JP2004179364A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2004179364A
JP2004179364A JP2002343342A JP2002343342A JP2004179364A JP 2004179364 A JP2004179364 A JP 2004179364A JP 2002343342 A JP2002343342 A JP 2002343342A JP 2002343342 A JP2002343342 A JP 2002343342A JP 2004179364 A JP2004179364 A JP 2004179364A
Authority
JP
Japan
Prior art keywords
wafer
mounting surface
electrostatic chuck
electrode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343342A
Other languages
Japanese (ja)
Inventor
Hironori Inoue
博範 井之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002343342A priority Critical patent/JP2004179364A/en
Publication of JP2004179364A publication Critical patent/JP2004179364A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the difficulty that in an electrostatic chuck a large residual attraction force causes to damage a wafer W when the wafer W is peeled off from the electrostatic chuck or many particles are produced on the back of the wafer W. <P>SOLUTION: There are provided a placement face 3 on one principal surface of a plate-shaped ceramics structure 2 for holding the wafer W, and an attraction electrode 4 inside the plate-shaped ceramics structure 2 or on the other principal surface of the same. Further, the attraction electrode 4 is formed to provide a protruded face with respect to the placement face 3, thereby arranging the thickness of an insulating layer 5 formed between the attraction electrode 4 and the placement face 3 thinner at a central portion than at an outer peripheral part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、PVD装置、CVD装置、イオンプレーティング装置、蒸着装置等の成膜装置やエッチング装置において、例えば半導体ウェハ等の被加工物を保持するのに用いる静電チャックに関するものである。
【0002】
【従来の技術】
従来、PVD装置、CVD装置、イオンプレーティング装置、蒸着装置等の成膜装置やエッチング装置では、半導体ウェハ(以下ウェハWと略する)を精度良く固定し、かつ被吸着物であるウェハWの均熱性を得るため、平坦かつ平滑に仕上げられた板状体の表面に強制的に吸着させることが行われており、この吸着手段として、静電吸着力を利用した静電チャックが用いられている。
【0003】
成膜装置やエッチング装置に用いられる従来の静電チャックは、上記板状セラミックス体の一方の主面(一方の最も広い面)を吸着面としたもので、板状セラミックス体の内部やその他方の主面(他方の最も広い面)に吸着用電極を備えるとともに、吸着用電極に電圧を印加してウェハWとの間に誘電分極によるクーロン力や微少な漏れ電流によるジョンソン・ラーベック力等の静電吸着力を発現させることにより、ウェハWを吸着面に強制的に吸着固定させることができるようになっている。この時ウェハWの保持精度は、吸着面の面精度に倣うことから、吸着面全体を平滑かつ平坦に仕上げたものが用いられていた。
【0004】
図4に従来の静電チャックを示すように、この静電チャック51は、板状セラミックス体52の上面をウェハWを載せる載置面53とするとともに、板状セラミックス体52の内部に静電吸着用の一対の吸着用電極54が埋設され、板状セラミックス体52の下面に吸着用電極54と電気的に接続した通電端子56が固定されている。そして、一対の通電端子56に高圧直流電源62から100〜1000Vの直流電圧を印加すると、ウェハWと載置面53の間に静電吸着力が発現するため、この静電吸着力によってウェハWを載置面53に吸着固定することができる。また、ガス導入孔58はガス溝59と連通し、ガス導入孔58に外部からヘリウムガス等を供給すると、ガス溝59を介して載置面53とウェハWとの間にガスを充てんされ、ウェハWの表面の温度差を小さくすることができる。
【0005】
さらに、板状セラミックス体52にはリフトピン穴60を穿設してあり、このリフトピン穴60よりリフトピン61が昇降可能になっている。そして、載置面53に載せられたウェハWを取り外すには、吸着用電極54への通電を止め、リフトピン61を載置面53より突出させることにより、ウェハWを載置面53より持ち上げて不図示のハンドリングアームでウェハWを移送するようになっている。
【0006】
しかし、ウェハWを載置面53より離脱させるにあたり、吸着用電極54への通電を止めてもウェハWと載置面53の近傍に帯電した電荷は直ぐにはなくならず、ウェハWを載置面53に吸着する力、即ち残留吸着力が発生する。このような残留吸着力が発生した状態でリフトピン60を突出させウェハWを無理に持ち上げようとすると、ウェハWが破損することがあった。そこで、吸着用電極54への通電を止めてから一定の時間を経過した後ウェハWを持ち上げることでウェハWの破損を防止していた。前記の一定の時間は離脱時間と呼ばれ、ウェハWの処理時間を短縮する上で大きなネックとなっていた。
【0007】
特許文献1には上記の離脱時間を短縮するためにウェハWと載置面53の間に導電性ガスを供給し、ウェハWと載置面53に蓄積した電荷を逃がす方法が提案されている。
【0008】
また、離脱性時間を短縮する手段として特許文献2には、静電吸着用の内部電極として金網を用い、この金網からなる内部電極の開口部の割合を50〜80%とするとともに、開口部の最端幅を0.23mm以上とすることにより、実用に供する程度の吸着力を維持しつつ、ウェハの離脱時間を小さくさせる技術が提案されている。
【0009】
また、静電チャック51における他の問題としてパーティクルの発生があった。静電チャック51は静電気力によりウェハWを吸着するが、静電吸着する際に載置面53とウェハWの間で微小な機械的な擦れが発生する。そこで、ウェハWと静電チャック51の載置面53はともに微量ではあるが摩耗する。この摩耗によって生じた摩耗粉がパーティクルとなって静電気を帯びたウェハWの裏面、及び静電チャックの載置面表面に付着する。これらの付着したパーティクルは、一部は脱落し、処理チャンバー内に飛散する。この飛散したパーティクルは、処理中のウェハWの表面に再付着することにより、ウェハW上の微細な配線を短絡させたり、コンタミとなってウェハWの電気的な特性を劣化させる。さらに、ウェハW裏面に付着したパーティクルは、次の処理工程に持ち込まれ、次の処理チャンバー内で機械的な振動等により飛散し、同様にウェハWの表面に付着し、ウェハWに成膜した膜特性を劣化させる等の問題が発生する。
【0010】
そこで、特許文献3には、図5に示すように載置面53に機械加工によりガス溝59を形成し、ウェハWと載置面53の接触面積を減少させることによりパーティクルの発生を抑えた静電チャック51が提案されている。
【0011】
【特許文献1】
特開平9−219441号公報
【特許文献2】
特開2000−158275公報
【特許文献3】
特開1998−233434公報
【0012】
【発明が解決しようとする課題】
しかしながら、特許文献1や特許文献2に記載の静電チャックは残留吸着力が小さくなるよう工夫されているが、まだ残留吸着力が大きく、ウェハWを載置面53から離脱させようとリフトピンを上昇させるとウェハWが破損する虞があった。
【0013】
また、特許文献1のような導電性ガスを供給する手段については、イオンプレーティングや、CVDプロセスでは使用できないという問題がある。その理由としては、イオンプレーティングのように高真空下の成膜プロセスで静電チャック51を使用する場合、微量の導電性ガスがウェハWと載置面53の間からチャンバー内に漏れる為、チャンー内の高真空を維持できなくなる。この為、ウェハWは、真空度の低い環境下で処理される事になり、ウェハに成膜した膜の電気的特性が変化し、所定のイオンプレーティング処理ができないとの問題が発生した。また、CVD工程においては、処理ガスの純度は成膜された膜の純度や、膜厚、膜質等に多大な影響を及ぼす為、異質な導電性ガスが処理室内に漏れると微量であっても悪影響を及ぼす虞があった。
【0014】
