JP2004173472A - Battery charging equipment - Google Patents

Battery charging equipment Download PDF

Info

Publication number
JP2004173472A
JP2004173472A JP2002339426A JP2002339426A JP2004173472A JP 2004173472 A JP2004173472 A JP 2004173472A JP 2002339426 A JP2002339426 A JP 2002339426A JP 2002339426 A JP2002339426 A JP 2002339426A JP 2004173472 A JP2004173472 A JP 2004173472A
Authority
JP
Japan
Prior art keywords
output
switching
battery
switching control
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339426A
Other languages
Japanese (ja)
Other versions
JP4085794B2 (en
Inventor
Nobuhiro Takano
信宏 高野
Kazuhiko Funabashi
一彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2002339426A priority Critical patent/JP4085794B2/en
Publication of JP2004173472A publication Critical patent/JP2004173472A/en
Application granted granted Critical
Publication of JP4085794B2 publication Critical patent/JP4085794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide charging equipment which can contribute to energy saving by improving the efficiency of a switching power source even under any charging conditions corresponding to a battery state. <P>SOLUTION: This charging equipment is equipped with a switching control means which enables both control of the first switching control enabling the power output for supplying a battery with a charge current and the second switching control adjusting the output by lowering the switching frequency under the switching frequency in the first switching control, a battery state detecting means which detects the state of the battery, and a charge control means which judges whether to perform the supply of power at a specified value or over or not based on the output of the battery state detecting means, and when it judges that it should perform the power supply to the battery at a specified value or over based on the output of the battery state detecting means, it adjusts the output by the first switching control of the switching control means, and when it judges that it should perform the power supply under the specified value, it adjusts the output by the second switching control of the switching control means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明はスイッチング電源の出力により携帯用機器等の電源として用いられている2次電池を充電する充電装置に関するものである。
【0002】
【従来の技術】
近年、ニッケル水素電池やニカド電池の高容量化及び大充電電流による充電特性の改善により、これら電池を短時間で充電する充電装置の出力容量は大きくなっている。
【0003】
そのため、出力容量のアップに伴う充電装置の大型化を抑制するため、充電装置の電源回路にスイッチング電源を用いたものが多くなっている。
【0004】
スイッチング電源のスイッチング方式としては、周波数固定の駆動パルス幅を変調することにより出力電圧を調整するPWM方式と、近年ではPWM方式より、スイッチング素子のオン及びオフ時の電力損失及びスイッチングノイズを低減させることを目的とした共振型電源が提案され実用化されている。共振型電源は名前に示すとおりに、電流あるいは電圧波形をコイルとコンデンサによって共振させサイン波状としてスイッチングさせるものである。
【0005】
共振型電源において、特にスイッチング時の短期間においてのみ共振現象を利用する部分共振型電源(疑似共振型電源ともいう)が比較的容易に制御回路を構成できるという利点から、定電圧出力用の電源として用いられている。
【0006】
【発明が解決しようとする課題】
しかしながら、スイッチング電源を充電装置に用いた場合、PWM方式ではスイッチング周波数を固定しデュティーを変える方式であり、電源そのものは最大負荷に合わせて設計するため、出力の負荷が軽い時の電源効率は基本的には低下する。
【0007】
一方、部分共振型電源においては、ある一定の定常負荷に対しは、そのスイッチング波形の性質上、上記のスイッチングノイズやスイッチングロスはPWM方式に比べ小さくなるが、負荷の変動範囲が広い用途に適応する場合、負荷が軽くなるに従いスイッチング時の共振動作が不安定になり、PWM方式と同様に電源効率が低下するといった欠点もある。
【0008】
それ故、上記の各種スイッチング電源を充電器に適応した場合、例えば電池パックの素電池数に応じて電圧は異なるので素電池数の少ない電池パックの充電、満充電後の微少電流によるトリクル充電時及び電池パックが挿入接続されていない待機時といった時に電源効率が低下する。
【0009】
本発明の目的は、上記した従来技術の欠点をなくし、電池状態に対応した如何なる充電条件においても、電源効率の低下が少なく、特に電池パックが接続されてない状態時や、トリクル充電のような微少電流での充電時において、省エネ化が図れる充電装置を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するため、図5に示すそれぞれのスイッチング制御における出力電力に対するスイッチング効率の関係から、出力電力の大きさに対しスイッチング効率が高くなるスイッチング制御に使い分けるようにすればスイッチング効率が向上する点に着目し、請求項1記載の発明は、被充電電池に所定の充電電流を供給するための電源出力を可能とする第1スイッチグ制御と、スイッチング周波数を前記第1スイッチング制御のスイッチング周波数より下げて出力を調整する第2スイッチング制御の両方の制御を可能とするスイッチング制御手段と、 被充電電池の電池状態を検出する電池状態検出手段と、電池状態検出手段の出力に基づき被充電電池への電力供給を所定値以上で行うか否かを判別する充電制御手段とを備え、前記電池状態検出手段の出力に基づき被充電電池への電力供給を所定値以上で行うと判別した時は前記充電制御手段の出力に基づき前記スイッチング制御手段の第1スイッチング制御により出力を調整し、また被充電電池へ電力供給を所定値以下で行うと判別した時は前記充電制御手段の出力に基づき前記スイッチング制御手段の第2スイッチング制御により出力を調整することを特徴とする。
【0011】
請求項2記載の発明は、請求項1の充電装置に関連して、被充電電池の電池電圧を検出する電池電圧検出手段と、電池電圧検出手段の出力に基づき電池が充電装置に接続されていないと判別した時は、前記充電制御手段の出力に基づき前記スイッチング制御手段の第2スイッチング制御により出力を調整するようにしたことを特徴とする。
【0012】
請求項3記載の発明は、請求項1の充電装置に関連して、電池状態検出手段の前記電池電圧検出手段及び前記電池温度検出手段の出力に基づき前記スイッチング制御手段の第1スイッチング制御により出力を調整するか、スイッチング周波数を前記第1スイッチング制御より下げた前記スイッチング制御手段の第2スイッチング制御により出力を調整するかを判別するようにしたことを特徴とする。
【0013】
【発明の実施の形態】
図1は本発明の一実施形態を示す回路図である。図において、1は交流電源、2は複数の充電可能な素電池を直列に接続した電池パックであって、素電池に接触ないし近接して設けられたサーミスタ等の温度検出素子2aを装備している。3は電池パック2に流れる充電電流を検出する電流検出抵抗、4は充電電流を設定する充電電流設定手段であって、マイコン50の出力ポート56からの信号に対応して演算増幅器62の反転入力端に印加する電圧値を変えるものである。7はFETからなるスイッチング素子であり、高周波トランス80の1次巻線81との直列回路で構成されている。8は高周波トランス80の1次巻線81に連なる共振用コンデンサであり、1次巻線81の蓄積エネルギーの放出終了後に1次巻線81のインダクタンスと共振回路を形成する。10は全波整流回路11と平滑用コンデンサ12からなる1次側整流平滑回路、20はダイオード21、平滑用コンデンサ22からなる2次側整流平滑回路であり、ダイオード21はスイッチング素子7のオフ期間にオンになる方向性を有する。30はダイオード31、平滑用コンデンサ32からなる整流平滑回路であり、オン・オフ制御回路101の電源電圧を得るため及びスイッチング素子7のターンオン時の共振動作を安定化させ、スイッチングロスを低減させるるための遅延制御を行うものである。40は抵抗41、42からなる電池電圧検出手段で電池パック2の端子電圧を分圧する。50は演算手段(CPU)51、ROM52、RAM53、タイマ54、A/Dコンバータ55、出力ポート56、リセット入力ポート57からなるマイコンである。60は演算増幅器61、62、抵抗63〜66、ダイオード67からなる充電電流制御手段、70はダイオード71、平滑コンデンサ72、73、3端子レギュレータ74、リセットIC75からなる第2整流平滑回路で、マイコン50、充電電流制御手段60等の電源となる。リセットIC75はマイコン50を初期状態にするためにリセット入力ポート57にリセット信号を出力する。80は1次巻線81、2次巻線82、補助巻線83、84からなる高周波トランスであり、1次巻線81に対し2次巻線82、3次巻線83は逆極性の構成で、4次巻線84は同極性である。90は抵抗91と抵抗92からなる電池温度検出手段であり、5Vの定電圧源から連なる抵抗91と、抵抗92と温度検出素子2aとによって分圧された電圧をマイコン50のA/Dコンバータ55に入力し電池パック2の電池温度を検出する。100はオン・オフ制御回路101、充電電流制御信号伝達手段103、抵抗104〜108、ダイオード109、110、コンデンサ111、112からなるスイッチング制御手段であり、オン・オフ制御回路101は電源端子101a、グランド端子101b、フィードバック端子101c、制御パルス出力端子101dを有する。120はスイッチング制御方法を切り換えるスイッチング制御切換手段であり、スイッチングのオン・オフの切り換え時を共振動作で行い周波数制御により出力を調整するスイッチング制御と、スイッチング周波数を上記スイッチング制御より下げオン時間を制御することにより出力を調整するスイッチング制御の一つの方法であるスイッチング時のオフ時間を固定しオン時間を制御することにより出力を調整するスイッチング制御のどちらかに切り換える。130はツェナーダイオード131、抵抗132、ダイオード133からなる定電圧制御回路であり、電池パック2が充電装置に接続されていない時にツェナーダイオード131がブレイクする電圧で充電電流制御信号伝達手段であるフォトカプラ103を介しフィードバック端子101Cに帰還をかけ、電池パック2の充電時の電圧より大きい電圧で定電圧制御を行う。そのため、ツェナーダイオード131は上述したように大きなツェナー電圧のものを使用する。
【0014】
図1のオン・オフ制御回路101は、図2に示すブロック図で構成されている。201は電源端子101aからの入力電圧を定電圧化する定電圧回路、202は制御パルス出力端子101dを介してスイッチング素子7を駆動するためのドライブ電圧を出力するドライブ回路、203はドライブ回路202を介してスイッチング素子7をオン・オフさせる制御パルス信号を出力する発振回路、204は第1比較器、205は第2比較器であり、フィードバック端子101cに印加された電圧をそれぞれ所定の電圧値と比較し、比較器204、205の出力に応じて発振回路203は、2次側整流平滑回路の出力電圧を制御するスイッチング素子7の制御パルス幅に対応する制御パルス信号の出力を制御する。206はコンデンサ、207は抵抗であり、スイッチング時のオフ時間を固定しオン時間を制御することにより出力を調整するスイッチング制御において、コンデンサ206、抵抗207の放電時定数でオフ時間を固定する。208はスイッチング素子7のドライブ電流を制限する制限抵抗、209は所定の電圧値Vth(1)を発生する基準電源であり、第1比較器204の非反転入力端に印加されている。210は所定の電圧値Vth(2)( Vth(2)> Vth(1))を発する基準電源であり、第1比較器205の非反転入力端に印加されている。
【0015】
次に本発明の実施形態に係わるスイッチング電源の動作に関し、まず2次側整流平滑回路20が軽負荷時の時のスイッチング制御であるスイッチング時のオフ時間を固定しオン時間を制御することにより出力を調整する第2スイッチング制御について、図1、図2及び図3の動作波形を参照して説明する。
【0016】
AC電源1が投入されると、起動抵抗104を介して整流平滑回路30のコンデンサとオン・オフ制御回路101の電源端子101aに接続されスイッチング電源は起動する。
また、マイコン50は出力ポート56よりスイッチング制御切換手段120を介し高周波トランス80の3次巻線83の出力電圧から、ダイオード109、抵抗108、ダイオード110を介してオン・オフ制御回路101のフィードバック端子101cへの接続を切り離すことにより、オン・オフ制御回路101のフィードバック端子101cに入力される電圧をVth(1)以下にし、必ず第2スイッチング制御で電源制御を行うようにする。
【0017】
出力の制御方法は充電電流を電流検出抵抗3により検出し、この充電電流に対応する電圧と、マイコン50の出力ポート56の出力に応じて充電電流設定手段4の出力による充電電流設定基準値との差を充電電流制御手段60より、スイッチング制御手段100の充電電流制御信号伝達手段103を介してオン・オフ制御回路101のフィードバック端子101cに帰還をかける。すなわち図3のコンデンサ111の両端電圧に示すように、充電電流制御信号伝達手段103を流れるフィードバック電流が抵抗106に流れ、これによって生じる電圧(直流バイアス分)に、スイッチング素子7に流れる電流(ID)によって抵抗107に生じる電圧降下がフィードバック端子101cに印加され、この電圧が第1比較器204の基準電圧Vth(1)に達すると第1比較器204が動作し、発振回路203はドライブ回路202にスイッチング素子7をオフする信号を出力しスイッチング素子7をオフさせる。また図3のコンデンサ206の両端電圧波形に示すように、スイッチング素子7がオフするとコンデンサ206の充電が解除され、内部の抵抗207により放電を開始し、その両端電圧はコンデンサ206と抵抗207の放電時定数によって決まる傾きで降下する。コンデンサ206の両端電圧が所定値(V2)まで下がると発振回路203の出力は再び反転し、スイッチング素子7をオンさせる。この充電電流制御信号伝達手段103を流れるフィードバック電流が抵抗106に流れ、これによって生じる電圧(直流バイアス分)の制御により出力を調整する。ここで図2のオン・オフ制御回路101の内部コンデンサ206と抵抗207の固定時間がスイッチング素子7のオフ時間t1になり、軽負荷時に対応する制御方式とするためにはオフ時間は約50μsec程度に調整すれば、スイッチング周波数は低周波になり、単純にスイッチング素子7のオンする時間を低減できるので、結果として軽負荷に対応したスイッチング制御になりスイッチング効率は向上する。当然のことではあるが、スイッチング周波数を低周波にすることにより、出力が大きい時には、逆にスイッチング素子7に流れるピーク電流は大きくなるのでスイッチング効率は低下する。
【0018】
引き続き、2次側整流平滑回路30の負荷に大きい時に対応するスイッチング制御の一つであるスイッチングのオン・オフの切り換え時を共振動作で行い周波数制御により出力を調整する第1スイッチング制御について図1、図2及び図4の動作波形を参照して説明する。
【0019】
ここで説明する共振動作とは、図4の1次巻線81の電圧(V81)及びスイッチング素子7の両端電圧(VDS)に示すように、スイッチング素子7をターンオンさせるタイミングをトランスがエネルギーを放出した後の電圧共振波形のボトム点すなわち高周波トランス80の1次巻線81のインダクタンス(L81)と共振コンデンサの容量(C8)で決まる共振周波数の1/2周期と一致させることである。
【0020】
まず、起動抵抗104を介して整流平滑回路30のコンデンサとオン・オフ制御回路101の電源端子101aに接続されスイッチング電源は起動する。
【0021】
またマイコン50は、電池パック2への電力供給が所定値以上と判別した時、出力ポート56よりスイッチング制御切換手段120を介して高周波トランス80の3次巻線83の出力電圧から、ダイオード109、抵抗108、ダイオード110を介してオン・オフ制御回路101のフードバック端子101cへ接続する。そして出力の制御方法は上述のスイッチング時のオフ時間を固定しオン時間を制御することにより出力を調整するスイッチング制御方式と同様に充電電流を電流検出抵抗3により検出し、この充電電流に対応する電圧と、マイコン50の出力ポート56の出力に応じて充電電流設定手段4の出力による充電電流設定基準値との差を充電電流制御手段60より、スイッチング制御手段100の充電電流制御信号伝達手段103を介してオン・オフ制御回路101のフィードバック端子101cに帰還をかけることにより行われる。但し、フィードバック端子101cに印加される電圧は、スイッチング制御切換手段120を介して高周波トランス80の3次巻線83の出力電圧から、ダイオード109、抵抗108、ダイオード110を介してオン・オフ制御回路101のフードバック端子101cへ接続されているため、図4に示すように、スイッチング素子7がオフした時に、3次巻線83に発生するフライッバック電圧(V83)から共振信号が生成される。これにより、フィードバック端子101cの電圧(V101c)は、図4に示すように、オン・オフ制御回路101の第1比較器204、第2比較器205が動作し(Vth(2)以上)、第2比較器205が動作すると発振回路203のオフ時間は、基準電圧Vth(1)以上の電圧を保持している間は発振回路203の出力によりスイッチング素子7はオフし続ける。この時高周波トランス80のエネルギー放出が終わっても、フィードバック端子101に印加される電圧(共振信号)は遅延回路であるコンデンサ112、ダイオード109、110の作用により直ぐに降下せず、コンデンサ111及びコンデンサ112に充電された電荷が抵抗106とオン・オフ制御回路101の内部インピーダンスとの合成インピーダンスによって放電され一定時間後に、基準電圧Vth(1)以下に下がるためである。この一定時間をスイッチング素子7が最も低くなった時にターンオンするようにコンデンサ112を調整すればスイッチングロスは低減できる。また共振動作時には負荷の変動に応じ周波数制御を行うので、負荷が軽くなるに従い周波数は高くなる。それ故、軽負荷時には逆にスイッチングロスが増加するが、先に述べたオフ時間を固定しオン時間を制御することにより出力を調整する第2スイッチング制御とスイッチングのオン・オフの切り換え時を共振動作で行い周波数制御により出力を調整する第1スイッチング制御を併用することにより、図5に示すようにスイッチング効率の向上が図れる。
【0022】
この上記2種のスイッチング制御を可能とするスイッチング電源を充電装置の適応する場合、電池電圧検出手段40、電池温度検出手段90の出力に応じて、電池パック2に供給する電力が所定値以上であればスイッチングのオン・オフ時を共振動作で行い周波数制御により出力を調整する第1スイッチング制御で出力を調整し、また電池パック2に供給する電力が所定値以下であればオフ時間を固定しオン時間を制御する第2スイッチング制御で出力を調整するようにすれば充電装置内のスイッチングロスを少なくすることができる。
【0023】
特に電池パック2が充電装置に接続されていない待機状態の時に、共振動作による第1スイッチング制御よりスイッチング周波数を低くしたオフ時間を固定し、オン時間を制御する第2スイッチング制御を行えば、電源効率が向上し、省エネ化にも貢献できる。
【0024】
【発明の効果】
以上のように本発明によれば、電力供給が所定値以上であれば、その電源出力に対応できる第1のスイッチング制御により出力を調整し、また電力供給が所定値以下であればスイッチング周波数を第1スイッチング制御のスイッチング周波数より下げた第2スイッチング制御により出力を調整するようにし、これにより充電装置の電源であるスイッチング電源のスイッチング効率の向上が図れ、特に待機時の省エネ化が図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す回路図。
【図2】図1のオン・オフ制御回路の詳細を示すブロック回路図。
【図3】オン・オフ制御回路の各部の状態を示す波形図。
【図4】図1の各部の状態を示す波形図。
【図5】それぞれのスイッチング制御における出力電力に対するスイッチング効率を示す特性図。
【符号の説明】
2は電池パック、7はスイッチング素子、8は共振コンデンサ、40は電池電圧検出手段、50はデータの演算、充電の開始停止信号、及びスイッチング制御方式の切換信号を出力する等の機能を持つ充電制御手段としてのマイコン、90は電池温度検出手段、100はスイッチング制御手段である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charging device for charging a secondary battery used as a power source of a portable device or the like by an output of a switching power source.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the output capacity of a charging device that charges nickel-metal hydride batteries and nickel-cadmium batteries in a short time has been increased due to the increase in capacity and the improvement of charging characteristics due to a large charging current.
[0003]
For this reason, in order to suppress an increase in the size of the charging device due to an increase in output capacity, a charging device using a switching power supply in a power supply circuit is increasing.
[0004]
As a switching method of a switching power supply, a PWM method in which an output voltage is adjusted by modulating a drive pulse width having a fixed frequency, and a power loss and a switching noise when a switching element is turned on and off are reduced more than a PWM method in recent years. A resonance type power supply for the purpose has been proposed and put into practical use. As the name implies, a resonant power supply resonates a current or voltage waveform with a coil and a capacitor and switches the waveform as a sine wave.
[0005]
In the resonance type power supply, a power supply for a constant voltage output has an advantage that a control circuit can be relatively easily formed of a partial resonance type power supply (also referred to as a pseudo resonance type power supply) which utilizes a resonance phenomenon only during a short period of time during switching. It is used as
[0006]
[Problems to be solved by the invention]
However, when a switching power supply is used for the charging device, the PWM method is a method in which the switching frequency is fixed and the duty is changed, and the power supply itself is designed according to the maximum load, so the power supply efficiency when the output load is light is fundamental. It decreases.
[0007]
On the other hand, in a partial resonance type power supply, the above switching noise and switching loss are smaller than that of the PWM method due to the nature of the switching waveform with respect to a certain steady load, but are suitable for applications in which the load fluctuation range is wide. In this case, as the load becomes lighter, the resonance operation at the time of switching becomes unstable, and there is a disadvantage that the power supply efficiency is reduced similarly to the PWM method.
[0008]
Therefore, when the above-mentioned various switching power supplies are applied to a charger, for example, the voltage varies depending on the number of cells in the battery pack, so that a battery pack with a small number of cells is charged, and a trickle charge with a small current after full charge is performed. In addition, the power supply efficiency is reduced in a standby state where the battery pack is not inserted and connected.
[0009]
An object of the present invention is to eliminate the above-mentioned disadvantages of the prior art, and to reduce the power supply efficiency under any charging conditions corresponding to the battery state, especially when the battery pack is not connected, such as trickle charging. An object of the present invention is to provide a charging device that can save energy when charging with a small current.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the switching efficiency is improved by selectively using switching control in which the switching efficiency is increased with respect to the magnitude of the output power based on the relationship between the switching efficiency and the output power in each switching control shown in FIG. Focusing on the point, the invention according to claim 1 is characterized in that the first switching control for enabling a power supply output for supplying a predetermined charging current to the battery to be charged, and the switching frequency is set to be smaller than the switching frequency of the first switching control. Switching control means for enabling both control of the second switching control for lowering and adjusting the output; battery state detection means for detecting the battery state of the battery to be charged; and battery charge detection based on the output of the battery state detection means. Charge control means for determining whether or not to perform power supply at a predetermined value or more, wherein the battery When it is determined based on the output of the state detecting means that the power supply to the battery to be charged is performed at a predetermined value or more, the output is adjusted by the first switching control of the switching control means based on the output of the charging control means, and When it is determined that the power supply to the rechargeable battery is performed at a predetermined value or less, the output is adjusted by the second switching control of the switching control means based on the output of the charging control means.
[0011]
According to a second aspect of the present invention, in the battery charger according to the first aspect, a battery voltage detecting means for detecting a battery voltage of the battery to be charged, and the battery is connected to the charging apparatus based on an output of the battery voltage detecting means. When it is determined that there is no output, the output is adjusted by the second switching control of the switching control means based on the output of the charging control means.
[0012]
According to a third aspect of the present invention, in accordance with the charging device of the first aspect, an output is provided by the first switching control of the switching control means based on the outputs of the battery voltage detection means and the battery temperature detection means of the battery state detection means. Or whether the output is adjusted by the second switching control of the switching control means whose switching frequency is lower than the first switching control.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit diagram showing one embodiment of the present invention. In the figure, 1 is an AC power supply, 2 is a battery pack in which a plurality of rechargeable unit cells are connected in series, and is equipped with a temperature detecting element 2a such as a thermistor provided in contact with or close to the unit cells. I have. Reference numeral 3 denotes a current detection resistor for detecting a charging current flowing through the battery pack 2, and 4 denotes charging current setting means for setting a charging current, and corresponds to an inverted input of an operational amplifier 62 corresponding to a signal from an output port 56 of the microcomputer 50. The value of the voltage applied to the end is changed. Reference numeral 7 denotes a switching element composed of an FET, which is configured by a series circuit with the primary winding 81 of the high-frequency transformer 80. Numeral 8 is a resonance capacitor connected to the primary winding 81 of the high-frequency transformer 80, and forms a resonance circuit with the inductance of the primary winding 81 after the end of the release of the stored energy in the primary winding 81. Reference numeral 10 denotes a primary-side rectifying / smoothing circuit including a full-wave rectifier circuit 11 and a smoothing capacitor 12, reference numeral 20 denotes a secondary-side rectifying / smoothing circuit including a diode 21, and a smoothing capacitor 22, and the diode 21 is an off period of the switching element 7. It has a direction to turn on. Reference numeral 30 denotes a rectifying / smoothing circuit including a diode 31 and a smoothing capacitor 32. The rectifying / smoothing circuit 30 obtains a power supply voltage of the ON / OFF control circuit 101, stabilizes a resonance operation of the switching element 7 when it is turned on, and reduces switching loss. For performing delay control. Reference numeral 40 denotes a battery voltage detecting means composed of resistors 41 and 42, which divides the terminal voltage of the battery pack 2. Reference numeral 50 denotes a microcomputer including a calculation means (CPU) 51, a ROM 52, a RAM 53, a timer 54, an A / D converter 55, an output port 56, and a reset input port 57. Reference numeral 60 denotes a charging current control unit including operational amplifiers 61 and 62, resistors 63 to 66, and a diode 67. Reference numeral 70 denotes a second rectifying and smoothing circuit including a diode 71, smoothing capacitors 72 and 73, a three-terminal regulator 74, and a reset IC 75. 50, a power source for the charging current control means 60 and the like. The reset IC 75 outputs a reset signal to the reset input port 57 to bring the microcomputer 50 into an initial state. Reference numeral 80 denotes a high-frequency transformer including a primary winding 81, a secondary winding 82, and auxiliary windings 83 and 84. The secondary winding 82 and the tertiary winding 83 have opposite polarities to the primary winding 81. And the fourth winding 84 has the same polarity. Reference numeral 90 denotes a battery temperature detecting means including a resistor 91 and a resistor 92. The A / D converter 55 of the microcomputer 50 converts the voltage divided by the resistor 91 connected from the 5V constant voltage source and the resistor 92 and the temperature detecting element 2a. To detect the battery temperature of the battery pack 2. Reference numeral 100 denotes switching control means including an on / off control circuit 101, charging current control signal transmission means 103, resistors 104 to 108, diodes 109 and 110, and capacitors 111 and 112. The on / off control circuit 101 includes a power supply terminal 101a, It has a ground terminal 101b, a feedback terminal 101c, and a control pulse output terminal 101d. Reference numeral 120 denotes switching control switching means for switching the switching control method. The switching control is a switching control in which the switching operation is switched on and off by a resonance operation to adjust the output by frequency control, and the switching frequency is reduced from the switching control to control the on-time. The switching to one of the switching controls for adjusting the output by adjusting the output time by fixing the off time during switching, which is one method of the switching control for adjusting the output. Reference numeral 130 denotes a constant voltage control circuit including a Zener diode 131, a resistor 132, and a diode 133. The photocoupler is a charge current control signal transmitting unit that outputs a voltage at which the Zener diode 131 breaks when the battery pack 2 is not connected to the charging device. Feedback is fed back to the feedback terminal 101C via 103, and constant voltage control is performed at a voltage higher than the voltage at the time of charging the battery pack 2. Therefore, the Zener diode 131 having a large Zener voltage is used as described above.
[0014]
The on / off control circuit 101 in FIG. 1 is configured by a block diagram shown in FIG. 201 is a constant voltage circuit for converting the input voltage from the power supply terminal 101a to a constant voltage, 202 is a drive circuit for outputting a drive voltage for driving the switching element 7 via the control pulse output terminal 101d, and 203 is a drive circuit 202. An oscillation circuit for outputting a control pulse signal for turning on / off the switching element 7 through the first comparator 204 and a second comparator 205, each of which outputs a voltage applied to the feedback terminal 101c to a predetermined voltage value; In comparison, the oscillation circuit 203 controls the output of the control pulse signal corresponding to the control pulse width of the switching element 7 that controls the output voltage of the secondary-side rectification / smoothing circuit in accordance with the outputs of the comparators 204 and 205. Reference numeral 206 denotes a capacitor, and 207, a resistor. In switching control for adjusting the output by fixing the off time during switching and controlling the on time, the off time is fixed by the discharge time constant of the capacitor 206 and the resistor 207. Reference numeral 208 denotes a limiting resistor for limiting the drive current of the switching element 7, and reference numeral 209 denotes a reference power supply that generates a predetermined voltage value Vth (1), and is applied to the non-inverting input terminal of the first comparator 204. Reference numeral 210 denotes a reference power supply that generates a predetermined voltage value Vth (2) (Vth (2)> Vth (1)), and is applied to the non-inverting input terminal of the first comparator 205.
[0015]
Next, regarding the operation of the switching power supply according to the embodiment of the present invention, first, the secondary side rectifying / smoothing circuit 20 outputs a signal by fixing an off time at the time of switching which is a switching control at a light load and controlling an on time. Will be described with reference to the operation waveforms of FIGS. 1, 2, and 3. FIG.
[0016]
When the AC power supply 1 is turned on, the capacitor is connected to the capacitor of the rectifying / smoothing circuit 30 and the power supply terminal 101a of the on / off control circuit 101 via the starting resistor 104, and the switching power supply is started.
Further, the microcomputer 50 outputs the feedback terminal of the on / off control circuit 101 from the output voltage of the tertiary winding 83 of the high frequency transformer 80 via the switching control switching means 120 via the output port 56 via the diode 109, the resistor 108 and the diode 110. By disconnecting the connection to 101c, the voltage input to the feedback terminal 101c of the on / off control circuit 101 is set to Vth (1) or less, and the power supply control is always performed by the second switching control.
[0017]
The output control method is to detect the charging current by the current detection resistor 3, and to set a voltage corresponding to the charging current and a charging current setting reference value based on the output of the charging current setting means 4 according to the output of the output port 56 of the microcomputer 50. The difference is fed back from the charging current control means 60 to the feedback terminal 101c of the on / off control circuit 101 via the charging current control signal transmission means 103 of the switching control means 100. That is, as shown by the voltage across the capacitor 111 in FIG. 3, the feedback current flowing through the charging current control signal transmitting means 103 flows through the resistor 106, and the voltage (DC bias) generated by this causes the current (ID) flowing through the switching element 7 to change. ) Causes a voltage drop across the resistor 107 to be applied to the feedback terminal 101c. When this voltage reaches the reference voltage Vth (1) of the first comparator 204, the first comparator 204 operates. , A signal for turning off the switching element 7 is output, and the switching element 7 is turned off. 3, when the switching element 7 is turned off, the charge of the capacitor 206 is released and the internal resistor 207 starts discharging, and the voltage across the capacitor 206 and the resistor 207 is discharged. It falls at a slope determined by the time constant. When the voltage between both ends of the capacitor 206 decreases to a predetermined value (V2), the output of the oscillation circuit 203 is inverted again, and the switching element 7 is turned on. The feedback current flowing through the charging current control signal transmitting means 103 flows through the resistor 106, and the output is adjusted by controlling the voltage (DC bias) generated thereby. Here, the fixed time of the internal capacitor 206 and the resistor 207 of the on / off control circuit 101 in FIG. 2 becomes the off time t1 of the switching element 7, and the off time is about 50 μsec in order to achieve a control method corresponding to a light load. In this case, the switching frequency becomes low, and the ON time of the switching element 7 can be simply reduced. As a result, switching control corresponding to a light load is performed, and the switching efficiency is improved. As a matter of course, by setting the switching frequency to a low frequency, when the output is large, the peak current flowing through the switching element 7 is increased, so that the switching efficiency is reduced.
[0018]
FIG. 1 shows a first switching control in which the on / off switching of the switching, which is one of the switching controls corresponding to the case where the load of the secondary side rectifying / smoothing circuit 30 is large, is performed by the resonance operation and the output is adjusted by the frequency control. 2 and FIG. 4 will be described.
[0019]
The resonance operation described here means that the transformer emits energy at the timing when the switching element 7 is turned on as shown by the voltage (V81) of the primary winding 81 and the voltage (VDS) across the switching element 7 in FIG. That is, the bottom point of the voltage resonance waveform after that, that is, the half cycle of the resonance frequency determined by the inductance (L81) of the primary winding 81 of the high frequency transformer 80 and the capacitance (C8) of the resonance capacitor.
[0020]
First, the switching power supply is started by being connected to the capacitor of the rectifying / smoothing circuit 30 and the power supply terminal 101a of the on / off control circuit 101 via the starting resistor 104.
[0021]
When the microcomputer 50 determines that the power supply to the battery pack 2 is equal to or greater than the predetermined value, the microcomputer 50 outputs the diode 109, the output voltage of the tertiary winding 83 of the high-frequency transformer 80 through the switching control switching means 120 from the output port 56. It is connected to the hood back terminal 101c of the on / off control circuit 101 via the resistor 108 and the diode 110. In the output control method, the charging current is detected by the current detection resistor 3 in the same manner as in the switching control method of adjusting the output by fixing the off time at the time of switching and controlling the on time, and corresponds to the charging current. The difference between the voltage and the reference value of the charging current set by the output of the charging current setting means 4 in accordance with the output of the output port 56 of the microcomputer 50 is calculated by the charging current control means 60 from the charging current control signal transmission means 103 of the switching control means 100. This is performed by applying a feedback to the feedback terminal 101c of the on / off control circuit 101 via. However, the voltage applied to the feedback terminal 101c is based on the output voltage of the tertiary winding 83 of the high-frequency transformer 80 via the switching control switching means 120 and the on / off control circuit via the diode 109, the resistor 108 and the diode 110. 4, the resonance signal is generated from the flyback voltage (V83) generated in the tertiary winding 83 when the switching element 7 is turned off, as shown in FIG. As a result, the voltage (V101c) of the feedback terminal 101c causes the first comparator 204 and the second comparator 205 of the on / off control circuit 101 to operate (Vth (2) or more) as shown in FIG. When the two comparators 205 operate, the switching element 7 continues to be turned off by the output of the oscillation circuit 203 during the off time of the oscillation circuit 203 while the voltage is equal to or higher than the reference voltage Vth (1). At this time, even if the energy release of the high-frequency transformer 80 ends, the voltage (resonance signal) applied to the feedback terminal 101 does not immediately drop due to the action of the capacitor 112 and the diodes 109 and 110 which are the delay circuit. Is discharged by the combined impedance of the resistor 106 and the internal impedance of the on / off control circuit 101, and after a certain period of time, falls to the reference voltage Vth (1) or lower. The switching loss can be reduced by adjusting the capacitor 112 so that the switching element 7 is turned on when the switching element 7 becomes the lowest during this fixed time. In addition, during resonance operation, frequency control is performed according to a change in load, so that the frequency increases as the load decreases. Therefore, the switching loss increases when the load is light, but the above-mentioned second switching control for adjusting the output by fixing the off-time and controlling the on-time and the resonance at the time of switching on and off of the switching are performed. By using the first switching control that adjusts the output by the frequency control in the operation, the switching efficiency can be improved as shown in FIG.
[0022]
When the charging device is adapted to the switching power supply that enables the above two types of switching control, the power supplied to the battery pack 2 is not less than a predetermined value according to the outputs of the battery voltage detecting means 40 and the battery temperature detecting means 90. If so, the switching operation is turned on / off by resonance operation and the output is adjusted by frequency control. The output is adjusted by the first switching control. If the power supplied to the battery pack 2 is equal to or less than a predetermined value, the off time is fixed. If the output is adjusted by the second switching control for controlling the ON time, the switching loss in the charging device can be reduced.
[0023]
In particular, when the battery pack 2 is in a standby state in which the battery pack 2 is not connected to the charging device, if the second switching control for controlling the ON time by fixing the OFF time with the switching frequency lower than the first switching control by the resonance operation is performed, Efficiency is improved and it can contribute to energy saving.
[0024]
【The invention's effect】
As described above, according to the present invention, if the power supply is equal to or higher than a predetermined value, the output is adjusted by the first switching control capable of responding to the power supply output, and if the power supply is equal to or lower than the predetermined value, the switching frequency is changed. The output is adjusted by the second switching control lower than the switching frequency of the first switching control, whereby the switching efficiency of the switching power supply, which is the power supply of the charging device, can be improved, and particularly, energy saving during standby can be achieved.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of the present invention.
FIG. 2 is a block circuit diagram showing details of an on / off control circuit of FIG. 1;
FIG. 3 is a waveform chart showing the state of each part of the on / off control circuit.
FIG. 4 is a waveform chart showing a state of each unit in FIG. 1;
FIG. 5 is a characteristic diagram showing switching efficiency with respect to output power in each switching control.
[Explanation of symbols]
2 is a battery pack, 7 is a switching element, 8 is a resonance capacitor, 40 is a battery voltage detection means, 50 is a charge having a function of outputting data calculation, a charge start / stop signal, and a switching control system switching signal. A microcomputer as control means, 90 is a battery temperature detecting means, and 100 is a switching control means.

Claims (3)

スイッチング電源の出力により被充電電池を充電する充電装置であって、
被充電電池に所定の充電電流を供給するための電源出力を可能とする第1スイッチグ制御及びスイッチング周波数を前記第1スイッチング制御のスイッチング周波数より下げ出力を調整する第2スイッチング制御の両方の制御を可能とするスイッチング制御手段と、 被充電電池の電池状態を検出する電池状態検出手段と、電池状態検出手段の出力に基づき被充電電池への電力供給を所定値以上で行うか否かを判別する充電制御手段とを備え、前記電池状態検出手段の出力に基づき被充電電池への電力供給を所定値以上で行うと判別した時は前記充電制御手段の出力に基づき前記スイッチング制御手段の第1スイッチング制御により出力を調整し、また被充電電池への電力供給を所定値以下で行うと判別した時は前記充電制御手段の出力に基づき前記スイッチング制御手段の第2スイッチング制御により出力を調整するようにしたことを特徴とする電池の充電装置。
A charging device for charging a battery to be charged by an output of a switching power supply,
Both the first switching control that enables power supply output for supplying a predetermined charging current to the battery to be charged and the second switching control that adjusts the output by lowering the switching frequency below the switching frequency of the first switching control are performed. Switching control means for enabling, battery state detecting means for detecting a battery state of the battery to be charged, and determining whether or not to supply power to the battery to be charged at a predetermined value or more based on an output of the battery state detecting means. Charging control means, and when it is determined that power supply to the battery to be charged is performed at a predetermined value or more based on the output of the battery state detecting means, the first switching of the switching control means is performed based on the output of the charging control means. The output is adjusted by control, and when it is determined that the power supply to the battery to be charged is performed at a predetermined value or less, the output is controlled based on the output of the charge control means. Wherein the output is adjusted by the second switching control of the switching control means.
前記電池状態検出手段を被充電電池の電池電圧を検出する電池電圧検出手段とし、電池電圧検出手段の出力に基づき電池が充電装置に接続されていないと判別した時は、前記充電制御手段の出力に基づき前記スイッチング制御手段の第2スイッチング制御により出力を調整するようにしたことを特徴とする請求項1記載の電池の充電装置。The battery state detecting means is a battery voltage detecting means for detecting a battery voltage of the battery to be charged, and when it is determined that the battery is not connected to the charging device based on the output of the battery voltage detecting means, the output of the charging control means is determined. 2. The battery charging device according to claim 1, wherein the output is adjusted by the second switching control of the switching control means based on the following. 前記充電制御手段は、前記電池状態検出手段の前記電池電圧検出手段及び前記電池温度検出手段の出力に基づき前記スイッチング制御手段の第1スイッチング制御により出力を調整するか、前記スイッチング制御手段の第2スイッチング制御により出力を調整するかを判別するようにしたことを特徴とする請求項2記載の電池の充電装置。The charge control means adjusts an output by a first switching control of the switching control means based on outputs of the battery voltage detection means and the battery temperature detection means of the battery state detection means, or a second control of the switching control means. 3. The battery charging device according to claim 2, wherein it is determined whether the output is adjusted by switching control.
JP2002339426A 2002-11-22 2002-11-22 Battery charger Expired - Fee Related JP4085794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339426A JP4085794B2 (en) 2002-11-22 2002-11-22 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339426A JP4085794B2 (en) 2002-11-22 2002-11-22 Battery charger

Publications (2)

Publication Number Publication Date
JP2004173472A true JP2004173472A (en) 2004-06-17
JP4085794B2 JP4085794B2 (en) 2008-05-14

Family

ID=32702371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339426A Expired - Fee Related JP4085794B2 (en) 2002-11-22 2002-11-22 Battery charger

Country Status (1)

Country Link
JP (1) JP4085794B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070453A (en) * 2011-09-20 2013-04-18 Panasonic Eco Solutions Power Tools Co Ltd Charger
CN103427466A (en) * 2013-08-28 2013-12-04 天津大学 Electric automobile charger
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
CN114614552A (en) * 2022-05-11 2022-06-10 深圳市微源半导体股份有限公司 Charging voltage control method, device, equipment and storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
JP2013070453A (en) * 2011-09-20 2013-04-18 Panasonic Eco Solutions Power Tools Co Ltd Charger
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
CN103427466A (en) * 2013-08-28 2013-12-04 天津大学 Electric automobile charger
CN114614552A (en) * 2022-05-11 2022-06-10 深圳市微源半导体股份有限公司 Charging voltage control method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP4085794B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP4391723B2 (en) Switch mode power supply responsive to current derived from voltage across the input of the energy transfer element
US7778049B2 (en) Switching power supply
EP0938184B1 (en) Switching power supply
EP1130753B1 (en) Switching power supply apparatus
EP0902531B1 (en) Switching power supply apparatus and controlling method for the same
US20010007530A1 (en) Switching power supply unit
US6044002A (en) Flyback converter with limited output power
KR19980046508A (en) Battery charging circuit
EP1334550B1 (en) Dc-dc converter with reduced input current ripples
JP2020036421A (en) Power supply device and image forming apparatus
JP4211743B2 (en) Charger
US8582320B2 (en) Self-excited switching power supply circuit
JP4212366B2 (en) Switching power supply
JP3678047B2 (en) Power supply circuit for charging device
JP4085794B2 (en) Battery charger
JP2005278400A (en) Power supply device
JP2011078246A (en) Charger and charging system
JP2003299354A (en) Synchronous rectifier circuit for flyback converter
JP2001045749A (en) Switching power supply and method for operating the same
JP2001292571A (en) Synchronous rectifying circuit
JP3343123B2 (en) Electronic switch mode power supply for powering storage batteries
JP2004015993A (en) Power saving power supply under no load
JP2002354798A (en) Switching power supply
JP2004328948A (en) Switching power circuit and switching regulator equipped with the switching power circuit
JPH10295076A (en) Power converter, battery charger employing the same and pattery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4085794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150228

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees