JP2004156511A - Valve timing controller of internal combustion engine - Google Patents

Valve timing controller of internal combustion engine Download PDF

Info

Publication number
JP2004156511A
JP2004156511A JP2002322222A JP2002322222A JP2004156511A JP 2004156511 A JP2004156511 A JP 2004156511A JP 2002322222 A JP2002322222 A JP 2002322222A JP 2002322222 A JP2002322222 A JP 2002322222A JP 2004156511 A JP2004156511 A JP 2004156511A
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002322222A
Other languages
Japanese (ja)
Other versions
JP4233308B2 (en
Inventor
Tamotsu Tofuji
保 東藤
Naoki Kokubo
小久保  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2002322222A priority Critical patent/JP4233308B2/en
Publication of JP2004156511A publication Critical patent/JP2004156511A/en
Application granted granted Critical
Publication of JP4233308B2 publication Critical patent/JP4233308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve fuel consumption directly after starting at a high temperature without bringing deterioration in engine starting at a low temperature. <P>SOLUTION: An imposing angle changing means 4 for changing both imposing angles is intervened between a driving ring 3 at a crankshaft side and a driven shaft member 7 at a cam shaft 1. The imposing angle changing means 4 is controlled corresponding to the operating condition of an internal combustion engine. In such a valve timing controller, an oil temperature sensor 37 for detecting a lubricant temperature of the internal combustion engine is provided to control the imposing angle at starting of the internal combustion engine corresponding to the detected temperature of the oil temperature sensor 37. In the case of a valve mechanism system at an air intake side, the imposing angle is controlled to a more retardant side at a low temperature than at a high temperature. At the low temperature, a valve overlapping is small to stabilize combustion of the engine. At a high temperature, contrary to this, the overlapping is great to improve the fuel comsumption directly after the engine start. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この出願の発明は、内燃機関の吸気側または排気側の機関弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
この種のバルブタイミング制御装置として、次のようなものが案出されている。
【0003】
このバルブタイミング制御装置は、クランクシャフトにタイミングチェーン等を介して連係されたハウジング(駆動回転体)がカムシャフトの端部に回動可能に組み付けられ、ハウジングの内側端面に形成された径方向ガイドに可動案内部が径方向に沿って摺動自在に係合支持されると共に、径方向外側に突出するレバーを有するレバー軸(従動回転体)がカムシャフトの端部にボルト結合され、可動案内部とレバー軸のレバーとがリンクによって枢支連結されている。そして、前記径方向ガイドに対向する位置には、渦巻き状ガイドを有する中間回転体がハウジングとレバー軸に対して相対回動可能に設けられ、前記可動案内部の軸方向の一方の端部に突設された略円弧状の複数の突条が前記渦巻き状ガイドに案内係合されている。また、中間回転体はハウジングに対して回転を進める側にゼンマイばねによって付勢されると共に、電磁ブレーキによって回転を遅らせる側の力を適宜受けるようになっている。この装置の場合、中間回転体に操作力を付与するゼンマイばね及び電磁ブレーキと、中間回転体の回動に応じてハウジング(駆動回転体)とレバー軸(従動回転体)の組付角を回動操作するリンクと、によって組付角変更手段が構成されている。
【0004】
この装置においては、電磁ブレーキがOFF状態のときには、中間回転体がゼンマイばねの付勢力を受けハウジングに対して初期位置に位置されており、渦巻き状ガイドに突条でもって噛合う可動案内部は径方向外側に最大に変位し、リンクを引き起こしてハウジングとレバー軸の組付角を最遅角位相の角度位置(以下、「最遅角位置」と呼ぶ。)または最進角位相の角度位置(以下、「最進角位置」と呼ぶ。)に維持している。そして、この状態から電磁ブレーキがONにされると、中間回転体が減速されてハウジングに対して遅れ側に相対回転する結果、渦巻き状ガイドに噛合う可動案内部が径方向内側に変位し、今まで引き起こされていたリンクを次第に倒すようにしてハウジングとレバー軸の組付角を最進角位置または最遅角位置に変更する。
【0005】
【特許文献】
特開2001−41013号公報
【0006】
【発明が解決しようとする課題】
上記従来のバルブタイミング制御装置は、内燃機関の始動時の組付角を最遅角位置、または、最進角位置(吸気側の動弁系に適用した場合には最遅角位置。排気側の動弁系に適用した場合には最進角位置)に戻し、それによって吸気弁と排気弁のバルブオーバーラップを少なくして機関始動時の燃焼の安定化を図っている。この機関始動時の組付角は内燃機関の温度に関係なく一定であり、機関始動時の燃焼が不安定になり易い冷間時はもとより、比較的燃焼が安定する高温時においてもに常に一定組付角位置に戻されていた。
【0007】
ところで、内燃機関を高温状態で始動させ、そのままアイドリング等の低速運転を行う状況はしばしばあるが、近年、この状況下におけるさらなる燃費の向上を求める要望がある。
【0008】
この状況下で燃費のさらなる向上を図るには、機関のポンピングロスを少なくするために吸気弁と排気弁のバルブオーバーラップを増大する必要があるが、低温始動時の燃焼安定性(機関始動性)を重視した装置においては、このような要望に応えることはできない。
【0009】
そこでこの出願の発明は、低温時における機関始動性の悪化を招くことなく、高温時の始動直後の燃費の向上を図ることのできる内燃機関のバルブタイミング制御装置を提供しようとするものである。
【0010】
【課題を解決するための手段】