一方、半導体製造装置に供せられる静電チャックの重要な特性としてパーティクルの発生の低減が求められている。特許文献3には載置面に多くの溝を機械加工により形成し、ウェハWとの接触面積を減少させることでパーティクルの発生を低減させる技術が提案されている。
【0015】
しかし、パーティクルが発生する最大の要因は、大きな静電吸着力によってウェハWを吸着させた際に、ウェハWが載置面に倣い矯正されるように接触する際の摩擦にある。この摩擦は載置面53全面において吸着力のバラツキがあると顕著となる。載置面53の全面で吸着力のバラツキがあると吸着力の大きな部分が吸着力の弱い部分よりも先に吸着固定され、ウェハWが吸着力の大きさに対応して凹凸に変形し、変形した状態で部分的に吸着した後、ウェハWが平坦に横方向に滑りながらウェハW全面が吸着されることから多量のパーティクルが発生するとの課題があった。
【0016】
また、載置面53にガス溝59を形成し、接触面積を減少させた場合は、ガス溝59の形成されていない吸着部分とガス溝59の形成された部分で大きな吸着力の差が生じ、ウェハWが凹凸に変形することからガス溝59のエッジ部分から多量のパーティクルが発生するとの問題があった。このことから、載置面53の全面の部分的な吸着力のバラツキをなくすことがパーティクル低減の対策となるのであるが、載置面53の全面の吸着力のバラツキをなくすことは容易ではなく、パーティクルを低減することができないとの課題があった。
【0017】
【課題を解決するための手段】
そこで上記課題に鑑み、本発明の静電チャックは、板状セラミックス体の一方の主面にウェハを載せる載置面と、前記板状セラミックス体の内部或いは他方の主面に吸着用電極とを備え、前記吸着用電極と前記載置面間に形成された絶縁層の厚みが外周部よりも中心部が小さいことを特徴とする。
【0018】
また、前記絶縁層の外周部と中心部の厚みの差は、前記絶縁層の厚みの平均値の2〜200%であることを特徴とする。
【0019】
また、前記載置面に対し前記吸着用電極が凸状であることを特徴とする。
【0020】
また、前記吸着用電極の外周部は環状に配設されていることを特徴とする。
【0021】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0022】
図1は本発明の一例である静電チャック1を示す図で、図1(a)は斜視図であり、図1(b)は図1(a)のX−X線の断面図である。さらに、図2は静電チャック1の内部に配置された吸着用電極4を模式的に示す図である。
【0023】
この静電チャック1は、ウェハWとほぼ同じ大きさの円板状をした板状セラミックス体2の表面にウェハWを保持する載置面3を備え、内部に吸着用電極4を備える。
【0024】
上記の板状セラミックス体2には、例えば一対の吸着用電極4a、4bを備え、該吸着用電極4a、4bと電気的に接続された給電端子6を取り出すための電極取り出し孔7を備え、給電端子6は吸着用電極4とチタンや銀を含むロウ材で接合し固定してある。また、前記ロウ材の替わりに導電性接着剤で接合固定することもできる。
【0025】
また、ウェハWを載置面3に載せたり、ウェハWを吸着保持後に載置面3より引き離すためのリフトピン穴10が、板状セラミックス体2を貫通するように形成されている。さらにウェハWの裏面にヘリウムガス等の冷却ガスを導入できるようにガス溝9とそれに連通するガス導入孔8を穿孔してある。
【0026】
このような構造の静電チャック1は上記吸着用電極4a、4bの間に給電端子6を介して電圧を印加すると、吸着用電極4a、4bとウェハWの間に静電気力発現し、ウェハWを載置面3に吸着保持することができる。
【0027】
本発明の静電チャック1は、吸着用電極4と載置面3との間に形成された絶縁層5の厚みが外周部よりも中心部が小さいことを特徴とする。このような構成の吸着用電極4a、4bに通電した場合、短時間の挙動であるがウェハWは、吸着力の高い載置面3の中心部が先に静電吸着力により吸着し、その後載置面3の外周部に向かって吸着されることになりウェハWの面内方向に大きな力が加わることなく吸着することができることから、ウェハWと載置面3の間で横方向の大きな摩擦力が生じる虞が少なく、パーティクルの発生を防止できる。
【0028】
尚、ウェハWが載置面3の吸着力にバラツキがある静電チャックでは、吸着力の大きな部分から吸着され、二つの吸着力の大きな部分の間でウェハWが変形し、その後載置面3に倣って吸着することから、つまりウェハWの2点間でウェハWが反った状態で吸着した後、ウェハWの2点間の全面が吸着されることから、その2点間が載置面3に平行な横方向に動くことによりウェハWと載置面53の間で摩擦が発生しパーティクルを多量に発生させると考えられる。しかし、本発明の静電チャック1は、前述のように載置面3に倣うように吸着、離脱することから、ウェハWと載置面3の間には横方向の移動により擦れが発生することはほとんどなくパーティクルを発生させることが少なく好ましい。
【0029】
また、一般に残留吸着力は吸着力に比例して大きくなることから、給電端子6への通電を止めた直後において、絶縁層5の厚みが大きく吸着力の小さな載置面3の外周部の残留吸着力は小さく、外周部は中心部に比べ残留吸着力が小さい。そして、ウェハWを載置面3から引き剥がす為に、リフトピン11が機械的にウェハWを押し上げるが、リフトピン11がウェハWの外周部を押すと外周部は残留吸着力が小さいことからウェハWを上方に容易に押し上げることができる。この時、中心部には外周部よりも大きな残留吸着力が残っているが、外周部が押し上げられることから、比較的吸着面積の小さな中心部はリフトピン11の力がウェハWを変形させその反作用が効果的に作用し容易にウェハWの全面を押し上げることができる。
【0030】
従って、給電端子6への通電を止めてウェハWを引き剥がす場合は、リフトピン11の押し上げによって、残留吸着力の弱いウェハWの外周部から剥がれて、徐々に中心部に向かって引き剥がされることから摩擦が発生することはほとんどなくパーティクルの発生を防止できる。よって、従来の発明による静電チャックで生じるウェハWの吸着、及び離脱の際に発生する有害なパーティクル数を極めて少なくできる。
【0031】
また、吸着電極4a、4bの絶縁層5の厚みは、外周部よりも中心部が絶縁層の厚みが小さく、その厚みの差は前記絶縁層の平均値の2〜200%であると好ましい。更に好ましくは6〜120%である。その理由は、ウェハWは例えば半導体製造プロセスによって熱処理や成膜処理が施される為、これらの影響で残留応力が発生し、10μm程度の反りが発生していることが一般的である。
【0032】
この為、本発明による静電チャックの効果を得る為には、10μmの絶縁層5の厚みの差があれば良いのであるが、ウェハWを吸着させた吸着の直後にこのウェハWの反りが矯正され、この際にウェハWの部分的な横移動が発生し擦れが発生する場合がある為、絶縁層5の厚みは、外周部よりも中心部が小さく、かつ絶縁層5の厚みの平均値の2%以上、更に好ましくは6%程度の絶縁層5の差であることが必要である。これによりウェハWの反りが発生していてもウェハWと載置面間の横方向への移動、滑りを発生させずに吸着できるのである。この結果、パーティクルの発生を抑えることができるのである。
【0033】
尚、絶縁層5の平均値とは、略円形状の静電吸着用電極4の中心の絶縁層厚み1ヶ所と静電吸着用電極4の最外周を円周上に8等分した位置の絶縁層厚み8ヶ所、及び、静電吸着用電極の中心点と最外周の中間位置にあたる8ヶ所の合計19ヶ所における絶縁層厚みの合計数値を測定ヶ所である19で除した値とすることにより、極力、静電吸着用の電極4の断面形状が凹凸であっても絶縁層厚みとして平均化できる算出方法とした。また、前記中心部の絶縁層5の厚みとは上記中心の絶縁層厚みであり、外周辺とは上記の最外周を円周上に8等分した位置の絶縁層厚み8ヶ所の平均値で表すことができる。
【0034】
また、絶縁層5の厚みの差が200%以上になると静電吸着力の中心部と外周部の吸着力の差が大きくなり、載置面3の中心部の吸着力は得られるものの外周部の吸着力が低くなり、ウェハWを精度良く吸着できなくなる虞がありあまり好ましくない。この為には、絶縁層5の厚み平均値の差を200%程度以下とし、外周部の吸着力の低下を防ぐ必要がある。更に好ましくは絶縁層5の平均値の差は120%程度とし、外周部の吸着力をより大きくすることが好ましい。
【0035】
絶縁層5の厚みの平均値の2〜200%とするには、載置面3に対し吸着用電極4を凸面状とすることが好ましい。凸面状とすることで、載置面3の中心部と外周部の絶縁層5の厚みを上記の範囲内に容易に調整することができる。
【0036】
尚、吸着電極4は双極型で説明したが、単極型でも同様の効果が得られることは言うまでもない。
【0037】
また、本発明の他の実施例として、図3に示すように中心部に円板状電極31とその外周部に円環状の吸着用電極32とを吸着用電極4としてそれぞれに埋設し、円板状電極31と円環状の吸着用電極32の絶縁層5の厚みの差が絶縁層5の平均厚みの2〜200%とすることができる。この静電チャックは、円板状電極31のサイズがウェハWを持ち上げるリフトピン穴の位置よりも小さく、外周部の円環状電極32の内径はリフトピン穴位置より内側にあると好ましい。円板状電極31はリフトピン孔より内側にあることから、リフトピンで持ち上げた際に容易にウェハWを持ち上げることができる。そして、パーティクルの発生も抑えてウェハWを引き剥がすことができるのである。
【0038】
尚、円板状電極31は円を2分した半円形でも、櫛歯状でもく、これに対応して上記円環状電極32は2つに分割した形状でも良い。
【0039】
次に、本発明の静電チャックの製造方法について説明する。このような有効な特徴を持つ静電チャック1を製造する方法としては、特に板状セラミックス体2の製造方法が重要である。このような板状セラミックス体を製造する方法としては、セラミックグリーンシートの積層技術を用いるか、プレス成形技術を用いて製作する。
【0040】
例えば、セラミックグリーンシートの積層技術を用いて板状セラミックス体2を製作する場合、複数枚のセラミックグリーンシートを用意し、あるセラミックグリーンシート上に吸着用電極4をなす導体ペーストを印刷し、残りのセラミックグリーンシートを積み重ねて積層し、セラミックグリーンシートを焼結させることができる温度にて焼成することにより得ることができる。吸着用電極4を載置面3に対して凸面形状を得る為には、この焼成の際に機械的加工によって凹面形状を形成した焼成用のセット板(棚板という)を準備し、板状セラミックス体2の成形体をこの棚板の上に置き、さらに焼成中の変形加重を与える為の重石をおいた状態で焼成すれば良い。
【0041】
また、プレス成形技術を用いて板状セラミックス体2を製作する場合、セラミック原料粉末を金型中に充填してプレス成形した後、成形体上に吸着用電極4をなす導体ペーストを印刷するか、あるいは金属箔又は金網を載せ、さらにセラミック原料粉末を充填した後、焼成、或いはホットプレス前に同様に略凹面形状の棚板で焼成することにより得ることができる。
【0042】
次いで、得られた板状セラミックス体2の一方の主面に給電端子6を挿入、固定するための穴を穿孔し、この穴に給電端子6を挿入してロウ付け等の接合技術を用いて接合する。
【0043】
次に、板状セラミックス体2の載置面3に、ガス溝9が必要な場合は、ガス溝を加工すれば良いのであるが、ガス溝9の形成にあたっては、ブラスト加工やマシニング加工、あるいは超音波加工等を用い、深さが数十μmから数百μmのガス溝を所定のパターン形状に形成すれば良い。
【0044】
しかる後、載置面3にラッピング加工を施す。この時、ラップ板として鋳鉄製のものを用い、10μmから3μmの大きさを有するダイヤモンド砥粒を用いてラッピングする。なお、さらに銅盤や錫盤を用いて仕上げ研磨を施しても構わない。
【0045】
そして、ポリウレタン等の樹脂パッドを貼り付けたラップ板を用い、回転するラップ板の周縁部に板状セラミックス体の他方の主面を押し当てながら自転させた状態で、板状セラミックス体とラップ板との間にコロイダルシリカを供給しながらラップ加工を行うことにより、ウェハ載置面3に対して凸面状の静電吸着用電極4を備えた板状体2を容易に得ることができる。
【0046】
また、本発明の他の実施形態である図3の静電チャックは、中心部に円板状電極31とその外周部に円環状の円環状電極32とを埋設深さを変えて埋設し、平坦な棚板上で焼成することで板状セラミックス体2を得ることができる。
【0047】
また、本発明は前述した実施形態だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で、改良や変更したものでも良いことは言う迄もない。
【0048】
【実施例】
(実施例1)
本発明による静電チャック1の効果を確認する為、図2に示すように断面が、載置面3に対して凸面状の吸着用電極を有する静電チャックを用意して、残留吸着力、及びウェハW裏面のパーティクルを測定する実験を行った。
【0049】
本実験に際して、従来の静電チャックのように吸着用電極が平坦な形状であり、よって絶縁層厚みが面内で略等しくバラツキのある静電チャック(試料No.1)と吸着用電極の形状が本発明とは逆の図5に示すような凹み形状の比較用の静電チャック(試料No.2)を作製・準備し効果を比較検証した。
【0050】
実験に使用した静電チャックは、いずれも板状セラミックス体の寸法として外径φ200mm、厚み5mmで、材質は、純度99%の窒化アルミニウム質焼結体とした。また、絶縁層の厚みは、0.5mmとした。また、被吸着物は、φ200mm、厚み0.7mmのシリコン製のウェハWとした。
【0051】
実験条件は、10−6TORRの真空チャンバー内とし、給電端子への吸着電圧を+/−250VとしウェハWを吸着した。尚、評価温度は、常温とした。
【0052】
残留吸着力の測定は、リフトピンに歪みゲージを取り付け、吸着電圧を印加後、電圧を0Vにし、5秒後にウェハWを載置面から引き剥がす際のリフトピンにかかる全加重を比較測定した。又、ウェハWを1回、吸着・離脱試験した直後のウェハWのパーティクル数を測定した。また、パーティクル数の測定は、TENKOR社製のウェハパーティクルカウンター(機種名:SP−1)を用いてウェハ裏面に付着した0.3ミクロン以上のパーティクルを測定した。そして、その結果を表1に示した。
【0053】
【表1】

Figure 2004179364
【0054】
表1より判るように、試料No.1の従来の静電チャックは、吸着用電極が載置面に対して平坦状で、絶縁層の厚みが略一定であることから、残留吸着力が115Paと大きく、また、ウェハW裏面のパーティクル数も12,000ヶと多かった。さらに、パーティクルの付着位置を確認して見ると溝付近に多かった。この現象から載置面53の周辺のエッジ部やその断面形状が四角形状のガス溝57のエッジ部分によりシリコンウェハが傷付けられたり、エッジ部に欠けや脱粒が発生し、パーティクルが付着したものと思われる。
【0055】
また、試料No.2の吸着用電極が凹面形状の静電チャックは、外周部の吸着力が大きいことから残留吸着力は136Paと大きく、ウェハWが離脱と同時にウェハWが破損した。これは、円周の広い面積の外周部に高い残留吸着力が発生している為と考えられる。
【0056】
これに対し、本発明の試料No.2〜9は、載置面3に対し、静電吸着電極4が凸面状であり、外周部よりも中心部の絶縁層5の厚みの差が1〜220%である静電チャック1は残留吸着力が10〜45Paと小さい値であり、パーティクル数は3000個以下と少なく好ましかった。
【0057】
本発明のすべての実施例の試料No.3〜9は、半導体製造装置に要求される3000ヶ以下を十分に満たすものであった。
【0058】
また、試料No.3は、本発明による、載置面3に対し、静電吸着用電極が凸面状に形成された静電チャックであるが、中心部と外周部の絶縁層厚みの平均値の差が1%しかない試料である。この試料の場合は、パーティクルが3,000ヶとやや多く、残留吸着力も45Paとやや大きかった。特にパーティクルが多かったが、この理由としては、ウェハW自体の反りによりウェハWを吸着した直後にウェハWの反りの矯正によりウェハが載置面に対して横移動した為に、擦れが発生した為と考えられる。
【0059】
また、絶縁層5の厚みの差を、220%とした試料No.9を評価したところ、パーティクル500ヶ、残留吸着力10Paと良好な結果であったが、絶縁層の厚みが厚い為に、吸着力が小さく、ウェハW裏面に供給したヘリウムガスがウェハWと載置面から漏れる良が多かった。
【0060】
従って試料No.3、9から絶縁層厚みの差は、2〜200%とすると更に好ましく、より好ましくは6〜120%である。
【0061】
この結果より、板状セラミックス体の表面にウェハWを保持する載置面を備え、内部に吸着用電極を備えるとともに、該吸着用電極が載置面に対し凸面状となるように形成することにより、吸着用電極と載置面間に形成された絶縁層厚みが外周部よりも中心部が薄くなるように配置すると優れたウェハWの離脱特性を示す。
【0062】
また、外周部よりも中心部が絶縁層の厚みが薄く、その厚みの平均値の差が2〜200%であると更に好ましく、6〜120%であると最も優れたウェハW離脱特性を示し、ウェハW裏面の有害なパーティクルを低減できると言える。
【0063】
【発明の効果】
板状セラミックス体の表面にウェハを保持する載置面を備え、内部に吸着用電極を備えるとともに、該吸着用電極が載置面に対し凸面状となるように形成することにより、吸着用電極と載置面間に形成された絶縁層厚みが外周部よりも中心部が小さくなるように配置され、特にその平均値の厚みの差が2〜200%。さらに好ましくは6〜120%とすることにより静電チャックの残留吸着力、及びウェハ裏面の有害なパーティクルを低減できる。
【図面の簡単な説明】
【図1】(a)は本発明の一例である静電チャックを示す斜視図、(b)はそのX−X線断面図である。
【図2】本発明の静電チャックの内部に配置される吸着用電極を示す断面図である。
【図3】本発明の他の実施形態の吸着用電極を示す断面図である。
【図4】従来の静電チャックを模式的に示す断面図である。
【図5】従来の静電チャックを模式的に示す断面図である。
【符号の説明】
1、51:静電チャック
2、52:板状セラミックス体
3、53:載置面
4、54、4a、4b:静電吸着用電極
5、55:絶縁層
6、56:給電端子
7、57:電極取り出し孔
8、58:ガス導入孔
9、59:ガス溝
10、60:リフトピン穴
11,61:リフトピン
15:金属ベース
62:静電チャック用電源
W:ウェハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrostatic chuck used for holding a workpiece such as a semiconductor wafer in a film forming apparatus such as a PVD apparatus, a CVD apparatus, an ion plating apparatus, and a vapor deposition apparatus or an etching apparatus.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a film forming apparatus or an etching apparatus such as a PVD apparatus, a CVD apparatus, an ion plating apparatus, and a vapor deposition apparatus, a semiconductor wafer (hereinafter, abbreviated as “wafer W”) is accurately fixed and a wafer W which is an object to be adsorbed is fixed. In order to obtain heat uniformity, forcible adsorption is performed on the surface of a flat and smooth finished plate-like body, and an electrostatic chuck using an electrostatic attraction force is used as this adsorption means. I have.
[0003]
A conventional electrostatic chuck used for a film forming apparatus or an etching apparatus has one main surface (one of the widest surfaces) of the above-mentioned plate-shaped ceramic body as an adsorption surface, and the inside of the plate-shaped ceramic body or the other. Is provided with a suction electrode on the main surface (the other widest surface), and voltage such as Coulomb force due to dielectric polarization and Johnson-Rahbek force due to a small leakage current is applied between the suction electrode and the wafer W. By expressing the electrostatic attraction force, the wafer W can be forcibly adsorbed and fixed to the attraction surface. At this time, since the holding accuracy of the wafer W is similar to the surface accuracy of the suction surface, a wafer whose entire suction surface is smooth and flat has been used.
[0004]
As shown in FIG. 4, a conventional electrostatic chuck 51 is configured such that the upper surface of a plate-shaped ceramic body 52 is used as a mounting surface 53 on which a wafer W is placed, and the electrostatic chuck 51 is placed inside the plate-shaped ceramic body 52. A pair of suction electrodes 54 for suction are buried, and a conduction terminal 56 electrically connected to the suction electrode 54 is fixed to the lower surface of the plate-shaped ceramic body 52. When a DC voltage of 100 to 1000 V is applied from the high-voltage DC power supply 62 to the pair of conducting terminals 56, an electrostatic attraction force is developed between the wafer W and the mounting surface 53. Can be suction-fixed to the mounting surface 53. The gas introduction hole 58 communicates with the gas groove 59, and when helium gas or the like is supplied from the outside to the gas introduction hole 58, the gas is filled between the mounting surface 53 and the wafer W via the gas groove 59, The temperature difference on the surface of the wafer W can be reduced.
[0005]
Further, a lift pin hole 60 is formed in the plate-shaped ceramic body 52, and a lift pin 61 can be moved up and down from the lift pin hole 60. Then, in order to remove the wafer W placed on the mounting surface 53, the power supply to the suction electrode 54 is stopped, and the lift pins 61 are protruded from the mounting surface 53 to lift the wafer W from the mounting surface 53. The wafer W is transferred by a handling arm (not shown).
[0006]
However, when the wafer W is detached from the mounting surface 53, even if the supply of electricity to the suction electrode 54 is stopped, the electric charge charged in the vicinity of the wafer W and the mounting surface 53 does not disappear immediately. A force for attracting the surface 53, that is, a residual attracting force is generated. If the lift pins 60 are protruded and the wafer W is forcibly lifted in a state where such residual suction force is generated, the wafer W may be damaged. Accordingly, the wafer W is prevented from being damaged by lifting the wafer W after a certain period of time has elapsed after the supply of electricity to the suction electrode 54 is stopped. The above-mentioned fixed time is called a separation time, and has been a major bottleneck in reducing the processing time of the wafer W.
[0007]
Patent Document 1 proposes a method in which a conductive gas is supplied between the wafer W and the mounting surface 53 to reduce the above-described separation time, and the electric charge accumulated on the wafer W and the mounting surface 53 is released. .
[0008]
As means for shortening the detachment time, Patent Document 2 discloses that a metal mesh is used as an internal electrode for electrostatic attraction, the ratio of the opening of the internal electrode made of the metal mesh is 50 to 80%, and the opening is A technique has been proposed in which, by setting the outermost width to 0.23 mm or more, the detachment time of a wafer can be reduced while maintaining an attractive force for practical use.
[0009]
Another problem in the electrostatic chuck 51 is the generation of particles. The electrostatic chuck 51 attracts the wafer W by an electrostatic force, but a small mechanical rub occurs between the mounting surface 53 and the wafer W when the electrostatic chuck is performed. Therefore, both the wafer W and the mounting surface 53 of the electrostatic chuck 51 are abraded, albeit in small amounts. The abrasion powder generated by this abrasion becomes particles and adheres to the back surface of the wafer W charged with static electricity and the surface of the mounting surface of the electrostatic chuck. Some of these attached particles fall off and scatter into the processing chamber. The scattered particles are reattached to the surface of the wafer W being processed, thereby causing short-circuiting of fine wiring on the wafer W or causing contamination to deteriorate electrical characteristics of the wafer W. Further, the particles attached to the back surface of the wafer W are carried into the next processing step, scattered in the next processing chamber by mechanical vibration or the like, similarly attached to the surface of the wafer W, and formed on the wafer W. Problems such as deterioration of film characteristics occur.
[0010]
Therefore, in Patent Document 3, as shown in FIG. 5, gas grooves 59 are formed in the mounting surface 53 by machining to reduce the contact area between the wafer W and the mounting surface 53, thereby suppressing generation of particles. An electrostatic chuck 51 has been proposed.
[0011]
[Patent Document 1]
JP-A-9-219441 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-158275 [Patent Document 3]
JP-A-1998-233434
[Problems to be solved by the invention]
However, the electrostatic chucks described in Patent Literature 1 and Patent Literature 2 are devised so that the residual suction force is reduced, but the residual chuck force is still large, and the lift pins are used to detach the wafer W from the mounting surface 53. When raised, the wafer W may be damaged.
[0013]
Further, the means for supplying a conductive gas as disclosed in Patent Document 1 has a problem that it cannot be used in ion plating or a CVD process. The reason is that when the electrostatic chuck 51 is used in a film forming process under a high vacuum such as ion plating, a small amount of conductive gas leaks from between the wafer W and the mounting surface 53 into the chamber. The high vacuum inside the chan cannot be maintained. For this reason, the wafer W is processed in an environment with a low degree of vacuum, and the electrical characteristics of the film formed on the wafer change, which causes a problem that a predetermined ion plating process cannot be performed. Further, in the CVD process, the purity of the processing gas greatly affects the purity of the formed film, the film thickness, the film quality, and the like. There was a risk of adverse effects.
[0014]
On the other hand, reduction of generation of particles is required as an important characteristic of an electrostatic chuck used in a semiconductor manufacturing apparatus. Patent Document 3 proposes a technique in which a large number of grooves are formed on a mounting surface by machining to reduce the area of contact with the wafer W, thereby reducing the generation of particles.
[0015]
However, the largest factor of the generation of particles is friction when the wafer W contacts the mounting surface so as to be corrected when the wafer W is attracted by a large electrostatic attraction force. This friction becomes remarkable when there is a variation in the attraction force over the entire mounting surface 53. If there is a variation in the suction force on the entire surface of the mounting surface 53, a portion having a large suction force is fixed by suction before a portion having a weak suction force, and the wafer W is deformed into irregularities corresponding to the magnitude of the suction force, After partially adsorbing in a deformed state, the entire surface of the wafer W is adsorbed while the wafer W slides flatly in the horizontal direction, so that there is a problem that a large amount of particles are generated.
[0016]
When the gas groove 59 is formed on the mounting surface 53 and the contact area is reduced, a large difference in suction force occurs between the suction portion where the gas groove 59 is not formed and the portion where the gas groove 59 is formed. In addition, there is a problem that a large amount of particles are generated from the edge portion of the gas groove 59 because the wafer W is deformed into irregularities. For this reason, eliminating the variation in the attraction force on the entire surface of the mounting surface 53 is a measure for reducing particles, but it is not easy to eliminate the variation in the attraction force on the entire surface of the mounting surface 53. However, there is a problem that particles cannot be reduced.
[0017]
[Means for Solving the Problems]
In view of the above problems, an electrostatic chuck according to the present invention includes a mounting surface on which a wafer is mounted on one main surface of a plate-shaped ceramic body, and a suction electrode inside or on the other main surface of the plate-shaped ceramic body. The thickness of the insulating layer formed between the attraction electrode and the placement surface is smaller at the center than at the outer periphery.
[0018]
Further, a difference in thickness between the outer peripheral portion and the central portion of the insulating layer is 2 to 200% of an average value of the thickness of the insulating layer.
[0019]
Further, the suction electrode is convex with respect to the placement surface.
[0020]
Further, an outer peripheral portion of the attraction electrode is provided in a ring shape.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0022]
FIG. 1 is a view showing an electrostatic chuck 1 as an example of the present invention. FIG. 1 (a) is a perspective view, and FIG. 1 (b) is a cross-sectional view taken along line XX of FIG. 1 (a). . FIG. 2 is a view schematically showing the suction electrode 4 arranged inside the electrostatic chuck 1.
[0023]
The electrostatic chuck 1 includes a mounting surface 3 for holding the wafer W on a surface of a plate-shaped ceramic body 2 having a disk shape substantially the same size as the wafer W, and includes an attraction electrode 4 therein.
[0024]
The plate-shaped ceramic body 2 includes, for example, a pair of suction electrodes 4a and 4b, and includes an electrode extraction hole 7 for extracting a power supply terminal 6 electrically connected to the adsorption electrodes 4a and 4b. The power supply terminal 6 is joined and fixed to the suction electrode 4 with a brazing material containing titanium or silver. Further, instead of the brazing material, it is also possible to join and fix with a conductive adhesive.
[0025]
Further, a lift pin hole 10 for placing the wafer W on the mounting surface 3 or separating the wafer W from the mounting surface 3 after holding the wafer W by suction is formed so as to penetrate the plate-shaped ceramic body 2. Further, a gas groove 9 and a gas introduction hole 8 communicating therewith are formed so that a cooling gas such as helium gas can be introduced into the back surface of the wafer W.
[0026]
When a voltage is applied between the suction electrodes 4a and 4b via the power supply terminal 6, the electrostatic chuck 1 having such a structure develops an electrostatic force between the suction electrodes 4a and 4b and the wafer W, and the wafer W Can be suction-held on the mounting surface 3.
[0027]
The electrostatic chuck 1 of the present invention is characterized in that the thickness of the insulating layer 5 formed between the suction electrode 4 and the mounting surface 3 is smaller at the center than at the outer periphery. When electricity is supplied to the suction electrodes 4a and 4b having such a configuration, although the behavior is a short time, the center of the mounting surface 3 having a high suction force is first suctioned by the electrostatic suction force, and then the wafer W is suctioned. Since the wafer W is sucked toward the outer peripheral portion of the mounting surface 3 and can be sucked without applying a large force in the in-plane direction of the wafer W, a large horizontal width between the wafer W and the mounting surface 3 can be obtained. There is little possibility that frictional force is generated, and generation of particles can be prevented.
[0028]
In the case of an electrostatic chuck in which the wafer W has a variation in the suction force of the mounting surface 3, the wafer W is sucked from a portion having a large suction force, and the wafer W is deformed between the two portions having a large suction force. 3, that is, the entire surface between the two points of the wafer W is sucked after the wafer W is sucked in a warped state between the two points of the wafer W. It is considered that the movement in the horizontal direction parallel to the surface 3 causes friction between the wafer W and the mounting surface 53 to generate a large amount of particles. However, since the electrostatic chuck 1 of the present invention is attracted and detached so as to follow the mounting surface 3 as described above, rubbing occurs between the wafer W and the mounting surface 3 due to lateral movement. There is almost no occurrence of particles and it is preferable.
[0029]
Further, since the residual suction force generally increases in proportion to the suction force, immediately after the power supply to the power supply terminal 6 is stopped, the residual thickness of the outer peripheral portion of the mounting surface 3 where the thickness of the insulating layer 5 is large and the suction force is small. The attraction force is small, and the outer peripheral portion has a smaller residual attraction force than the central portion. Then, the lift pins 11 mechanically push up the wafer W in order to peel the wafer W from the mounting surface 3. However, when the lift pins 11 push the outer peripheral portion of the wafer W, the outer peripheral portion has a small residual suction force. Can be easily pushed upward. At this time, a larger residual suction force remains in the center than in the outer peripheral portion, but the outer peripheral portion is pushed up. Works effectively and can easily push up the entire surface of the wafer W.
[0030]
Accordingly, when the power supply terminal 6 is de-energized and the wafer W is peeled off, the wafer W is peeled from the outer peripheral portion of the weak residual suction force by the lifting of the lift pins 11 and gradually peeled toward the center. Therefore, generation of particles can be prevented with almost no occurrence of friction. Therefore, the number of harmful particles generated when the wafer W is attracted and released by the electrostatic chuck according to the conventional invention can be extremely reduced.
[0031]
The thickness of the insulating layer 5 of the attraction electrodes 4a and 4b is preferably such that the thickness of the insulating layer is smaller at the central portion than at the outer peripheral portion, and the thickness difference is 2 to 200% of the average value of the insulating layer. More preferably, it is 6 to 120%. The reason is that, for example, since the wafer W is subjected to a heat treatment or a film forming process by, for example, a semiconductor manufacturing process, a residual stress is generated due to these effects, and a warpage of about 10 μm is generally generated.
[0032]
For this reason, in order to obtain the effect of the electrostatic chuck according to the present invention, it is sufficient if there is a difference in the thickness of the insulating layer 5 of 10 μm. In this case, the wafer W may be partially laterally moved and rubbed at this time, so that the thickness of the insulating layer 5 is smaller at the center portion than at the outer peripheral portion and the average of the thickness of the insulating layer 5. It is necessary that the difference between the insulating layers 5 is 2% or more, more preferably about 6% of the value. As a result, even if the wafer W is warped, the wafer W can be sucked without causing lateral movement and slippage between the wafer W and the mounting surface. As a result, generation of particles can be suppressed.
[0033]
Note that the average value of the insulating layer 5 is defined as a value obtained by dividing the thickness of the insulating layer 4 at one point at the center of the substantially circular electrode 4 for electrostatic attraction and the position where the outermost periphery of the electrode 4 for electrostatic attraction is equally divided into eight on the circumference. By dividing the total value of the insulating layer thickness at eight places of the insulating layer at eight places and eight places at the middle point between the center point and the outermost periphery of the electrostatic chucking electrode by 19, which is the measuring place, The calculation method is such that the thickness of the insulating layer can be averaged even if the cross-sectional shape of the electrode 4 for electrostatic attraction is uneven. The thickness of the insulating layer 5 at the central portion is the thickness of the insulating layer at the center, and the outer periphery is an average value of eight places of the insulating layer at a position obtained by equally dividing the outermost periphery into eight on the circumference. Can be represented.
[0034]
When the thickness difference of the insulating layer 5 is 200% or more, the difference between the central portion of the electrostatic attraction force and the attraction portion at the outer peripheral portion increases, and the attraction force at the central portion of the mounting surface 3 is obtained. Is low, and the wafer W may not be able to be suctioned with high accuracy. For this purpose, the difference in the average thickness of the insulating layer 5 needs to be about 200% or less to prevent a decrease in the attraction force of the outer peripheral portion. More preferably, the difference between the average values of the insulating layers 5 is about 120%, and it is preferable to further increase the attraction force of the outer peripheral portion.
[0035]
In order to set the average thickness of the insulating layer 5 to 2 to 200%, it is preferable that the suction electrode 4 has a convex shape with respect to the mounting surface 3. With the convex shape, the thickness of the insulating layer 5 at the central portion and the outer peripheral portion of the mounting surface 3 can be easily adjusted within the above range.
[0036]
Although the adsorption electrode 4 has been described as a bipolar type, it goes without saying that the same effect can be obtained with a monopolar type.
[0037]
Further, as another embodiment of the present invention, as shown in FIG. 3, a disk-shaped electrode 31 at the center and an annular suction electrode 32 at its outer periphery are embedded as suction electrodes 4 in the center, respectively. The difference between the thickness of the insulating layer 5 of the plate-shaped electrode 31 and the thickness of the insulating layer 5 of the annular adsorption electrode 32 can be 2 to 200% of the average thickness of the insulating layer 5. In this electrostatic chuck, it is preferable that the size of the disc-shaped electrode 31 is smaller than the position of the lift pin hole for lifting the wafer W, and the inner diameter of the annular electrode 32 on the outer peripheral portion is inside the position of the lift pin hole. Since the disc-shaped electrode 31 is located inside the lift pin holes, the wafer W can be easily lifted when lifted by the lift pins. Then, the wafer W can be peeled off while suppressing generation of particles.
[0038]
The disc-shaped electrode 31 may be a semicircle obtained by dividing a circle into two or a comb-like shape, and the ring-shaped electrode 32 may be divided into two correspondingly.
[0039]
Next, a method for manufacturing the electrostatic chuck of the present invention will be described. As a method of manufacturing the electrostatic chuck 1 having such effective features, a method of manufacturing the plate-shaped ceramic body 2 is particularly important. As a method of manufacturing such a plate-shaped ceramic body, a lamination technique of ceramic green sheets is used or a press molding technique is used.
[0040]
For example, when manufacturing the plate-shaped ceramic body 2 by using a ceramic green sheet laminating technique, a plurality of ceramic green sheets are prepared, a conductive paste forming the attraction electrode 4 is printed on a certain ceramic green sheet, and the remaining ceramic green sheet is printed. The ceramic green sheets are stacked and laminated, and fired at a temperature at which the ceramic green sheets can be sintered. In order to obtain the convex shape of the adsorption electrode 4 with respect to the mounting surface 3, a firing set plate (referred to as a shelf plate) having a concave shape formed by mechanical processing at the time of firing is prepared. The molded body of the ceramic body 2 may be placed on this shelf plate and fired with a weight for applying a deformation load during firing.
[0041]
Further, when the plate-shaped ceramic body 2 is manufactured by using the press molding technique, the ceramic raw material powder is filled in a mold and press-molded, and then the conductive paste forming the adsorption electrode 4 is printed on the molded body. Alternatively, it can be obtained by placing a metal foil or a wire mesh and further filling the ceramic raw material powder, followed by baking or baking on a substantially concave shelf before hot pressing.
[0042]
Next, a hole for inserting and fixing the power supply terminal 6 is drilled in one main surface of the obtained plate-shaped ceramic body 2, and the power supply terminal 6 is inserted into this hole and a joining technique such as brazing is used. Join.
[0043]
Next, when a gas groove 9 is required on the mounting surface 3 of the plate-shaped ceramic body 2, the gas groove may be processed. However, in forming the gas groove 9, blasting, machining, or By using ultrasonic processing or the like, gas grooves having a depth of several tens μm to several hundreds μm may be formed in a predetermined pattern shape.
[0044]
Thereafter, the mounting surface 3 is subjected to lapping. At this time, a lapping plate made of cast iron is wrapped using diamond abrasive grains having a size of 10 μm to 3 μm. Note that finish polishing may be further performed using a copper plate or a tin plate.
[0045]
Then, using a lap plate to which a resin pad of polyurethane or the like is stuck, the plate-shaped ceramic body and the lap plate are rotated while pressing the other main surface of the plate-shaped ceramic body against the peripheral edge of the rotating lap plate. By performing the lapping process while supplying colloidal silica between the above, the plate-shaped body 2 provided with the electrostatic chucking electrode 4 having a convex shape with respect to the wafer mounting surface 3 can be easily obtained.
[0046]
Further, in the electrostatic chuck of FIG. 3 which is another embodiment of the present invention, a disk-shaped electrode 31 is embedded at the center and an annular annular electrode 32 is embedded at the outer periphery thereof at different embedding depths. By firing on a flat shelf, the plate-shaped ceramic body 2 can be obtained.
[0047]
Further, it is needless to say that the present invention is not limited to the above-described embodiment, and may be improved or modified without departing from the gist of the present invention.
[0048]
【Example】
(Example 1)
In order to confirm the effect of the electrostatic chuck 1 according to the present invention, as shown in FIG. 2, an electrostatic chuck having a suction electrode whose cross section is convex with respect to the mounting surface 3 is prepared, and a residual suction force, An experiment for measuring particles on the back surface of the wafer W was performed.
[0049]
In this experiment, the chucking electrode has a flat shape like a conventional electrostatic chuck, and therefore, the electrostatic chuck (sample No. 1) in which the thickness of the insulating layer is substantially equal in the plane and the shape of the chucking electrode However, a comparative electrostatic chuck (sample No. 2) having a recessed shape as shown in FIG. 5 opposite to the present invention was prepared and prepared, and the effect was compared and verified.
[0050]
Each of the electrostatic chucks used in the experiments had an outer diameter of 200 mm and a thickness of 5 mm as dimensions of a plate-shaped ceramic body, and was made of an aluminum nitride sintered body having a purity of 99%. The thickness of the insulating layer was 0.5 mm. The object to be adsorbed was a silicon wafer W having a diameter of 200 mm and a thickness of 0.7 mm.
[0051]
The experimental conditions were set in a vacuum chamber of 10 −6 TORR, the chucking voltage to the power supply terminal was set to +/− 250 V, and the wafer W was sucked. The evaluation temperature was normal temperature.
[0052]
The measurement of the residual suction force was performed by attaching a strain gauge to the lift pin, applying the suction voltage, setting the voltage to 0 V, and comparing and measuring the total load applied to the lift pin when the wafer W was peeled off the mounting surface after 5 seconds. Further, the number of particles of the wafer W was measured immediately after the wafer W was subjected to the suction / release test once. The number of particles was measured using a wafer particle counter (model name: SP-1) manufactured by TENKOR and measuring 0.3 μm or more particles adhered to the back surface of the wafer. Table 1 shows the results.
[0053]
[Table 1]
Figure 2004179364
[0054]
As can be seen from Table 1, sample no. In the conventional electrostatic chuck 1, since the suction electrode is flat with respect to the mounting surface and the thickness of the insulating layer is substantially constant, the residual suction force is as large as 115 Pa, and the particles on the back surface of the wafer W The number was as large as 12,000. Furthermore, when the adhesion position of the particles was confirmed and observed, it was found to be large near the groove. Due to this phenomenon, the silicon wafer is damaged by the peripheral edge of the mounting surface 53 and the edge of the gas groove 57 having a rectangular cross-sectional shape, or chipping or shedding occurs at the edge, and particles are attached. Seem.
[0055]
Further, the sample No. The electrostatic chuck having the concave shape of the suction electrode 2 had a large residual suction force of 136 Pa because of the large suction force of the outer peripheral portion, and the wafer W was broken at the same time as the wafer W was detached. It is considered that this is because a high residual suction force is generated in the outer peripheral portion having a large area around the circumference.
[0056]
On the other hand, the sample No. In Nos. 2 to 9, the electrostatic chuck 1 in which the electrostatic chucking electrode 4 has a convex shape with respect to the mounting surface 3 and the difference in the thickness of the insulating layer 5 in the central portion is 1 to 220% than in the outer peripheral portion remains. The attraction force was a small value of 10 to 45 Pa, and the number of particles was 3000 or less, which was preferable.
[0057]
Sample Nos. Of all the examples of the present invention. Nos. 3 to 9 sufficiently satisfy 3000 or less required for the semiconductor manufacturing apparatus.
[0058]
Further, the sample No. Reference numeral 3 denotes an electrostatic chuck in which the electrostatic chucking electrode is formed in a convex shape with respect to the mounting surface 3 according to the present invention, and the difference between the average values of the thicknesses of the insulating layers in the central portion and the outer peripheral portion is 1%. This is the only sample. In the case of this sample, the number of particles was rather large at 3,000, and the residual adsorption force was also relatively large at 45 Pa. In particular, the number of particles was large. The reason for this was that the wafer W was laterally moved with respect to the mounting surface due to the correction of the warp of the wafer W immediately after the wafer W was attracted by the warp of the wafer W itself, so that rubbing occurred. It is thought to be for.
[0059]
Further, in Sample No. 2 in which the difference in the thickness of the insulating layer 5 was 220%. 9 was evaluated, the result was 500 particles and the residual adsorption power was 10 Pa, which was a good result. However, because the thickness of the insulating layer was large, the adsorption power was small, and the helium gas supplied to the back surface of the wafer W was loaded on the wafer W. There were many good leaks from the table.
[0060]
Therefore, the sample No. The difference between 3, 9 and the thickness of the insulating layer is more preferably from 2 to 200%, more preferably from 6 to 120%.
[0061]
From these results, it is found that the mounting surface for holding the wafer W is provided on the surface of the plate-shaped ceramic body, the suction electrode is provided inside, and the suction electrode is formed so as to be convex with respect to the mounting surface. Accordingly, when the insulating layer formed between the suction electrode and the mounting surface is arranged so that the thickness of the insulating layer is smaller at the central portion than at the outer peripheral portion, excellent separation characteristics of the wafer W are exhibited.
[0062]
In addition, the thickness of the insulating layer is thinner at the central portion than at the outer peripheral portion, and the difference in the average value of the thickness is more preferably 2 to 200%, and when it is 6 to 120%, the most excellent wafer W separation characteristics are exhibited. It can be said that harmful particles on the back surface of the wafer W can be reduced.
[0063]
【The invention's effect】
A mounting surface for holding a wafer is provided on the surface of the plate-shaped ceramic body, and an attraction electrode is provided therein, and the attraction electrode is formed so as to be convex with respect to the mounting surface. And the thickness of the insulating layer formed between the mounting surfaces is arranged so that the center portion is smaller than the outer peripheral portion. In particular, the difference in the average thickness is 2 to 200%. More preferably, by setting it to 6 to 120%, the residual chucking force of the electrostatic chuck and harmful particles on the back surface of the wafer can be reduced.
[Brief description of the drawings]
FIG. 1A is a perspective view showing an electrostatic chuck as an example of the present invention, and FIG. 1B is a cross-sectional view taken along line XX.
FIG. 2 is a cross-sectional view showing an attraction electrode disposed inside the electrostatic chuck of the present invention.
FIG. 3 is a sectional view showing an adsorption electrode according to another embodiment of the present invention.
FIG. 4 is a sectional view schematically showing a conventional electrostatic chuck.
FIG. 5 is a sectional view schematically showing a conventional electrostatic chuck.
[Explanation of symbols]
1, 51: electrostatic chuck 2, 52: plate-shaped ceramic body 3, 53: mounting surface 4, 54, 4a, 4b: electrode for electrostatic attraction 5, 55: insulating layer 6, 56: power supply terminal 7, 57 : Electrode take-out holes 8, 58: Gas introduction holes 9, 59: Gas grooves 10, 60: Lift pin holes 11, 61: Lift pins 15: Metal base 62: Power supply for electrostatic chuck W: Wafer

Claims (4)

板状セラミックス体の一方の主面にウェハを載せる載置面と、前記板状セラミックス体の内部或いは他方の主面に吸着用電極とを備え、前記吸着用電極と前記載置面間に形成された絶縁層の厚みが外周部よりも中心部が小さいことを特徴とする静電チャック。A mounting surface on which a wafer is mounted on one main surface of the plate-shaped ceramic body, and a suction electrode inside or on the other main surface of the plate-shaped ceramic body, formed between the suction electrode and the mounting surface. An electrostatic chuck, wherein the thickness of the applied insulating layer is smaller at the central portion than at the outer peripheral portion. 前記絶縁層の外周部と中心部の厚みの差は、前記絶縁層の厚みの平均値の2〜200%であることを特徴とする請求項1に記載の静電チャック。2. The electrostatic chuck according to claim 1, wherein a difference in thickness between the outer peripheral portion and the central portion of the insulating layer is 2 to 200% of an average value of the thickness of the insulating layer. 前記載置面に対し前記吸着用電極が凸状であることを特徴とする請求項1または2に記載の静電チャック。The electrostatic chuck according to claim 1, wherein the suction electrode has a convex shape with respect to the mounting surface. 前記吸着用電極の外周部は環状に配設されていることを特徴とする請求項1または2に記載の静電チャック。The electrostatic chuck according to claim 1, wherein an outer peripheral portion of the attraction electrode is provided in a ring shape.
JP2002343342A 2002-11-27 2002-11-27 Electrostatic chuck Pending JP2004179364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343342A JP2004179364A (en) 2002-11-27 2002-11-27 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343342A JP2004179364A (en) 2002-11-27 2002-11-27 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2004179364A true JP2004179364A (en) 2004-06-24

Family

ID=32705137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343342A Pending JP2004179364A (en) 2002-11-27 2002-11-27 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2004179364A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028354A (en) * 2006-07-20 2008-02-07 Applied Materials Inc Substrate processing by rapid temperature gradient control
JP2012204447A (en) * 2011-03-24 2012-10-22 Covalent Materials Corp Electrostatic chuck
JP2015162481A (en) * 2014-02-26 2015-09-07 京セラ株式会社 sample holder
US9275887B2 (en) 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
JP2016225557A (en) * 2015-06-03 2016-12-28 京セラ株式会社 Sample holder and plasma etching apparatus using the same
JP2017183609A (en) * 2016-03-31 2017-10-05 日本特殊陶業株式会社 Substrate holding device and manufacturing method therefor
CN110800096A (en) * 2017-10-16 2020-02-14 日本碍子株式会社 Electrostatic chuck
CN111226309A (en) * 2017-11-06 2020-06-02 日本碍子株式会社 Electrostatic chuck assembly, electrostatic chuck and focus ring
JP2020150247A (en) * 2019-03-12 2020-09-17 鴻創應用科技有限公司Hong Chuang Applied Technology Co.,Ltd Ceramic circuit composite construction and manufacturing method thereof
CN113574652A (en) * 2019-03-18 2021-10-29 日本碍子株式会社 Electrostatic chuck

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095931A (en) * 1983-10-31 1985-05-29 Toshiba Mach Co Ltd Electrostatic chuck
JPH01313954A (en) * 1988-06-14 1989-12-19 Fujitsu Ltd Static chuck
JPH0473950A (en) * 1990-07-16 1992-03-09 Toto Ltd Electrostatic chuck
JPH06302678A (en) * 1993-04-09 1994-10-28 Tokyo Electron Ltd Electrostatic chuck
JP2001217060A (en) * 1999-11-19 2001-08-10 Ibiden Co Ltd Ceramic heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095931A (en) * 1983-10-31 1985-05-29 Toshiba Mach Co Ltd Electrostatic chuck
JPH01313954A (en) * 1988-06-14 1989-12-19 Fujitsu Ltd Static chuck
JPH0473950A (en) * 1990-07-16 1992-03-09 Toto Ltd Electrostatic chuck
JPH06302678A (en) * 1993-04-09 1994-10-28 Tokyo Electron Ltd Electrostatic chuck
JP2001217060A (en) * 1999-11-19 2001-08-10 Ibiden Co Ltd Ceramic heater

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028354A (en) * 2006-07-20 2008-02-07 Applied Materials Inc Substrate processing by rapid temperature gradient control
US9275887B2 (en) 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
US9883549B2 (en) 2006-07-20 2018-01-30 Applied Materials, Inc. Substrate support assembly having rapid temperature control
US10257887B2 (en) 2006-07-20 2019-04-09 Applied Materials, Inc. Substrate support assembly
JP2012204447A (en) * 2011-03-24 2012-10-22 Covalent Materials Corp Electrostatic chuck
JP2015162481A (en) * 2014-02-26 2015-09-07 京セラ株式会社 sample holder
JP2016225557A (en) * 2015-06-03 2016-12-28 京セラ株式会社 Sample holder and plasma etching apparatus using the same
JP2017183609A (en) * 2016-03-31 2017-10-05 日本特殊陶業株式会社 Substrate holding device and manufacturing method therefor
CN110800096A (en) * 2017-10-16 2020-02-14 日本碍子株式会社 Electrostatic chuck
CN110800096B (en) * 2017-10-16 2023-07-18 日本碍子株式会社 Electrostatic chuck
CN111226309A (en) * 2017-11-06 2020-06-02 日本碍子株式会社 Electrostatic chuck assembly, electrostatic chuck and focus ring
US11610798B2 (en) 2017-11-06 2023-03-21 Ngk Insulators, Ltd. Electrostatic chuck assembly, electrostatic chuck, and focus ring
CN111226309B (en) * 2017-11-06 2023-09-19 日本碍子株式会社 Electrostatic chuck assembly, electrostatic chuck and focusing ring
JP2020150247A (en) * 2019-03-12 2020-09-17 鴻創應用科技有限公司Hong Chuang Applied Technology Co.,Ltd Ceramic circuit composite construction and manufacturing method thereof
CN113574652A (en) * 2019-03-18 2021-10-29 日本碍子株式会社 Electrostatic chuck
CN113574652B (en) * 2019-03-18 2023-09-01 日本碍子株式会社 Electrostatic Chuck

Similar Documents

Publication Publication Date Title
JP4418032B2 (en) Electrostatic chuck
JP4739039B2 (en) Electrostatic chuck device
JP3911787B2 (en) Sample processing apparatus and sample processing method
TWI600110B (en) Wafer carrier for smaller wafers and wafer pieces
US20110063771A1 (en) Electrostatic chuck and method for producing the same
WO2009142710A1 (en) Electrostatic chuck
JPH09213777A (en) Electrostatic chuck
JP2003224180A (en) Wafer support member
JP3810300B2 (en) Electrostatic chuck
JP3847198B2 (en) Electrostatic chuck
TW201539644A (en) Electrostatic chuck with polymer protrusions
JP2002222851A (en) Electrostatic chuck and board processor
JP2004179364A (en) Electrostatic chuck
KR20170026360A (en) Electro-static chuck with radiofrequency shunt
JP4275682B2 (en) Electrostatic chuck
JP4033508B2 (en) Electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP4849887B2 (en) Electrostatic chuck
JP3784274B2 (en) Electrostatic chuck
JP4439135B2 (en) Electrostatic chuck
JP2003179129A (en) Electrostatic chuck device
JP4879771B2 (en) Electrostatic chuck
JP4416911B2 (en) Vacuum processing method
JP2600558Y2 (en) Electrostatic chuck
JP6782157B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070420

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922