JP2004167697A - Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product - Google Patents

Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product Download PDF

Info

Publication number
JP2004167697A
JP2004167697A JP2002332726A JP2002332726A JP2004167697A JP 2004167697 A JP2004167697 A JP 2004167697A JP 2002332726 A JP2002332726 A JP 2002332726A JP 2002332726 A JP2002332726 A JP 2002332726A JP 2004167697 A JP2004167697 A JP 2004167697A
Authority
JP
Japan
Prior art keywords
melting point
thermoplastic resin
pulverized material
temperature
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002332726A
Other languages
Japanese (ja)
Inventor
Satoshi Shimura
吏士 志村
Hitoshi Kawachi
斉 河内
Hirotsugu Yoshida
博次 吉田
Yuuki Ujie
勇貴 氏江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002332726A priority Critical patent/JP2004167697A/en
Publication of JP2004167697A publication Critical patent/JP2004167697A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a molded product comprising a crystalline thermoplastic resin, capable of developing good physical properties without damaging the original physical properties of the crystalline thermoplastic resin by re-molding the crystalline thermoplastic resin into a PET bottle or film in such a state that the crystalline state of the PET bottle or film is left to the utmost. <P>SOLUTION: After an inert gas is dissolved in a ground material of the PET bottle or film (or a mixture with a thermoplastic resin of which the melting point is lower than that of the ground material) at a temperature lower than the melting temperature thereof, the ground material is heated to a temperature lower than its melting point to be shaped. Alternately, after the ground material of the PET bottle or film (or a mixture with a thermoplastic resin of which the melting point is lower than that of the ground material) is heated to a temperature lower than its melting point, the ground material is shaped at a temperature lower than its melting point while dissolving the inert gas in the ground material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、結晶性熱可塑性樹脂成型品の製造方法及びその成形品に関し、詳しくは、PETボトル又はPETフィルムを用いた成形体を製造する結晶性熱可塑性樹脂成形体の製造方法、及びこの製造方法よって得られる結晶性熱可塑性樹脂成形品に関する。
【0002】
【従来の技術】
近年、環境に対する意識が高まり、容器包装リサイクル法等の法的な規制の強化がなされている。廃プラスチックのリサイクルには、大別してケミカルリサイクル、サーマルリサイクル、マテリアルリサイクルの3つがある。
【0003】
ケミカルリサイクルは樹脂をモノマーまで分解し再度、新しい樹脂として再生する方法である。ケミカルリサイクルで再生された樹脂はリサイクル方法の中で最も良好に用いられるが、再生に必要なエネルギー及びコストは大きく、利用が進んでいないのが現状である。
【0004】
サーマルリサイクルは樹脂を焼却時の熱を発電等に利用する方法である。サーマルリサイクルはエネルギーの回収効率がよく、現在最もよく用いられている。しかし、資源の有効利用という観点から必ずしも好ましいとはいえない。
【0005】
マテリアルリサイクルは成形品を分別、洗浄、粉砕し、再成形することにより成形品を得る方法である。これは資源の再利用という観点から理想的な方法であるといえるが、再成形した成形品は物性の低下、物性のバラツキなどの理由により利用用途が限定されている。
【0006】
一方、現在、再利用の要望の大きい廃プラスチックは、一旦市場に製品として出た後に廃棄、回収される一般廃棄物の廃プラスチックである。その多くは容器包装リサイクル法により回収されたものであり、容器や包装用のプラスチック、すなわちブロー成形やフィルム成形により成形されたプラスチックである。
【0007】
ブロー成形品やフィルム成形品は、従来樹脂の結晶サイズや結晶配向を制御するなどの結晶制御を施すことによって物性を向上することがなされてきた。具体的な結晶制御の方法としては、フィルム成形やブロー成形における延伸や結晶核剤の添加等である。
【0008】
上記結晶制御の具体例として、フィルム成形においては例えば特許文献1〜3に示されるように、2軸延伸と熱処理を組み合わせる方法、溶液流延法により未延伸フィルムを作り同時2軸延伸後熱処理をする方法、未延伸フィルムを若干膨潤させてから延伸する方法などが開示されている。
【0009】
またブロー成形においては、特許文献4〜6に示されるように、熱結晶されていない部分を無拘束で高延伸する方法、部分的に熱結晶化させた熱結晶化部を設け2軸延伸ブロー成形する方法、予備成型品を一次ブロー成形し更に加熱した後に2次ブロー成形する方法などが開示されている。
【0010】
従来このように結晶制御を行うことにより弾性率、耐熱性等の物性の向上を行っている。
【0011】
しかし、上記のように結晶制御されて成形されたブロー成形品やフィルム成形品が、例えば市場から回収されてリサイクルする場合など、一旦成形された後に再成形される際には、従来はその材料を加熱し溶融樹脂とすることで再成形されていた。これは、再成形の際に材料をその結晶融点以上に加熱することで、十分に可塑化し成形に必要な流動性を得て賦型するという考えに基づいている。
【0012】
しかしながら、融点以上に加熱し溶融樹脂とすることは、成型品に一旦形成された結晶が融解され、上記のように高度に結晶制御された元の結晶状態に戻らない為、良好な物性が得られにくくなる。また、元のような物性を得るためには、再度高度な結晶制御が必要になる。
【0013】
しかし、再成形の際は、一般的に材料の劣化を伴うので結晶制御には高度な技術を要しまた高価な設備も必要になる。さらに延伸などの結晶制御をすることが難しい射出成形や押出成形においては、再成形された成形品は本来持っていた優れた物性を失ってしまうことになる。
【0014】
マテリアルリサイクルの中でも、回収量の多い樹脂としては、PETボトルやPETフィルムの形で回収されるPET樹脂が挙げられる。これらは再利用のニーズも非常に大きい。しかし、従来これらを再成形した場合には、通常上記同様に再成形の際に材料をその結晶融点以上に加熱するので、高度に結晶制御された元の結晶状態に戻らない為、良好な物性が得られにくいという課題があった。特に、射出成形品や押出成形品といった延伸しにくい成形方法においては、結晶制御による物性向上が期待できないため、大型成形品への適用が難しいものであった。上記課題が解決されれば大型の成形品への適用が可能になり、例えば、土圧による座屈強度の必要な土木資材への適用を考えた場合に、弾性率を向上することで座屈強度が増し、マス、マンホール、大口径のパイプへの適用が可能になる。
【0015】
そこで、本発明者は、近年検討が盛んに行われている炭酸ガス(CO)に代表される不活性ガスの可塑化効果に着目した。この不活性ガスの可塑化を利用した成形方法としては、例えば、特許文献7には、炭酸ガスを溶解し溶融粘度を低下させた溶融樹脂を、あらかじめ金型キャビティを溶融樹脂のフローフロントで発泡が起きない圧力以上に炭酸ガスで加圧状態にして、金型キャビティに充填し、その後、樹脂を加圧し冷却固化する熱可塑性樹脂の射出成形方法が開示されている。しかしこの方法では樹脂を一旦溶融した状態にしたものに不活性ガスを導入し成形性を付与しており、高度に制御された結晶状態を保持することは容易ではない。
【0016】
以上のように、従来、結晶制御されて成形された、例えばPETボトルやPETフィルム等の再成形において、その結晶状態を壊すことなく再成形する方法はなかった。
【0017】
【特許文献1】
特開平1−299019号公報
【特許文献2】
特開平1−299020号公報
【特許文献3】
特開平02−92518号公報
【特許文献4】
特開平5−444号公報
【特許文献5】
特開平5−200839号公報
【特許文献6】
特開平2−106317号公報
【特許文献7】
特許第3218397号公報
【0018】
【発明が解決しようとする課題】
本発明の目的は、上記従来のPETボトル又はPETフィルムの再成形に関する問題点に鑑み、その結晶状態をできるだけ残した状態で再成形し、元の物性をできるだけ損なわずに良好な物性を発現することができる結晶性熱可塑性樹脂成形品の製造方法及びその成形品を提供することにある。
【0019】
【課題を解決するための手段】
請求項1記載の結晶性熱可塑性樹脂成型品の製造方法は、PETボトルの粉砕材料又はPETフィルムの粉砕材料にその融点以下の温度で不活性ガスを溶解させた後に、前記粉砕材料の融点以下の温度に加熱し賦形することを特徴とする。
請求項2記載の結晶性熱可塑性樹脂成型品の製造方法は、PETボトルの粉砕材料又はPETフィルムの粉砕材料をその融点以下の温度に加熱した後に、前記粉砕材料の融点以下の温度で不活性ガスを溶解しつつ賦形することを特徴とする。
請求項3記載の結晶性熱可塑性樹脂成型品の製造方法は、PETボトルの粉砕材料又はPETフィルムの粉砕材料と、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂との混合物に前記粉砕材料の融点以下の温度で不活性ガスを溶解させた後に、前記粉砕材料の融点以下の温度に加熱し賦形することを特徴とする。
請求項4記載の結晶性熱可塑性樹脂成型品の製造方法は、PETボトルの粉砕材料又はPETフィルムの粉砕材料と、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂との混合物を前記粉砕材料の融点以下の温度に加熱した後に、前記粉砕材料の融点以下の温度で不活性ガスを溶解しつつ賦形することを特徴とする。
請求項5記載の結晶性熱可塑性樹脂成型品の製造方法は、請求項3又は4記載の結晶性熱可塑性樹脂成型品の製造方法であって、混合物が、PETボトルの粉砕材料又はPETフィルムの粉砕材料100重量部に対して、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂0〜100重量部からなるものであることを特徴とする。
請求項6記載の結晶性熱可塑性樹脂成型品の製造方法は、請求項3〜5の何れか1項記載の結晶性熱可塑性樹脂成型品の製造方法であって、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂がポリエステル系樹脂であることを特徴とする。
請求項7記載の結晶性熱可塑性樹脂成型品の製造方法は、請求項1〜6の何れか1項記載の結晶性熱可塑性樹脂成型品の製造方法であって、不活性ガスが炭酸ガス(CO)であることを特徴とする。
請求項8記載の成型品は、請求項1〜7の何れか1項記載の結晶性熱可塑性樹脂成型品の製造方法により製造されたものであることを特徴とする。
【0020】
以下、本発明を詳細に説明する。
本発明においては、PETボトルの粉砕材料又はPETフィルムの粉砕材料が用いられる。
上記PETボトル又はPETフィルムは、通常、延伸、熱処理、核剤添加などの方法により結晶サイズや結晶配向が制御された結晶性熱可塑性樹脂であり、具体的には、示差走査熱量測定(DSC)において、融点+約30℃まで昇温し測定した融解ピーク温度が、一旦、融点+約30℃まで昇温後、冷却した後に融点+約30℃まで昇温し測定した融解ピーク温度よりも高いか、示差走査熱量測定(DSC)において、融点+約30℃まで昇温し測定した結晶化度が、一旦、融点+約30℃まで昇温後、冷却した後に融点+約30℃まで昇温し測定した結晶化度よりも高い結晶性熱可塑性樹脂である。
【0021】
上記結晶性熱可塑性樹脂とは、熱可塑性を有する結晶性樹脂を意味し、JISK7121(プラスチックの転移温度測定方法)の測定を実施した場合に、融解ピークが存在するものをいう。
【0022】
また、本発明において融点とは、結晶性樹脂の場合JIS K7121により測定した融解ピーク温度(Tpm)であり、図1に示すように複数の融解温度が存在する場合は高温側とする。また、非結晶性樹脂の場合はJIS K7121により測定したガラス転移温度(Tmg)とする。
【0023】
本発明の結晶性熱可塑性樹脂成型品の製造方法は、PETボトルの粉砕材料又はPETフィルムの粉砕材料にその融点以下の温度で不活性ガスを溶解させた後に、不活性ガスが溶解された前記粉砕材料をその融点以下の温度に加熱し賦形してもよいし(請求項1参照)、上記粉砕材料をその融点以下の温度に加熱した後に、前記粉砕材料の融点以下の温度で不活性ガスを溶解しつつ賦形してもよい(請求項2参照)。
【0024】
また、PETボトルの粉砕材料又はPETフィルムの粉砕材料と、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂との混合物が用いられてもよい(請求項3、4参照)。
【0025】
上記粉砕材料とは、一旦成形された成型品が再成形のために粉砕された材料を意味し、特に限定されないが、例えば、一般廃棄物や産業廃棄物が回収され粉砕された材料が好適に用いられる。
【0026】
本発明においては、PETボトルの粉砕材料又はPETフィルムの粉砕材料の結晶状態をできるだけ残した状態とするため、不活性ガスの溶解時及び上記粉砕材料の加熱時の温度(以下、上記溶解時温度及び加熱時温度を総称して「再成形時温度」ともいう)は上記粉砕材料の融点以下とされる。
【0027】
上記再成形時温度は、上記粉砕材料の融点以下であれば特に限定されないが、再成形温度が低すぎると、樹脂の流動性が乏しくなりやすく複雑形状や大きいサイズ成形品を成形することができないことがあるので注意を要する。
上記再成形温度は、結晶状態の保持性による物性保持性と成形性との両立の点で、融点−30℃〜融点であることが更に好ましい。
【0028】
本発明においては、不活性ガスを用いることにより、PETボトル又はPETフィルムなどの結晶制御された結晶性熱可塑性樹脂をその融点以上に加熱しなくても樹脂を可塑化することができ、容易に成形することが可能となる。
【0029】
通常、不活性ガスは、上記PETボトル又はPETフィルム又は熱可塑性樹脂混合物を加熱することにより、素早く溶解させることができる。すなわち、加熱した状態で不活性ガスを溶解させることで可塑化が素早く進行し成形時間を短縮することが可能になる。具体的には、樹脂の形状にも依存するが、ポリエチレンテレフタレート(PET)の場合、常温では不活性ガスの溶解状態が飽和するのに数時間要するのに対して、加熱した場合にはその条件によって数分間若しくは数十秒間で溶解状態が飽和することもできる。
本発明においては、上記不活性ガスの特性を利用しつつも樹脂の融点以下の状態で可塑化し成形可能とするものである。
【0030】
上記不活性ガスの種類としては特に限定されず、フロン、低分子量の炭化水素、炭酸ガス、窒素、ネオン、ヘリウム、アルゴン等の無機ガスなどが挙げられる。中でも樹脂との反応性が低く、毒性、危険性のない点で、炭酸ガス、窒素、ネオン、ヘリウム、アルゴン等の無機ガスが好ましく。その中でも環境に与える悪影響が低く、ガスの回収の必要性が低い点で、炭酸ガス、窒素が更に好ましく、樹脂への溶解性まで考えると溶解度の高い炭酸ガスが特に好ましい。これらは単独で用いられてもよいし2種類以上が併用されてもよい。
【0031】
本発明において、上記不活性ガスの溶解量は導入圧力によって調整される。不活性ガスの導入圧力は高いほうが不活性ガスの溶解量は多くなり、より低温で成形できるので結晶保持性が向上する点で好ましい。しかし、設備コストを抑えたい場合には、導入圧力をいわゆる「ボンベ圧」(炭酸ガスの場合は約7MPa、窒素の場合は約20MPa)以下にすることが望ましい。これにより加圧ポンプ等の設備が不要で設備コストを大幅に抑えることができる。しかし、上記導入圧力がボンベ圧の1/3(炭酸ガスの場合は約2.3MPa、窒素の場合は約6.7MPa)以下であると可塑化効果が小さくなり過ぎて十分な効果が得られないことがあるので注意を要する。
【0032】
このことから、設備コストと可塑化効果との両立の点で、導入圧力はボンベ圧の1/3〜ボンベ圧(炭酸ガスの場合は約2.3〜7MPa、窒素の場合は約6.7〜20MPa)であることが好ましい。導入圧力の上限は特に認められないが、通常、一般の設備の限界(炭酸ガスの場合は約30MPa、窒素の場合は約50MPa)以下とされる。
【0033】
本発明において、請求項3又は4記載のように、融点が上記粉砕材料の融点以下の温度である熱可塑性樹脂(以下、「低融点熱可塑性樹脂」ともいう)が混合されたものであると、目的とする物性を持つ上記粉砕材料の結晶状態を保持したまま、上記低融点熱可塑性樹脂を溶融させて良好な成形性を得ることができる。この場合、成形温度としては、上記低融点熱可塑性樹脂の融点以上であることが好ましい。
【0034】
上記低融点熱可塑性樹脂としては、特に限定されないが、上記PETボトルの粉砕材料又はPETフィルムの粉砕材料との相溶性があるものが物性の向上が著しい点で好ましい。上記粉砕材料との相溶性があるものとしては、例えば、低結晶化度ポリエチレンテレフタレート、非晶性ポリエチレンテレフタレート、イソフタル酸等を共重合させたポリエチレンテレフタレート、ポリブチレンテレフタレート(PBT)等が挙げられる。
【0035】
また、相溶性を向上させる為に上記粉砕材料と低融点熱可塑性樹脂との混合物に相溶化剤を添加してもよい。
上記相溶化剤としては、例えば、EPR(エチレンプロピレンゴム)、COOH化PE(カルボキシル基化ポリエチレン)、COOH化PP(カルボキシル基化ポリプロピレン)、ポリスチレン−ポリエチレングラフト共重合体などが挙げられる。
【0036】
上記低融点熱可塑性樹脂の配合量としては、特に限定されないが、上記粉砕材料100重量部に対して0〜100重量部であることが好ましい。換言すると、上記混合物における上記粉砕材料の比率は50%以上であることが好ましい。上記比率が50%以上であると、上記PETボトル又はPETフィルムが元から有する良好な物性が、再成形品の物性に反映されやすくなる。また、上記粉砕材料がリサイクル樹脂である場合にはリサイクル率を向上することができる。
【0037】
本発明において、上記粉砕材料若しくは低融点熱可塑性樹脂との混合物には、非結晶状態の部分の結晶化を促進し物性を更に向上させるために、適宜結晶核剤の添加を併用することも有効である。
【0038】
本発明における成形方法としては、上記の条件を満足するものであれば特に限定されず、例えば、射出成形、押出成形、ブロー成形、フィルム成形等に適用可能である。中でも成形時に延伸が難しい射出成形、押出成形において特に大きな効果を発揮することができる。
【0039】
本発明における成形品とは、上記製造方法によるものであれば特に限定されず、いわゆる最終成形品に限らず、例えば中間材料であるペレット等の成形品も含まれるものである。中間材料であるペレット等を、さらに再成形する場合においても本発明の製造方法を用いることで良好な物性を得ることが可能となる。
【0040】
(作用)
本発明の結晶性熱可塑性樹脂成型品の製造方法は、再成形温度がPETボトルの粉砕材料又はPETフィルムの粉砕材料の融点以下の温度で成形されるので、上記粉砕材料に含まれる高度に結晶制御された結晶状態が保持され、優れた物性が損なわれることを防止し良好な物性が保持された成形品を得ることができる。
【0041】
また、本発明においては不活性ガスを用いるので、再成形温度がPETボトルの粉砕材料又はPETフィルムの粉砕材料の融点以下の温度であっても、不活性ガスを溶解させることで十分に可塑化し成形に必要な流動性を得て成形することが可能となる。
【0042】
更に、上記粉砕材料と上記低融点熱可塑性樹脂との混合物を用いた場合には、不活性ガスを溶解することによって更に良好な流動性を持たせることができる。これは、再成形温度が粉砕材料の融点以下の温度であっても、上記低融点熱可塑性樹脂が溶融し、その溶融した樹脂に優先的に不活性ガスが溶解する為である。つまり不活性ガスが結晶部に溶解しにくく、非晶部に溶解しやすいことを利用したものである。
【0043】
このことで、上記低融点熱可塑性樹脂の部分が、より大きな流動性を持ち、上記粉砕材料に含まれる高度に結晶制御された結晶状態が保持されたまま賦型することができる。このため、上記粉砕材料を単独で用いた場合に比べ、より低温での成形が可能となり、その高度に結晶制御された結晶状態をより多く保持することができ、更に良好な物性を保持することができる。
【0044】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しつつ説明する。
図2、3は本発明に係る熱可塑性樹脂発泡体の製造方法の一実施形態を示す説明図である。
図5、6は本発明に係る熱可塑性樹脂発泡体の製造方法の他の実施形態を例示する説明図である。
(実施例1)
図2、3に示す射出成形装置を用いて結晶性熱可塑性樹脂成形品を製造した。PETボトルの原料として市販の飲料水用のPETボトルを粉砕、洗浄し、70℃で24時間乾燥したものを用いた。また、上記原料の融点をJIS K7121で測定したところ、図4に示すように融解ピークが存在し、高温側の融解ピーク温度(Tpm)は260.5℃であった。また、結晶化度は43%であった。
【0045】
不活性ガスとしては炭酸ガスを用い、上記原料を耐圧ホッパ12に投入した後、バルブ122、123、124を閉じ、炭酸ガスボンベ14、加圧ポンプ15、圧力調整バルブ141につながるバルブ121を開けて、温度40℃に加熱した耐圧ホッパ12内に炭酸ガスを導入し、この状態を5時間保持することで炭酸ガスを前原料に溶解させた。この時、炭酸ガスの圧力は3MPaに調整した。
【0046】
次いで、バルブ124を開き、シリンダ11温度は、最も高い場所の温度を255℃に設定して射出成形を行った。
このとき、金型2に充填した樹脂が発泡することを防止する為に、金型保圧の圧力を炭酸ガスの飽和圧力(ここでは約3MPa)以上である10MPaに保持し、樹脂温度がガラス転移温度(Tg:本実施例では73℃)以下である40℃になった後に取り出し厚み3mm、φ200mmの円盤形の成形品を得た。
【0047】
(実施例2)
炭酸ガスの圧力を6MPaに調整したこと、シリンダ11温度の最も高い場所の温度を250℃にしたこと以外は実施例1と同様にして成形品を得た。
【0048】
(実施例3)
図5、6に示す射出成形装置を用いて結晶性熱可塑性樹脂成形品を製造した。PETボトル原料として市販の飲料水用のPETボトルを粉砕、洗浄し、70℃で24時間乾燥したものを用いた。また、上記原料の融点をJIS K7121で測定したところ、図4に示すように融解ピークが存在し、高温側の融解ピーク温度(Tpm)は260.5℃であった。また、結晶化度は43%であった。
【0049】
上記原料を耐圧ホッパ12へ投入し、バルブ122、123を閉じた状態でバルブ124を開いて上記原料を射出成形装置1のシリンダ11内へ導入し、シリンダ11温度は、最も高い場所の温度を250℃に設定するとともに、不活性ガスとしては炭酸ガスを用い、炭酸ガスボンベ14から加圧ポンプ15、圧力調整バルブ141、バルブ125を経由してスクリューの内部を貫通するガス注入路20に導入し、炭酸ガスの注入圧力を6MPaに調整して注入口18よりシリンダ11内へ注入しつつ、射出成形を行った。
【0050】
尚、注入口18は図6に示すように、シリンダ11内の樹脂圧力が注入口18に導入された炭酸ガスの注入圧力より低くなるようにスクリューの軸径が小さい位置に配設されている。一般に、射出成形においてスクリューの回転と同時にスクリューが上流側に移動するので、シリンダ11側に不活性ガスの注入口18を設けた場合には不活性ガスの注入口18が、樹脂圧力を低くした位置に対して相対的に移動してしまい、安定的に不活性が溶解できないことがある。これに対して、上記のように不活性ガスをスクリュー側に設けた不活性ガスの注入口18から供給することで、不活性ガスの注入口18が、樹脂圧力を低くした位置に対して相対的に移動することなく安定的に不活性ガスを溶解することができる。
【0051】
上記において、金型保圧の圧力は、金型2に充填した樹脂が発泡することを防止する為に、炭酸ガスの飽和圧力(ここでは約6MPa)以上である10MPaに保持し、樹脂温度がガラス転移温度(Tg:本実施例では73℃)以下である40℃になった後に取り出し厚み3mm、φ200mmの円盤形の成形品を得た。
【0052】
(実施例4)
実施例1と同様の、市販の飲料水のPETボトルを粉砕、洗浄し、70℃で24時間乾燥した粉砕樹脂100重量部と、上記樹脂の融点より低融点の熱可塑性樹脂としてPET樹脂(ユニチカ社製「PET MA−1344P」、融点231℃、弾性率2.3GPa)150部との混合物を原料として用いたこと、炭酸ガスの圧力を6MPaに調整したこと、シリンダ11温度の最も高い場所の温度を240℃にしたこと以外は実施例1と同様にして厚み3mm、φ200mmの円盤形の成形品を得た。
【0053】
(実施例5)
実施例1と同様の、市販の飲料水のPETボトルを粉砕、洗浄し、70℃で24時間乾燥した粉砕樹脂100重量部と、上記樹脂の融点より低融点の熱可塑性樹脂としてPET樹脂(ユニチカ社製「PET MA−1344P」、融点231℃、弾性率2.3GPa)60部との混合物を原料として用いたこと、炭酸ガスの圧力を6MPaに調整したこと、シリンダ11温度の最も高い場所の温度を245℃にしたこと以外は実施例1と同様にして厚み3mm、φ200mmの円盤形の成形品を得た。
【0054】
(比較例1)
不活性ガスとして炭酸ガスを用いなかったこと、及びシリンダ11温度として最も高い場所の温度を290℃に設定したこと以外は実施例1と同様にして厚み3mm、φ200mmの円盤形の成形品を得た。
【0055】
(比較例2)
実施例1と同様の、市販の飲料水のPETボトルを粉砕、洗浄し、70℃で24時間乾燥した粉砕樹脂100重量部と、上記樹脂の融点より低融点の熱可塑性樹脂としてPET樹脂(ユニチカ社製「PET MA−1344P」、融点231℃、弾性率2.3GPa)150部との混合物を原料として用いたこと、シリンダ11温度の最も高い場所の温度を280℃にしたこと以外は比較例1と同様にして厚み3mm、φ200mmの円盤形の成形品を得た。
【0056】
(比較例3)
実施例1と同様の、市販の飲料水のPETボトルを粉砕、洗浄し、70℃で24時間乾燥した結晶性熱可塑性樹脂100重量部と、上記樹脂の融点より低融点の熱可塑性樹脂としてPET樹脂(ユニチカ社製「PET MA−1344P」、融点231℃、弾性率2.3GPa)60部との混合物を原料として用いたこと、シリンダ11温度の最も高い場所の温度を280℃にしたこと以外は比較例1と同様にして厚み3mm、φ200mmの円盤形の成形品を得た。
【0057】
上記実施例1〜5、比較例1〜3により得られた成形品からダンベル片を打ち抜き、引っ張り試験(JIS K7113)を行い弾性率を測定した。また、DSCにより結晶化度を測定した。測定結果を表1に示す。
【0058】
【表1】

Figure 2004167697
【0059】
表1より明らかなように、実施例1〜3と比較例1とを比べると、実施例1〜3では比較例1と比べて、結晶化度が高くPETボトルが本来持つ高度に制御された結晶がある程度保持されていることが推察される。その結果、比較例1に比較して、高い弾性率が得られることが判明した。
【0060】
実施例2は炭酸ガス圧力を6MPaと高くすることにより、再成形温度をより低く設定しても結晶保持性が良好で、高い弾性率が得られることが判った。
【0061】
また、実施例3のように、射出成形装置のスクリューの原料供給部側で、一旦上記原料の融点以下の温度まで加熱された原料にシリンダ11内で不活性ガスを導入することで、ガスの溶解速度が速くなり、ガス溶解の為の成形前の保持時間が不要となる効果が得られることも判明した。
【0062】
実施例4、5と比較例2、3とを比べると、実施例4、5では比較例2、3に比較して、結晶化度が高くPETボトルが本来持つ高度に制御された結晶がある程度保持されていることが推察される。その結果、比較例2,3に比較して、高い弾性率が得られることが判明した。
【0063】
また、実施例4、5は低融点の熱可塑性樹脂として混合されたPET樹脂が溶融して炭酸ガスが優先的に溶解し、これにより良好な流動性が得られるとともに良好な物性が得られたものと考えられる。
【0064】
また、実施例5では上記混合物中のPETボトルの粉砕樹脂の割合が50%以上でるため、より良好な物性が得られたものと考えられる。
【0065】
【発明の効果】
本発明の結晶性熱可塑性樹脂成型品の製造方法によれば、上記のようにPETボトル又はPETフィルムの結晶状態をできるだけ残した状態で再成形し、元の物性をできるだけ損なわずに良好な物性を発現することができる結晶性熱可塑性樹脂成形品の製造方法及びその成形品を提供することができる。
【0066】
このため、例えば、結晶制御されて成形されたブロー成形品やフィルム成形品が、例えば市場から回収されてリサイクルする目的などで、一旦成形された後に再成形される際に好適な結晶性熱可塑性樹脂成形品の製造方法及びその成形品を提供することができる。
【図面の簡単な説明】
【図1】融解ピーク温度が複数存在する場合のDSCの測定例を示す模式図である。
【図2】本発明に係る結晶性熱可塑性樹脂成型品の製造方法の一実施形態を示す説明図である。
【図3】図2における射出成形装置のシリンダ内部を例示する説明図である。
【図4】本発明の実施例1におけるDSCの一例を示す説明図である。
【図5】本発明に係る結晶性熱可塑性樹脂成型品の製造方法の他の実施形態を例示する説明図である。
【図6】図5における射出成形装置のシリンダ内部を例示する説明図である。
【符号の説明】
1 射出成形装置
2 金型
11 シリンダ
12 耐圧ホッパ
13 ホッパ
14 炭酸ガスボンベ
15 加圧ポンプ
16 ボンベ温調用ヒータ
17 スクリュー
18 注入口
20 ガス注入路
21 固定型
22 可動型
23 加熱用ヒータ
121〜125 バルブ
141 圧力調整弁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a crystalline thermoplastic resin molded article and a molded article thereof, and more particularly, to a method for producing a crystalline thermoplastic resin molded article for producing a molded article using a PET bottle or a PET film, and the production thereof. The present invention relates to a crystalline thermoplastic resin molded product obtained by the method.
[0002]
[Prior art]
In recent years, environmental awareness has increased, and legal regulations such as the Containers and Packaging Recycling Law have been strengthened. There are three main types of waste plastic recycling: chemical recycling, thermal recycling, and material recycling.
[0003]
Chemical recycling is a method of decomposing a resin into monomers and regenerating it as a new resin. The resin recycled by chemical recycling is best used among the recycling methods, but the energy and cost required for the recycling are large, and at present the utilization is not advanced.
[0004]
Thermal recycling is a method in which the heat generated during incineration of a resin is used for power generation and the like. Thermal recycling has high energy recovery efficiency and is currently used most often. However, it is not always preferable from the viewpoint of effective use of resources.
[0005]
Material recycling is a method of obtaining a molded article by separating, washing, pulverizing, and re-molding the molded article. This can be said to be an ideal method from the viewpoint of resource reuse. However, the use of the remolded molded article is limited due to a decrease in physical properties and a variation in physical properties.
[0006]
On the other hand, waste plastics that are highly demanded for reuse at present are waste plastics of general waste that are once put on the market as products and then discarded and collected. Most of them are collected by the container and packaging recycling method, and are plastic for containers and packaging, that is, plastic formed by blow molding or film molding.
[0007]
Conventionally, the physical properties of blow molded articles and film molded articles have been improved by performing crystal control such as controlling the crystal size and crystal orientation of the resin. Specific methods for controlling crystallization include stretching in film forming and blow molding, and addition of a crystal nucleating agent.
[0008]
As a specific example of the above crystal control, in film forming, for example, as shown in Patent Documents 1 to 3, a method of combining biaxial stretching and heat treatment, an unstretched film is produced by a solution casting method, and heat treatment is performed after simultaneous biaxial stretching. And a method in which the unstretched film is slightly swollen and then stretched.
[0009]
Further, in the blow molding, as shown in Patent Documents 4 to 6, a method of unstretched and highly stretched a portion that is not thermally crystallized, a method of providing a thermally crystallized portion partially thermally crystallized, and forming a biaxial stretch blow There is disclosed a method of molding, a method of performing primary blow molding of a preformed product, heating the preformed product, and then performing secondary blow molding.
[0010]
Conventionally, such crystal control has been performed to improve physical properties such as elastic modulus and heat resistance.
[0011]
However, when a blow-molded product or a film-formed product formed by crystal control as described above is once formed and then re-formed, for example, when it is collected from the market and recycled, the material is conventionally used. Was re-formed by heating to obtain a molten resin. This is based on the idea that the material is heated to a temperature equal to or higher than its crystal melting point at the time of reshaping, whereby the material is sufficiently plasticized and the fluidity required for shaping is obtained and the material is shaped.
[0012]
However, heating to above the melting point to form a molten resin results in good physical properties because the crystal once formed in the molded product is melted and does not return to the original crystal state that is highly crystallized as described above. It becomes difficult to be. Further, in order to obtain the original physical properties, advanced crystal control is required again.
[0013]
However, re-forming generally involves deterioration of the material, so that a high level of technology is required for crystal control and expensive equipment is required. Further, in injection molding or extrusion molding in which it is difficult to control the crystal such as stretching, the reshaped molded product loses its original excellent physical properties.
[0014]
Among materials recycled, as a resin with a large recovery amount, a PET resin recovered in the form of a PET bottle or a PET film is exemplified. They also have a great need for reuse. However, when these are conventionally re-formed, the material is usually heated to a temperature higher than its crystal melting point during re-forming as described above. Is difficult to obtain. In particular, in a molding method such as an injection molded product or an extruded molded product that is difficult to stretch, it is difficult to apply the method to a large molded product because the physical properties cannot be improved by controlling the crystal. If the above problems are solved, application to large molded products becomes possible.For example, when considering application to civil engineering materials requiring buckling strength due to earth pressure, buckling by improving the elastic modulus is considered. Increases strength, and can be applied to masses, manholes, and large diameter pipes.
[0015]
Therefore, the present inventors have paid attention to the plasticizing effect of an inert gas represented by carbon dioxide (CO 2 ), which has been actively studied in recent years. As a molding method utilizing the plasticization of the inert gas, for example, Patent Document 7 discloses a method in which a molten resin in which a carbon dioxide gas is dissolved to lower the melt viscosity is foamed in advance in a mold cavity at a flow front of the molten resin. An injection molding method of a thermoplastic resin is disclosed in which the pressure is increased with carbon dioxide gas at a pressure higher than the pressure at which the resin does not occur, the mold cavity is filled, and then the resin is pressurized and cooled and solidified. However, in this method, an inert gas is introduced into a resin once in a molten state to impart moldability, and it is not easy to maintain a highly controlled crystalline state.
[0016]
As described above, in the related art, in the reshaping of, for example, a PET bottle, a PET film, or the like, which is formed by controlling the crystal, there is no method of reshaping without breaking the crystalline state.
[0017]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 1-299019 [Patent Document 2]
JP-A-1-299020 [Patent Document 3]
Japanese Patent Application Laid-Open No. 02-92518 [Patent Document 4]
JP-A-5-444 [Patent Document 5]
JP-A-5-200839 [Patent Document 6]
Japanese Patent Application Laid-Open No. 2-106317 [Patent Document 7]
Japanese Patent No. 3183977
[Problems to be solved by the invention]
An object of the present invention is to re-form the crystalline state of the PET bottle or PET film as much as possible in view of the above-mentioned problems relating to the re-forming of the conventional PET bottle or PET film, and to express good physical properties without impairing the original physical properties as much as possible. It is an object of the present invention to provide a method for producing a crystalline thermoplastic resin molded product and a molded product thereof.
[0019]
[Means for Solving the Problems]
The method for producing a crystalline thermoplastic resin molded product according to claim 1, wherein after dissolving an inert gas in a pulverized material of a PET bottle or a pulverized material of a PET film at a temperature of the melting point or less, the melting point of the pulverized material is reduced. It is characterized in that it is heated to a temperature of and shaped.
The method for manufacturing a crystalline thermoplastic resin molded product according to claim 2, wherein the pulverized material of the PET bottle or the pulverized material of the PET film is heated to a temperature equal to or lower than its melting point and then inert at a temperature equal to or lower than the melting point of the pulverized material. It is characterized by shaping while dissolving gas.
The method for producing a crystalline thermoplastic resin molded product according to claim 3, wherein the pulverized material of the PET bottle or the pulverized material of the PET film is mixed with a thermoplastic resin having a melting point equal to or lower than the melting point of the pulverized material. After dissolving the inert gas at a temperature lower than the melting point of the pulverized material, the material is heated to a temperature lower than the melting point of the pulverized material to be shaped.
A method for producing a crystalline thermoplastic resin molded product according to claim 4, wherein a mixture of a pulverized material for a PET bottle or a pulverized material for a PET film and a thermoplastic resin having a melting point equal to or lower than the melting point of the pulverized material is used. After heating to a temperature lower than the melting point of the pulverized material, shaping is performed while dissolving the inert gas at a temperature lower than the melting point of the pulverized material.
The method for producing a crystalline thermoplastic resin molded article according to claim 5 is the method for producing a crystalline thermoplastic resin molded article according to claim 3 or 4, wherein the mixture is a pulverized material for a PET bottle or a PET film. It is characterized by comprising 100 to 100 parts by weight of a thermoplastic resin whose melting point is lower than the melting point of the crushed material with respect to 100 parts by weight of the crushed material.
A method for producing a crystalline thermoplastic resin molded product according to claim 6 is the method for producing a crystalline thermoplastic resin molded product according to any one of claims 3 to 5, wherein the melting point is the melting point of the pulverized material. The thermoplastic resin having the following temperature is a polyester resin.
The method for producing a crystalline thermoplastic resin molded product according to claim 7 is the method for producing a crystalline thermoplastic resin molded product according to any one of claims 1 to 6, wherein the inert gas is carbon dioxide ( CO 2 ).
The molded article according to claim 8 is characterized by being produced by the method for producing a crystalline thermoplastic resin molded article according to any one of claims 1 to 7.
[0020]
Hereinafter, the present invention will be described in detail.
In the present invention, a pulverized material for a PET bottle or a pulverized material for a PET film is used.
The PET bottle or PET film is usually a crystalline thermoplastic resin whose crystal size and crystal orientation are controlled by a method such as stretching, heat treatment, and addition of a nucleating agent. Specifically, differential scanning calorimetry (DSC) , The melting peak temperature measured by raising the temperature to the melting point + about 30 ° C is higher than the melting peak temperature measured by raising the temperature to the melting point + about 30 ° C after cooling to the melting point + about 30 ° C. Alternatively, in differential scanning calorimetry (DSC), the crystallinity measured by raising the temperature to the melting point + about 30 ° C. is once raised to the melting point + about 30 ° C., then cooled, and then raised to the melting point + about 30 ° C. It is a crystalline thermoplastic resin higher than the measured crystallinity.
[0021]
The crystalline thermoplastic resin means a crystalline resin having thermoplasticity, and means a resin having a melting peak when measured according to JIS K7121 (method for measuring transition temperature of plastic).
[0022]
In the present invention, the melting point is a melting peak temperature (Tpm) measured according to JIS K7121 in the case of a crystalline resin, and when a plurality of melting temperatures exist as shown in FIG. In the case of an amorphous resin, the glass transition temperature (Tmg) measured according to JIS K7121 is used.
[0023]
The method for producing a crystalline thermoplastic resin molded product of the present invention comprises dissolving an inert gas in a pulverized material of a PET bottle or a pulverized material of a PET film at a temperature equal to or lower than its melting point, and then dissolving the inert gas. The pulverized material may be heated and shaped to a temperature lower than its melting point (see claim 1), or after the pulverized material is heated to a temperature lower than its melting point, it is inert at a temperature lower than the melting point of the pulverized material. The shape may be formed while dissolving the gas (see claim 2).
[0024]
Also, a mixture of a pulverized material for a PET bottle or a pulverized material for a PET film and a thermoplastic resin having a melting point lower than the melting point of the pulverized material may be used (see claims 3 and 4).
[0025]
The above-mentioned crushed material means a material obtained by crushing a molded product once for re-molding, and is not particularly limited. For example, a crushed material obtained by collecting general waste or industrial waste is preferably used. Used.
[0026]
In the present invention, in order to keep the crystal state of the pulverized material of the PET bottle or the pulverized material of the PET film as much as possible, the temperature at the time of dissolving the inert gas and at the time of heating the pulverized material (hereinafter referred to as the “melting temperature And the temperature at the time of heating are also collectively referred to as “temperature at the time of re-forming”) is set to be equal to or lower than the melting point of the pulverized material.
[0027]
The remolding temperature is not particularly limited as long as it is equal to or lower than the melting point of the pulverized material.However, if the remolding temperature is too low, the fluidity of the resin tends to be poor and a complicated shape or a large-sized molded product cannot be molded. Be careful because there are times when it does.
The re-molding temperature is more preferably a melting point of −30 ° C. to a melting point from the viewpoint of achieving both physical property retention and moldability due to the retention of the crystalline state.
[0028]
In the present invention, by using an inert gas, it is possible to plasticize the crystalline thermoplastic resin such as a PET bottle or a PET film without heating the crystalline thermoplastic resin above its melting point, and easily. It becomes possible to mold.
[0029]
Usually, the inert gas can be quickly dissolved by heating the PET bottle or PET film or the thermoplastic resin mixture. That is, by dissolving the inert gas in a heated state, plasticization proceeds quickly, and the molding time can be reduced. Specifically, although it depends on the shape of the resin, in the case of polyethylene terephthalate (PET), it takes several hours for the dissolved state of the inert gas to saturate at room temperature, whereas when heated, the condition is increased. For several minutes or tens of seconds.
In the present invention, the resin is plasticized at a temperature lower than the melting point of the resin and can be molded while utilizing the characteristics of the inert gas.
[0030]
The type of the inert gas is not particularly limited, and examples thereof include chlorofluorocarbon, low molecular weight hydrocarbons, carbon dioxide, nitrogen, and inorganic gases such as neon, helium, and argon. Of these, inorganic gases such as carbon dioxide, nitrogen, neon, helium, and argon are preferred because they have low reactivity with resins and have no toxicity or danger. Among them, carbon dioxide and nitrogen are more preferable because they have a low adverse effect on the environment and the necessity of gas recovery is low. Carbon dioxide having high solubility is particularly preferable in consideration of solubility in resins. These may be used alone or in combination of two or more.
[0031]
In the present invention, the amount of the inert gas dissolved is adjusted by the introduction pressure. It is preferable that the introduction pressure of the inert gas be higher, since the amount of the dissolved inert gas increases, and molding can be performed at a lower temperature, so that the crystal retention can be improved. However, if it is desired to reduce equipment costs, it is desirable that the introduction pressure be equal to or less than the so-called “bomb pressure” (about 7 MPa for carbon dioxide gas and about 20 MPa for nitrogen). This eliminates the need for equipment such as a pressurizing pump and can greatly reduce equipment costs. However, if the introduction pressure is 1/3 or less of the cylinder pressure (about 2.3 MPa in the case of carbon dioxide gas and about 6.7 MPa in the case of nitrogen), the plasticizing effect becomes too small to obtain a sufficient effect. Be careful as there are times when there is no such thing.
[0032]
From this, the introduction pressure is from 1/3 of the cylinder pressure to the cylinder pressure (about 2.3 to 7 MPa in the case of carbon dioxide gas and about 6.7 in the case of nitrogen gas) in terms of the balance between the equipment cost and the plasticizing effect. -20 MPa). Although the upper limit of the introduction pressure is not particularly recognized, it is usually lower than the limit of general equipment (about 30 MPa for carbon dioxide and about 50 MPa for nitrogen).
[0033]
In the present invention, as described in claim 3 or 4, a thermoplastic resin having a melting point equal to or lower than the melting point of the pulverized material (hereinafter, also referred to as “low melting point thermoplastic resin”) is mixed. Further, while maintaining the crystalline state of the pulverized material having the desired physical properties, the low-melting-point thermoplastic resin can be melted to obtain good moldability. In this case, the molding temperature is preferably equal to or higher than the melting point of the low melting point thermoplastic resin.
[0034]
The low-melting-point thermoplastic resin is not particularly limited, but those having compatibility with the pulverized material of the PET bottle or the pulverized material of the PET film are preferable because the properties are remarkably improved. Examples of those having compatibility with the above-mentioned pulverized material include polyethylene terephthalate obtained by copolymerizing low crystallinity polyethylene terephthalate, amorphous polyethylene terephthalate, isophthalic acid, etc., and polybutylene terephthalate (PBT).
[0035]
Further, in order to improve the compatibility, a compatibilizer may be added to a mixture of the above-mentioned pulverized material and the low melting point thermoplastic resin.
Examples of the compatibilizer include EPR (ethylene propylene rubber), COOH-modified PE (carboxylated polyethylene), COOH-modified PP (carboxylated polypropylene), and a polystyrene-polyethylene graft copolymer.
[0036]
The blending amount of the low melting point thermoplastic resin is not particularly limited, but is preferably 0 to 100 parts by weight based on 100 parts by weight of the pulverized material. In other words, the ratio of the pulverized material in the mixture is preferably 50% or more. When the ratio is 50% or more, the good physical properties of the PET bottle or PET film originally tend to be reflected in the physical properties of the reshaped product. When the crushed material is a recycled resin, the recycling rate can be improved.
[0037]
In the present invention, it is effective to appropriately add a crystal nucleating agent to the mixture with the pulverized material or the low melting point thermoplastic resin in order to promote crystallization of the non-crystalline portion and further improve the physical properties. It is.
[0038]
The molding method in the present invention is not particularly limited as long as it satisfies the above conditions, and is applicable to, for example, injection molding, extrusion molding, blow molding, film molding and the like. Among them, particularly large effects can be exhibited in injection molding and extrusion molding, which are difficult to stretch during molding.
[0039]
The molded article in the present invention is not particularly limited as long as it is produced by the above-described production method, and is not limited to a so-called final molded article, and includes, for example, molded articles such as pellets as an intermediate material. Even when pellets or the like as an intermediate material are further re-formed, good physical properties can be obtained by using the production method of the present invention.
[0040]
(Action)
In the method for producing a crystalline thermoplastic resin molded product of the present invention, since the remolding temperature is molded at a temperature equal to or lower than the melting point of the pulverized material for the PET bottle or the pulverized material for the PET film, the highly crystalline It is possible to obtain a molded article in which a controlled crystalline state is maintained, excellent physical properties are prevented from being impaired, and good physical properties are maintained.
[0041]
In addition, since an inert gas is used in the present invention, even if the remolding temperature is equal to or lower than the melting point of the pulverized material of the PET bottle or the pulverized material of the PET film, sufficient plasticization is achieved by dissolving the inert gas. It becomes possible to obtain the fluidity required for molding and to mold.
[0042]
Further, when a mixture of the above-mentioned pulverized material and the above-mentioned low-melting-point thermoplastic resin is used, more favorable fluidity can be provided by dissolving the inert gas. This is because even if the re-molding temperature is lower than the melting point of the pulverized material, the low melting point thermoplastic resin is melted and the inert gas is preferentially dissolved in the melted resin. That is, the fact that the inert gas is hardly dissolved in the crystal part and easily dissolved in the amorphous part is used.
[0043]
This allows the low-melting-point thermoplastic resin portion to have a higher fluidity and to be shaped while maintaining a highly crystallized crystal state contained in the pulverized material. For this reason, compared with the case where the above-mentioned pulverized material is used alone, molding at a lower temperature becomes possible, and it is possible to maintain more highly crystallized state in which highly crystallized, and to maintain better physical properties. Can be.
[0044]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
2 and 3 are explanatory views showing one embodiment of the method for producing a thermoplastic resin foam according to the present invention.
5 and 6 are explanatory views illustrating another embodiment of the method for producing a thermoplastic resin foam according to the present invention.
(Example 1)
A molded article of a crystalline thermoplastic resin was manufactured using the injection molding apparatus shown in FIGS. As a raw material for the PET bottle, a commercially available PET bottle for drinking water was crushed, washed, and dried at 70 ° C. for 24 hours. When the melting point of the raw material was measured according to JIS K7121, there was a melting peak as shown in FIG. 4, and the melting peak temperature (Tpm) on the high temperature side was 260.5 ° C. The crystallinity was 43%.
[0045]
Carbon dioxide gas is used as the inert gas. After the above-mentioned raw material is put into the pressure-resistant hopper 12, the valves 122, 123, and 124 are closed, and the valve 121 connected to the carbon dioxide gas cylinder 14, the pressurizing pump 15, and the pressure adjusting valve 141 is opened. Carbon dioxide gas was introduced into the pressure hopper 12 heated to a temperature of 40 ° C., and this state was maintained for 5 hours to dissolve the carbon dioxide gas in the raw material. At this time, the pressure of the carbon dioxide gas was adjusted to 3 MPa.
[0046]
Next, the valve 124 was opened, and the temperature of the cylinder 11 was set to 255 ° C. at the highest location to perform injection molding.
At this time, in order to prevent the resin filled in the mold 2 from foaming, the pressure of the mold holding pressure is maintained at 10 MPa which is equal to or higher than the saturation pressure of carbon dioxide gas (here, about 3 MPa), and the resin temperature is reduced to glass. After the temperature reached 40 ° C., which was lower than the transition temperature (Tg: 73 ° C. in this example), a disk-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained.
[0047]
(Example 2)
A molded product was obtained in the same manner as in Example 1 except that the pressure of the carbon dioxide gas was adjusted to 6 MPa, and the temperature of the highest position of the cylinder 11 was set to 250 ° C.
[0048]
(Example 3)
A crystalline thermoplastic resin molded product was manufactured using the injection molding apparatus shown in FIGS. As a PET bottle raw material, a commercially available PET bottle for drinking water was crushed, washed, and dried at 70 ° C. for 24 hours. When the melting point of the raw material was measured according to JIS K7121, there was a melting peak as shown in FIG. 4, and the melting peak temperature (Tpm) on the high temperature side was 260.5 ° C. The crystallinity was 43%.
[0049]
The raw material is charged into the pressure-resistant hopper 12, the valve 124 is opened with the valves 122 and 123 closed, and the raw material is introduced into the cylinder 11 of the injection molding apparatus 1. The temperature of the cylinder 11 is set at the highest temperature. The temperature was set to 250 ° C., and carbon dioxide was used as an inert gas. The carbon dioxide gas was introduced from the carbon dioxide gas cylinder 14 into the gas injection passage 20 passing through the inside of the screw via the pressurizing pump 15, the pressure regulating valve 141, and the valve 125. Injection molding was performed while adjusting the injection pressure of carbon dioxide gas to 6 MPa and injecting it into the cylinder 11 from the injection port 18.
[0050]
As shown in FIG. 6, the injection port 18 is provided at a position where the screw shaft diameter is small so that the resin pressure in the cylinder 11 becomes lower than the injection pressure of the carbon dioxide gas introduced into the injection port 18. . Generally, in the injection molding, since the screw moves to the upstream side simultaneously with the rotation of the screw, when the inert gas inlet 18 is provided on the cylinder 11 side, the inert gas inlet 18 lowers the resin pressure. It may move relatively to the position, and the inertness may not be stably dissolved. In contrast, by supplying the inert gas from the inert gas inlet 18 provided on the screw side as described above, the inert gas inlet 18 is positioned relative to the position where the resin pressure is lowered. The inert gas can be dissolved stably without moving.
[0051]
In the above, the pressure of the mold holding pressure is maintained at 10 MPa which is equal to or higher than the saturation pressure of carbon dioxide gas (here, about 6 MPa) in order to prevent the resin filled in the mold 2 from foaming. After the temperature reached 40 ° C., which was lower than the glass transition temperature (Tg: 73 ° C. in this example), a disk-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained.
[0052]
(Example 4)
Similar to Example 1, a commercially available PET bottle of drinking water was pulverized, washed, and dried at 70 ° C. for 24 hours. 100 parts by weight of a pulverized resin, and a PET resin (Unitika) as a thermoplastic resin having a melting point lower than the melting point of the resin. A mixture of “PET MA-1344P” manufactured by the company, melting point 231 ° C., modulus of elasticity 2.3 GPa) and 150 parts was used as a raw material, the pressure of carbon dioxide gas was adjusted to 6 MPa, and the temperature of the cylinder 11 was highest. A disc-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained in the same manner as in Example 1 except that the temperature was 240 ° C.
[0053]
(Example 5)
Similar to Example 1, a commercially available PET bottle of drinking water was pulverized, washed, and dried at 70 ° C. for 24 hours. 100 parts by weight of a pulverized resin, and a PET resin (Unitika) as a thermoplastic resin having a melting point lower than the melting point of the resin. A mixture of 60 parts of “PET MA-1344P” manufactured by the company, melting point 231 ° C., elastic modulus 2.3 GPa) was used as a raw material, the pressure of carbon dioxide gas was adjusted to 6 MPa, and the temperature of the cylinder 11 was highest. A disk-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained in the same manner as in Example 1 except that the temperature was 245 ° C.
[0054]
(Comparative Example 1)
A disk-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained in the same manner as in Example 1, except that carbon dioxide was not used as an inert gas, and the temperature of the highest place as the cylinder 11 temperature was set to 290 ° C. Was.
[0055]
(Comparative Example 2)
Similar to Example 1, a commercially available PET bottle of drinking water was pulverized, washed, and dried at 70 ° C. for 24 hours. 100 parts by weight of a pulverized resin, and a PET resin (Unitika) as a thermoplastic resin having a melting point lower than the melting point of the resin. Comparative example except that a mixture of “PET MA-1344P” manufactured by the company, melting point 231 ° C., elastic modulus 2.3 GPa) 150 parts was used as a raw material, and the temperature of the highest place of the cylinder 11 was set to 280 ° C. In the same manner as in Example 1, a disk-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained.
[0056]
(Comparative Example 3)
As in Example 1, a commercially available PET bottle of drinking water was pulverized, washed, and dried at 70 ° C. for 24 hours. 100 parts by weight of a crystalline thermoplastic resin, and PET as a thermoplastic resin having a melting point lower than the melting point of the resin. Other than using a mixture of 60 parts of resin (“PET MA-1344P” manufactured by Unitika Ltd., melting point 231 ° C., elastic modulus 2.3 GPa) as a raw material, and setting the temperature of the highest place of the cylinder 11 to 280 ° C. In the same manner as in Comparative Example 1, a disk-shaped molded product having a thickness of 3 mm and a diameter of 200 mm was obtained.
[0057]
Dumbbell pieces were punched out of the molded products obtained in Examples 1 to 5 and Comparative Examples 1 to 3, and a tensile test (JIS K7113) was performed to measure the elastic modulus. The crystallinity was measured by DSC. Table 1 shows the measurement results.
[0058]
[Table 1]
Figure 2004167697
[0059]
As is clear from Table 1, when Examples 1 to 3 and Comparative Example 1 are compared, in Examples 1 to 3, the degree of crystallinity was higher than that of Comparative Example 1, and the PET bottle was controlled to the original high level. It is inferred that the crystals are retained to some extent. As a result, it was found that a higher elastic modulus was obtained as compared with Comparative Example 1.
[0060]
In Example 2, it was found that, by increasing the carbon dioxide gas pressure to 6 MPa, even if the reshaping temperature was set lower, the crystal retention was good and a high elastic modulus was obtained.
[0061]
Further, as in the third embodiment, by introducing an inert gas into the cylinder 11 into the raw material once heated to a temperature equal to or lower than the melting point of the raw material on the raw material supply side of the screw of the injection molding apparatus, It was also found that the dissolution rate was increased, and the effect of eliminating the holding time before molding for gas dissolution was obtained.
[0062]
When Examples 4 and 5 are compared with Comparative Examples 2 and 3, the degree of crystallinity of Examples 4 and 5 is higher than that of Comparative Examples 2 and 3, and the highly controlled crystals inherent in PET bottles are somewhat higher. It is presumed that it is retained. As a result, it was found that a higher elastic modulus was obtained as compared with Comparative Examples 2 and 3.
[0063]
In Examples 4 and 5, the PET resin mixed as a low melting point thermoplastic resin was melted and carbon dioxide gas was preferentially dissolved, whereby good fluidity and good physical properties were obtained. It is considered.
[0064]
In Example 5, the ratio of the pulverized resin in the PET bottle in the mixture was 50% or more, so it is considered that better physical properties were obtained.
[0065]
【The invention's effect】
According to the method for producing a crystalline thermoplastic resin molded article of the present invention, as described above, the PET bottle or PET film is remolded in a state in which the crystalline state is left as much as possible, and good physical properties are maintained without impairing the original physical properties as much as possible. And a method for producing a crystalline thermoplastic resin molded product capable of exhibiting the following.
[0066]
For this reason, for example, a blow-molded product or a film-formed product formed by crystal control is suitable for re-molding after being molded once, for example, for the purpose of being recovered from the market and recycling, etc. A method for producing a resin molded product and a molded product thereof can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a measurement example of DSC when a plurality of melting peak temperatures exist.
FIG. 2 is an explanatory view showing one embodiment of a method for producing a crystalline thermoplastic resin molded product according to the present invention.
FIG. 3 is an explanatory view illustrating the inside of a cylinder of the injection molding apparatus in FIG. 2;
FIG. 4 is an explanatory diagram illustrating an example of a DSC according to the first embodiment of the present invention.
FIG. 5 is an explanatory view illustrating another embodiment of the method for producing a crystalline thermoplastic resin molded product according to the present invention.
FIG. 6 is an explanatory view illustrating the inside of a cylinder of the injection molding apparatus in FIG. 5;
[Explanation of symbols]
REFERENCE SIGNS LIST 1 injection molding apparatus 2 mold 11 cylinder 12 pressure-resistant hopper 13 hopper 14 carbon dioxide gas cylinder 15 pressurizing pump 16 cylinder temperature control heater 17 screw 18 injection port 20 gas injection passage 21 fixed die 22 movable die 23 heating heaters 121 to 125 valve 141 Pressure regulating valve

Claims (8)

PETボトルの粉砕材料又はPETフィルムの粉砕材料にその融点以下の温度で不活性ガスを溶解させた後に、前記粉砕材料の融点以下の温度に加熱し賦形することを特徴とする結晶性熱可塑性樹脂成型品の製造方法。A crystalline thermoplastic characterized in that an inert gas is dissolved in a pulverized material of a PET bottle or a pulverized material of a PET film at a temperature lower than the melting point thereof, and then heated to a temperature lower than the melting point of the pulverized material and shaped. Manufacturing method for resin molded products. PETボトルの粉砕材料又はPETフィルムの粉砕材料をその融点以下の温度に加熱した後に、前記粉砕材料の融点以下の温度で不活性ガスを溶解しつつ賦形することを特徴とする結晶性熱可塑性樹脂成型品の製造方法。After heating the pulverized material of the PET bottle or the pulverized material of the PET film to a temperature equal to or lower than its melting point, the thermoplastic resin is shaped while dissolving an inert gas at a temperature equal to or lower than the melting point of the pulverized material. Manufacturing method for resin molded products. PETボトルの粉砕材料又はPETフィルムの粉砕材料と、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂との混合物に前記粉砕材料の融点以下の温度で不活性ガスを溶解させた後に、前記粉砕材料の融点以下の温度に加熱し賦形することを特徴とする結晶性熱可塑性樹脂成型品の製造方法。After dissolving the inert gas at a temperature equal to or lower than the melting point of the pulverized material in a mixture of the pulverized material of the PET bottle or the pulverized material of the PET film, and a thermoplastic resin having a melting point equal to or lower than the melting point of the pulverized material, A method for producing a molded article of a crystalline thermoplastic resin, wherein the molded article is heated and shaped to a temperature lower than the melting point of the pulverized material. PETボトルの粉砕材料又はPETフィルムの粉砕材料と、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂との混合物を前記粉砕材料の融点以下の温度に加熱した後に、前記粉砕材料の融点以下の温度で不活性ガスを溶解しつつ賦形することを特徴とする結晶性熱可塑性樹脂成型品の製造方法。After heating a mixture of a pulverized material of a PET bottle or a pulverized material of a PET film and a thermoplastic resin having a melting point equal to or lower than the melting point of the pulverized material to a temperature equal to or lower than the melting point of the pulverized material, the melting point of the pulverized material is reduced. A method for producing a molded article of a crystalline thermoplastic resin, which comprises shaping while dissolving an inert gas at the following temperature. 混合物が、PETボトルの粉砕材料又はPETフィルムの粉砕材料100重量部に対して、融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂0〜100重量部からなるものであることを特徴とする請求項3又は4記載の結晶性熱可塑性樹脂成型品の製造方法。The mixture is characterized by being composed of 0 to 100 parts by weight of a thermoplastic resin having a melting point not higher than the melting point of the pulverized material, based on 100 parts by weight of the pulverized material of the PET bottle or the pulverized material of the PET film. The method for producing a crystalline thermoplastic resin molded product according to claim 3 or 4. 融点が前記粉砕材料の融点以下の温度である熱可塑性樹脂がポリエステル系樹脂であることを特徴とする請求項3〜5の何れか1項記載の結晶性熱可塑性樹脂成型品の製造方法。The method for producing a crystalline thermoplastic resin molded product according to any one of claims 3 to 5, wherein the thermoplastic resin having a melting point equal to or lower than the melting point of the pulverized material is a polyester resin. 不活性ガスが炭酸ガス(CO)であることを特徴とする請求項1〜6の何れか1項記載の結晶性熱可塑性樹脂成型品の製造方法。Any one method for producing a crystalline thermoplastic resin molded article according to claim 1, wherein the inert gas is carbon dioxide (CO 2). 請求項1〜7の何れか1項記載の結晶性熱可塑性樹脂成型品の製造方法により製造された成型品。A molded article produced by the method for producing a crystalline thermoplastic resin molded article according to claim 1.
JP2002332726A 2002-11-15 2002-11-15 Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product Withdrawn JP2004167697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332726A JP2004167697A (en) 2002-11-15 2002-11-15 Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332726A JP2004167697A (en) 2002-11-15 2002-11-15 Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product

Publications (1)

Publication Number Publication Date
JP2004167697A true JP2004167697A (en) 2004-06-17

Family

ID=32697664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332726A Withdrawn JP2004167697A (en) 2002-11-15 2002-11-15 Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product

Country Status (1)

Country Link
JP (1) JP2004167697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269019A (en) * 2006-03-10 2007-10-18 Asahi Kasei Chemicals Corp Method for injection molding of crystalline thermoplastic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269019A (en) * 2006-03-10 2007-10-18 Asahi Kasei Chemicals Corp Method for injection molding of crystalline thermoplastic resin

Similar Documents

Publication Publication Date Title
US10518444B2 (en) Compostable or biobased foams
JP4823076B2 (en) Container with foam wall
EP2764978B1 (en) Stretched foam plastic container and manufacturing method for same
CN102105526A (en) Plastic formulation and method for the production of plastic bottles in a two-stage stretch blow-molding process
US20110024954A1 (en) Modified poly(hydroxyalkanoic acid) composition
US6071462A (en) Compounding injection molding combined process
CN114230989A (en) Preparation method of environment-friendly biodegradable PBAT (poly (butylene adipate-co-terephthalate)) foaming material
CN108864662A (en) A kind of thermoplastic polyether ester elastomer foamed material and preparation method thereof
Subramanian Basics of polymers: fabrication and processing technology
JP2004148616A (en) Preform and biaxially stretched container produced by using preform
JP2004167697A (en) Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product
US20120201921A1 (en) Extrusion Blow Molding Apparatus For Preparing Polyester Articles
JP2023531685A (en) Recycling PET bottles to remanufacture PET composite material masterbatch, its manufacturing method and application of foam shoe material
JP2004167696A (en) Manufacturing method for molded product comprising crystalline thermoplastic resin and molded product manufactured by the method
RU2009145640A (en) MODIFIED SYSTEMS OF HOT GASTRONIC CHANNELS FOR INJECTION-BLOW FORMING
JP2004167695A (en) Method for molding thermoplastic resin, molded product produced thereby and molding apparatus
TW201341159A (en) Container manufacturing method and container
Srikhumsuk et al. Study on injection molding parameters on PET with bio-plastic material and hot runner mold
JP4080108B2 (en) Polybutylene terephthalate blow molded article and method for producing the same
WO2021029372A1 (en) Method and device for manufacturing container made of biodegradable resin
Tharmapuram et al. Processing characteristics of PET/PEN blends, part 3: Injection molding and free blow studies
JP4125942B2 (en) Mixed material using plastic waste, manufacturing apparatus thereof, and manufacturing method thereof
CA2778641A1 (en) Method of producing compostable or biobased foams
EP4351863A1 (en) Recycled polymeric container including graphene
US20230312821A1 (en) Resin mixture, method of producing resin mixture, stretch blow molded product, and method of producing stretch blow molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070425

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070515