workpiece 16, and after the carriage 14 moves in the X axis direction, the nozzle moves in the −Y direction. After passing through the workpiece 16 again, the carriage 14 moves in the X-axis direction. This is repeated so that the entire surface of the workpiece 16 can be blasted.
FIG. 4 shows the pattern shape of the mask 30 according to the present invention. A mask 30 for forming a series of recesses 2a is attached to the surface 20 to be blasted, and the shape of the series of recesses 2a can be determined.
[0022]
The mask 30 is a resin sheet having a reduced thickness at a portion corresponding to the series of recesses 2a, and uses a photosensitive resin mask or the like. This photosensitive resin mask can be produced by setting a pattern film produced according to the pattern of the series of concave portions 2a on the mounting surface 8 on the photosensitive resin layer, and exposing it with a fluorescent lamp or a halogen lamp. .
[0023]
In the electrostatic chuck 1 according to the present invention, the variation in the depth of the concave portion 2 a of each part is small, and the surface temperature difference of the wafer W placed on the mounting surface 8 can be reduced.
[0024]
In order to reduce the variation in the depth of the concave portion 2a of each part, the surface of the plate-shaped ceramic body 2 before blasting is lap-processed with a lapping machine (roughing), and the lapping surface is polished (mirror surface). Processing), it is preferable that the surface before blast processing is made to have a surface roughness Ra of 1.0 μm or less. The reason why the surface roughness before blasting is set to 1.0 μm or less is that the unevenness of the surface 20 to be blasted is reduced, and the variation in the depth of the concave portion 2a of each part formed by blasting can be reduced. It is.
[0025]
Then, the pressure of the compressed air supplied to the air supply pipe 13 is 0.3 to 0.6 MPa, the moisture content of the compressed air is 0.5 to 5% by weight, Blasting is performed at a moving speed of 150 to 500 μm and a moving speed of the nozzle 11 with respect to the workpiece 16 of 100 to 300 mm / sec to form a series of concave portions 2a.
[0026]
The abrasive grains 17 include, for example, alumina, silicon carbide, and glass beads. The particle size of the abrasive grains 17 is a 50% particle size measured by a laser diffraction scattering method. The laser diffraction / scattering method is a method of obtaining the particle diameter from Mie's scattering theory from the intensity and scattering angle of the scattered light when a laser beam is applied to the particles.
[0027]
Further, when the abrasive grains 17 ejected from the nozzle 11 collide with the processing surface, static electricity is generated in the concave portion 2a which is the processing surface due to collision friction with the processing surface. When the potential of the static electricity increases, the static electricity on the bottom surface of the concave portion 2a causes a discharge phenomenon between the workpiece and the electrostatic attraction electrode 6 in the plate-shaped ceramic body 2 as the workpiece 16, and the insulating layer 2b is damaged. Therefore, it is important to perform the blast processing without suppressing the generation of the static electricity and without causing the discharge phenomenon.
[0028]
Here, the reason why the pressure of the compressed air is set to 0.3 to 0.6 MPa is that if the pressure is less than 0.3 MPa, the blasting amount of the concave portion 2a becomes small and the depth of the concave portion 2a is formed to 10 to 500 μm. The same part must be machined over and over again. Then, the surface obtained by repeatedly processing the same portion is charged with a large potential of static electricity, discharges from the bottom surface of the concave portion 2a to between the electrostatic attraction electrodes 6, and the insulating layer 2b may be broken down. On the other hand, if the pressure exceeds 0.6 MPa, the force for blowing the abrasive grains 17 is strong, so that the surface roughness of the bottom surface of the concave portion 2a becomes coarse, and microcracks are generated on the bottom surface of the concave portion 2a. When a microcrack occurs, a large potential of static electricity is applied between the tip of the microcrack and the electrostatic attraction electrode 6 to discharge, and the insulating layer 2b may be broken. Therefore, the pressure of the compressed air is preferably in the range of 0.3 to 0.6 MPa.
[0029]
The reason why the moisture content of the compressed air is set to 0.5 to 5% by weight is that when the moisture content is less than 0.5% by weight, the mixed fluid is too dry and collides with the workpiece 16. This is because high potential static electricity is generated. Also, if the moisture content of the compressed air exceeds 5% by weight, when the abrasive grains 17 are mixed with the compressed air, the abrasive grains 17 may solidify and form a lump. Is sprayed onto the surface 20 to be blasted, the surface roughness Rmax of the concave portion 2a becomes as large as 15 μm or more, and microcracks are generated on the bottom surface of the concave portion 2a. Therefore, the content of moisture in the compressed air is preferably in the range of 0.5 to 5% by weight, and the surface roughness Rmax of the recess 2a is preferably 5.5 μm or less.
[0030]
The reason for setting the particle size of the abrasive grains 17 to 150 to 500 μm is that if the particle size of the abrasive grains 17 is less than 150 μm, the blasting amount of the concave portion 2 a becomes small. Also, if the particle size of the abrasive grains 17 exceeds 500 μm, the surface roughness of the concave portion 2a becomes coarse, and microcracks are generated on the bottom surface of the concave portion 2a. Therefore, the particle size of the abrasive grains 17 is preferably in the range of 150 to 500 μm.
[0031]
The reason why the moving speed of the nozzle 11 is set to 100 to 300 mm / sec is that if the moving speed is less than 100 mm / sec, the moving speed of the nozzle 11 is low, so that the friction between the abrasive grains 17 and the concave portion 2a for blasting increases. This is for charging the concave portion 2a with a large potential static electricity. On the other hand, if the moving speed of the nozzle 11 exceeds 300 mm / sec, the amount of blasting when forming the concave portion 2a becomes small. Therefore, the moving speed of the nozzle 11 is preferably in the range of 100 to 300 mm / sec.
[0032]
The diameter of the nozzle 11 is preferably 3 to 15 mm. This is because if the diameter of the nozzle 11 is less than 5 mm, the radius of curvature R of the concave portion 2a may be 5 μm or less, the jetting amount of the mixed fluid becomes small, and the blasting amount becomes too small. Further, if the diameter of the nozzle 11 exceeds 15 mm, the mixed fluid to be injected is dispersed, and the radius of curvature R of the concave portion 2a may exceed 500 μm, and the blast processing amount decreases. More preferably, the diameter of the nozzle 11 is preferably in the range of 5 to 15 mm.
[0033]
Further, the amount of abrasive grains 17 made of silicon carbide injected from nozzle 11 is preferably set to 100 to 900 g / min. If the amount of the abrasive grains 17 is less than 100 g / min, when mixed with the compressed air, the water content of the whole mixed fluid increases, and the abrasive grains 17 are aggregated, so that the surface of the concave portion 2 a This is because the roughness becomes rough. Further, if the amount of the abrasive grains 17 exceeds 900 g / min, the content of water in the whole mixed fluid decreases when mixed with compressed air, and the mixed fluid is dried. This is because static electricity is likely to be charged when colliding with the surface 20 to be blasted. More preferably, the amount of the abrasive grains 17 is preferably in the range of 100 to 900 g / min.
[0034]
【Example】
After forming a compact by molding the aluminum nitride powder into a plate shape, an electrode for electrostatic adsorption made of tungsten was arranged on the compact, and further filled with aluminum nitride powder and molded again. . Then, after disposing the resistance heating element 7 again, aluminum nitride powder was filled and molded to produce a disk-shaped molded body in which the internal electrodes were embedded. Next, the formed body was degreased at 400 ° C., and then sintered at 2000 ° C. in a nitrogen atmosphere to obtain a plate-shaped ceramic body.
[0035]
Then, the pressure of the compressed air supplied to the air supply pipe 13 is 0.2 to 0.7 MPa, the moisture content of the compressed air is 0.4 to 6% by weight, and the particle size of the abrasive is 140 to The concave portion was formed by performing blasting at a moving speed of the nozzle of 600 μm and the workpiece 16 with respect to 90 to 350 mm / sec.
[0036]
In addition, silicon carbide abrasive grains having an average particle diameter of 180 μm were used as the abrasive grains.
[0037]
(Example 1)
An 8-inch wafer W is suction-fixed to the mounting surface of the electrostatic chuck and the electrostatic chuck having a concave curved surface portion at the bottom surface of the concave portion, and the resistance of the resistive heating element is different. An experiment was performed to measure the temperature distribution on the surface of the wafer W when the electrostatic chuck was heated to 200 ° C. As for the temperature distribution of the wafer W, nine arbitrary points on the surface of the wafer W were measured with a thermoviewer, and the difference between the maximum value and the minimum value was defined as the temperature distribution. Table 1 shows the measurement results.
[0038]
[Table 1]
Figure 2004179557
[0039]
From the measurement results in Table 1, the sample No. As shown in Nos. 1 to 3, those out of the range of the present invention had poor temperature uniformity with the temperature distribution of the wafer W being 2.5 ° C or more. Further, the sample No. Reference numeral 9 denotes an electrostatic chuck in which a concave portion was drilled, and an electrostatic chuck having no concave curved surface portion on the bottom surface of the concave portion had poor heat uniformity of 3.2 ° C.
[0040]
On the other hand, the sample No. As in 4 to 8, a concave curved surface portion 9 is provided on the bottom surface of the concave portion 2a, the depth of the concave portion 2a is in the range of 10 to 500 μm, and the depth variation of the concave portion 2a with respect to the average depth of the concave portion 2a is 20% or less. Was excellent in that the temperature distribution of the wafer W could be made uniform to 1.7 ° C. or less. From this result, it is possible to provide the concave curved surface portion 9 on the bottom surface of the concave portion 2a, and when the depth of the concave portion 2a is in the range of 10 to 500 μm, the depth variation of the concave portion 2a with respect to the average depth of the concave portion 2a is 20% or less. I find good.
[0041]
Further, the sample No. It can be seen that the temperature difference on the surface of the wafer W in which the variation in the depth of the concave portion 2a is 10% or less, such as 4 and 5, is as small as 1.2 to 1.4 ° C., which is more preferable.
(Example 2)
The depth of the recess 2a of each of the electrostatic chucks 1 produced in the same manner except for the surface roughness before blasting was measured at 16 points, and the depth variation of the recess 2a with respect to the average depth of the recess 2a. Was measured. The variation is defined as a value obtained by dividing the difference between the maximum value and the minimum value of the measured values by the average of the depth. Table 2 shows the measurement results.
[0042]
[Table 2]
Figure 2004179557
[0043]
From the measurement results in Table 2, the sample No. 21 and 22, when the surface to be blasted has a surface roughness Ra of 3 μm and 2 μm, the variation in the depth of the concave portion 2a is slightly large at 17% and 15%.
[0044]
On the other hand, the sample No. In Nos. 23 and 24, since the surface roughness Ra of the surface subjected to the blast processing was 1 μm or less, the depth variation of the concave portion 2a was very small, 7% and 10%.
[0045]
Therefore, when the surface 20 to be blasted has a Ra of 1.0 μm or less, it can be seen that the electrostatic chuck 1 with a small variation in the depth of the concave portion 2a can be manufactured.
(Example 3)
The pressure of the compressed air, the water content of the compressed air, the particle size of the abrasive grains, and the moving speed of the nozzle 11 were processed under the respective conditions, and the potential of the static electricity charged on the bottom surface of the concave portion 2a after the processing was measured with a surface potentiometer. An experiment for measuring and checking the state of the insulating layer 2b was performed. Table 3 shows the measurement results.
[0046]
[Table 3]
Figure 2004179557
[0047]
From the measurement results in Table 3, the sample No. 32 to 34, 37 to 39, 42 to 44, 47 to 49, the pressure of the compressed air is 0.3 to 0.6 MPa, the water content of the compressed air is 0.5 to 5% by weight, the abrasive grains 17 In any of those having a particle diameter of 150 to 500 μm and a moving speed of the nozzle 11 in the range of 100 to 300 mm / sec, the potential of the static electricity charged on the processing surface is as small as 121 to 452 V, and the insulation layer 2b has dielectric breakdown. Not even. On the other hand, the sample Nos. 31, 36, 41, 46, and 50 have a large electrostatic potential of 747 to 852 V charged on the processed surface, and the insulating layer has been broken down.
[0048]
Further, the sample No. 35, 40, and 45, which are outside the range of the present invention and have a small potential of 110 to 155 V of static electricity charged on the processing surface, but in all cases, the surface roughness Rmax of the bottom surface of the concave portion 2a is 11 0.4 to 15.0 μm, and microcracks have occurred. This is because static electricity is applied between the tip of the microcrack and the electrostatic attraction electrode 6 and discharge occurs, and the insulation layer 2b is broken down. Therefore, the pressure of the compressed air is 0.3 to 0.6 MPa, the water content of the compressed air is 0.5 to 5% by weight, the particle size of the abrasive grains 17 is 150 to 500 μm, and the moving speed of the nozzle 11 is 100 to 300 mm. It can be seen that performing blasting under the condition of / sec is effective in preventing dielectric breakdown of the electrostatic chuck 1 when forming the concave portion 2a. Also, it can be seen that the occurrence of microcracks on the bottom surface of the recess 2a can be prevented at the same time.
[0049]
【The invention's effect】
According to the present invention, there is provided an electrostatic chuck 1 in which a concave portion 2a is formed on one main surface of a plate-shaped ceramic body 2 made of a nitride ceramic body, the electrostatic chuck 1 having excellent uniformity of a wafer W. In addition, when forming the concave portion 2a by blasting, the electrostatic chuck 1 prevents static electricity from being generated on the surface of the electrostatic chuck 1 on which the concave portion 2a is formed, thereby preventing the insulating layer 2b from being broken down. Can be provided.
[Brief description of the drawings]
1A is a plan view of an electrostatic chuck 1 according to the present invention, FIG. 1B is a cross-sectional view taken along line XX of FIG. 1A, and FIG. It is an enlarged view of a section perpendicular to a boundary line with 2a.
FIG. 2 is a schematic configuration diagram illustrating a method for manufacturing the electrostatic chuck 1 of the present invention.
FIG. 3 is a perspective view showing the operation of each device during blast processing.
FIG. 4 shows a pattern shape of a concave portion 2a of the mask 30 according to the present invention.
FIG. 5A is a plan view of a conventional electrostatic chuck, and FIG. 5B is a cross-sectional view taken along line XX of FIG.
[Explanation of symbols]
1, 51: electrostatic chuck 2, 52: plate-shaped ceramic 2a, 52a: concave portion 2b, 52b: insulating layer 3, 53: gas inlet 4, 5, 54, 55: power supply terminal 6, 56: for electrostatic attraction Electrodes 7, 57: Resistance heating elements 8, 58: Mounting surface 9: Concave curved surface portion 10: Blasting chamber 11: Nozzle 12: Abrasive supply pipe 13: Air supply pipe 14: Dolly 15: Abrasive collection pipe 16: Cover Work 17: Abrasive grains 18: Cyclone dust collector 20: Surface to be blasted 30: Mask 30a: Mask thick portion 30b: Mask thin thickness W: Wafer

Claims (4)

窒化物セラミック体からなる板状セラミックス体の一方の主面をウェハを載せる載置面とし、上記載置面に一連の凹部が形成された静電チャックにおいて、上記一連の凹部の底面に凹曲面部を備え、上記凹部の平均深さに対して上記凹部の深さのバラツキが20%以下であり、上記凹部の平均深さが10〜500μmであることを特徴とする静電チャック。One principal surface of a plate-shaped ceramic body made of a nitride ceramic body is a mounting surface on which a wafer is mounted, and in the electrostatic chuck having a series of concave portions formed on the mounting surface, a concave curved surface is formed on the bottom surface of the series of concave portions. An electrostatic chuck comprising: a portion, wherein a variation in the depth of the concave portion with respect to an average depth of the concave portion is 20% or less, and an average depth of the concave portion is 10 to 500 μm. 上記静電チャックに、抵抗発熱体を備えたことを特徴とする請求項1に記載の静電チャック。The electrostatic chuck according to claim 1, wherein the electrostatic chuck includes a resistance heating element. ブラスト加工により上記凹部を形成する方法において、ブラスト加工を施す前の表面の表面粗さRaが1.0μm以下であることを特徴とする請求項1に記載の静電チャックの製造方法。2. The method for manufacturing an electrostatic chuck according to claim 1, wherein in the method of forming the concave portion by blasting, the surface roughness Ra of the surface before blasting is 1.0 μm or less. 窒化物セラミック体からなる板状セラミックス体の一方の主面をウェハを載せる載置面とし、上記載置面に一連の凹部が形成された静電チャックの上記一連の凹部をブラスト加工により形成する方法において、ブラスト加工室と、その中に圧縮空気と砥粒の混合流体を噴射するノズルと被加工物を載せる台車とを備え、上記圧縮空気の圧力が0.3〜0.6MPaで、その水分の含有量が0.5〜5重量%であり、且つ上記砥粒の粒径が150〜500μmであり、被加工物に対する上記ノズルの移動速度が100〜300mm/秒であることを特徴とする静電チャックの製造方法。One main surface of a plate-shaped ceramic body made of a nitride ceramic body is used as a mounting surface on which a wafer is mounted, and the above-described series of concave portions of an electrostatic chuck having a series of concave portions formed on the mounting surface is formed by blast processing. The method comprises a blasting chamber, a nozzle for injecting a mixed fluid of compressed air and abrasive grains therein, and a carriage for mounting a workpiece, wherein the pressure of the compressed air is 0.3 to 0.6 MPa. The water content is 0.5 to 5% by weight, the grain size of the abrasive grains is 150 to 500 μm, and the moving speed of the nozzle with respect to the workpiece is 100 to 300 mm / sec. Of manufacturing an electrostatic chuck.
JP2002346541A 2002-11-28 2002-11-28 Manufacturing method of electrostatic chuck Expired - Fee Related JP3847253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346541A JP3847253B2 (en) 2002-11-28 2002-11-28 Manufacturing method of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346541A JP3847253B2 (en) 2002-11-28 2002-11-28 Manufacturing method of electrostatic chuck

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006200676A Division JP2006352151A (en) 2006-07-24 2006-07-24 Electrostatic chuck and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004179557A true JP2004179557A (en) 2004-06-24
JP3847253B2 JP3847253B2 (en) 2006-11-22

Family

ID=32707382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346541A Expired - Fee Related JP3847253B2 (en) 2002-11-28 2002-11-28 Manufacturing method of electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3847253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147724A (en) * 2004-11-17 2006-06-08 Ngk Insulators Ltd Electrostatic chuck and manufacturing method thereof
CN104835764A (en) * 2015-04-27 2015-08-12 沈阳拓荆科技有限公司 Temperature-controllable heating disc with spider-web-shaped surface structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147724A (en) * 2004-11-17 2006-06-08 Ngk Insulators Ltd Electrostatic chuck and manufacturing method thereof
CN104835764A (en) * 2015-04-27 2015-08-12 沈阳拓荆科技有限公司 Temperature-controllable heating disc with spider-web-shaped surface structure

Also Published As

Publication number Publication date
JP3847253B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US10395963B2 (en) Electrostatic chuck
US7586734B2 (en) Electrostatic chuck
JP2008117982A5 (en)
US20080217291A1 (en) Substrate mounting stage and surface treatment method therefor
CN100503170C (en) Method of blasting process
US5935460A (en) Method of performing high-efficiency machining by high-density radical reaction using a rotating electrode, device for performing the method and the rotating electrode used therefor
KR20010043079A (en) Protective member for inner surface of chamber and plasma processing apparatus
TWI780090B (en) New repair method for electrostatic chuck
JP2008117982A (en) Mounting device, plasma processing device, and plasma processing method
US20040081746A1 (en) Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment
KR20190110023A (en) Method for surface treatment of workpiece made from hard-brittle material
JP4236292B2 (en) Wafer adsorption apparatus and method for manufacturing the same
JP4440541B2 (en) Method for regenerating plasma processing apparatus, plasma processing apparatus, and method for regenerating member inside plasma processing container
US20190214235A1 (en) Plasma processing apparatus
JP2007332462A (en) Method for regenerating plasma treatment container, member inside the plasma treatment container, method for manufacturing the member inside the plasma treatment container and apparatus for plasma treatment
CN115148653A (en) Electrostatic chuck and plasma reaction device
JP2006352151A (en) Electrostatic chuck and its manufacturing method
JP4098259B2 (en) Plasma processing equipment
JPH10229115A (en) Vacuum chuck for wafer
JP2004179557A (en) Electrostatic chuck and its manufacturing method
JP2000243742A (en) Plasma generator, inner wall protective member of chamber thereof, manufacture thereof, protection of inner wall of chamber and plasma treatment
KR20110115137A (en) Particle reduction treatment for gas delivery system
JP4021325B2 (en) Manufacturing method of parts for plasma processing apparatus
JP4332004B2 (en) Processing method using blast mask and wafer support member
JPH08323699A (en) Plasma surface machining method and device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3847253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees