JP2004168966A - Conductive resin composition and electronic part by using the same - Google Patents

Conductive resin composition and electronic part by using the same Download PDF

Info

Publication number
JP2004168966A
JP2004168966A JP2002339160A JP2002339160A JP2004168966A JP 2004168966 A JP2004168966 A JP 2004168966A JP 2002339160 A JP2002339160 A JP 2002339160A JP 2002339160 A JP2002339160 A JP 2002339160A JP 2004168966 A JP2004168966 A JP 2004168966A
Authority
JP
Japan
Prior art keywords
conductive
resin composition
conductive resin
silver
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339160A
Other languages
Japanese (ja)
Inventor
Takehiro Shimizu
健博 清水
Shuichi Matsuura
秀一 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002339160A priority Critical patent/JP2004168966A/en
Publication of JP2004168966A publication Critical patent/JP2004168966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive resin capable of obtaining a high conductivity even having a low filling rate of conductive powder in the coating film of the conductive resin composition, and capable of forming a thin film, and an electronic part by using the same, e.g. a thin solid electrolytic capacitor by using the conductive resin composition as an anode-forming material. <P>SOLUTION: This conductive resin composition contains (A) a conductive powder and carbon nanotube, (B) a thermoplastic resin and (C) an organic solvent, and the conductive powder contains preferably any of ≥1 of the powder of silver, copper or silver-plated copper. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電性樹脂組成物およびそれを用いた電子部品に関する。
【0002】
【従来の技術】
電子部品の分野では、金属をはじめとする導電性物質を樹脂に練りこみペースト状とし、これを電気回路や電極の形成に利用することが一般に行われている。銀粉や銅粉はその中でも最も代表的な導電性物質であるが、形成される塗膜の抵抗を下げる為には、導電性物質を樹脂中に高充填しなければならない。しかし樹脂中に導電性物質を高充填すると、構成される導電性ペーストのフィラー沈降に伴う導電性ペーストの不均一化及び導電性ペーストを乾燥して形成される塗膜の厚膜化が問題となる。フィラー沈降に伴うペーストの不均一化は、ペースト使用の際の、作業性及び生産性の劣化の原因となり、また、塗膜の厚膜化は、電子部品の小型化、寸法精度の向上の妨げとなる。
【0003】
上記の問題点を解決するために導電性物質の小粒径化や、粒径や形状の異なる導電性物質の組み合わせ、及び各種の添加剤を添加する検討がなされてきた(特許文献1〜3、非特許文献1〜2参照。)。しかし、いずれも電極材としての抵抗値が高かったり、形成される塗膜厚が厚かったりするなどの問題点があり抜本的な対策となっていない。
【0004】
【特許文献1】
特開平5−242725
【特許文献2】
特開平6−223615
【特許文献3】
特開平10−134637
【非特許文献1】
フィラー研究会編、「フィラー活用事典」大成社、1994年5月発行、106〜171頁、264〜274頁
【非特許文献2】
技術情報協会編、「導電性フィラーの開発と応用」、1994年1月発行、309〜323頁
【0005】
【発明が解決しようとする課題】
本発明は、これらの問題点を解決するためになされたものであり、カーボンナノチューブと導電性粉末とを組み合わせることにより、塗膜中の導電性粉末の充填率が低くても高い導電性を得られ、また薄膜形成の可能な導電性樹脂組成物とそれを用いた電子部品、例えば陰極層の電極層の厚みが10μm以下の固体電解コンデンサを提供するものである。
【0006】
【課題を解決するための手段】
本発明は、(A)導電性粉末及びカーボンナノチューブ、(B)熱可塑性樹脂並びに(C)有機溶剤を含有してなる導電性樹脂組成物に関する。
【0007】
また、本発明は、上記本発明の導電性樹脂組成物を用いて形成された導電層を有する電子部品に関し、また、弁作用金属を用いた陽極と、上記本発明の導電性樹脂組成物を用いた陰極とを有する固体電解コンデンサである電子部品に関する。
【0008】
【発明の実施の形態】
まず、本発明の導電性樹脂組成物について詳しく説明する。
本発明に使用される(A)成分としては、カーボンナノチューブと、導電性粉末とが用いられる。カーボンナノチューブの形態は、特に限定されるものではないが、アスペクト比が100〜1000のものがより好ましい。アスペクト比が100未満であると導電性粒子間の橋かけ構造をとりにくく、10μm以下の薄膜を形成した際、塗膜の抵抗劣化を生じやすい。またアスペクト比が1000を超えると導電性粒子間の橋かけ構造を妨げる傾向にあり、得られた塗膜の均一性を妨げる傾向に有る。
本発明におけるカーボンナノチューブのアスペクト比とは、円柱状の形をしたカーボンナノチューブの長さと直径の比率(長さ/直径)をいう。本発明においては、PS(ポリスチレン)に練り込んだカーボンナノチューブのマスターバッチから分離したカーボンナノチューブを粘度の低い熱硬化性樹脂に分散させ、硬化して得られた硬化物を垂直方向に切断し、その切断面に現れる粒子の形状を顕微鏡で拡大して観察し、少なくとも100の粒子について一つ一つの粒子の長さ/直径を求め、それらの平均値をもってアスペクト比とする。なお、本発明において行った具体的方法については後述する。
【0009】
本発明において導電性粉末は、特に限定されるものではなく、一般的に使用されている鱗片状、球状及び塊状等の形状のものを用いることが出来る。導電性及び塗布性を考慮すると、鱗片状及び球状で平均粒径が0.2μm〜12μmのものが好ましく、さらに1μm〜8μmのものがより好ましい。
導電性粉末は、一般に使用されている金、銀、銅、鍍銀銅粉、パラジウム、白金、ニッケル、カーボン等が使用でき、本発明において導電性粉末は、銀、銅、鍍銀銅粉の何れか1つ以上を含むのが好ましい。
【0010】
本発明において鍍銀銅粉とは、銅粉の表面の一部又は全部に銀を被覆した導電粉をいう。これは例えば、アトマイズ銅粉に銀を置換めっき、電気めっき、無電解めっき等の方法で被覆して得られる。銅粉と銀の付着力が高いこと及びランニングコストが安価であることから、置換メッキで被覆することが好ましい。
【0011】
鍍銀銅粉の銀の被覆量は、特に限定するものではないが、導電性及び耐マイグレーション性を考慮すると、銅100重量部に対して0.5〜50重量部が好ましく、さらには1.0〜35重量部が好ましく、1.5〜25重量部がより好ましい。銀の被覆量が、1重量部未満であると導電性が低くなる傾向があり、30重量部を超えるとマイグレーションの劣化の原因となる。
【0012】
鍍銀銅粉の平均粒径は、導電性樹脂組成物の分散、粘度、作業性及び被膜の導電性を考慮すると、0.2μm〜12μmが好ましく、さらには、1μm〜10μmが好ましく、1.5μm〜8μmがより好ましい。平均粒径が0.2μm未満であると導電性樹脂組成物が凝集しやすく、12μmを超えると塗膜の薄膜化を妨げる傾向にある。
なお、平均粒径は、レーザー散乱型流動分布測定装置により測定することができる。本発明においては、マスターサイザー(マルバーン社製商品名)を用いて測定した。
【0013】
カーボンナノチューブと、導電性粉末との比率は、特に限定されるものではないが、塗膜の導電性を考慮すると、重量比で導電性粉末100重量部に対してカーボンナノチューブが0.1〜10重量部が好ましく、さらには0.8〜8重量部が好ましく、1〜5重量部がより好ましい。カーボンナノチューブが0.1重量部未満であると、塗膜を薄膜化したときの導電性が低く、10重量部を超えると凝集物が増え均一に分散しにくくなる傾向にある。
【0014】
本発明において使用される(B)熱可塑性樹脂は、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられ、特に限定されるものではない。
例えば陽極に弁作用金属を用い、導電性樹脂組成物を用いた陰極を有する固体電解コンデンサにおいては、ポリアミドシリコーン、ポリアミドイミドシリコーン及びポリイミドシリコーンから選択される熱可塑性樹脂を使用することがより好ましい。
これらは例えば、芳香族ジカルボン酸、芳香族トリカルボン酸、芳香族テトラカルボン酸またはそれらの反応性誘導体とジアミノシリコーンを必須成分とするジアミンとを重縮合させて得ることができる。
【0015】
また、前記ジアミノシリコーンとしては例えば、下記一般式(I)
【化1】

Figure 2004168966
(但し、Yは二価の炭化水素基であり、Yは一価の炭化水素基を表し、2個のYは互いに同一でも異なっていてもよく、複数個のYは互いに同一でも異なっていてもよく、mは1以上の整数である。)で示されるものを使用することが好ましい。
【0016】
で示される二価の炭化水素基としては、例えば炭素原子数が1〜10のアルキレン基、置換または無置換のフェニレン基などが挙げられ、Yで示される一価の炭化水素基としては、炭素原子数が1〜10のアルキル基、置換または無置換のフェニル基などが挙げられ、mとしては1〜100の整数が挙げられる。
【0017】
前記ジアミノシリコーンと共に使用することができる、その他のジアミンとしては、特に制限はないが、下記一般式(II)で表される芳香族ジアミンが好ましい。
【化2】
Figure 2004168966
(ここで、R1、R2、R3及びR4はそれぞれ独立に水素、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシル基またはハロゲン原子を表し、Xは化学結合、−O−、−S−、−SO−、
【化3】
Figure 2004168966
を表し、ここで、R及びRはそれぞれ独立して水素、炭素数1〜4の低級アルキル基、トリフルオロメチル基、トリクロロメチル基またはフェニル基を表す。)
【0018】
(a):上記一般式(I)で表されるエーテル結合を有する芳香族ジアミンとしては、例えば、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[3,5−ジメチル−4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[3,5−ジブロモ−4−(4−アミノフェノキシ)フェニル]ブタン、1,1,1,3,3−ヘキサフルオロ−2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]シクロヘキサン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]シクロペンタン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、4,4´−カルボニルビス(p−フェニレンオキシ)ジアニリン、4,4´−ビス(4−アミノフェノキシ)ビフェニル等が挙げられる。これらのうちでは、2,2−ビス[(4−アミノフェノキシ)フェニル]プロパンが好ましい。
【0019】
(b):上記(a)を除いた芳香族ジアミンとして、例えば1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4−4´−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4´−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン、3,3´−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4´−ジアミノフェニルエーテル、4,4´−ジアミノジフェニルメタン、4,4´−ジアミノ−3,3´、5,5´−テトラメチルジフェニルエーテル、4,4´−ジアミノ−3,3´,5,5´−テトラジメチルフェニルメタン、4,4´−ジアミノ−3,3´,5,5´−テトラエチルジフェニルエーテル、2,2−[4,4´−ジアミノ−3,3´,5,5´−テトラメチルジフェニル]プロパン、メタフェニレンジアミン、パラフェニレンジアミン、3,3´−ジアミノジフェニルスルホン等があり、これらは単独で、又は組合せて使用することができる。
【0020】
(c):上記(a)及び(b)を除いたジアミン(脂肪族又は脂環式ジアミン)としては、例えば、ピペラジン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、テトラメチレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、3−メチルヘプタメチレンジアミン等の脂肪族ジアミンがあり、これらは単独で、又は組合わせて使用することができる。
【0021】
芳香族ジカルボン酸としては、芳香族環に2個のカルボキシル基が結合したものであり、芳香族トリカルボン酸は芳香族環に3個のカルボキシル基が結合し、かつ3個のカルボキシル基のうち2個は隣接炭素原子に結合しているものが好ましく、芳香族テトラカルボン酸は芳香族環に4個のカルボキシル基が結合し、かつ4個のカルボキシル基のうち2個ずつは隣接炭素原子に結合しているものが好ましい。また上記の芳香族環はヘテロ原子が導入されたものでもよく、あるいは芳香族環同士がアルキレン基、酸素、化学結合、カルボニル基等を介して結合されてもよい。さらに、上記の芳香族環はアルコキシ基、アリルオキシ基、アルキルアミノ基、ハロゲン等の縮合反応に関与しない置換基が導入されていてもよい。さらに、上記の芳香族環はアルコキシ基、アリルオキシ基、アルキルアミノ基、ハロゲン等の縮合反応に関与しない置換基が導入されていてもよい。
【0022】
芳香族ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、4,4´−ジフェニルエーテルジカルボン酸、4,4´−ジフェニルスルホンジカルボン酸、4,4´−ジフェニルジカルボン酸、1,5−ナフタレンジカルボン酸等を挙げることができるが、テレフタル酸とイソフタル酸が入手容易で廉価であるから好ましい。なお、芳香族ジカルボン酸の反応性誘導体とは、上記の芳香族ジカルボン酸のジハイドライドあるいはジブロマイド、ジエステル等を意味する。
【0023】
芳香族トリカルボン酸としては、トリメリット酸、3,3´,4−ベンゾフェノントリカルボン酸、2,3,4´−ジフェニルトリカルボン酸、2,3,6−ピリジントリカルボン酸、3,4,4´−ベンズアニリドトリカルボン酸、1,4,5−ナフタリントリカルボン酸、2´−クロロ−3,4,4´−ベンズアニリドトリカルボン酸等が好ましい。また、上記芳香族トリカルボン酸の反応性誘導体とは、上記の芳香族トリカルボン酸の酸無水物、ハライド、エステル、アミド、アンモニウム塩などを意味する。
【0024】
芳香族トリカルボン酸の酸無水物としては、トリメリット酸無水物、トリメリット酸無水物モノクロライド、1,4−ジカルボキシ−3−N,N−ジメチルカルボモイルベンゼン、1,4−ジカルボメトキシ−3−カルボキシベンゼン、1,4−ジカルボキシ−3−カルボフェノキシベンゼン、2,6−ジカルボキシ−3−カルボメトキシピリジン、1,6−ジカルボキシ−5−カルボモイルナフタリン、上記芳香族トリカルボン酸塩類とアンモニア、ジメチルアミン、トリメチルアミン等からなるアンモニウム塩などが好ましい。これらのうち、トリメリット酸無水物及びトリメリット酸無水物モノクロライドが入手容易で廉価であるため好ましい。
【0025】
芳香族テトラカルボン酸としては、例えば、ピロメリット酸、3,3´,4,4´−ベンゾフェノンテトラカルボン酸、3,3´,4,4´−ビフェニルテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、2,3,5,6−ピリジンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸、4,4´−スルホニルジフタル酸、m−ターフェニル−3,3”,4,4”−テトラカルボン酸、p−ターフェニル−3,3”,4,4”−テトラカルボン酸、4,4´−オキシジフタル酸、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(2,3−ジカルボキシフェニル)プロパン、2,2−ビス(2,3−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2´−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2´−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン等が好ましい。また、上記芳香族テトラカルボン酸の反応性誘導体とは、上記の芳香族テトラカルボン酸の酸二無水物、ハライド、エステル、アミド、アンモニウム塩などを意味する。
【0026】
本発明においては、芳香族ジカルボン酸、芳香族トリカルボン酸、芳香族テトラカルボン酸又はこれらの反応性誘導体は、ジアミンの総量100モル%に対して総量で80〜120モル%使用するのが好ましく、特に95〜105モル%使用するのが好ましい。ジアミン100モル%に対して芳香族ジカルボン酸、芳香族トリカルボン酸、芳香族テトラカルボン酸又はこれらの反応性誘導体が80モル%未満又は120モル%を超えると、いずれも分子量が低下し、機械強度、耐熱性などが低下する傾向がある。
【0027】
本発明においては、(A)導電性粉末及びカーボンナノチューブと、(B)熱可塑性樹脂との混合比率は得に限定されるものではないが、塗膜の膜厚及び導電性等の観点から、(A)成分100重量部に対して、(B)成分が4〜43重量部が好ましく、13.5〜33.5重量部がより好ましい。
【0028】
本発明に使用される(C)有機溶剤としては、ベンゼン、トルエン、キシレン等の芳香族溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶剤;酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノメチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノエチルエーテルアセタート、γ−ブチロラクトン等のエステル系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶剤が挙げられる。これらの溶剤は、導電性樹脂組成物作製時の樹脂の溶解または導電性樹脂組成物の粘度調整に用いられる。また、導電性樹脂組成物を作製する際には、これらの有機溶剤を単独でまたは2種以上組み合わせた溶剤として用いられる。
【0029】
(C)有機溶剤の添加量は、(B)成分の熱可塑性樹脂100重量部に対して、一般に75〜4600重量部の範囲で用いられ、好ましくは125〜3060重量部とされる。溶剤の添加量が75重量部未満では樹脂が溶解しにくく、4600重量部を超えると、樹脂粘度が著しく低下して(A)成分である導電性フィラーが沈降し易くなるため、塗膜形成能が低下する傾向がある。なお、導電性樹脂組成物を使用する際に、必要に応じて、上記の有機溶剤の添加量の範囲内で有機溶剤をさらに添加して希釈してもよい。
【0030】
本発明の導電性樹脂組成物は、例えば、(A)成分、(B)成分及び(C)成分をらいかい機、3本ロール、ボールミル、ディスパー等で混練分散することにより製造することができる。
本発明の導電性樹脂組成物を製造する際に、フィラー((A)成分)の分散性および塗布性を向上させるために分散剤やカップリング剤を添加使用してもよい。
【0031】
分散剤としては、飽和脂肪酸としては炭素数16〜20のパルチミン酸、ステアリン酸等が、不飽和脂肪酸としては、炭素数16〜18のオレイン酸、リノレン酸等が用いられ、これらの金属塩としては、ナトリウム、カリウム、カルシウム、亜鉛、銅等の金属との塩が用いられる。これらの分散剤の配合量は、樹脂100重量部に対して一般に0.2〜240重量部とされ、2〜120重量部の範囲が好ましい。分散剤の配合量が0.2重量部未満であれば、導電性粉末の分散性が著しく低下する傾向があり、240重量部を超えると、塗膜の導電性が低下し、基材との密着性が低下する傾向がある。
【0032】
カップリング剤としては、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等のシランカップリング剤や、チタネート系カップリング剤、アルミネート系カップリング剤、ジルコアルミネート系カップリング剤等が使用でき、上記の熱可塑性樹脂100重量部に対して30重量部以下の添加量で添加することが好ましい。
【0033】
本発明の導電性樹脂組成物はペースト状であり、例えば塗布、浸漬等により膜形成し、乾燥して導電層を得ることができる。この導電層は、薄膜形成性及び導電性に優れる。本発明の電子部品は、上記のような本発明の導電性樹脂組成物を用いて形成した導電層を有するもので、例えば固体電解コンデンサ等の小型薄膜化及び等価直列抵抗に優れた特徴を有する。本発明の電子部品としては、電極材料として本発明の導電性樹脂組成物を用いたアルミ電解コンデンサ、タンタル固体電解コンデンサ、セラミックコンデンサ、フィルムコンデンサ等、スクリーン印刷によって本発明の導電性樹脂組成物からなる導電回路がその上に形成された各種基板、本発明の導電性樹脂組成物からなる導電回路がアンテナ用回路(または電磁波シールド材)として形成されたICカードなどが挙げられる。
【0034】
電子部品のなかでも、本発明の導電性樹脂組成物を陰極形成に用い、陽極が弁作用金属を用いた固体電解コンデンサは、陰極層中の電極層の厚さを10μm以下とすることができ、かつ等価直列抵抗等のコンデンサ特性が優れる特徴を有する。ここでいう陰極層中の電極層の厚さとは、本発明の導電性樹脂組成物で形成される導電層であり、形成される塗膜の最大厚さ部分の平均値を示す。この電極層の厚さを薄くすることにより、コンデンサの外寸に対してモールド樹脂厚に余裕ができ、コンデンサ内の素子の一部が露出するような不良が低減され、歩留まりが向上する。また、コンデンサの外寸のサイズをより小さくすることができる。
【0035】
図1に本発明の実施形態である固体電解コンデンサの一例を模式図で示す。図1(a)は固体電解コンデンサの外形斜視図、図1(b)は(a)の縦断面図、図1(c)は(b)のA部分の拡大図である。以下、図に沿って固体電解コンデンサを説明する。図1の固体電解コンデンサは、タンタル焼結体1、Ta等の陽極酸化被膜(誘電体酸化膜)2、二酸化マンガンや導電性高分子等の半導体層(固体電解質層)3、カーボン層(グラファイト)4、本発明の導電性樹脂組成物を塗布後乾燥した銀層等の電極層5、接着銀やはんだ等の導電性接着剤6、リードフレーム7、モールド樹脂9、タンタルリード線10等で構成されている。なお、タンタル焼結体1上に、陽極酸化被膜2、半導体層3、カーボン層4、電極層5を順次形成したものをタンタル素子8という。また、カーボン層4および電極層5を合わせて陰極層という。
【0036】
図1に示す固体電解コンデンサを製造する方法の一例を挙げると、まず、タンタル等の弁作用金属を、タンタル等のリード線の一端に埋め、他端を引き出してプレスで圧縮成型し、真空中で2000℃程度の温度で数10分加熱してタンタル焼結体1を形成する。この焼結体の形状は、板状、箔状、或いは棒状が好ましい。次にこの焼結体をリード線の箇所でステンレス等の金属製バーに溶接した後、焼結体を硝酸やリン酸等の化成液中で電圧を印加して化成してTaの陽極酸化被膜(誘電体酸化被膜)2を形成する。陽極酸化被膜2は、前記焼結体の金属(タンタル)自体の酸化物からなる層であることが好ましいが、焼結体とは別の誘電体酸化物の層であってもよい。陽極酸化被膜を形成後、焼結体を硝酸マンガン溶液等の半導体母液中に浸漬し液を含浸させ、200℃〜350℃の温度で焼成して熱分解して焼結体内部に半導体層(固体電解質層)3として二酸化マンガン層を形成するか、または電解重合法や化学酸化重合法により焼結体内部に半導体層(固体電解質層)3として導電性高分子層を形成する。そして以上の浸漬、焼成及び再化成、または浸漬、重合の工程を所望の半導体層3の厚さになるまで、必要に応じて5〜10回繰り返す。半導体層(固体電解質層3)を形成後、カーボンペーストを塗布後乾燥したカーボン(グラファイト)層4、本発明の導電性樹脂組成物の一例である銀ペーストを塗布後乾燥した電極層(銀層)5を順次形成して陰極層を形成し、陰極層を電極取り出し用のリードフレーム7等に導電性接着剤6である接着銀またははんだで接着する。また、端子を焼結体から引き出したタンタルリード線等の陽極部をリードフレーム7等に溶接する。
最後に樹脂ディップ法や樹脂モールド法等によりモールド樹脂9で樹脂外装を形成して図1の固体電解コンデンサが得られる。上記では陽極にタンタルを用いたが、他にアルミニウム、ニオブ、チタン等の弁作用金属も使用できる。
【0037】
【実施例】
次に本発明を実施例により更に詳しく説明する。
<合成例1>
温度計、攪拌機、窒素導入管及び冷却管を装着した四つ口フラスコ中に窒素ガス雰囲気下でジアミンとして2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン65.6g(160ミリモル)と信越化学工業(株)製商品名 X−22−161Bのジアミノシロキサン36g(40ミリモル)(モル比で80モル%/20モル%)を入れ、ジエチレングリコールジメチルエーテル335gに溶解した。
この溶液を−10℃に冷却し、この温度でイソフタル酸ジクロライド40.6g(200ミリモル)を、温度が−5℃を超えないように添加した。その後、プロピレンオキシド23.2gを添加し、ジエチレングリコールジメチルエーテル96gを追加し、室温で3時間攪拌を続けた。反応液をメタノール中に投入して重合体を単離した。これを乾燥した後、再びジメチルホルムアミドに溶解し、これをメタノール中に投入してポリアミドシリコーン共重合体(I)を精製した。
【0038】
<合成例2>
温度計、攪拌機、窒素導入管及び冷却管を装着した四つ口フラスコに窒素ガス雰囲気下でジアミンとして2,2ビス[4−(4−アミノフェノキシ)フェニル]プロパン174.3g(425ミリモル)と 信越化学工業社製商品名 LP−7100のジアミノシロキサン225g(75ミリモル)(モル比で85モル%/15モル%)を入れたジエチレングリコールジメチルエーテル1177gに溶解した。
この溶液を−10℃に冷却し、この温度でトリメリット酸無水物モノクロライド105.3g(500ミリモル)を、温度が−5℃を超えないように添加した。添加後、プロピレンオキシド87gを添加し、室温で3時間攪拌を続け、反応液の粘度が上昇し、液が透明になったところで、ジエチレングリコールジメチルエーテル841gを追加し、さらに1時間攪拌を続けた後、無水酢酸128g及びピリジン64gを加え、60℃で1昼夜攪拌を続けた。得られた反応液をn−ヘキサン/メタノール=1/1(重量比)の大量の混合溶剤中に投入して、重合体を単離させた。これを乾燥した後、N,N−ジメチルホルムアミドに溶解し、メタノール中に投入してポリアミドイミドシリコーン共重合体(II)を精製し、減圧乾燥した。
【0039】
<合成例3>
温度計、撹拌機、窒素導入管および冷却管を装着した1リットル四つ口フラスコ中に窒素ガス雰囲気下でジアミンとして2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン100g(240ミリモル)をN−メチル−2−ピロリドン400gに溶解した。
この溶液を−10℃に冷却し、この温度でイソフタル酸ジクロライド49.5g(240ミリモル)を温度が−5℃を超えないように添加した、その後プロピレンオキシド56.6gを添加し室温で3時間撹拌を続けた。反応液を純水中に投入して重合体を単離した。これを乾燥した後、再びN−メチル−2−ピロリドンに溶解し、これを純水中に投入してポリアミド重合体(III)を精製した。
【0040】
<鍍銀銅粉作製例>
アトマイズ法で作製した平均粒径5.1μmの球状銅粉(日本アトマイズ加工(株)製、商品名SFR−Cu)を希塩酸及び純水で洗浄した後、水1リットルあたりのAgCN80g及びNaCN75g含むめっき溶液で球状銅粉に対して銀の量が15重量%になるように置換めっきを行い、水洗、乾燥して鍍銀銅粉を得た。
この後、2リットルのボールミル容器内に上記で得た鍍銀銅粉750g及び直径が5mmのジルコニアボール3kgを投入し、40分間回転させて平均粒径5.5μmの鍍銀銅粉を得た。
【0041】
<カーボンナノチューブアスペクト比測定例>
ハイペリオン社製カーボンナノチューブマスターバッチRMB2020−00(商品名)をトルエンに浸漬し遠心分離によりカーボンナノチューブを得た。得られたカーボンナノチューブ2gに低粘度のエポキシ樹脂(ビューラー社製)の主剤(No.10−8130)8gと硬化剤(No.10−8132)2gを混合し分散させ、そのまま30℃で真空脱泡した後、10時間30℃で静置して粒子を沈降させ硬化させた。その後、得られた硬化物を垂直方向に切断し、切断面を電子顕微鏡で10000倍に拡大して切断面に現れた100個の粒子について長さ/直径を求め、それらの平均値をもって、アスペクト比とした。このカーボンナノチューブのアスペクト比は600であった。
【0042】
(実施例1)
合成例1で得たポリアミドシリコーン共重合体(I)22.2重量部にジエチレングリコールジメチルエーテル222.2重量部を加え溶解したワニスに、上記アスペクト比測定例で得たカーボンナノチューブ0.66重量部、銀粉(デグザ社製 SF#7 鱗片状 平均粒径6.8μm)198重量部を配合し、20分ディスパーで分散し粘度2000mPa・sのペースト状樹脂組成物(以下、ペーストという。)を得た。
得られたペーストを脱泡した後、ペーストをスクリーン印刷法にて一定量スライドガラス上に塗布し(塗布面積:1cm×7.5cm 塗布厚:40±10μm)、バッチ式乾燥炉で180℃、1時間乾燥させて乾燥塗膜を得た。得られた乾燥塗膜についてダブルブリッジ式抵抗測定器(横河電気(株)製 TYPE2769)により、体積抵抗率の測定を行った。結果を表1に示す。
【0043】
別に、このペーストを陰極形成材料として用いてタンタルコンデンサを作製し(静電容量22μF)、電子顕微鏡による断面観察による電極層形成塗膜厚の測定と、等価直列抵抗(ESR)の測定を次のように実施した。結果を表1に併記する。
<コンデンサの形成塗膜厚の膜厚測定>
タンタルコンデンサ用の素子にディップ及び乾燥により陰極層の電極層(図1参照。)を形成した後、埋め込み樹脂(リファインテック社製 商品名エポマウントAセット)を用いて硬化させた。硬化後、ダイヤモンドカッターで中央部を切断し、走査型電子顕微鏡を用いて断面に形成された電極層の膜厚(最大値)を測定した。測定素子10個の平均値を膜厚とした。
<コンデンサ特性測定>
コンデンサの静電容量、等価直列抵抗(ESR)については、ヒューレットパッカード社製LCRメータ(4284A)を用いJIS C 5102−94(電子機器用固定コンデンサの試験方法)に従い測定を行った。
【0044】
【表1】
Figure 2004168966
【0045】
(実施例2)
合成例2で得られたポリアミドイミドシリコーン重合体(II)を用いた以外は、実施例1と同様とした。結果を表1に併記する。
【0046】
(実施例3)
合成例3で得られたポリアミド重合体(III)を用いた以外は、実施例1と同様とした。結果を表1に併記する。
【0047】
(実施例4)
銀粉198重量部の代わりに、鍍銀銅粉作製例で得た鍍銀銅粉118.8重量部及び銀粉(デグザ社製 SF#7 鱗片状 平均粒径6.8μm)79.2重量部を用いた以外は、実施例1と同様とした。結果を表1に併記する。
【0048】
(比較例1)
カーボンナノチューブを添加しなかった以外は、実施例1と同様とした。結果を表1に併記する。
【0049】
(比較例2)
実施例1で用いたカーボンナノチューブの代わりに人工黒鉛を0.66重量部用いた以外は実施例1と同様とした。結果を表1に併記する。
【0050】
(比較例3)
ポリアミドシリコーン共重合体の代わりに、エポキシ樹脂(三井化学(株)製、商品名140C)60重量部、脂肪族ジグリシジルエーテル(旭電化工業(株)製、商品名ED−503)40重量部、2P4MHZ(四国化成(株)製イミダゾール系エポキシ樹脂硬化剤(促進剤)商品名キュアゾール)3重量部及びジシアンジアミド(和光純薬工業(株)製)3重量部を加えた以外は実施例1と同様とした。結果を表1に併記する。
【0051】
【発明の効果】
本発明になる導電性樹脂組成物の乾燥塗膜は、薄膜導電性に優れ、電子部品の電極及び回路形成性並びに寸法精度が高く、例えば薄型の固体電解コンデンサの陰極形成材料として好適である。
【図面の簡単な説明】
【図1】本発明の実施形態である固体電解コンデンサの一例を示す模式図である。
(a)は固体電解コンデンサの外形斜視図、(b)は(a)の縦断面図、(c)は(b)のA部分の拡大図である。
【符号の説明】
1 タンタル焼結体
2 陽極酸化被膜(誘電体酸化膜)
3 半導体層(固体電解質層)
4 カーボン層(グラファイト)
5 電極層(銀層)
6 導電性接着剤
7 リードフレーム
8 タンタル素子
9 モールド樹脂
10 タンタルリード線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive resin composition and an electronic component using the same.
[0002]
[Prior art]
In the field of electronic components, it is generally practiced to knead a conductive material such as a metal into a resin, knead the resin into a paste, and use the paste for forming an electric circuit or an electrode. Silver powder and copper powder are the most typical conductive materials among them, but in order to reduce the resistance of the formed coating film, the conductive material must be filled into the resin at a high level. However, if the resin is filled with a conductive substance at a high level, the conductive paste will become uneven due to the settling of the filler in the conductive paste, and the coating formed by drying the conductive paste will become thicker. Become. Non-uniform paste due to filler sedimentation causes deterioration of workability and productivity when using paste, and thickening of coating film hinders miniaturization of electronic components and improvement of dimensional accuracy. It becomes.
[0003]
In order to solve the above problems, studies have been made to reduce the particle size of the conductive material, to combine conductive materials having different particle sizes and shapes, and to add various additives (Patent Documents 1 to 3). , Non-Patent Documents 1 and 2). However, all of these methods have problems such as a high resistance value as an electrode material and a thick coating film to be formed, and are not radical measures.
[0004]
[Patent Document 1]
JP-A-5-242725
[Patent Document 2]
JP-A-6-223615
[Patent Document 3]
JP-A-10-134637
[Non-patent document 1]
Filler Study Group, “Filler Encyclopedia” Taiseisha, May 1994, pp. 106-171, 264-274
[Non-patent document 2]
Technical Information Association, “Development and Application of Conductive Filler”, published in January 1994, pp. 309-323
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve these problems, and by combining carbon nanotubes and conductive powder, high conductivity can be obtained even if the filling ratio of the conductive powder in the coating film is low. An object of the present invention is to provide a conductive resin composition capable of forming a thin film and an electronic component using the same, for example, a solid electrolytic capacitor in which the thickness of an electrode layer of a cathode layer is 10 μm or less.
[0006]
[Means for Solving the Problems]
The present invention relates to a conductive resin composition containing (A) a conductive powder and carbon nanotubes, (B) a thermoplastic resin, and (C) an organic solvent.
[0007]
Further, the present invention relates to an electronic component having a conductive layer formed using the conductive resin composition of the present invention, and an anode using a valve metal, and the conductive resin composition of the present invention. The present invention relates to an electronic component that is a solid electrolytic capacitor having a used cathode.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the conductive resin composition of the present invention will be described in detail.
As the component (A) used in the present invention, a carbon nanotube and a conductive powder are used. Although the form of the carbon nanotube is not particularly limited, those having an aspect ratio of 100 to 1000 are more preferable. If the aspect ratio is less than 100, it is difficult to form a crosslinked structure between the conductive particles, and when a thin film having a thickness of 10 μm or less is formed, the resistance of the coating film is apt to deteriorate. If the aspect ratio exceeds 1000, the crosslinked structure between the conductive particles tends to be hindered, and the uniformity of the obtained coating film tends to be hindered.
The aspect ratio of the carbon nanotube in the present invention refers to the ratio of the length and diameter (length / diameter) of the columnar carbon nanotube. In the present invention, carbon nanotubes separated from a master batch of carbon nanotubes kneaded into PS (polystyrene) are dispersed in a thermosetting resin having a low viscosity, and a cured product obtained by curing is cut in a vertical direction. The shape of the particles appearing on the cut surface is observed under magnification with a microscope, and the length / diameter of each particle is determined for at least 100 particles, and the average value thereof is defined as the aspect ratio. The specific method used in the present invention will be described later.
[0009]
In the present invention, the conductive powder is not particularly limited, and a commonly used scale-like, spherical, massive or the like shape can be used. In consideration of conductivity and coatability, scaly and spherical particles having an average particle size of 0.2 μm to 12 μm are preferable, and those having a particle size of 1 μm to 8 μm are more preferable.
As the conductive powder, commonly used gold, silver, copper, silver-plated copper powder, palladium, platinum, nickel, carbon and the like can be used.In the present invention, the conductive powder is silver, copper, silver-plated copper powder. It is preferable to include any one or more of them.
[0010]
In the present invention, the silver-plated copper powder refers to a conductive powder in which part or all of the surface of the copper powder is coated with silver. This can be obtained, for example, by coating atomized copper powder with silver by a method such as substitution plating, electroplating, or electroless plating. It is preferable to cover with copper by displacement plating because of high adhesion between copper powder and silver and low running cost.
[0011]
The silver coating amount of the silver-plated copper powder is not particularly limited, but is preferably 0.5 to 50 parts by weight with respect to 100 parts by weight of copper in consideration of conductivity and migration resistance. The amount is preferably 0 to 35 parts by weight, more preferably 1.5 to 25 parts by weight. If the silver coverage is less than 1 part by weight, the conductivity tends to be low, and if it exceeds 30 parts by weight, it causes deterioration of migration.
[0012]
The average particle size of the silver-plated copper powder is preferably 0.2 μm to 12 μm, more preferably 1 μm to 10 μm, in consideration of the dispersion, viscosity, workability, and conductivity of the coating of the conductive resin composition. 5 μm to 8 μm is more preferable. When the average particle size is less than 0.2 μm, the conductive resin composition tends to aggregate, and when the average particle size exceeds 12 μm, it tends to hinder thinning of the coating film.
The average particle size can be measured with a laser scattering type flow distribution measuring device. In the present invention, the measurement was performed using a master sizer (trade name, manufactured by Malvern).
[0013]
The ratio between the carbon nanotubes and the conductive powder is not particularly limited, but considering the conductivity of the coating film, the carbon nanotubes may be in a weight ratio of 0.1 to 10 with respect to 100 parts by weight of the conductive powder. Parts by weight are preferred, more preferably 0.8 to 8 parts by weight, and even more preferably 1 to 5 parts by weight. When the amount of the carbon nanotubes is less than 0.1 part by weight, the conductivity when the coating film is formed into a thin film is low, and when the amount exceeds 10 parts by weight, aggregates tend to increase and it is difficult to uniformly disperse.
[0014]
Examples of the thermoplastic resin (B) used in the present invention include polyethylene, polystyrene, polyvinyl chloride, and polyamide, and are not particularly limited.
For example, in a solid electrolytic capacitor having a valve metal for an anode and a cathode using a conductive resin composition, it is more preferable to use a thermoplastic resin selected from polyamide silicone, polyamide imide silicone and polyimide silicone.
These can be obtained, for example, by polycondensing an aromatic dicarboxylic acid, an aromatic tricarboxylic acid, an aromatic tetracarboxylic acid, or a reactive derivative thereof with a diamine containing diaminosilicone as an essential component.
[0015]
Further, as the diamino silicone, for example, the following general formula (I)
Embedded image
Figure 2004168966
(However, Y 1 Is a divalent hydrocarbon group; 2 Represents a monovalent hydrocarbon group, and two Y 1 May be the same or different, and a plurality of Y 2 May be the same or different from each other, and m is an integer of 1 or more. ) Are preferably used.
[0016]
Y 1 Examples of the divalent hydrocarbon group represented by are an alkylene group having 1 to 10 carbon atoms, a substituted or unsubstituted phenylene group, and the like. 2 Examples of the monovalent hydrocarbon group represented by are an alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted phenyl group, and the like, and m is an integer of 1 to 100.
[0017]
The other diamine that can be used together with the diaminosilicone is not particularly limited, but is preferably an aromatic diamine represented by the following general formula (II).
Embedded image
Figure 2004168966
(Where R1, R2, R3 and R4 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms or a halogen atom, X represents a chemical bond, -O-,- S-, -SO 2 −,
Embedded image
Figure 2004168966
Where R 5 And R 6 Each independently represents hydrogen, a lower alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group, a trichloromethyl group or a phenyl group. )
[0018]
(A): As the aromatic diamine having an ether bond represented by the general formula (I), for example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [ 3-methyl-4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [3-methyl-4- (4-amino) Phenoxy) phenyl] butane, 2,2-bis [3,5-dimethyl-4- (4-aminophenoxy) phenyl] butane, 2,2-bis [3,5-dibromo-4- (4-aminophenoxy) Phenyl] butane, 1,1,1,3,3-hexafluoro-2,2-bis [3-methyl-4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4- Aminophenoxy) fe L] cyclohexane, 1,1-bis [4- (4-aminophenoxy) phenyl] cyclopentane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether , Bis [4- (3-aminophenoxy) phenyl] sulfone, 4,4'-carbonylbis (p-phenyleneoxy) dianiline, 4,4'-bis (4-aminophenoxy) biphenyl and the like. Of these, 2,2-bis [(4-aminophenoxy) phenyl] propane is preferred.
[0019]
(B): As the aromatic diamine excluding the above (a), for example, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4 -Aminophenoxy) benzene, 4-4 '-[1,3-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 3, 3 '-[1,3-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-diaminophenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3', 5 5'-tetramethyldiphenyl ether, 4,4'-diamino-3,3 ', 5,5'-tetradimethylphenylmethane, 4,4'-diamino-3,3', 5,5'-tetrae Tyl diphenyl ether, 2,2- [4,4'-diamino-3,3 ', 5,5'-tetramethyldiphenyl] propane, metaphenylenediamine, paraphenylenediamine, 3,3'-diaminodiphenylsulfone, etc. , Can be used alone or in combination.
[0020]
(C): Examples of the diamine (aliphatic or alicyclic diamine) excluding (a) and (b) above include, for example, piperazine, hexamethylenediamine, heptamethylenediamine, tetramethylenediamine, p-xylylenediamine, There are aliphatic diamines such as m-xylylenediamine and 3-methylheptamethylenediamine, which can be used alone or in combination.
[0021]
The aromatic dicarboxylic acid is one in which two carboxyl groups are bonded to an aromatic ring, and the aromatic tricarboxylic acid is one in which three carboxyl groups are bonded to an aromatic ring and two of three carboxyl groups. Preferably, the aromatic tetracarboxylic acid has four carboxyl groups bonded to the aromatic ring, and two of the four carboxyl groups are bonded to adjacent carbon atoms. Are preferred. Further, the aromatic ring may have a heteroatom introduced therein, or the aromatic rings may be bonded to each other via an alkylene group, oxygen, a chemical bond, a carbonyl group, or the like. Further, a substituent which does not participate in a condensation reaction such as an alkoxy group, an allyloxy group, an alkylamino group, and a halogen may be introduced into the aromatic ring. Further, a substituent which does not participate in a condensation reaction such as an alkoxy group, an allyloxy group, an alkylamino group, and a halogen may be introduced into the aromatic ring.
[0022]
Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 4,4'-diphenylether dicarboxylic acid, 4,4'-diphenylsulfone dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, and 1,5-naphthalenedicarboxylic acid. Among them, terephthalic acid and isophthalic acid are preferred because they are easily available and inexpensive. In addition, the reactive derivative of the aromatic dicarboxylic acid means dihydride, dibromide, diester or the like of the above aromatic dicarboxylic acid.
[0023]
Examples of aromatic tricarboxylic acids include trimellitic acid, 3,3 ′, 4-benzophenone tricarboxylic acid, 2,3,4′-diphenyltricarboxylic acid, 2,3,6-pyridinetricarboxylic acid, 3,4,4′- Benzanilide tricarboxylic acid, 1,4,5-naphthalene tricarboxylic acid, 2'-chloro-3,4,4'-benzanilide tricarboxylic acid and the like are preferred. Further, the reactive derivative of the aromatic tricarboxylic acid means an acid anhydride, a halide, an ester, an amide, an ammonium salt or the like of the aromatic tricarboxylic acid.
[0024]
Examples of the acid anhydride of an aromatic tricarboxylic acid include trimellitic anhydride, trimellitic anhydride monochloride, 1,4-dicarboxy-3-N, N-dimethylcarbomoylbenzene, and 1,4-dicarbomethoxy. -3-carboxybenzene, 1,4-dicarboxy-3-carbophenoxybenzene, 2,6-dicarboxy-3-carbomethoxypyridine, 1,6-dicarboxy-5-carbomoylnaphthalene, the above-mentioned aromatic tricarboxylic acid Ammonium salts composed of salts and ammonia, dimethylamine, trimethylamine and the like are preferred. Of these, trimellitic anhydride and trimellitic anhydride monochloride are preferred because they are easily available and inexpensive.
[0025]
Examples of the aromatic tetracarboxylic acid include pyromellitic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 1,2,5 6-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 3,4 9,10-perylenetetracarboxylic acid, 4,4′-sulfonyldiphthalic acid, m-terphenyl-3,3 ″, 4,4 ″ -tetracarboxylic acid, p-terphenyl-3,3 ″, 4, 4 "-tetracarboxylic acid, 4,4'-oxydiphthalic acid, 1,1,1,3,3,3-hexafluoro-2,2-bis (2,3-dicarboxyphenyl) propane, 2,2- Bis (2,3-dicarbo (Ciphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2′-bis [4- (2,3-di Carboxyphenoxy) phenyl] propane, 1,1,1,3,3,3-hexafluoro-2,2′-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane and the like are preferable. Further, the reactive derivative of the aromatic tetracarboxylic acid means an acid dianhydride, a halide, an ester, an amide, an ammonium salt or the like of the aromatic tetracarboxylic acid.
[0026]
In the present invention, the aromatic dicarboxylic acid, the aromatic tricarboxylic acid, the aromatic tetracarboxylic acid or the reactive derivative thereof is preferably used in a total amount of 80 to 120 mol% with respect to the total amount of the diamine of 100 mol%, It is particularly preferable to use 95 to 105 mol%. When the amount of the aromatic dicarboxylic acid, aromatic tricarboxylic acid, aromatic tetracarboxylic acid, or reactive derivative thereof is less than 80 mol% or more than 120 mol% with respect to 100 mol% of the diamine, the molecular weight decreases, and the mechanical strength decreases. , Heat resistance and the like tend to decrease.
[0027]
In the present invention, the mixing ratio of (A) the conductive powder and the carbon nanotubes and (B) the thermoplastic resin is not particularly limited, but from the viewpoint of the thickness of the coating film and the conductivity, Component (B) is preferably 4-43 parts by weight, more preferably 13.5-33.5 parts by weight, per 100 parts by weight of component (A).
[0028]
Examples of the (C) organic solvent used in the present invention include aromatic solvents such as benzene, toluene, and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; diethyl ether, isopropyl ether, tetrahydrofuran, dioxane, and the like. Ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether; ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl Ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether acetate Over DOO, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ester solvents such as γ- butyrolactone; dimethylformamide, dimethylacetamide, amides solvents such as N- methylpyrrolidone. These solvents are used for dissolving the resin at the time of preparing the conductive resin composition or adjusting the viscosity of the conductive resin composition. In preparing the conductive resin composition, these organic solvents are used alone or in combination of two or more.
[0029]
The amount of the organic solvent (C) to be added is generally in the range of 75 to 4600 parts by weight, preferably 125 to 3060 parts by weight, based on 100 parts by weight of the thermoplastic resin (B). If the amount of the solvent is less than 75 parts by weight, the resin is difficult to dissolve, and if it exceeds 4600 parts by weight, the viscosity of the resin is remarkably reduced, and the conductive filler as the component (A) is liable to settle. Tends to decrease. When using the conductive resin composition, an organic solvent may be further added and diluted as needed within the range of the amount of the organic solvent added.
[0030]
The conductive resin composition of the present invention can be produced, for example, by kneading and dispersing the component (A), the component (B), and the component (C) with a rapier, a three-roll mill, a ball mill, a disper, or the like. .
When producing the conductive resin composition of the present invention, a dispersant or a coupling agent may be added and used in order to improve the dispersibility and coatability of the filler (component (A)).
[0031]
Examples of the dispersant include saturated fatty acids such as palmitic acid and stearic acid having 16 to 20 carbon atoms, and unsaturated fatty acids such as oleic acid and linolenic acid having 16 to 18 carbon atoms. Is a salt with a metal such as sodium, potassium, calcium, zinc, and copper. The compounding amount of these dispersants is generally from 0.2 to 240 parts by weight, preferably from 2 to 120 parts by weight, per 100 parts by weight of the resin. If the amount of the dispersant is less than 0.2 parts by weight, the dispersibility of the conductive powder tends to be significantly reduced, and if it exceeds 240 parts by weight, the conductivity of the coating film is reduced, and Adhesion tends to decrease.
[0032]
Examples of the coupling agent include vinylmethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane Γ-glycidoxypropylmethyldiethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ A silane coupling agent such as mercaptopropyltrimethoxysilane, a titanate-based coupling agent, an aluminate-based coupling agent, a zirco-aluminate-based coupling agent, or the like can be used, based on 100 parts by weight of the thermoplastic resin. Add 30 parts by weight or less It is preferable.
[0033]
The conductive resin composition of the present invention is in the form of a paste, and can be formed into a film by, for example, coating or dipping, and then dried to obtain a conductive layer. This conductive layer is excellent in thin film forming property and conductivity. The electronic component of the present invention has a conductive layer formed by using the conductive resin composition of the present invention as described above, and has features of, for example, miniaturization of a solid electrolytic capacitor or the like and excellent equivalent series resistance. . As the electronic component of the present invention, an aluminum electrolytic capacitor, a tantalum solid electrolytic capacitor, a ceramic capacitor, a film capacitor, or the like using the conductive resin composition of the present invention as an electrode material, the conductive resin composition of the present invention is screen-printed from the conductive resin composition of the present invention. Various substrates having a conductive circuit formed thereon, an IC card having a conductive circuit formed of the conductive resin composition of the present invention formed as a circuit for an antenna (or an electromagnetic wave shielding material), and the like.
[0034]
Among the electronic components, the solid electrolytic capacitor using the conductive resin composition of the present invention for forming a cathode and the anode using a valve metal can reduce the thickness of the electrode layer in the cathode layer to 10 μm or less. And excellent characteristics of capacitors such as equivalent series resistance. Here, the thickness of the electrode layer in the cathode layer is a conductive layer formed of the conductive resin composition of the present invention, and indicates an average value of a maximum thickness portion of a formed coating film. By reducing the thickness of the electrode layer, the thickness of the mold resin can be made larger than the external dimensions of the capacitor, defects such as exposing a part of elements in the capacitor are reduced, and the yield is improved. In addition, the external size of the capacitor can be further reduced.
[0035]
FIG. 1 is a schematic diagram showing an example of a solid electrolytic capacitor according to an embodiment of the present invention. 1A is an external perspective view of a solid electrolytic capacitor, FIG. 1B is a longitudinal sectional view of FIG. 1A, and FIG. 1C is an enlarged view of a portion A in FIG. Hereinafter, the solid electrolytic capacitor will be described with reference to the drawings. The solid electrolytic capacitor shown in FIG. 2 O 5 Anodic oxide film (dielectric oxide film) 2, semiconductor layer (solid electrolyte layer) 3 such as manganese dioxide or conductive polymer, carbon layer (graphite) 4, and conductive resin composition of the present invention, followed by drying. An electrode layer 5 such as a silver layer, a conductive adhesive 6 such as adhesive silver or solder, a lead frame 7, a mold resin 9, a tantalum lead wire 10, and the like. A tantalum element 8 is formed by sequentially forming an anodic oxide film 2, a semiconductor layer 3, a carbon layer 4, and an electrode layer 5 on a tantalum sintered body 1. The carbon layer 4 and the electrode layer 5 are collectively referred to as a cathode layer.
[0036]
One example of a method for manufacturing the solid electrolytic capacitor shown in FIG. 1 is as follows. First, a valve metal such as tantalum is embedded in one end of a lead wire such as tantalum, the other end is pulled out, compression-molded by a press, and vacuumed. And heated at a temperature of about 2000 ° C. for several tens of minutes to form a tantalum sintered body 1. The shape of the sintered body is preferably a plate shape, a foil shape, or a rod shape. Next, this sintered body is welded to a metal bar such as stainless steel at a lead wire, and then the sintered body is formed by applying a voltage in a chemical solution such as nitric acid or phosphoric acid to form a Ta. 2 O 5 An anodic oxide film (dielectric oxide film) 2 is formed. The anodic oxide coating 2 is preferably a layer made of an oxide of the metal (tantalum) itself of the sintered body, but may be a layer of a dielectric oxide different from the sintered body. After forming the anodized film, the sintered body is immersed in a semiconductor mother liquor such as a manganese nitrate solution to be impregnated with the solution, fired at a temperature of 200 ° C. to 350 ° C., thermally decomposed, and a semiconductor layer ( A manganese dioxide layer is formed as the solid electrolyte layer 3 or a conductive polymer layer is formed as the semiconductor layer (solid electrolyte layer) 3 inside the sintered body by an electrolytic polymerization method or a chemical oxidation polymerization method. Then, the above steps of immersion, firing and re-chemical formation, or immersion and polymerization are repeated 5 to 10 times as necessary until the desired thickness of the semiconductor layer 3 is obtained. After the formation of the semiconductor layer (solid electrolyte layer 3), a carbon (graphite) layer 4 applied with a carbon paste and dried, and an electrode layer (silver layer) dried after applying a silver paste which is an example of the conductive resin composition of the present invention. 5) are sequentially formed to form a cathode layer, and the cathode layer is adhered to a lead frame 7 or the like for taking out an electrode by using a conductive adhesive 6 such as adhesive silver or solder. Further, an anode portion such as a tantalum lead wire from which a terminal is drawn out of the sintered body is welded to the lead frame 7 or the like.
Finally, a resin exterior is formed with a molding resin 9 by a resin dipping method, a resin molding method, or the like, thereby obtaining the solid electrolytic capacitor of FIG. In the above description, tantalum is used for the anode, but a valve metal such as aluminum, niobium, and titanium can also be used.
[0037]
【Example】
Next, the present invention will be described in more detail with reference to examples.
<Synthesis example 1>
Under a nitrogen gas atmosphere, 65.6 g (160 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as a diamine was placed in a four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube. ) And 36 g (40 mmol) of diaminosiloxane (trade name: X-22-161B, manufactured by Shin-Etsu Chemical Co., Ltd., 80 mol% / 20 mol% in molar ratio) were dissolved in 335 g of diethylene glycol dimethyl ether.
The solution was cooled to -10 ° C and at this temperature 40.6 g (200 mmol) of isophthalic dichloride were added so that the temperature did not exceed -5 ° C. Thereafter, 23.2 g of propylene oxide was added, 96 g of diethylene glycol dimethyl ether was added, and stirring was continued at room temperature for 3 hours. The reaction solution was poured into methanol to isolate a polymer. After drying, it was dissolved again in dimethylformamide, and this was poured into methanol to purify the polyamide-silicone copolymer (I).
[0038]
<Synthesis Example 2>
Under a nitrogen gas atmosphere, 174.3 g (425 mmol) of 2,2 bis [4- (4-aminophenoxy) phenyl] propane as a diamine was placed in a four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube. The product was dissolved in 1177 g of diethylene glycol dimethyl ether containing 225 g (75 mmol) of diaminosiloxane (trade name: LP-7100, manufactured by Shin-Etsu Chemical Co., Ltd., 85 mol% / 15 mol% in molar ratio).
The solution was cooled to −10 ° C. and at this temperature 105.3 g (500 mmol) of trimellitic anhydride monochloride were added so that the temperature did not exceed −5 ° C. After the addition, 87 g of propylene oxide was added, and stirring was continued at room temperature for 3 hours. When the viscosity of the reaction solution increased and the solution became transparent, 841 g of diethylene glycol dimethyl ether was added, and stirring was further continued for 1 hour. 128 g of acetic anhydride and 64 g of pyridine were added, and stirring was continued at 60 ° C. for one day. The obtained reaction solution was poured into a large amount of a mixed solvent of n-hexane / methanol = 1/1 (weight ratio) to isolate a polymer. After drying, it was dissolved in N, N-dimethylformamide and poured into methanol to purify the polyamide-imide silicone copolymer (II) and dried under reduced pressure.
[0039]
<Synthesis example 3>
Under a nitrogen gas atmosphere, 100 g (240 g) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as a diamine was placed in a 1-liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube. Mmol) was dissolved in 400 g of N-methyl-2-pyrrolidone.
The solution was cooled to -10 DEG C. and at this temperature 49.5 g (240 mmol) of isophthalic acid dichloride were added in such a way that the temperature did not exceed -5 DEG C., then 56.6 g of propylene oxide were added and at room temperature for 3 hours. Stirring was continued. The reaction solution was poured into pure water to isolate the polymer. After drying, it was again dissolved in N-methyl-2-pyrrolidone, and this was poured into pure water to purify the polyamide polymer (III).
[0040]
<Example of silver-plated copper powder>
After washing spherical copper powder (trade name: SFR-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) with an average particle size of 5.1 μm prepared by an atomizing method with dilute hydrochloric acid and pure water, plating containing 80 g of AgCN and 75 g of NaCN per liter of water is performed. The solution was subjected to displacement plating so that the amount of silver was 15% by weight with respect to the spherical copper powder, washed with water, and dried to obtain a silver-plated copper powder.
Thereafter, 750 g of the silver-plated copper powder obtained above and 3 kg of zirconia balls having a diameter of 5 mm were put into a 2 liter ball mill container and rotated for 40 minutes to obtain a silver-plated copper powder having an average particle size of 5.5 μm. .
[0041]
<Example of measuring carbon nanotube aspect ratio>
Hyperion carbon nanotube master batch RMB2020-00 (trade name) was immersed in toluene and centrifuged to obtain carbon nanotubes. To 2 g of the obtained carbon nanotubes, 8 g of a base material (No. 10-8130) of a low-viscosity epoxy resin (manufactured by Buehler) and 2 g of a curing agent (No. 10-8132) were mixed and dispersed, and the mixture was vacuum-discharged at 30 ° C. as it was. After foaming, the particles were allowed to stand at 30 ° C. for 10 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 10,000 times with an electron microscope, and the length / diameter was determined for 100 particles that appeared on the cut surface. Ratio. The aspect ratio of this carbon nanotube was 600.
[0042]
(Example 1)
0.62 parts by weight of the carbon nanotubes obtained in the above aspect ratio measurement example was added to a varnish obtained by adding 222.2 parts by weight of diethylene glycol dimethyl ether to 22.2 parts by weight of the polyamide-silicone copolymer (I) obtained in Synthesis Example 1 and dissolving the same. 198 parts by weight of silver powder (SF # 7 scale-shaped average particle size: 6.8 μm, manufactured by Degussa Co., Ltd.) was mixed and dispersed with a disper for 20 minutes to obtain a paste-like resin composition having a viscosity of 2000 mPa · s (hereinafter referred to as paste). .
After defoaming the obtained paste, a predetermined amount of the paste was applied on a slide glass by a screen printing method (application area: 1 cm × 7.5 cm, application thickness: 40 ± 10 μm), and 180 ° C. in a batch drying oven. After drying for 1 hour, a dried coating film was obtained. The volume resistivity of the obtained dried coating film was measured by using a double bridge resistance meter (TYPE 2769 manufactured by Yokogawa Electric Corporation). Table 1 shows the results.
[0043]
Separately, a tantalum capacitor was manufactured using this paste as a cathode forming material (capacitance: 22 μF), and the measurement of the electrode layer forming coating film thickness by cross-sectional observation with an electron microscope and the measurement of equivalent series resistance (ESR) were performed as follows. Was carried out as follows. The results are also shown in Table 1.
<Measurement of film thickness of formed film of capacitor>
After forming an electrode layer of a cathode layer (see FIG. 1) on the element for a tantalum capacitor by dipping and drying, it was cured using an embedding resin (trade name, Epomount A set, manufactured by Refinetech Co., Ltd.). After curing, the center was cut with a diamond cutter, and the film thickness (maximum value) of the electrode layer formed on the cross section was measured using a scanning electron microscope. The average value of 10 measurement elements was defined as the film thickness.
<Capacitor characteristic measurement>
The capacitance and equivalent series resistance (ESR) of the capacitor were measured using an LCR meter (4284A) manufactured by Hewlett-Packard Company in accordance with JIS C 5102-94 (test method for fixed capacitors for electronic devices).
[0044]
[Table 1]
Figure 2004168966
[0045]
(Example 2)
Example 1 was the same as Example 1 except that the polyamide-imide silicone polymer (II) obtained in Synthesis Example 2 was used. The results are also shown in Table 1.
[0046]
(Example 3)
Example 1 was the same as Example 1 except that the polyamide polymer (III) obtained in Synthesis Example 3 was used. The results are also shown in Table 1.
[0047]
(Example 4)
Instead of 198 parts by weight of silver powder, 118.8 parts by weight of silver-plated copper powder obtained in the preparation example of silver-plated copper powder and 79.2 parts by weight of silver powder (SF # 7 scale-like average particle size 6.8 μm, manufactured by Degussa) were used. Except having used, it was the same as Example 1. The results are also shown in Table 1.
[0048]
(Comparative Example 1)
Example 1 was the same as Example 1 except that no carbon nanotube was added. The results are also shown in Table 1.
[0049]
(Comparative Example 2)
Example 1 was the same as Example 1 except that 0.66 parts by weight of artificial graphite was used instead of the carbon nanotubes used in Example 1. The results are also shown in Table 1.
[0050]
(Comparative Example 3)
Instead of the polyamide silicone copolymer, 60 parts by weight of an epoxy resin (trade name 140C, manufactured by Mitsui Chemicals, Inc.), 40 parts by weight of aliphatic diglycidyl ether (trade name, ED-503, manufactured by Asahi Denka Kogyo KK) Example 2 except that 3 parts by weight of 2P4MHZ (Curizol, an imidazole-based epoxy resin curing agent (accelerator) manufactured by Shikoku Chemicals Co., Ltd.) and 3 parts by weight of dicyandiamide (manufactured by Wako Pure Chemical Industries, Ltd.) were added. Same as above. The results are also shown in Table 1.
[0051]
【The invention's effect】
The dried coating film of the conductive resin composition according to the present invention has excellent thin-film conductivity, high electrode and circuit forming properties of electronic components, and high dimensional accuracy, and is suitable, for example, as a cathode forming material for a thin solid electrolytic capacitor.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an example of a solid electrolytic capacitor according to an embodiment of the present invention.
(A) is an external perspective view of a solid electrolytic capacitor, (b) is a longitudinal sectional view of (a), and (c) is an enlarged view of a portion A of (b).
[Explanation of symbols]
1 Sintered tantalum
2 Anodized film (dielectric oxide film)
3 semiconductor layer (solid electrolyte layer)
4 Carbon layer (graphite)
5. Electrode layer (silver layer)
6 conductive adhesive
7 Lead frame
8 Tantalum element
9 Mold resin
10 Tantalum lead wire

Claims (6)

(A)導電性粉末及びカーボンナノチューブ、(B)熱可塑性樹脂並びに(C)有機溶剤を含有してなる導電性樹脂組成物。A conductive resin composition comprising (A) a conductive powder and carbon nanotubes, (B) a thermoplastic resin, and (C) an organic solvent. 前記導電性粉末が、銀、銅、鍍銀銅粉の何れか1つ以上を含む請求項1記載の導電性樹脂組成物。The conductive resin composition according to claim 1, wherein the conductive powder contains at least one of silver, copper, and silver-plated copper powder. カーボンナノチューブのアスペクト比が100〜1000である請求項1または2記載の導電性樹脂組成物。The conductive resin composition according to claim 1, wherein the carbon nanotube has an aspect ratio of 100 to 1,000. 熱可塑性樹脂がポリアミドシリコーン、ポリアミドイミドシリコーン及びポリイミドシリコーンから選択される請求項1〜3のいずれか1項に記載の導電性樹脂組成物。The conductive resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin is selected from polyamide silicone, polyamide imide silicone, and polyimide silicone. 請求項1〜4のいずれか1項に記載の導電性樹脂組成物を用いて形成された導電層を有する電子部品。An electronic component having a conductive layer formed using the conductive resin composition according to claim 1. 弁作用金属を用いた陽極と、請求項1〜4のいずれか1項に記載の導電性樹脂組成物を用いた陰極とを有する固体電解コンデンサである電子部品。An electronic component which is a solid electrolytic capacitor having an anode using a valve action metal and a cathode using the conductive resin composition according to claim 1.
JP2002339160A 2002-11-22 2002-11-22 Conductive resin composition and electronic part by using the same Pending JP2004168966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339160A JP2004168966A (en) 2002-11-22 2002-11-22 Conductive resin composition and electronic part by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339160A JP2004168966A (en) 2002-11-22 2002-11-22 Conductive resin composition and electronic part by using the same

Publications (1)

Publication Number Publication Date
JP2004168966A true JP2004168966A (en) 2004-06-17

Family

ID=32702180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339160A Pending JP2004168966A (en) 2002-11-22 2002-11-22 Conductive resin composition and electronic part by using the same

Country Status (1)

Country Link
JP (1) JP2004168966A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
JP2006269571A (en) * 2005-03-23 2006-10-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
KR100642427B1 (en) 2004-12-28 2006-11-08 제일모직주식회사 Composition for electromagnetic interference shielding using carbon nanotube
KR100706651B1 (en) 2006-12-22 2007-04-13 제일모직주식회사 Electroconductive thermoplastic resin composition and plastic article
JP2008091806A (en) * 2006-10-05 2008-04-17 Nec Tokin Corp Solid electrolytic capacitor and transmission line element
JP2009117340A (en) * 2007-11-07 2009-05-28 Samsung Electro-Mechanics Co Ltd Conductive paste and printed circuit board using the same
KR100974092B1 (en) 2008-05-30 2010-08-04 삼성전기주식회사 Conductive paste including a carbon nanotube and printed circuit board using the same
CN101916672A (en) * 2010-08-20 2010-12-15 电子科技大学 Solid tantalum electrolytic capacitor and preparation method thereof
CN101923967A (en) * 2010-08-20 2010-12-22 电子科技大学 Solid tantalum electrolytic capacitor and manufacturing method thereof
CN101923965A (en) * 2010-08-20 2010-12-22 电子科技大学 Solid tantalum electrolytic capacitor and manufacturing method thereof
CN101923963A (en) * 2010-08-20 2010-12-22 电子科技大学 Solid tantalum electrolytic capacitor and preparation method thereof
US20110260115A1 (en) * 2008-12-10 2011-10-27 Ls Cable & System, Ltd Conductive paste and conductive circuit board produced therewith
CN102432201A (en) * 2011-09-16 2012-05-02 中北大学 Preparation method for silver-plated glass fibers and conductive rubber of same
WO2013111438A1 (en) 2012-01-27 2013-08-01 昭栄化学工業株式会社 Solid electrolytic capacitor element, method for manufacturing same, and conductive paste
US8512600B2 (en) 2009-12-30 2013-08-20 Cheil Industries Inc. Polycarbonate resin composition having excellent wear resistance and electric conductivity and method of preparing the same
US20150170844A1 (en) * 2013-12-17 2015-06-18 Avx Corporation Stable Solid Electrolytic Capacitor Containing a Nanocomposite
US9080039B2 (en) 2011-12-30 2015-07-14 Cheil Industries Inc. Thermoplastic resin composition having improved thermal conductivity and articles thereof
JP2018046018A (en) * 2013-01-07 2018-03-22 ユニチカ株式会社 Imide-based polymer solution
JPWO2021220976A1 (en) * 2020-05-01 2021-11-04
JP2023508999A (en) * 2020-03-06 2023-03-06 カール・フロイデンベルク・カーゲー conductive paste

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264416A (en) * 1989-04-05 1990-10-29 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH11213756A (en) * 1998-01-28 1999-08-06 Hitachi Chem Co Ltd Conductive paste composition and electronic part using the same
JP2000063726A (en) * 1998-08-19 2000-02-29 Ise Electronics Corp Electroconductive paste
JP2001151833A (en) * 1999-09-13 2001-06-05 Showa Denko Kk Curable resin composition excellent in electroconductivity and cured product thereof
WO2001077423A1 (en) * 2000-04-12 2001-10-18 Showa Denko K.K. Fine carbon fiber and process for producing the same, and conductive material comprising the same
JP2001351436A (en) * 2000-06-06 2001-12-21 Hitachi Chem Co Ltd Conductive paste composition and electronic components using same
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2002109489A (en) * 2000-09-29 2002-04-12 Toppan Forms Co Ltd Method for forming antenna for contactless data transceiver and contactless data transceiver
JP2003524516A (en) * 1999-03-31 2003-08-19 ゼネラル・エレクトリック・カンパニイ Catalyst system for carbon fibril production
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264416A (en) * 1989-04-05 1990-10-29 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH11213756A (en) * 1998-01-28 1999-08-06 Hitachi Chem Co Ltd Conductive paste composition and electronic part using the same
JP2000063726A (en) * 1998-08-19 2000-02-29 Ise Electronics Corp Electroconductive paste
JP2003524516A (en) * 1999-03-31 2003-08-19 ゼネラル・エレクトリック・カンパニイ Catalyst system for carbon fibril production
JP2001151833A (en) * 1999-09-13 2001-06-05 Showa Denko Kk Curable resin composition excellent in electroconductivity and cured product thereof
WO2001077423A1 (en) * 2000-04-12 2001-10-18 Showa Denko K.K. Fine carbon fiber and process for producing the same, and conductive material comprising the same
JP2001351436A (en) * 2000-06-06 2001-12-21 Hitachi Chem Co Ltd Conductive paste composition and electronic components using same
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2002109489A (en) * 2000-09-29 2002-04-12 Toppan Forms Co Ltd Method for forming antenna for contactless data transceiver and contactless data transceiver
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
KR100642427B1 (en) 2004-12-28 2006-11-08 제일모직주식회사 Composition for electromagnetic interference shielding using carbon nanotube
JP2006269571A (en) * 2005-03-23 2006-10-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2008091806A (en) * 2006-10-05 2008-04-17 Nec Tokin Corp Solid electrolytic capacitor and transmission line element
US8088306B2 (en) 2006-12-22 2012-01-03 Cheil Industries Inc. Electroconductive thermoplastic resin composition and plastic article including the same
KR100706651B1 (en) 2006-12-22 2007-04-13 제일모직주식회사 Electroconductive thermoplastic resin composition and plastic article
WO2008078849A1 (en) 2006-12-22 2008-07-03 Cheil Industries Inc. Electroconductive thermoplastic resin composition and plastic article
EP2121848A1 (en) * 2006-12-22 2009-11-25 Cheil Industries Inc. Electroconductive thermoplastic resin composition and plastic article
EP2121848A4 (en) * 2006-12-22 2012-10-10 Cheil Ind Inc Electroconductive thermoplastic resin composition and plastic article
JP2009117340A (en) * 2007-11-07 2009-05-28 Samsung Electro-Mechanics Co Ltd Conductive paste and printed circuit board using the same
KR100974092B1 (en) 2008-05-30 2010-08-04 삼성전기주식회사 Conductive paste including a carbon nanotube and printed circuit board using the same
US8545731B2 (en) * 2008-12-10 2013-10-01 Ls Cable & System, Ltd Conductive paste and conductive circuit board produced therewith
US20110260115A1 (en) * 2008-12-10 2011-10-27 Ls Cable & System, Ltd Conductive paste and conductive circuit board produced therewith
US8512600B2 (en) 2009-12-30 2013-08-20 Cheil Industries Inc. Polycarbonate resin composition having excellent wear resistance and electric conductivity and method of preparing the same
CN101923963A (en) * 2010-08-20 2010-12-22 电子科技大学 Solid tantalum electrolytic capacitor and preparation method thereof
CN101923967A (en) * 2010-08-20 2010-12-22 电子科技大学 Solid tantalum electrolytic capacitor and manufacturing method thereof
CN101916672A (en) * 2010-08-20 2010-12-15 电子科技大学 Solid tantalum electrolytic capacitor and preparation method thereof
CN101923965A (en) * 2010-08-20 2010-12-22 电子科技大学 Solid tantalum electrolytic capacitor and manufacturing method thereof
CN102432201A (en) * 2011-09-16 2012-05-02 中北大学 Preparation method for silver-plated glass fibers and conductive rubber of same
US9080039B2 (en) 2011-12-30 2015-07-14 Cheil Industries Inc. Thermoplastic resin composition having improved thermal conductivity and articles thereof
WO2013111438A1 (en) 2012-01-27 2013-08-01 昭栄化学工業株式会社 Solid electrolytic capacitor element, method for manufacturing same, and conductive paste
US9287054B2 (en) 2012-01-27 2016-03-15 Shoei Chemical Inc. Solid electrolytic capacitor element, method for manufacturing same, and conductive paste
JP2018046018A (en) * 2013-01-07 2018-03-22 ユニチカ株式会社 Imide-based polymer solution
JP2020181829A (en) * 2013-01-07 2020-11-05 ユニチカ株式会社 Imide-based polymer solution
JP7015578B2 (en) 2013-01-07 2022-02-03 ユニチカ株式会社 Imid polymer solution
US20150170844A1 (en) * 2013-12-17 2015-06-18 Avx Corporation Stable Solid Electrolytic Capacitor Containing a Nanocomposite
US9589733B2 (en) * 2013-12-17 2017-03-07 Avx Corporation Stable solid electrolytic capacitor containing a nanocomposite
JP2023508999A (en) * 2020-03-06 2023-03-06 カール・フロイデンベルク・カーゲー conductive paste
JP7472291B2 (en) 2020-03-06 2024-04-22 カール・フロイデンベルク・カーゲー Conductive Paste
JPWO2021220976A1 (en) * 2020-05-01 2021-11-04
WO2021220976A1 (en) * 2020-05-01 2021-11-04 昭栄化学工業株式会社 Electroconductive resin composition and manufacturing method for electronic component
JP7078194B2 (en) 2020-05-01 2022-05-31 昭栄化学工業株式会社 Conductive resin composition for forming electrodes of electronic components

Similar Documents

Publication Publication Date Title
JP2004168966A (en) Conductive resin composition and electronic part by using the same
TWI664223B (en) Resin composition for electrode formation, wafer-type electronic component, and manufacturing method thereof
US9228100B2 (en) Liquid composition, and resistor film, resistor element and circuit board using same
JP4855077B2 (en) Conductive paste composition for low-temperature firing and method of forming wiring pattern using the paste composition
JP2003011270A (en) Dielectric layer with conductive foil, capacitor using the same and forming method thereof
JP6259270B2 (en) Thermosetting conductive paste composition
JP2013114837A (en) Heat curable conductive paste composition
JP2005113059A (en) Curable resin composition and electrically conductive adhesive
CN108137930B (en) Resin composition, bonded body, and semiconductor device
JP2014040536A (en) Curable resin composition and conductive adhesive
JP6235952B2 (en) Conductive paste
JP3915779B2 (en) Conductive resin composition and electronic component using the same
JP5859823B2 (en) Heat curable conductive paste composition
TW201531528A (en) Electrically conductive paste and electrically conductive film
WO2022153931A1 (en) Method for producing liquid composition and composition
JP5250923B2 (en) Ultrafine composite resin particles, composition for forming a dielectric, and electronic component
JP2009263645A (en) Paste composition and magnetic body composition using the same
JP2001351436A (en) Conductive paste composition and electronic components using same
JP2012227406A (en) Paste composition, magnetic body composition, and inductor
TWI752350B (en) Electrode-forming resin composition, wafer-type electronic component, and method for producing the same
JP2004335764A (en) Dielectric film and method for manufacturing the same
JP2007066743A (en) Conductive paste composition, conductive separator for fuel cell and manufacturing method of the conductive separator
CN114502681A (en) Mixed binder composition for shielding electromagnetic wave, method for preparing mixed binder for shielding electromagnetic wave, and mixed binder film for shielding electromagnetic wave
JP2012055095A (en) Polymer composition for electret material and electret material
WO2006112129A1 (en) Conductor powder and process for producing the same, and electrically conductive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624