上述した課題を解決するための手段として、この出願発明は、内燃機関の温度を検出する温度検出手段を設け、内燃機関の始動時の組付角を前記検出手段で検出された温度に応じて制御するようにした。
【0011】
この発明の場合、内燃機関の温度に応じて始動時の組付角を制御するため、低温時には、吸気弁と排気弁のバルブオーバーラップを小さくして確実な機関始動を実現し、高温時には、前記バルブオーバーラップを大きくすることでポンピングロスを少なくし、機関始動直後の燃費の向上を図ることができる。また、低温始動時にバルブオーバーラップを小さくした場合には、所謂内部EGRが減少するために燃焼温度が上昇し、その結果、不活性ガスの排出を抑制することが可能になると共に、触媒温度の早期上昇によってNOの排出をも抑えることが可能となる。
【0012】
具体的には、吸気側動弁系に用いられるバルブタイミング制御装置の場合、温度検出手段による検出温度が低温時のときに、高温時のときよりも組付角を遅角側に制御するようにすれば良い。
【0013】
このようにすれば、機関始動のむずかしい低温始動には、バルブオーバーラップが小さくなるために始動時の燃焼の安定化が図られ、比較的機関始動が容易な高温始動時には、逆にバルブオーバラップが大きくなってポンピングロスが低減される。また、高温始動時に組付角が進角側に制御されると、バルブオーバーラップが大きくなると同時に吸気弁の閉じタイミングが遅くなるため、吸気行程から圧縮行程に移行した初期に混合気が吸気側から逃げにくくなる。このため、実圧縮比が高まり、始動後の低速トルクが高まる。
【0014】
【発明の実施の形態】
次に、この出願の発明の一実施形態を図1〜図7に基づいて説明する。
【0015】
この実施形態は、この出願の発明にかかるバルブタイミング制御装置を内燃機関の吸気側の動弁系に適用したものであるが、排気側の動弁系に同様に適用することも可能である。
【0016】
バルブタイミング制御装置は、図1に示すように内燃機関のシリンダヘッド(図示せず)に回転自在に支持されたカムシャフト1と、このカムシャフト1の前端部に結合された従動軸部材7(従動回転体)と、この従動軸部材7に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト(図示せず)に連係されるタイミングスプロケット2を外周に有する駆動リング3(駆動回転体)と、この駆動リング3と従動軸部材7の前方側(図1中左側)に配置され、両者3,1を相対回動させて組付角を操作する組付角変更手段4と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角変更手段4の前面と周域を覆う図外のVTCカバーと、を備えている。尚、組付角変更手段4は、回動操作力を発生する操作力発生部40と、その操作力発生部40で発生した回動操作力を駆動リング3と従動軸部材7の相対的な回転力に変換する変換機構部41と、によって構成されている。
【0017】
駆動リング3は、段差状の挿通孔6を備えた略円板状に形成され、この挿通孔6部分が従動軸部材7(従動回転体)に回転可能に組み付けられている。そして、駆動リング3の前面(カムシャフト1と逆側の面)には、図2,図3に示すように、対面する平行な側壁を有する3つの径方向溝8(径方向ガイド)が同リング3のほぼ半径方向に沿うように形成されている。
【0018】
また、従動軸部材7は、図1に示すように、カムシャフト1の前端部に突き合される基部側の外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー9が一体に形成され、軸芯部を貫通するボルト10によってカムシャフト1に結合されている。各レバー9には、リンク11の基端がピン12によって枢支連結され、各リンク11の先端には前記各径方向溝8に摺動自在に係合する円柱状の突出部13が一体に形成されている。
【0019】
各リンク11は、突出部13が対応する径方向溝8に係合した状態において、ピン12を介して従動軸部材7に連結されているため、リンク11の先端側が外力を受けて径方向溝8に沿って変位すると、駆動リング3と従動軸部材7はリンク11の作用でもって突出部13の変位に応じた方向及び角度だけ相対回動する。
【0020】
また、各リンク11の先端部には、軸方向前方側に開口する収容穴14が形成され、この収容穴14に、後述する渦巻き溝15(渦巻き状ガイド)に係合する係合ピン16と、この係合ピン16を前方側(渦巻き溝15側)に付勢するコイルばね17とが収容されている。尚、この実施形態の場合、リンク11の先端の突出部13と係合ピン16、コイルばね17等によって径方向に変位可能な可動案内部が構成されている。
【0021】
一方、従動軸部材7のレバー9の突設位置よりも前方側には、円板状のフランジ壁を有する中間回転体18が軸受19を介して回転自在に支持されている。この中間回転体18のフランジ壁の後面側には断面半円状の前述の渦巻き溝15が形成され、この渦巻き溝15に、前記各リンク11の先端の係合ピン16が転動自在に案内係合されている。渦巻き溝15の渦巻きは、機関回転方向Rに沿って次第に縮径するように形成されている。したがって、各リンク11先端の係合ピン16が渦巻き溝15に係合した状態において、中間回転体18が駆動リング3に対して遅れ方向に相対回転すると、リンク11の先端部は径方向溝8に案内されつつ、渦巻き溝15の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体18が進み方向に相対変位すると、半径方向外側に移動する。
【0022】
組付角変更手段4の変換機構部41は、以上説明した駆動リング3の径方向溝8、リンク11、突出部13、係合ピン16、レバー9、中間回転体18、渦巻き溝15等によって構成されている。この変換機構部41は、後述する操作力発生部40から中間回転体18にカムシャフト1に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝15と係合ピン16の係合部を通してリンク11の先端を径方向に変位させ、このときリンク11が揺動してその揺動量に応じて駆動リング3と従動軸部材7を相対回動させる。
【0023】
一方、操作力発生部40は、中間回転体18を駆動リング3に対して機関回転方向Rに付勢する付勢手段としてのゼンマイばね45と、中間回転体18を駆動リング3に対して機関回転方向Rと逆方向に作動させる(付勢手段に抗する力を発生する)電磁アクチュエータとしてのヒステリシスブレーキ20と、を備え、ゼンマイばね45の付勢力とヒステリシスブレーキ20の作動力とのバランスによって中間回転体18を回動操作するようになっている。
【0024】
ゼンマイばね45は、駆動リング3に延設された円筒壁21にその外周端部が結合される一方、内周端部が中間回転体18の円筒状の基部に結合されている。
【0025】
また、中間回転体18のカムシャフト1と逆側の端面には、封止壁46が一体に結合され、その封止壁46の外周面が前記円筒壁21の内面に摺動自在に密接している。
【0026】
図1,図4に示すように、ヒステリシスブレーキ20は、非回転部材であるVTCカバーに取り付けられると共に、略円筒状の隙間を挟む対向面を備えた磁気誘導部材22と、前記対向面に設けられた内側極歯23、及び、外側極歯24と、磁気誘導部材22に取り付けられて内側極歯23と外側極歯24の間に磁界を生じさせる電磁コイル25と、前記両極歯23,24間に非接触状態で挿入配置された円筒状のヒステリシスリング26と、外周端がこのヒステリシスリング26に一体に結合された状態で中間回転体18に連結ピン47とゴムブッシュ48を介して結合された円環プレート27と、を備え、電磁コイル25がコントローラ42の出力信号によって適宜通電制御されるようになっている。
【0027】
磁気誘導部材22の内側極歯23と外側極歯24は夫々軸方向に沿って延出する複数の極歯要素を有している。両極歯23,24の極歯要素は夫々円周方向に沿って配置され、極歯23,24の極歯要素相互は円周方向にオフセットされている。したがって、電磁コイル25が通電されると、両極歯23,24間には、オフセットした位置関係にある相手極歯要素に向かう磁界が発生する。
【0028】
ヒステリシスリング26は、磁気的ヒステリシス特性を有するヒステリシス材から成り、同リング26の回転中に内側極歯23と外側極歯24の間に磁界が発生すると、その磁界の向きとヒステリシスリング26内の磁束の向きとにずれが生じるようになっている。ヒステリシスブレーキ20は、このずれによって制動力を発生する。また、円環プレート27は、磁気誘導部材22の内周面に軸受28,29を介して支持された軸部材30に一体に結合されている。したがって、ヒステリシスリング20は、円環プレート27と軸部材30を介して磁気誘導部材22に相対回転可能に支持されている。
【0029】
尚、図中43は、中間回転体18と駆動リング3の間に設けられ、両者18,3の相対回動範囲を規制するストッパである。
【0030】
コントローラ42には、クランク角センサ35やカム角センサ36等から機関の運転状態を判断するための信号が入力され、コントローラ42は、これらの信号に基づいてヒステリシスブレーキ20の通電電流をフィードバック制御するようになっている。また、コントローラ42には、さらに潤滑油の油温を検出する油温センサ37(この出願における温度検出手段)からの信号が入力され、機関始動時における組付角がコントローラ42によって適宜制御されるようになっている。
【0031】
この実施形態の場合、機関始動時の組付角位置は、油温センサ37によって検出される内燃機関の温度に応じて図5,図6に示すθ〜θのいずれかに制御されるようになっている。ここで、θは、最遅角位置と最進角位置のほぼ中間の角度位置であり、θは、θに対して遅角側に設定角度偏寄させた角度位置、θは、θに対して進角側に設定角度偏寄させた角度位置である。そして、これらの機関始動時の組付角θ〜θは、図6に示すように2つの敷居温度T,T(ただし、T<T)を境にして切換えられるようになっている。
【0032】
このバルブタイミング制御装置は以上のような構成であるため、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最進角側に変更する場合には、ヒステリシスブレーキ20に所定の電流を通電することにより、ゼンマイばね45の力に抗する制動力が円環プレート27から中間回転体18に連結ピン47とゴムブッシュ48を介して伝達される。これにより、中間回転体18が駆動リング3に対して逆方向に回転し、それによってリンク11の先端の係合ピン16が渦巻き溝15に誘導されてリンク11の先端部が径方向内側に変位し、このとき、図3に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最進角位置に変更される。
【0033】
また、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最遅角側に変更する場合には、ヒステリシスブレーキ20の通電をオフにすることにより、中間回転体18がゼンマイばね45の力によって機関回転方向に回転させられる。すると、渦巻き溝15による係合ピン16の誘導によってリンク11の先端部が径方向外側に変位し、このとき、図2に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最遅角位置に変更される。
【0034】
そして、クランクシャフトとカムシャフト1の回転位相を最進角位置と最遅角位置の間の任意の位置に変更する場合には、ヒステリシスブレーキ20に通電する電流値を適宜制御することにより、駆動リング3に対する中間回転体18の相対回動位置がゼンマイばね45とヒステリシスブレーキ20とのバランスによって調整される。
【0035】
また、内燃機関の始動時には前述のように組付角がθ〜θのいずれかに制御されるが、このときの具体的な制御は、図7に示すフローチャートに従って実行される。
【0036】
即ち、最初に、S1においてイグニッションキーがオンにされると、次に、S2で油温センサ37による内燃機関の温度の検出が行われ、その後に、S3において、検出温度Tが下側の敷居温度T以上であるかどうかが判断される。このとき、検出温度Tが温度Tよりも低い場合にはS4に進んで機関始動時の組付角位置θをθに制御し、検出温度Tが温度T以上である場合にはS5へと進む。S5においては、さらに検出温度Tが上側の敷居温度Tよりも低いかどうかが判断され、温度T以上の場合にはS6に進んで組付角位置θをθに制御し、温度Tよりも低い場合にはS7に進んで組付角位置θをθに制御する。
【0037】
したがって、このバルブタイミング制御装置においては、内燃機関の温度TがT<Tとなる低温時は機関始動時の初期位置θが遅角側の組付角位置θに制御されることとなるため、低温始動時には、図5に示すように吸気弁と排気弁のバルブオーバーラップが小さくなり、それによって始動時やアイドリング時の機関燃焼が安定すると共に、所謂内部EGRが減少することで燃焼温度が上昇し、不活性ガスの抑制効果と、触媒の早期昇温によるNOの抑制効果を得ることができる。
【0038】
さらに、内燃機関の温度TがT≦Tとなる高温時は機関始動時の初期位置θが遅角側の組付角位置θに制御されることとなるため、高温始動時には、図5に示すように吸気弁と排気弁のバルブオーバーラップ大きくなり、その結果、機関始動直後のポンピングロスが低減され、機関の燃費が向上する。また、初期位置θがθに制御されると吸気弁の閉じタイミングが早められるために実圧縮比が高まり、機関始動後における低速トルクが向上する。
【0039】
また、内燃機関の温度TがT≦T<Tとなる常温時には、バルブオーバーラップの大きさと吸気弁の閉じタイミングが上述の二つの条件のときのほぼ中間の状態となり、燃焼安定性、燃費、低速トルク等の特性もほぼ中間的なものとなる。
【0040】
また、この装置の場合、以上のように低温時、高温時、常温時の各条件下で機関始動時の組付角が切換えられるが、低温始動時に遅角側の組付角位置θに切換えられたときには、図5に示すように機関始動後に組付角を最遅角位置に迅速に切換えることができ、同様に、高温始動時に進角側の組付角位置θに切換えられたときには、機関始動後に組付角を最進角側に迅速に切換えることができる。したがって、この実施形態の装置においては、機関始動後に機関温度に応じた望ましい組付角に早期に切換えることができるという利点がある。
【0041】
ところで、この実施形態のバルブタイミング制御装置においては、内燃機関の始動時に機関温度に応じた組付角に制御するようにしているが、これとは別に、機関運転状態からイグニッションキーがオフにされた後、機関が完全停止するまでの間に、組付角θを機関始動時の基準組付角位置(常温時の組付角位置)θに戻すようにしても良い。
【0042】
このようにした場合には、機関の始動直前の組付角がθとθの中間の組付角位置θとなるため、検出温度によって決まる始動時の組付角がθ〜θのいずれになっても、所定の組付角位置に速やかに変更することができる。
【0043】
尚、この発明の実施形態は以上で説明したものに限るものではなく、例えば、上記の実施形態においては、組付角変更手段の操作力発生部はゼンマイばねとヒステリシスブレーキによって構成したが、操作力発生部はこれら以外の付勢手段と電磁アクチュエータによって構成するようにしても良い。また、操作力発生部は必ずしも付勢手段を用いる必要はなく、正転逆転操作ができる電磁アクチュエータを用いれば付勢手段を無くすこともできる。さらに、組付角変更手段のアクチュエータは油圧アクチュエータを用いるようにしても良い。
【0044】
また、内燃機関の温度を検出する温度検出手段は、油温センサ37に限らず、冷却水温度を検出する水温センサ等であっても良い。
【0045】
また、前述のようにこの出願の発明にかかるバルブタイミング制御装置は排気側の動弁系に適用することも可能であるが、この場合には、低温始動時の組付角を高温始動時の組付角よりも進角側に変更すれば良い。
【0046】
次に、上記の各実施形態から把握し得る請求項に記載以外の発明について、以下にその作用効果と共に記載する。
【0047】
(イ) 内燃機関の温度を機関始動時に温度検出手段によって検出し、その検出された温度に応じて内燃機関のクランクキング時に組付角変更手段を制御することを特徴とする請求項1または2に記載の内燃機関のバルブタイミング制御装置。
【0048】
この場合、機関始動時の内燃機関の温度に応じた組付角制御を正確に行うことができる。
【0049】
(ロ) 内燃機関の停止時に、組付角を内燃機関の始動が可能な基準組付角位置に制御することを特徴とする請求項1,2または前記(イ)に記載の内燃機関のバルブタイミング制御装置。
【0050】
この場合、組付角を機関停止時に予め内燃機関の始動が可能な基準組付角位置に戻しておくことにより、内燃機関の始動時には機関温度に応じた適正組付角に早期に変更することが可能になる。
【0051】
(ハ) 組付角変更手段のアクチュエータとして電磁アクチュエータを用いたことを特徴とする請求項1,2、前記(イ),(ロ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0052】
この場合、電磁アクチュエータを用いたため、機関始動時には通電によって即時に大きな起動トルクを得ることができる。したがって、内燃機関の始動時には、組付角変更手段を機関温度に応じた組付角位置に迅速に作動させることができる。
【0053】
(ニ) 組付角変更手段は、
駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、
前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、
前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、
前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、
前記中間回転体を回動させる回動操作力を発生する操作力発生部と、を備え、
中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴とする請求項1,2、(イ)〜(ハ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0054】
この場合、操作力発生部で発生した力を、増幅して駆動回転体と従動回転体の組付角操作力に変換するため、大きな操作力を要する機関始動初期等であっても組付角を機関温度に応じた角度位置に迅速に変更することができる。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示す縦断面図。
【図2】同実施形態を示す図1のA−A線に沿う断面図。
【図3】同実施形態の作動状態を示す図2に対応の断面図。
【図4】同実施形態を示す分解斜視図。
【図5】同実施形態のバルブリフト特性を示す図。
【図6】同実施形態の温度と組付角の関係を示す図。
【図7】同実施形態の制御を示すフローチャート。
【符号の説明】
1…カムシャフト
3…駆動リング(駆動回転体)
4…組付角変更手段
7…従動軸部材(従動回転体)
37…油温センサ(温度検出手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an intake-side or exhaust-side engine valve of the internal combustion engine in accordance with an operating state.
[0002]
[Prior art]
The following has been devised as this type of valve timing control device.
[0003]
In this valve timing control device, a housing (driving rotating body) linked to a crankshaft via a timing chain or the like is rotatably assembled to an end of a camshaft, and a radial guide formed on an inner end surface of the housing. A movable guide portion is slidably engaged in the radial direction and supported, and a lever shaft (a driven rotating body) having a lever protruding outward in the radial direction is bolted to an end of the camshaft. The part and the lever of the lever shaft are pivotally connected by a link. An intermediate rotating body having a spiral guide is provided at a position facing the radial guide so as to be rotatable relative to the housing and the lever shaft, and is provided at one end of the movable guide portion in the axial direction. A plurality of projecting substantially arc-shaped projections are guided and engaged with the spiral guide. The intermediate rotator is biased by a spring to the side that advances the rotation with respect to the housing, and receives an appropriate force on the side that delays the rotation by an electromagnetic brake. In the case of this device, a mainspring spring and an electromagnetic brake for applying an operating force to the intermediate rotating body, and an assembling angle of a housing (drive rotating body) and a lever shaft (driven rotating body) are rotated according to the rotation of the intermediate rotating body. The link to be operated dynamically constitutes an assembly angle changing unit.
[0004]
In this device, when the electromagnetic brake is in the OFF state, the intermediate rotating body is located at the initial position with respect to the housing under the urging force of the mainspring spring, and the movable guide portion which meshes with the spiral guide with a ridge is provided. It is displaced to the maximum in the radial direction and causes a link to cause the assembling angle of the housing and the lever shaft to be the angle position of the most retarded phase (hereinafter referred to as the “most retarded position”) or the most advanced angle position. (Hereinafter, referred to as “most advanced position”). Then, when the electromagnetic brake is turned ON from this state, the intermediate rotating body is decelerated and relatively rotates with respect to the delay side with respect to the housing. As a result, the movable guide portion meshing with the spiral guide is displaced radially inward, The assembling angle of the housing and the lever shaft is changed to the most advanced position or the most retarded position by gradually tilting the link that has been raised.
[0005]
[Patent Document]
JP 2001-41013 A
[Problems to be solved by the invention]
The above-described conventional valve timing control device sets the assembly angle at the start of the internal combustion engine to the most retarded position or the most advanced position (the most retarded position when applied to the intake-side valve train. When the present invention is applied to the valve operating system, the valve is returned to the most advanced position, thereby reducing the valve overlap between the intake valve and the exhaust valve, thereby stabilizing combustion at the time of starting the engine. The assembly angle at the start of the engine is constant irrespective of the temperature of the internal combustion engine, and is always constant not only at the time of cold when combustion tends to be unstable at the start of the engine but also at the time of high temperature where combustion is relatively stable. It had been returned to the assembly angle position.
[0007]
By the way, there are often situations in which the internal combustion engine is started in a high temperature state and low-speed operation such as idling is performed as it is, but in recent years there is a demand for further improvement in fuel efficiency under this situation.
[0008]
In this situation, in order to further improve the fuel efficiency, it is necessary to increase the valve overlap between the intake valve and the exhaust valve in order to reduce the pumping loss of the engine. Such a demand cannot be met in a device which emphasizes (1).
[0009]
Accordingly, an object of the present invention is to provide a valve timing control device for an internal combustion engine that can improve fuel efficiency immediately after starting at a high temperature without deteriorating the engine startability at a low temperature.
[0010]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, the present invention includes a temperature detecting means for detecting the temperature of the internal combustion engine, and an assembly angle at the time of starting the internal combustion engine according to the temperature detected by the detecting means. Controlled.
[0011]
In the case of the present invention, in order to control the assembly angle at the start according to the temperature of the internal combustion engine, at a low temperature, the valve overlap between the intake valve and the exhaust valve is reduced to realize a reliable engine start, and at a high temperature, By increasing the valve overlap, pumping loss can be reduced and fuel efficiency can be improved immediately after the engine is started. Further, when the valve overlap is reduced at the time of low temperature start, the so-called internal EGR is reduced, so that the combustion temperature is increased. As a result, it is possible to suppress the emission of the inert gas and to reduce the catalyst temperature. it is possible to suppress the emissions of the NO x early rise.
[0012]
Specifically, in the case of a valve timing control device used for the intake-side valve train, the assembling angle is controlled to be more retarded when the temperature detected by the temperature detecting means is low than when it is high. You can do it.
[0013]
In this way, in a low-temperature start where the engine is difficult to start, the valve overlap is reduced, so that the combustion at the start is stabilized, and in a high-temperature start where the engine is relatively easy to start, the valve overlap is conversely performed. And pumping loss is reduced. Also, when the assembly angle is controlled to the advanced side during a high temperature start, the valve overlap increases and the closing timing of the intake valve is delayed, so that the air-fuel mixture is shifted to the intake side at the beginning of the transition from the intake stroke to the compression stroke. It is difficult to escape from. For this reason, the actual compression ratio increases, and the low-speed torque after starting increases.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the invention of this application will be described with reference to FIGS.
[0015]
In this embodiment, the valve timing control device according to the invention of this application is applied to a valve train on the intake side of an internal combustion engine. However, the valve timing control device can be similarly applied to a valve train on the exhaust side.
[0016]
As shown in FIG. 1, the valve timing control device includes a camshaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and a driven shaft member 7 (connected to a front end of the camshaft 1). The driven sprocket 2 is attached to the driven shaft member 7 so as to be able to relatively rotate as required, and the timing sprocket 2 linked to a crankshaft (not shown) via a chain (not shown) , And a drive ring 3 (drive rotator) disposed on the front side (left side in FIG. 1) of the drive ring 3 and the driven shaft member 7. The vehicle includes an assembling angle changing means 4 and a VTC cover (not shown) which is attached to a cylinder head (not shown) of the internal combustion engine and a front surface of the head cover and covers a front surface and a peripheral area of the assembling angle changing means 4. . The assembling angle changing means 4 includes an operating force generating unit 40 for generating a rotating operation force, and a rotating operation force generated by the operating force generating unit 40 for relative movement of the drive ring 3 and the driven shaft member 7. And a conversion mechanism 41 that converts the torque into torque.
[0017]
The drive ring 3 is formed in a substantially disk shape having a stepped insertion hole 6, and the insertion hole 6 is rotatably assembled to a driven shaft member 7 (driven rotation body). As shown in FIGS. 2 and 3, three radial grooves 8 (radial guides) having parallel side walls facing each other are formed on the front surface of the drive ring 3 (the surface opposite to the camshaft 1). The ring 3 is formed substantially along the radial direction.
[0018]
Further, as shown in FIG. 1, the driven shaft member 7 has an enlarged diameter portion formed on an outer periphery of a base portion which is abutted against a front end portion of the camshaft 1, and has an outer peripheral portion located forward of the enlarged diameter portion. Three levers 9 protruding radially from the surface are integrally formed, and are connected to the camshaft 1 by bolts 10 penetrating the shaft core. A base end of a link 11 is pivotally connected to each lever 9 by a pin 12, and a column-shaped projection 13 slidably engaged with each of the radial grooves 8 is integrally formed at a distal end of each link 11. Is formed.
[0019]
Each link 11 is connected to the driven shaft member 7 via the pin 12 in a state where the protrusion 13 is engaged with the corresponding radial groove 8. When displaced along 8, the drive ring 3 and the driven shaft member 7 rotate relative to each other by the action of the link 11 in a direction and an angle corresponding to the displacement of the projection 13.
[0020]
A receiving hole 14 is formed at the distal end of each link 11 and opens forward in the axial direction. The receiving hole 14 has an engaging pin 16 that engages with a spiral groove 15 (a spiral guide) described later. And a coil spring 17 for urging the engagement pin 16 forward (toward the spiral groove 15). In the case of this embodiment, a movable guide portion that can be displaced in the radial direction is configured by the protrusion 13 at the tip of the link 11, the engagement pin 16, the coil spring 17, and the like.
[0021]
On the other hand, an intermediate rotating body 18 having a disk-shaped flange wall is rotatably supported via a bearing 19 in front of the driven shaft member 7 at a position forward of the lever 9. The above-mentioned spiral groove 15 having a semicircular cross section is formed on the rear surface side of the flange wall of the intermediate rotating body 18, and the engaging pin 16 at the tip of each link 11 is guided in the spiral groove 15 so as to freely roll. Is engaged. The spiral of the spiral groove 15 is formed so that its diameter gradually decreases along the engine rotation direction R. Therefore, when the intermediate rotating body 18 relatively rotates in the delay direction with respect to the drive ring 3 in a state where the engaging pin 16 at the tip of each link 11 is engaged with the spiral groove 15, the tip of the link 11 is While being guided by the spiral shape of the spiral groove 15 and moving inward in the radial direction, conversely, when the intermediate rotating body 18 is relatively displaced in the advancing direction, it moves outward in the radial direction.
[0022]
The conversion mechanism 41 of the assembling angle changing means 4 is formed by the radial groove 8, the link 11, the protrusion 13, the engagement pin 16, the lever 9, the intermediate rotating body 18, the spiral groove 15, etc. of the drive ring 3 described above. It is configured. When a relative rotational operation force with respect to the camshaft 1 is input to the intermediate rotating body 18 from an operation force generation unit 40 described later, the conversion mechanism unit 41 applies the operation force to the spiral groove 15 and the engagement pin 16. The distal end of the link 11 is displaced in the radial direction through the engaging portion, and at this time, the link 11 swings to relatively rotate the drive ring 3 and the driven shaft member 7 according to the swing amount.
[0023]
On the other hand, the operating force generating unit 40 includes a mainspring spring 45 as urging means for urging the intermediate rotating body 18 in the engine rotation direction R with respect to the drive ring 3, and an engine rotating means 18 which applies the intermediate rotating body 18 to the drive ring 3. A hysteresis brake 20 as an electromagnetic actuator that operates in a direction opposite to the rotation direction R (generates a force against the urging means), and a balance between the urging force of the mainspring spring 45 and the operating force of the hysteresis brake 20 is provided. The intermediate rotating body 18 is rotated.
[0024]
The mainspring spring 45 has an outer peripheral end coupled to the cylindrical wall 21 extending from the drive ring 3, and an inner peripheral end coupled to a cylindrical base of the intermediate rotating body 18.
[0025]
A sealing wall 46 is integrally connected to the end face of the intermediate rotating body 18 opposite to the camshaft 1, and the outer peripheral surface of the sealing wall 46 is slidably in close contact with the inner surface of the cylindrical wall 21. ing.
[0026]
As shown in FIGS. 1 and 4, the hysteresis brake 20 is attached to a VTC cover which is a non-rotating member, and has a magnetic induction member 22 having an opposing surface sandwiching a substantially cylindrical gap, and provided on the opposing surface. The inner pole teeth 23 and the outer pole teeth 24, the electromagnetic coil 25 attached to the magnetic induction member 22 to generate a magnetic field between the inner pole teeth 23 and the outer pole teeth 24, and the bipolar teeth 23, 24. A cylindrical hysteresis ring 26 inserted and arranged in a non-contact state therebetween, and is connected to the intermediate rotating body 18 via a connecting pin 47 and a rubber bush 48 with the outer peripheral end integrally connected to the hysteresis ring 26. An annular plate 27 is provided, and the energization of the electromagnetic coil 25 is appropriately controlled by an output signal of the controller 42.
[0027]
The inner pole teeth 23 and the outer pole teeth 24 of the magnetic guide member 22 each have a plurality of pole tooth elements extending along the axial direction. The pole teeth elements of both pole teeth 23 and 24 are respectively arranged along the circumferential direction, and the pole tooth elements of pole teeth 23 and 24 are circumferentially offset. Therefore, when the electromagnetic coil 25 is energized, a magnetic field is generated between the two pole teeth 23 and 24 toward the partner pole tooth element having an offset positional relationship.
[0028]
The hysteresis ring 26 is made of a hysteresis material having a magnetic hysteresis characteristic. A deviation is caused in the direction of the magnetic flux. The hysteresis brake 20 generates a braking force due to this shift. The annular plate 27 is integrally connected to a shaft member 30 supported on the inner peripheral surface of the magnetic guide member 22 via bearings 28 and 29. Therefore, the hysteresis ring 20 is rotatably supported by the magnetic guide member 22 via the annular plate 27 and the shaft member 30.
[0029]
In the drawing, reference numeral 43 denotes a stopper provided between the intermediate rotating body 18 and the driving ring 3 for restricting a relative rotation range between the two.
[0030]
Signals for determining the operating state of the engine from the crank angle sensor 35, the cam angle sensor 36, and the like are input to the controller 42, and the controller 42 performs feedback control of the current supplied to the hysteresis brake 20 based on these signals. It has become. Further, a signal from an oil temperature sensor 37 (temperature detecting means in this application) for detecting the oil temperature of the lubricating oil is input to the controller 42, and the assembling angle when the engine is started is appropriately controlled by the controller 42. It has become.
[0031]
In the case of this embodiment, the assembly angle position at the time of starting the engine is controlled to any one of θ 1 to θ 3 shown in FIGS. 5 and 6 according to the temperature of the internal combustion engine detected by the oil temperature sensor 37. It has become. Here, theta 1 is approximately half of the angular position of the most retarded position and the most advanced position, theta 2 is the angular position which is set angular biasing retarded relative theta 1, theta 3 is is the angle position is set angular biasing to the advance side with respect to theta 1. Then, as shown in FIG. 6, the assembling angles θ 1 to θ 3 at the time of starting the engine can be switched between two threshold temperatures T 1 and T 2 (where T 1 <T 2 ). Has become.
[0032]
Since this valve timing control device is configured as described above, when changing the rotation phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) to the most advanced side, a predetermined current is applied to the hysteresis brake 20. , A braking force against the force of the mainspring 45 is transmitted from the annular plate 27 to the intermediate rotating body 18 via the connecting pin 47 and the rubber bush 48. Thereby, the intermediate rotating body 18 rotates in the opposite direction with respect to the drive ring 3, whereby the engaging pin 16 at the tip of the link 11 is guided to the spiral groove 15, and the tip of the link 11 is displaced radially inward. At this time, as shown in FIG. 3, the operation angle of the link 11 changes the assembly angle between the drive ring 3 and the driven shaft member 7 to the most advanced position.
[0033]
When the rotational phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) is changed to the most retarded side, the energization of the hysteresis brake 20 is turned off, and the intermediate rotating body 18 Is rotated in the engine rotation direction by the force of Then, the leading end of the link 11 is displaced radially outward by the guide of the engagement pin 16 by the spiral groove 15, and at this time, the combination of the drive ring 3 and the driven shaft member 7 by the action of the link 11, as shown in FIG. The angle is changed to the most retarded position.
[0034]
When the rotational phase of the crankshaft and the camshaft 1 is changed to an arbitrary position between the most advanced position and the most retarded position, the current value to be supplied to the hysteresis brake 20 is appropriately controlled so that the drive is performed. The relative rotation position of the intermediate rotating body 18 with respect to the ring 3 is adjusted by the balance between the mainspring spring 45 and the hysteresis brake 20.
[0035]
When the internal combustion engine is started, the mounting angle is controlled to any one of θ 1 to θ 3 as described above, and the specific control at this time is executed according to the flowchart shown in FIG.
[0036]
That is, first, when the ignition key is turned on in S1, next, the temperature of the internal combustion engine is detected by the oil temperature sensor 37 in S2, and thereafter, in S3, the detected temperature T decreases to the lower threshold. whether a temperature above T 1 is determined. In this case, the detected temperature T is controls the theta assembling angle position at engine starting to theta 2 advances to step S4 is lower than the temperature T 1 of, when the detected temperature T is a temperature above T 1 is S5 Proceed to. In S5, further the detected temperature T is determined whether lower than the upper threshold temperature T 2, and controls the theta assembling angle position proceeds to step S6 in the case of temperature T 2 above theta 3, the temperature T If 2 lower than controls assembling angular position theta in theta 1 proceeds to S7.
[0037]
Accordingly, in this valve timing control device, so that the temperature T of the internal combustion engine T <T 1 and the low temperature made is controlled to assembling angular position theta 2 of the initial position theta retard side when the engine is started Therefore, at the time of a low temperature start, as shown in FIG. 5, the valve overlap between the intake valve and the exhaust valve becomes small, thereby stabilizing the engine combustion at the time of start and idling, and reducing the so-called internal EGR, thereby reducing the combustion temperature. There rises, it is possible to obtain the effect of suppressing inert gas, the inhibitory effect of the NO x by early Atsushi Nobori of the catalyst.
[0038]
Furthermore, when the temperature T of the internal combustion engine is a high temperature where T 2 ≦ T, the initial position θ at the time of starting the engine is controlled to the retarded assembly angle position θ 2 . As shown in (2), the valve overlap between the intake valve and the exhaust valve becomes large. As a result, the pumping loss immediately after the start of the engine is reduced, and the fuel efficiency of the engine is improved. Also, it increased actual compression ratio for the closing timing of the intake valve and the initial position theta is controlled to theta 2 is advanced, improved low-speed torque after engine startup.
[0039]
Further, when the temperature T of the internal combustion engine is a normal temperature where T 1 ≦ T <T 2 , the magnitude of the valve overlap and the closing timing of the intake valve are almost in the middle between the above two conditions, and the combustion stability and Characteristics such as fuel efficiency and low-speed torque are also intermediate.
[0040]
Further, in this apparatus, at a low temperature as described above, at high temperatures, but assembling angle at engine starting in the condition of normal temperature is switched, the assembling angle position theta 2 of the retarded side during cold start when it is switched can be switched quickly to the most retarded position the assembling angle after engine starting as shown in FIG. 5, similarly, is switched to the assembling angle position theta 3 the advance side during hot start Sometimes, after the engine is started, the mounting angle can be quickly switched to the most advanced side. Therefore, the apparatus according to this embodiment has an advantage that it is possible to quickly switch to a desired mounting angle according to the engine temperature after the engine is started.
[0041]
By the way, in the valve timing control device of this embodiment, when the internal combustion engine is started, the assembly angle is controlled according to the engine temperature, but separately from this, the ignition key is turned off from the engine operation state. after, until the engine is completely stopped, the reference assembly angle position at engine start assembling angle theta (assembling angle position at room temperature) may be returned to the theta 1.
[0042]
In such a case, since the assembling angle starting immediately before an engine is assembled angular position theta 1 intermediate theta 2 and theta 3, 1 assembling angle at starting which is determined by the detected temperature theta through? In any of the three cases, it is possible to quickly change to the predetermined assembling angle position.
[0043]
It should be noted that the embodiment of the present invention is not limited to the above-described one. For example, in the above-described embodiment, the operating force generating unit of the assembly angle changing unit is configured by the mainspring spring and the hysteresis brake. The force generating section may be constituted by other urging means and an electromagnetic actuator. Further, the operating force generating unit does not necessarily need to use the urging means, and the urging means can be eliminated by using an electromagnetic actuator which can perform the forward and reverse rotation operation. Further, a hydraulic actuator may be used as the actuator of the assembly angle changing means.
[0044]
Further, the temperature detecting means for detecting the temperature of the internal combustion engine is not limited to the oil temperature sensor 37, but may be a water temperature sensor or the like for detecting a cooling water temperature.
[0045]
Further, as described above, the valve timing control device according to the invention of this application can be applied to the exhaust-side valve train, but in this case, the assembly angle at the time of low-temperature start is set at the time of high-temperature start. What is necessary is just to change it to the advance side from the assembly angle.
[0046]
Next, inventions other than those described in the claims that can be understood from the above embodiments will be described below together with their operational effects.
[0047]
The temperature of the internal combustion engine is detected by the temperature detecting means at the time of starting the engine, and the assembly angle changing means is controlled at the time of cranking of the internal combustion engine according to the detected temperature. 3. The valve timing control device for an internal combustion engine according to claim 1.
[0048]
In this case, the assembly angle control according to the temperature of the internal combustion engine at the time of starting the engine can be accurately performed.
[0049]
(B) When the internal combustion engine is stopped, the assembly angle is controlled to a reference assembly angle position at which the internal combustion engine can be started. Timing control device.
[0050]
In this case, by returning the assembly angle to a reference assembly angle position at which the internal combustion engine can be started in advance when the engine is stopped, it is possible to quickly change the assembly angle to an appropriate assembly angle according to the engine temperature when the internal combustion engine is started. Becomes possible.
[0051]
(3) The valve timing control device for an internal combustion engine according to any one of (1) and (2), wherein an electromagnetic actuator is used as an actuator of the assembly angle changing means.
[0052]
In this case, since the electromagnetic actuator is used, a large starting torque can be immediately obtained by energization at the time of starting the engine. Therefore, when starting the internal combustion engine, the assembly angle changing means can be quickly operated to the assembly angle position corresponding to the engine temperature.
[0053]
(D) Assembling angle changing means:
A radial guide provided on one of the driving rotating body and the driven rotating body,
An intermediate rotating body that is provided so as to be relatively rotatable with respect to the driving rotating body and the driven rotating body, and has a spiral guide on a surface facing the radial guide;
A movable guide portion that is displaceably engaged with the radial guide and the spiral guide;
A link that swingably connects a portion separated from the rotation center of the other one of the driving rotator and the driven rotator and the movable guide portion,
An operation force generator that generates a rotation operation force for rotating the intermediate rotating body,
The rotating operation force input to the intermediate rotating body is amplified by an engaging portion between the spiral guide and the movable guide, and is converted into an assembling angle operating force of the driving rotating body and the driven rotating body. The valve timing control device for an internal combustion engine according to any one of claims 1 and 2, and (a) to (c).
[0054]
In this case, since the force generated by the operating force generating unit is amplified and converted into an assembling angle operating force of the driving rotator and the driven rotator, the assembling angle can be increased even in the initial stage of engine start requiring a large operating force. Can be quickly changed to an angular position corresponding to the engine temperature.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is an exemplary sectional view of the same embodiment taken along line AA of FIG. 1;
FIG. 3 is an exemplary sectional view corresponding to FIG. 2 showing an operation state of the embodiment;
FIG. 4 is an exploded perspective view showing the same embodiment.
FIG. 5 is a view showing valve lift characteristics of the embodiment.
FIG. 6 is a diagram illustrating a relationship between a temperature and an assembly angle according to the first embodiment.
FIG. 7 is a flowchart showing control of the embodiment.
[Explanation of symbols]
1 camshaft 3 drive ring (drive rotary body)
4: Assembling angle changing means 7: driven shaft member (driven rotating body)
37 ... Oil temperature sensor (temperature detecting means)

Claims (2)

内燃機関のクランクシャフトによって回転駆動される駆動回転体と、カムシャフト若しくは同シャフトに結合された別体部材から成り、前記駆動回転体が必要に応じて相対回動できるように組み付けられた従動回転体と、前記駆動回転体と従動回転体の組付角を操作する組付角変更手段と、を備えた内燃機関のバルブタイミング制御装置において、
内燃機関の温度を検出する温度検出手段を設け、内燃機関の始動時の組付角を前記検出手段で検出された温度に応じて制御することを特徴とする内燃機関のバルブタイミング制御装置。
A driven rotor, which is rotationally driven by a crankshaft of an internal combustion engine, and a camshaft or a separate member coupled to the shaft, and the driven rotor is assembled such that the drive rotor can be relatively rotated as required. A valve timing control device for an internal combustion engine, comprising: a body; and an assembly angle changing unit configured to operate an assembly angle between the driving rotor and the driven rotor.
A valve timing control device for an internal combustion engine, comprising: temperature detection means for detecting the temperature of the internal combustion engine; and controlling an assembly angle at the time of starting the internal combustion engine in accordance with the temperature detected by the detection means.
吸気側動弁系に用いられる請求項1に記載の内燃機関のバルブタイミング制御装置において、前記温度検出手段による検出温度が低温時のときに、高温時のときよりも組付角を遅角側に制御することを特徴とする内燃機関のバルブタイミング制御装置。2. The valve timing control device for an internal combustion engine according to claim 1, which is used for an intake-side valve train. When the temperature detected by the temperature detecting means is low, the assembly angle is retarded more than when the temperature is high. A valve timing control device for an internal combustion engine, characterized in that:
JP2002322222A 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine Expired - Fee Related JP4233308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322222A JP4233308B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322222A JP4233308B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004156511A true JP2004156511A (en) 2004-06-03
JP4233308B2 JP4233308B2 (en) 2009-03-04

Family

ID=32802468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322222A Expired - Fee Related JP4233308B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4233308B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032415A (en) * 2005-07-27 2007-02-08 Nissan Motor Co Ltd Valve timing controller for engine
JP2008095550A (en) * 2006-10-06 2008-04-24 Denso Corp Valve timing adjusting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032415A (en) * 2005-07-27 2007-02-08 Nissan Motor Co Ltd Valve timing controller for engine
JP4677844B2 (en) * 2005-07-27 2011-04-27 日産自動車株式会社 Engine valve timing control device
JP2008095550A (en) * 2006-10-06 2008-04-24 Denso Corp Valve timing adjusting device
JP4600379B2 (en) * 2006-10-06 2010-12-15 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
JP4233308B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4749981B2 (en) Variable valve operating device for internal combustion engine
JP4776447B2 (en) Variable valve operating device for internal combustion engine
US8061311B2 (en) Variable valve actuating apparatus for internal combustion engine
JP2008303773A (en) Variable valve system of internal combustion engine
JP4804384B2 (en) Variable valve operating device and control device for internal combustion engine
JP5662264B2 (en) Variable valve operating device for internal combustion engine
JP2006112366A (en) Start controller of engine
JP2010138737A (en) Variable valve gear for internal combustion engine and controller of the same
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
JP2011085078A (en) Internal combustion engine control device and internal combustion engine control system
JP2012251483A (en) Variable valve gear of internal combustion engine and start control apparatus of internal combustion engine
JP4156346B2 (en) Valve timing control device for internal combustion engine
JP3736627B2 (en) Valve timing adjustment device
JP6027494B2 (en) Control device for variable valve timing mechanism
JP4295081B2 (en) Valve timing control device for internal combustion engine
JP4233308B2 (en) Valve timing control device for internal combustion engine
JP4415788B2 (en) Variable valve operating apparatus for internal combustion engine and control method thereof
JP4606473B2 (en) Valve timing control device for internal combustion engine, controller for the valve timing control device, and controller used for valve timing changing mechanism
JP4109972B2 (en) Valve timing control device for internal combustion engine
JP4109967B2 (en) Valve timing control device for internal combustion engine
JP5284232B2 (en) Internal combustion engine and control device for internal combustion engine.
JP4163482B2 (en) Valve timing control device for internal combustion engine
JP5379555B2 (en) Valve timing control device for internal combustion engine
JP2007016793A (en) Variable valve gear of internal combustion engine
JP4698696B2 (en) Valve timing control device for internal combustion engine and its controller

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees