JP2004151018A - Laminated gas sensing element - Google Patents

Laminated gas sensing element Download PDF

Info

Publication number
JP2004151018A
JP2004151018A JP2002318521A JP2002318521A JP2004151018A JP 2004151018 A JP2004151018 A JP 2004151018A JP 2002318521 A JP2002318521 A JP 2002318521A JP 2002318521 A JP2002318521 A JP 2002318521A JP 2004151018 A JP2004151018 A JP 2004151018A
Authority
JP
Japan
Prior art keywords
measured
gas chamber
oxygen
gas
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318521A
Other languages
Japanese (ja)
Inventor
Keigo Mizutani
圭吾 水谷
Tasuke Makino
太輔 牧野
Toru Katabuchi
亨 片渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2002318521A priority Critical patent/JP2004151018A/en
Priority to DE10339976A priority patent/DE10339976A1/en
Priority to US10/651,088 priority patent/US20040069629A1/en
Publication of JP2004151018A publication Critical patent/JP2004151018A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated gas sensing element highly accurately detecting a specific gas concentration by reducing the effect of oxygen coexisting in a measuring-object gas chamber. <P>SOLUTION: In a pump electrode 21 facing to the measuring-object gas chamber of an oxygen pump cell, the total length G of the width directional lengths orthogonally crossing with the longitudinal direction of clearance portions between the side faces 211 and 212 of the pump electrode 21 along the longitudinal direction of this laminated gas sensing element and the inside faces 111 and 112 of the measuring-object gas chamber 11 opposed to the side faces 211 and 212 is not more than 0.5mm. When the area of the pump electrode facing to the measuring-object gas chamber is taken as Se and the total of the area of the clearance portions between the side faces of the pump electrode along the longitudinal direction of the laminated gas sensing element and the inside faces of the measuring-object gas chamber opposed to the sides is taken as Sg, these values are set to satisfy the relationship of Sg/Se≤0.3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,自動車用内燃機関の排気系等に使用され,NOx濃度等の検出に利用できる積層型ガスセンサ素子に関する。
【0002】
【従来技術】
自動車用内燃機関等から排出される排気ガスを原因とする大気汚染は現代社会に深刻な問題を引き起こしており,排気ガス中の公害物質であるNOx等に対する浄化基準法規が年々厳しくなっている。
排気ガス中のNOx濃度を検出し,検出結果をエンジン燃焼制御モニタ,触媒モニタ等にフィードバックすれば,より効率よく排気ガス浄化を行うことができると考えられる。このような背景から,排気ガス中のNOx濃度を精度高く検出可能な積層型ガスセンサ素子が求められていた。
【0003】
ところで,従来よく知られた積層型ガスセンサ素子として,図16に示す構成の素子が挙げられる。
図16に示す積層型ガスセンサ素子9は,第1被測定ガス室11と対面するよう酸素ポンプセル92が配置され,該酸素ポンプセル92に電圧を印加することで,第1被測定ガス室11内にある酸素を素子外部ヘポンピングする。または,第1被測定ガス室11内へ素子外部の酸素をポンピングする。
そして,第1被測定ガス室11内の酸素濃度を検知可能な酸素モニタセル93を設け,この酸素モニタセル93が検出する第1被測定ガス室11内の酸素濃度が定常状態となるように,酸素ポンプセル92がフィードバック制御される。
【0004】
第1被測定ガス室11と連通する第2被測定ガス室12には,NOxを電極上で分解して生成した酸素イオンによるイオン電流を測定することで,NOx濃度を測定するよう構成したセンサセル94を設けておく。
上述したごとく第1被測定ガス室11内の酸素濃度は定常状態となるよう制御されているため,第2被測定ガス室12内の酸素濃度も一定となる。従って,センサセル94における電極間を移動する酸素イオンの量,即ちセンサセル94における酸素イオン電流の大きさはNOx濃度に対応する。
このように,第1及び第2被測定ガス室11,12に導入した被測定ガス中のNOx濃度を,素子外の雰囲気中の酸素濃度増減にかかわらず,精度高く測定することができる。
【0005】
【特許文献1】
特許第2885336号公報
【0006】
【解決しようとする課題】
ところで,被測定ガス中の酸素濃度が%のオーダーで存在し,NOxがppmのオーダーで存在する場合,非常に微量なNOxを精度よく測定するために,NOx検出に影響のでないレベルまで酸素を酸素ポンプセルによって排出し,被測定ガス室の酸素濃度を非常に少なくする必要がある。また,この問題はNOx以外の特定ガスを検出する際にも生じることがある。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,被測定ガス室に共存する酸素による影響を小さくし,高い精度で特定ガス濃度を検出可能な積層型ガスセンサ素子を提供しようとするものである。
【0008】
【課題の解決手段】
第1の発明は,所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,酸素イオン導電性の固体電解質板の表面に,一方のポンプ電極が上記被測定ガス室に面するように設けた一対のポンプ電極を有し,これら一対のポンプ電極へ通電することにより上記被測定ガス室に酸素を導入または排出し,上記被測定ガス室の酸素濃度を調整する酸素ポンプセルと,
酸素イオン導電性の固体電解質板の表面に,一方のセンサ電極が上記被測定ガス室に面するように設けた一対のセンサ電極を有し,これら一対のセンサ電極間に生じる酸素イオン電流に基づいて,上記被測定ガス室内の特定ガス濃度を検出するセンサセルとを有する積層型ガスセンサ素子であって,
上記酸素ポンプセルの上記被測定ガス室に面するポンプ電極において,
上記積層型ガスセンサ素子の長手方向に沿った上記ポンプ電極の側面と,該側面と対向する上記被測定ガス室の内側面とのクリアランス部の上記長手方向と直交する幅方向の長さの総計Gの最小値は0.5mm以下であることを特徴とする積層型ガスセンサ素子にある(請求項1)。
【0009】
第1の発明にかかる積層型ガスセンサ素子は,被測定ガス室に面するポンプ電極の側面と,該側面と対向する被測定ガス室の内側面とのクリアランス部の幅方向長さの総計Gの最小値が0.5mm以下と,十分小さくなっている。
【0010】
また,第2の発明は,所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,
酸素イオン導電性の固体電解質板の表面に,一方のポンプ電極が上記被測定ガス室に面するように設けた一対のポンプ電極を有し,これら一対のポンプ電極へ通電することにより上記被測定ガス室に酸素を導入または排出し,上記被測定ガス室の酸素濃度を調整する酸素ポンプセルと,
酸素イオン導電性の固体電解質板の表面に,一方のセンサ電極が上記被測定ガス室に面するように設けた一対のセンサ電極を有し,これら一対のセンサ電極間に生じる酸素イオン電流に基づいて,上記被測定ガス室内の特定ガス濃度を検出するセンサセルとを有する積層型ガスセンサ素子であって,
上記被測定ガス室に対し被測定ガスを導入する導入部よりガス流れ下流における上記酸素ポンプセルにおける上記被測定ガス室に面するポンプ電極の形成範囲において,
上記被測定ガス室に面するポンプ電極の面積をSe,上記積層型ガスセンサ素子の長手方向に沿った上記ポンプ電極の側面と該側面と対向する上記被測定ガス室の内側面との間のクリアランス部の面積の総計をSgとした場合,Sg/Se≦0.3であることを特徴とする積層型ガスセンサ素子である(請求項3)。
【0011】
第2の発明にかかる積層型ガスセンサ素子は,ポンプ電極の面積とクリアランス部の面積との間にSg/Se≦0.3なる関係が成立し,ポンプ電極の面積と比較してクリアランス部の面積が十分小さくなっている。
【0012】
ところで被測定ガス室においてポンプ電極の表面付近を流れる被測定ガス(後述する図3の矢線118)は上記ポンプ電極により含まれる酸素のイオン化が生じやすい。ここで発生した酸素イオンは一対のポンプ電極の間を酸素イオン電流となって流れ,被測定ガス室の外部に容易に排出される。
しかしながら,ポンプ電極の側面と該側面と対向する被測定ガス室の内側面との間を流れる被測定ガス(後述する図3の矢線119)はポンプ電極との距離が遠く,ここに含まれる酸素はポンプ電極によってイオン化され難い。
【0013】
ところでセンサセルにおける特定ガス濃度検出は,被測定ガス室に面するセンサ電極上で特定ガスを分解し,この分解により発生した酸素イオンから生じる一対のセンサ電極間に流れる酸素イオン電流に基づいて行う。
仮にセンサ電極上で被測定ガス室に含まれる酸素が分解された場合,特定ガスに由来する酸素イオンと酸素に由来する酸素イオンとが混じって,正確に特定ガス濃度が検出なくなるおそれある。
【0014】
第1の発明にかかる積層型ガスセンサ素子は,ポンプ電極の側面と被測定ガス室の内側面とのクリアランス部の総計が十分小さく(請求項1),または第2の発明にかかる積層型ガスセンサ素子は,ポンプ電極の面積に比べてクリアランス部の面積が十分小さく(請求項3),より多くの被測定ガスを酸素ポンプセルのポンプ電極上を通過させることができる。
従って,被測定ガス室の酸素濃度をより薄くして,特定ガス濃度検出に対する酸素の影響をより小さくし,精度の高い特定ガス濃度の測定が可能となる。
【0015】
以上,本発明によれば,被測定ガス室に共存する酸素による影響を小さくし,高い精度で特定ガス濃度を検出可能な積層型ガスセンサ素子を提供することができる。
【0016】
【発明の実施の形態】
第1の発明(請求項1),第2の発明(請求項3)における積層型ガスセンサ素子において,酸素ポンプセルのポンプ電極形状は,後述する図3に示すように長手方向と直交する幅方向に略均一な幅を備えた長方形,幅が不均一な形状(図5),長方形の4つの頂点を丸めた略楕円形(図12)等の各種の形状に構成することができる。
また,被測定ガス室の形状は,ポンプ電極と同様に長方形や略楕円形等に構成することができるが,内側面とポンプ電極の側面との間のクリアランス部をより小さくするために,ポンプ電極の形状と略同形状に構成することが好ましい。
【0017】
ここに第1の発明におけるクリアランス部の総計Gについて,積層型ガスセンサ素子をポンプ電極の表面を含む平面で切断した断面の模式図である図4を用いて説明する。
Sは被測定ガス室の内側面,Tはポンプ電極の側面を示す曲線で,U01とU02はそれぞれポンプ電極の長手方向における端部を通過する直線,U1〜U3はポンプ電極を横切る直線で,U01,U02,U1〜U3は全て積層型ガスセンサ素子の長手方向と直交する幅方向と平行な直線である。
各直線U01,U02,U1〜U3がSやTと交わる交点がS01〜S04,S11〜S16,T11〜T16である。
【0018】
図4において,Gは,同一の直線U1上における距離S11−T11,距離S12−T12を足した値,U2上におけるS13−T13,S14−T14を合計した値等となる。または,S01−S02,S03−S04の長さとなる。
そして,ポンプ電極の側面全体のいずれかにおいてGが0.5mm以下となれば第1の発明が成立する。
図4にかかるポンプ電極の場合は,直線U2上のS13−T13とT14−S14にかかるGが最小の部分となり,他の部分はこれより大きいため,この部分の距離が0.5mm以下であれば第1の発明が成立する。
なお,ポンプ電極の側面を示す曲線が複数ある場合も同様の方法でGを考えることができる。
【0019】
また,クリアランス部の総計Gは最小で0.5mm以下となる条件を満たせば第1の発明の効果を得ることができるが,最小で0.2mm以下とすることで,より高い検出精度を備えた積層型ガスセンサ素子を得ることができる。
また,クリアランス部の総計Gが0である,すなわちポンプ電極の側面が被測定ガス室の内側面と接触した状態にある場合に,最も検出精度の高い積層型ガスセンサ素子を得ることができる。
また,積層型ガスセンサ素子の長手方向とは,略断面長方形で柱状の積層型ガスセンサ素子の長軸方向である。
【0020】
次に,第1の発明において,上記クリアランス部の総計Gが0.5mm以下である部分の積層型ガスセンサ素子の長手方向に沿った長さがポンプ電極全体の上記長手方向に沿った長さに対して1/4以上を占めている時に,より検出精度の高い積層型ガスセンサ素子を得ることができる(請求項2)。
また,ポンプ電極全体の長さにおける1/2以上を,クリアランス部の総計Gが0.5mm以下である部分が占めている場合は,更に検出精度の高い優れた積層型ガスセンサ素子を得ることができる。
【0021】
また,第2の発明におけるポンプ電極の面積等について,積層型ガスセンサ素子をポンプ電極の表面を含む平面で切断した断面の模式図である図7を用いて説明する。
Sは被測定ガス室の内側面,Tはポンプ電極の側面を示す曲線で,点Vは被測定ガス導入部の中心位置,V0は点Vを通る幅方向と平行な直線,V1はポンプ電極の長手方向における端部を通過し,幅方向と平行な直線である。
第2の発明におけるポンプ電極の面積Seとは,曲線Tと直線V0にて囲まれた領域の面積であり,クリアランス部の面積の総計Sgとは,直線V0,V1曲線T,Sで囲まれた領域の面積である。
【0022】
なお,後述する図11に示すごとく,積層型ガスセンサ素子の端面から被測定ガスを導入する方式では,ポンプ電極全体がガス流れの下流側に含まれるため,電極全体の面積をSeとする。Sgは電極の長手方向の両端を通る幅方向の直線間によって区切られる領域となる。
このクリアランス部の面積Sgとポンプ電極の面積SeとについてSg/Se≦0.3であれば,第2の発明にかかる効果を得ることができる。
また,Sg=0である場合,すなわちポンプ電極の側面が被測定ガス室の内側面と接触した状態にある場合は,最も検出精度の高い積層型ガスセンサ素子を得ることができる。
【0023】
また,第1,第2の発明にかかる積層型ガスセンサ素子は2セルまたはそれ以上のセルを備えた構成のNOxセンサ素子やCOセンサ素子,HCセンサ素子に適用することができる。
【0024】
また,第1及び第2の発明において,酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極間に生じる電流値または起電力に基づいて,上記被測定ガス室内の酸素濃度を検出する酸素モニタセルを備えることが好ましい(請求項4)。
これにより被測定ガス室の酸素濃度を監視することができる。
【0025】
そして,例えば被測定ガス室の酸素濃度が所定の範囲内に納まるように酸素ポンプセルの作動を制御する等の構成を加えて,センサセルの一対の電極間に流れる酸素イオン電流がより正確に測定したい特定ガス濃度に対応するように積層型ガスセンサ素子を構成することができる。
なお,電流値に基づいて酸素濃度を検出する酸素モニタセルは限界電流式の酸素センサとして機能し,起電力に基づいて酸素濃度を検出する酸素モニタセルは酸素濃淡起電力式の酸素センサとして機能するよう構成する(後述する図1,実施例1参照)。
【0026】
【実施例】
以下に,図面を用いて第1の発明の実施例について説明する。
(実施例1)
本例にかかる積層型ガスセンサ素子について説明する。
本例の積層型ガスセンサ素子1は,図1に示すごとく,所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,酸素イオン導電性の固体電解質板16の表面に,一方のポンプポンプ電極21が上記被測定ガス室11に面するように設けた一対のポンプポンプ電極21,22を有し,これら一対のポンプポンプ電極21,22へ通電することにより上記被測定ガス室11に酸素を導入または排出し,上記被測定ガス室11の酸素濃度を調整する酸素ポンプセル2と,酸素イオン導電性の固体電解質板14の表面に,一方のセンサセンサ電極42が上記被測定ガス室12に面するように設けた一対のセンサセンサ電極41,42を有し,これら一対のセンサセンサ電極41,42間に生じる酸素イオン電流に基づいて,上記被測定ガス室12内の特定ガス濃度を検出するセンサセル4とを有する。
【0027】
そして,図3に示すごとく,上記酸素ポンプセル2の上記被測定ガス室11に面するポンプポンプ電極21において,上記積層型ガスセンサ素子1の長手方向に沿った上記ポンプポンプ電極21の側面211及び212と,該側面211及び212と対向する上記被測定ガス室11の内側面111及び112とのクリアランス部の上記長手方向と直交する幅方向に沿った長さの総計G1+G2=Gは0.5mm以下である。
【0028】
以下,詳細に説明する。
本例にかかる積層型ガスセンサ素子1は,酸素ポンプセル2を構成するシート状の固体電解質板16と,酸素モニタセル3,センサセル4を構成するシート状の固体電解質板14と,第1被測定ガス室11及び第2被測定ガス室12を構成するシート状のスペーサ15と,基準ガス室121,122を形成するシート状のスペーサ17,133,132と,各セル2,3,4を加熱するヒータ19とを,図1や図2に示すごとく,順次積層して構成する。
【0029】
第1被測定ガス室11及び第2被測定ガス室12は,素子外部から被測定ガスを導入する内室であり,図2に示すごとく,固体電解質板14,16との間に位置するスペーサ15に設けた2つの抜き穴110,120にて形成する。上記抜き穴110,120間には抜き穴110,120よりも幅細の絞り部102を設け,該絞り部102を境として,積層型ガスセンサ素子1の先端部側(図1及び図2における左側)から順に,抜き穴110により第1被測定ガス室11が,抜き穴120により第2被測定ガス室12を構成する。
【0030】
また,第1被測定ガス室11は,固体電解質板14を貫通する拡散抵抗手段としてのピンホール101を介して,素子の外部と連通する。
このピンホール101の穴径は,該ピンホール101を通過して第1被測定ガス室11及び第2被測定ガス室12に導入する被測定ガスの拡散速度が所定の速度となるよう適宜設定する。
【0031】
また,固体電解質板14には,素子外部側からピンホール101の開口端を覆うように多孔質アルミナ等よりなる多孔質保護層131を形成する。
これにより,第1被測定ガス室11及び第2被測定ガス室12内に位置するポンプ電極21,32,42の被毒や,ピンホール101の目詰まりを防止する。
【0032】
基準ガス室121,122は,一定の酸素濃度をもつ基準酸素濃度ガスとして大気を導入する内室である。
基準ガス室121は,固体電解質板16の下方に積層したスペーサ17に設けた抜き穴1210,基準ガス室122は,固体電解質板14の上方に積層したスペーサ133に設けた抜き穴1220にて形成する。
この抜き穴1210,1220は,それぞれ積層型ガスセンサ素子1の長手方向に伸びる溝としての通路部1211,1221を有し,この通路部1211,1221を通して大気を導入することができる。
【0033】
酸素ポンプセル2は,固体電解質板16と,該固体電解質板16を挟むように対向配置した一対のポンプ電極21,22とより構成する。
一対のポンプ電極21,22のうち,ポンプ電極21は,第1被測定ガス室11及び第2被測定ガス室12におけるガス流れ上流側に位置する第1被測定ガス室11に面して固体電解質板16に接して設け,他方の電極22は基準ガス室121に面して固体電解質板16に接して設ける。
【0034】
センサセル4は,固体電解質板14と,該固体電解質板14を挟むように対向配置した一対のセンサ電極41,42とより構成する。
一対のセンサ電極41,42のうち一方のセンサ電極42は,第1被測定ガス室11及び第2被測定ガス室12におけるガス流れ下流側に位置する第2被測定ガス室12に面して固体電解質板14に接して設け,他方のセンサ電極41は基準ガス室122に面して固体電解質板14に接して設ける。
【0035】
酸素モニタセル3は,固体電解質板14と,固体電解質板14を挟むように対向配置した一対のモニタ電極31,32とより構成する。
一対のモニタ電極31,32のうち一方のモニタ電極32は,第1被測定ガス室11及び第2被測定ガス室12におけるガス流れ下流側に位置する第2被測定ガス室12に面して固体電解質板14に接して設け,他方のモニタ電極31は基準ガス室122に面して固体電解質板14に接して設ける。
【0036】
また,図2に示すように,これら各電極21,22,31,32,41,42には,電気信号を取出したり,電源から電力を供給するために,電極リード部211,221,311,321,411,421が一体に形成されている。
また,固体電解質板14,16上のポンプ電極21等以外の部位,特に電極リード部211等の形成部位には,固体電解質板14,16と電極リード部211,321,421等の間にアルミナ等の絶縁層を形成しておくことが好ましい(図示略)。
【0037】
また,図2に示すように,各セル2,3,4の電極21等は,それぞれ各リード部221等及び各スペーサ17等に形成したスルーホール180を通して,積層型ガスセンサ素子1の外部に露出形成された外部端子部310,320,410,420,210,220に電気的に接続する。
外部端子部310等に適当なコネクタを介し圧着やろう付け等によりリード線を接続することで,外部に設けた回路(詳細は後述する)と各セル2,3,4との間で電気信号のやりとり等が可能となる。
また,符合322,422は電極リード部321,421と導通する内部端子である。
【0038】
酸素ポンプセル2はポンプ電源251と電流計252を備えたポンプ回路250に,酸素モニタセル3は電源351と電流計352を備えたモニタ回路350に,センサセル4は電源451と電流計452を備えたセンサ回路450に上記外部端子部310等を介して接続する。
【0039】
ヒータ19は,発熱部191を外部電源(図示略)からの給電により発熱させ,各セル2,3,4を活性温度まで加熱するために設けてある。
上記ヒータ19は,アルミナ製のヒータ基板195の上面に,通電発熱する発熱部191をパターニング形成し,この発熱部191の上面(スペーサ17側の面)に,絶縁のため被覆板196を積層してなる。
なお,図2より明らかであるが,ヒータ端子部190,外部端子部210,220は積層型ガスセンサ素子1のヒータ19側の表面(図面下方)に,外部端子部310,320,410,420は,スペーサ132側の表面(図面上方)に設けてある。
【0040】
次に,酸素ポンプセル2にかかるポンプ電極21と第1被測定ガス室11との寸法等について以下に説明する。
図3に示すごとく,ポンプ電極21,第1被測定ガス室11はいずれも積層型ガスセンサ素子1長手方向と同一方向が長辺となる長方形である。ポンプ電極21の一方の側面211の延長線がM1,該側面211と対向する内側面111の延長線がN1で,M1とN1との距離はポンプ電極21の端部213から端部214の範囲において均一でG1となる。
また,ポンプ電極21の他方の側面212の延長線がM2,対向する内側面112の延長線がN2で,M2とN2との距離はポンプ電極21の端部213から端部214の範囲において均一でG2となる。
よって,ポンプ電極21の側面211,212と,対向する内側面111,112とのクリアランス部の総計GはG1+G2となり,本例にかかる積層型ガスセンサ素子1においてGは0.5mm以下となるよう構成する。
【0041】
次に,本例にかかる積層型ガスセンサ素子1の各部の組成について説明する。
各スペーサ17,15,133,132はアルミナ等の絶縁材料よりなる。
酸素ポンプセル2,酸素モニタセル3,センサセル4を構成するための固体電解質板14,16は,ジルコニアやセリア等の酸素イオン導電性を有するセラミックよりなる。
酸素ポンプセル2及び酸素モニタセル3の一方の電極21,32には,第1被測定ガス室11及び第2被測定ガス室12におけるNOxの分解を抑制するため,NOx分解活性の低い電極を用いることが好ましく,具体的には,PtとAuを含有する多孔質サーメット電極を好適に用いることができる。この場合,上記多孔質サーメット電極において,金属成分中のAuの含有量は,1〜10重量%程度とすることが好ましい。
【0042】
また,センサセル4の第2被測定ガス室12に面したセンサ電極42は,被測定ガス中のNOxを分解するために,NOxの分解活性の高い電極を用いることが好ましく,具体的には,PtとRhを含有する多孔質サーメット電極を好適に用いることができる。この場合,上記多孔質サーメット電極において,金属成分中のRhの含有量は10〜50重量%程度とすることが好ましい。
【0043】
固体電解質板14,16,スペーサ15,17,133,132,アルミナ絶縁板196及びヒータシート195は,ドクターブレード法や押し出し成形法等により,シート形状に成形することができる。
また,上記の各ポンプ電極21等,リード211等及び端子部210等は,スクリーン印刷等により形成することができる。そして,各シートは積層して焼成することにより,一体化される。
【0044】
また,酸素ポンプセル2,酸素モニタセル3,センサセル4の基準ガス室121,122と対面する電極22,31,41には,例えば,Pt多孔質サーメット電極を用いることが好ましい。
そして,発熱部191及びヒータリード部192は,Ptとアルミナ含有セラミックとからなるサーメット材料より構成する。
【0045】
次に,上記構成の積層型ガスセンサ素子の動作原理を説明する。
被測定ガスは多孔質保護層131,ピンホール101を通過して第1被測定ガス室11に導入される。このとき導入されるガス量は多孔質保護層131,ピンホール101の拡散抵抗により定まる。その後,被測定ガスは絞り部102を通過して第2被測定ガス室12に導入される。
【0046】
酸素ポンプセル2の一対のポンプ電極21,22に基準ガス室121側の電極22が+極となるようにポンプ電源にて電圧を印加した場合,上記第1被測定ガス室11側のポンプ電極21上で被測定ガス中の酸素が還元されて酸素イオンとなり,ポンピング作用により電極22側に排出される。
【0047】
逆に,第1被測定ガス室11側のポンプ電極21が+極となるように電圧を印加した場合,基準ガス室121側の電極22上で酸素が還元されて酸素イオンとなり,ポンピング作用によりポンプ電極21側に排出される。
この酸素ポンプ作用を利用して第1被測定ガス室11,これと連通した第2被測定ガス室12の酸素濃度を制御することができる。
なお,このとき,ポンプ電極21の上を通過する矢線118のような被測定ガスの酸素は充分イオン化されるが,矢線119を通過する被測定ガスからはあまり酸素がイオン化しない。
【0048】
酸素モニタセル3の一対のモニタ電極31,32に,基準ガス室122側のモニタ電極31が+極となるように所定の電圧(例えば0.40V)を印加することで,上記第2被測定ガス室12側のモニタ電極32上で被測定ガス中の酸素が還元されて酸素イオンとなり,ポンピング作用によりモニタ電極31側に排出される。
モニタ電極32はNOxの分解に不活性なPt−Auサーメット電極であるため,モニタ電極31,32間に流れる酸素イオン電流は,多孔質保護層131,ピンホール101,第1被測定ガス室11等を通過して,モニタ電極32に到達する被測定ガス中の酸素量に依存し,NOx量には依存しない。
従って,このモニタ電極31,32間の電流値が所定の一定値(例えば,0.2μA)となるように,酸素ポンプセル2のポンプ電極21,22間の印加電圧を制御すれば,第2被測定ガス室12を常に一定の酸素濃度となるよう制御できる。
【0049】
センサセル4の一対のセンサ電極41,42に,基準ガス室122側のセンサ電極41が+極となるように所定の電圧(例えば0.40V)を印加する。センサ電極42は,NOxの分解に活性なPt−Rhサーメット電極であるため,上記第2被測定ガス室12側のセンサ電極42上で被測定ガス中の酸素やNOxが還元されて酸素イオンとなり,ポンピング作用によりセンサ電極41側に排出される。
【0050】
そして,図1に示すごとく,本例にかかる積層型ガスセンサ素子1では,酸素モニタセル3のモニタ電極31,32間の電流値が一定値(例えば0.2μA)となるように,酸素ポンプセル2を制御する。
このとき,被測定ガス中にNOxが存在しなければ,センサセル4のセンサ電極41,42間の電流値も一定値(例えば0.2μA)となる。一方,被測定ガス中にNOxが存在すると,NOx濃度に応じて電流値が増加する。これにより,被測定ガス中のNOx濃度が検出可能となる。
【0051】
次に,本例の作用効果について説明する。
本例の積層型ガスセンサ素子1は,図3に示すごとく,被測定ガス室11に面するポンプ電極21の側面211,212と,対向する内側面111,112とのクリアランス部の総計Gが0.5mm以下と,十分小さくなっている。
よって,より多くの被測定ガスを酸素ポンプセル2のポンプ電極21上を矢線118に示すように通過させることができる。
従って,被測定ガス室11,12の酸素濃度をより薄くして,NOx濃度検出に対する酸素の影響をより小さくし,精度の高い特定ガス濃度の測定が可能となる。
【0052】
以上,本発明によれば,被測定ガス室に共存する酸素による影響を小さくし,高い精度で特定ガス濃度(本例はNOx)を検出可能な積層型ガスセンサ素子を提供することができる。
【0053】
また,図4は不定形のポンプ電極21及び第1の被測定ガス室11を持つ場合についての説明図である。
図4では,GはS01−S02,S11−T11の距離+T12−S12の距離・・・等といった具合に場所ごとに異なる。
このような場合,最も小さなGが0.5mm以下であれば本例にかかる効果を得ることができる。
【0054】
(実施例2)
本例は,場所によってクリアランス部の総計Gが異なるポンプ電極21を備えた積層型ガスセンサ素子について説明する。
図5に示すごとく,本例のポンプ電極21は,図面左方の側面211と対向する内側面111との距離は右方より広くてG1’,右方はG1,図面左方の側面212と対向する内側面112との距離は右方より広くてG2’,右方はG2である。G1,G2にかかる部分の幅太のポンプ電極21の長手方向に沿った長さはLで,ポンプ電極21全体の長さはLeである。
【0055】
本例にかかる積層型ガスセンサ素子において,図面左方のクリアランス部の総計はG1’+G2’=0.8mm,図面右方のクリアランス部の総計はG1+G2=0.4mm,Le=6mm,L=4mmである。
【0056】
従って,クリアランス部の総計Gが0.5mm以下である部分の長さは,ポンプ電極全体の長さに対して1/4以上を占めており,より精度の高い積層型ガスセンサ素子を得ることができる(詳細は実施例4の測定参照)。
なお,本例の積層型ガスセンサ素子のその他の構成は実施例1と同様である。
【0057】
(実施例3)
本例は,実施例1と同様の構成で,ポンプ電極の面積に関して以下に示す条件を満たした積層型ガスセンサ素子について説明する。
図6に示すごとく,本例のポンプ電極21は,実施例1と同形である。被測定ガスの導入路となるピンホール101(実施例1の図1参照)の中心位置を図6に投影した位置がVで,該Vを通り幅方向に平行な直線がV0となる。また,ポンプ電極21において,長手方向の第2被測定ガス室12側の端部を通る幅方向に平行な直線がV1となる。
【0058】
本例にかかる積層型ガスセンサ素子は,V0よりも図面右方のポンプ電極21の表面積(図6において斜線のハッチングを付した面積)がSeで10mm,被測定ガス室の内側面111,112,ポンプ電極21の側面211,212,直線V0及びV1で囲まれた面積(図6において点々のハッチングを付した面積)Sgが1.5mmで,Sg/Se≦0.3である。
【0059】
本例の積層型ガスセンサ素子1は,図6に示すごとく,被測定ガス室11に面するポンプ電極21のV0より右側の破線のハッチングを付した面積Seに比べて,内側面111と側面211等に囲まれて点々のハッチングを付した面積Sgが充分小さくなって,Sg/Se≦0.3となっている。
よって,より多くの被測定ガスを酸素ポンプセルのポンプ電極21上を通過させることができる。
従って,被測定ガス室11,12の酸素濃度をより薄くして,NOx濃度検出に対する酸素の影響をより小さくし,精度の高い特定ガス濃度の測定が可能となる。
その他,積層型ガスセンサ素子の詳細な構成は実施例1と同様である。
【0060】
また,図7は不定形のポンプ電極21及び第1の被測定ガス室11を持つ場合についての説明図である。
この場合も図6と同様に,ポンプ電極のV0より右側の面積Seに比べて,V0,V1,T及びSで囲まれた面積Sgが充分小さくなって,Sg/Se≦0.3であれば,本例と同様の効果を得ることができる。
【0061】
(実施例4)
本例は各種積層型ガスセンサ素子について検出誤差を測定して,それぞれ性能評価を行った。
実施例1に示すごとき積層型ガスセンサ素子において,Gを違えた試料をいくつか準備して,それぞれについて検出誤差についての測定を行った。
すなわち,G=0の場合の検出誤差を1として,Gが異なる他の積層型ガスセンサ素子についても同様に検出誤差を測定し,まとめて図8に記載した。
【0062】
検出誤差の測定方法について説明する。
Gの異なる積層型ガスセンサ素子を準備し,100ppmのNOを含有する被測定ガス中にさらし,被測定ガス中の酸素濃度を10ppm〜20%まで変化させたときのNOx濃度の検出誤差を測定した。これは,クリアランスが大きくなる(すなわちGが大きくなる)と,酸素ポンプセルで排出できない酸素が多くなるため,酸素濃度による検出誤差が大きくなることに基づく。
図8より,Gが大きくなると検出誤差が大きくなり,高い検出精度を得るにはG≦0.5以下(好ましくは0.2以下)であることが必要だと判明した。
【0063】
また,同様の試験を,実施例2に示すごとき積層型ガスセンサ素子において,L/Leを違えた試料をいくつか準備して検出誤差を測定した。
L/Le=1の時の検出誤差を1として,L/Leが異なる他の積層型ガスセンサ素子についても同様に検出誤差を測定して,まとめて図9に記載した。
図9より,L/Leが小さくなると検出誤差が増大するため,G≦0.5mmとした上で,より高い検出精度を得るためにL/Leを0.25以上とすることが望ましいことが分かった。
【0064】
また,同様の試験を,実施例3に示すごとき積層型ガスセンサ素子において,Sg/Seを違えた試料をいくつか準備して検出誤差を測定した。
Sg/Se=0の時の検出誤差を1として,Sg/Seが異なる他の積層型ガスセンサ素子についても同様に検出誤差を測定して,まとめて図10に記載した。
図10より,Sg/Seが大きくなると検出誤差が増大するため,高い検出精度を得るためにSg/Seを0.3以下であることが必要だと判明した。
【0065】
(実施例5)
本例は,図11に示すごとく,端面150に第1被測定ガス室11に抜けるピンホール103を設け,ここから被測定ガスを第1被測定ガス室11に導入するよう構成した積層型ガスセンサ素子である。
このような構成にかかる積層型ガスセンサ素子であっても,実施例1〜実施例3に示すような条件でポンプ電極21や第1被測定ガス室11を構成することで,実施例1〜実施例3と同様の効果が得られることが分かった。
なお,この構成の場合にかかる実施例3に示したSeはポンプ電極21の表面積となる。ポンプ電極21全体が被測定ガスのガス流れ下流に含まれるためである。
【0066】
(実施例6)
本例は,図12,図13に示すごとく,ポンプ電極21,第1被測定ガス室11が共に楕円である積層型ガスセンサ素子1である。
図12に示すごとく,長手方向に沿ったポンプ電極21の側面211や212と,該側面211や212と対向する内側面111や112との幅方向の長さの総計G1+G2=Gを0.5mm以下とすることで,実施例1と同様の作用効果を得ることができる。
【0067】
また,図13に示すごとく,Sは第1被測定ガス室11の内側面,Tはポンプ電極21の側面を示す曲線で,点Vは被測定ガス導入部となるピンホール(図示略)の中心位置,V0は点Vを通る幅方向と平行な直線,V1はポンプ電極21の長手方向における端部を通過し,幅方向と平行な直線とした場合,曲線Tと直線V0にて囲まれた部分がポンプ電極の面積Se,直線V0,V1曲線T,Sで囲まれた部分がクリアランス部の面積の総計Sgとなる。
これについてSe/Sg≦0.3とすることで,実施例3と同様の作用効果を得ることができる。
【0068】
(実施例7)
本例にかかる積層型ガスセンサ素子1は,図14に示すごとく,素子の各部構成は実施例1と略同じであるが回路構成が異なる。
すなわち,ポンプ回路250は電源251と電流計252とを備え,予め求めておいた酸素ポンプセル2に対する印加電圧と酸素ポンプセル2に流れる電流の関係に基づいて,酸素ポンプ電流が限界電流と一致するように,酸素濃度に応じた電圧を印加する。
これにより,第1被測定ガス室11と第2被測定ガス室12の酸素濃度を所定の低濃度に制御することができる。
【0069】
この方法で第1被測定ガス室11,第2被測定ガス室12の酸素濃度を制御すると,実施例1にかかる酸素モニタセルに基づいた制御に比べて,第2被測定ガス室12内の酸素濃度は変動しやすく,したがってセンサセル4のセンサ電極41,42間に流れる電流をそのままセンサ信号とするとNOxの検出精度が悪化する。
そこで,センサセル4のセンサ電極41,42間に流れる電流と酸素モニタセル3のモニタ電極31,32間に流れる電流との差を電流差検出回路459において検出し,この値をセンサ信号とすることにより,第2被測定ガス室12内の酸素濃度変動の影響を減らして,被測定ガス中の酸素濃度に依存しないより正確なNOx濃度にかかるセンサセル出力を得ることができる。
【0070】
このような積層型ガスセンサ素子1に,図3,図5,図7,図11〜図13にかかるポンプ電極21を設けることで,他の実施例と同様に,測定精度の高い素子を得ることができる。
【0071】
(実施例8)
本例にかかる積層型ガスセンサ素子6は,図15に示すごとく,第2の酸素ポンプセル5を設けた4セル構成素子である。
本例の積層型ガスセンサ素子1は,実施例1と同様のヒータ19に基準ガス室640用のスペーサ64,酸素モニタセル3とセンサセル4を設けた固体電解質板63,第1被測定ガス室11,第2被測定ガス室12用のスペーサ62,酸素ポンプセル2と第2酸素ポンプセル5用の固体電解質板61を積層して構成した。
【0072】
酸素ポンプセル2は,第1被測定ガス室11に面したポンプ電極21と,多孔質保護層131で覆われて素子外部の被測定ガスにさらされた電極22を有し,電源251を備えたポンプ回路250に接続される。
モニタセル3は,第1被測定ガス室11に面したモニタ電極32と基準ガス室640に面したモニタ電極31を有し,電圧計357を備えた回路350に接続される。
センサセル4は,第2被測定ガス室12に面したセンサ電極42と基準ガス室640に面したセンサ電極41を有し,電流計457を備えた回路450に接続される。
また,モニタ電極31,41は一体の電極である。
電圧計357と電源251との間には,電圧計357で検出した電圧値に基づいて酸素ポンプセル2の電源251を制御する制御回路255が接続される。
【0073】
第2酸素ポンプセル5は,第1酸素ポンプセル2の電極22と一体に形成した電極51と,第2被測定ガス室12にさらされる電極52を有し,電源551を備えた回路550に接続される。
【0074】
実施例1では,第2被測定ガス室12の酸素濃度を酸素モニタセル3に流れる電流値により検出したが,本例は,酸素モニタセル3のモニタ電極31,32間に発生する起電力から検出する。
この場合の作動の一例を図9に基づいて説明する。
酸素モニタセル3のモニタ電極32は第1被測定ガス室11に面し,モニタ電極31は大気が導入される基準ガス室640に面している。モニタ電極31,32間には,第1被測定ガス室11と基準ガス室640との酸素濃度の違いにより,ネルンストの式に基づいた起電力が発生する。
【0075】
基準ガス室640の酸素濃度は一定であるので,モニタ電極31,32間に発生する起電力は第1被測定ガス室11の酸素濃度を反映する事になる。したがって,モニタ電極31,32間に発生する起電力が所定の一定値(例えぱ0.20V)になるように酸素ポンプセル2のポンプ電極21,22間の印加電圧を制御すれぱ,第2被測定ガス室12へ流れ込む酸素濃度を一定に制御できる。
【0076】
さらに,本例では,第2酸素ポンプセル5が形成してあり,酸素ポンプセル2で排出できずに第2被測定ガス室12に流入した酸素を外部に排気する。
これにより,第2被測定ガス室12内の酸素濃度はほぽ0となり,センサセル4により,高精度なNOx濃度測定が可能となる。
【0077】
このような積層型ガスセンサ素子1に,図3,図5,図7,図11〜図13にかかるポンプ電極21を設けることで,他の実施例と同様に,測定精度の高い素子を得ることができる。
【図面の簡単な説明】
【図1】実施例1における,(a)積層型ガスセンサ素子の長手方向の断面説明図,(b)幅方向の断面説明図(図1(a)のA−A矢視断面説明図)。
【図2】実施例1における,積層型ガスセンサ素子の斜視展開図。
【図3】実施例1における,ポンプ電極と第1被測定ガス室とにおいて,側面と内側面とのクリアランス部の総計を示す平面図(図1(a)のB−B矢視断面説明図)。
【図4】実施例1における,不定形のポンプ電極及び第1の被測定ガス室におけるクリアランス部の総計についての説明図。
【図5】実施例2における,ポンプ電極の幅が部分的に異なる積層型ガスセンサ素子の断面説明図。
【図6】実施例3における,被測定ガス室に面するポンプ電極の面積とクリアランス部の面積総計とを示す積層型ガスセンサ素子の断面説明図。
【図7】実施例3における,不定形のポンプ電極及び第1の被測定ガス室におけるポンプ電極の面積とクリアランス部の面積総計についての説明図。
【図8】実施例4における,積層型ガスセンサ素子においてクリアランス部の長さの総計Gと検出誤差との関係を示す線図。
【図9】実施例4における,積層型ガスセンサ素子においてL/Leと検出誤差との関係を示す線図。
【図10】実施例4における,積層型ガスセンサ素子において,被測定ガス室に面するポンプ電極の面積Seとクリアランス部の面積の総計Sgとの間の比Sg/Seと検出誤差との関係を示す線図。
【図11】実施例5における,端面から被測定ガスを被測定ガス室に導入するよう構成した積層型ガスセンサ素子の断面説明図。
【図12】実施例6における,ポンプ電極が楕円の積層型ガスセンサ素子についてG1及びG2を図示した断面説明図。
【図13】実施例6における,ポンプ電極が楕円の積層型ガスセンサ素子についてSe及びSgを図示した断面説明図。
【図14】実施例7における,酸素ポンプセルに対する印加電圧と酸素ポンプセルに流れる電流に基づいて制御する構成の積層型ガスセンサ素子の(a)長手方向の断面説明図,(b)幅方向の断面説明図(図14(a)のC−C矢視断面説明図)。
【図15】実施例8における,第1と第2の酸素ポンプセルを備えた積層型ガスセンサ素子の説明図。
【図16】従来における,積層型ガスセンサ素子の説明図。
【符号の説明】
1...積層型ガスセンサ素子,
11,12...第1及び第2被測定ガス室,
14,16...固体電解質板,
2...酸素ポンプセル,
21,22...ポンプ電極,
3...酸素モニタセル,
31,32...モニタ電極,
4...センサセル,
41,42...センサ電極,
[0001]
【Technical field】
The present invention relates to a stacked gas sensor element used for an exhaust system of an internal combustion engine for a vehicle and used for detecting NOx concentration and the like.
[0002]
[Prior art]
Air pollution caused by exhaust gas emitted from automobile internal combustion engines and the like causes serious problems in modern society, and purification standards and regulations for NOx, etc., which are pollutants in exhaust gas, are becoming stricter every year.
If the NOx concentration in the exhaust gas is detected and the detection result is fed back to an engine combustion control monitor, a catalyst monitor, etc., it is considered that the exhaust gas can be more efficiently purified. From such a background, a stacked gas sensor element capable of detecting the NOx concentration in exhaust gas with high accuracy has been demanded.
[0003]
Meanwhile, as a conventionally well-known stacked gas sensor element, an element having a configuration shown in FIG. 16 is exemplified.
In the stacked gas sensor element 9 shown in FIG. 16, an oxygen pump cell 92 is arranged so as to face the first measured gas chamber 11, and by applying a voltage to the oxygen pump cell 92, the oxygen gas is supplied into the first measured gas chamber 11. Some oxygen is pumped outside the device. Alternatively, oxygen outside the element is pumped into the first measured gas chamber 11.
An oxygen monitor cell 93 capable of detecting the oxygen concentration in the first measured gas chamber 11 is provided. The oxygen monitor cell 93 detects the oxygen concentration in the first measured gas chamber 11 so that the oxygen concentration in the first measured gas chamber 11 becomes a steady state. The pump cell 92 is feedback-controlled.
[0004]
A sensor cell configured to measure a NOx concentration by measuring an ion current due to oxygen ions generated by decomposing NOx on an electrode is provided in a second measured gas chamber 12 communicating with the first measured gas chamber 11. 94 is provided.
As described above, since the oxygen concentration in the first measured gas chamber 11 is controlled to be in a steady state, the oxygen concentration in the second measured gas chamber 12 is also constant. Therefore, the amount of oxygen ions moving between the electrodes in the sensor cell 94, that is, the magnitude of the oxygen ion current in the sensor cell 94 corresponds to the NOx concentration.
As described above, the NOx concentration in the gas to be measured introduced into the first and second gas-to-be-measured chambers 11 and 12 can be measured with high accuracy irrespective of the increase or decrease in the oxygen concentration in the atmosphere outside the element.
[0005]
[Patent Document 1]
Japanese Patent No. 2885336
[0006]
[Problem to be solved]
By the way, when the oxygen concentration in the gas to be measured is on the order of% and NOx is on the order of ppm, in order to accurately measure a very small amount of NOx, the oxygen is reduced to a level that does not affect the NOx detection. It is necessary to discharge the gas by an oxygen pump cell and to make the oxygen concentration in the gas chamber to be measured extremely low. This problem may also occur when a specific gas other than NOx is detected.
[0007]
The present invention has been made in view of such a conventional problem, and aims to provide a stacked gas sensor element capable of reducing the influence of oxygen coexisting in a gas chamber to be measured and detecting a specific gas concentration with high accuracy. Things.
[0008]
[Means for solving the problem]
According to a first aspect of the present invention, a measured gas chamber for introducing a measured gas under a predetermined diffusion resistance, and a surface of an oxygen ion conductive solid electrolyte plate, and one pump electrode faces the measured gas chamber. An oxygen pump cell having a pair of pump electrodes provided as described above, and introducing or discharging oxygen into or from the measured gas chamber by applying a current to the pair of pump electrodes to adjust the oxygen concentration of the measured gas chamber;
On the surface of the oxygen ion conductive solid electrolyte plate, there is provided a pair of sensor electrodes provided so that one sensor electrode faces the gas chamber to be measured, and based on an oxygen ion current generated between the pair of sensor electrodes. A gas sensor element for detecting a specific gas concentration in the gas chamber to be measured.
In the pump electrode facing the measured gas chamber of the oxygen pump cell,
The total length G of the clearance in the width direction orthogonal to the longitudinal direction of the clearance between the side surface of the pump electrode along the longitudinal direction of the stacked gas sensor element and the inner surface of the gas chamber to be measured facing the side surface. Has a minimum value of 0.5 mm or less in the laminated gas sensor element (claim 1).
[0009]
The stacked gas sensor element according to the first invention is characterized in that the total length G in the width direction of the clearance between the side surface of the pump electrode facing the measured gas chamber and the inner side surface of the measured gas chamber facing the side surface. The minimum value is 0.5 mm or less, which is sufficiently small.
[0010]
Further, a second invention provides a measured gas chamber for introducing a measured gas under a predetermined diffusion resistance,
A pair of pump electrodes is provided on the surface of the oxygen-ion conductive solid electrolyte plate so that one pump electrode faces the gas chamber to be measured. An oxygen pump cell for introducing or discharging oxygen into the gas chamber and adjusting the oxygen concentration in the gas chamber to be measured;
On the surface of the oxygen ion conductive solid electrolyte plate, there is provided a pair of sensor electrodes provided so that one sensor electrode faces the gas chamber to be measured, and based on an oxygen ion current generated between the pair of sensor electrodes. A gas sensor element for detecting a specific gas concentration in the gas chamber to be measured.
In the formation range of the pump electrode facing the measured gas chamber in the oxygen pump cell downstream of the gas flow from the inlet for introducing the measured gas into the measured gas chamber,
The area of the pump electrode facing the measured gas chamber is Se, and the clearance between the side surface of the pump electrode along the longitudinal direction of the stacked gas sensor element and the inner surface of the measured gas chamber facing the side surface. When the total area of the parts is Sg, the laminated gas sensor element is characterized by Sg / Se ≦ 0.3 (claim 3).
[0011]
In the stacked gas sensor element according to the second aspect of the present invention, a relationship of Sg / Se ≦ 0.3 is established between the area of the pump electrode and the area of the clearance, and the area of the clearance is compared with the area of the pump electrode. Is small enough.
[0012]
By the way, in the gas to be measured (the arrow 118 in FIG. 3 described later) flowing near the surface of the pump electrode in the gas to be measured, ionization of oxygen contained by the pump electrode is likely to occur. The oxygen ions generated here flow between the pair of pump electrodes as an oxygen ion current, and are easily discharged to the outside of the gas chamber to be measured.
However, the gas to be measured flowing between the side surface of the pump electrode and the inner surface of the gas chamber to be measured opposing the side surface (arrow 119 in FIG. 3 described later) is far from the pump electrode and is included here. Oxygen is not easily ionized by the pump electrode.
[0013]
The detection of the specific gas concentration in the sensor cell is performed based on an oxygen ion current flowing between a pair of sensor electrodes generated from oxygen ions generated by decomposition of the specific gas on the sensor electrode facing the gas chamber to be measured.
If oxygen contained in the measured gas chamber is decomposed on the sensor electrode, oxygen ions derived from the specific gas and oxygen ions derived from oxygen may be mixed, and the specific gas concentration may not be detected accurately.
[0014]
The stacked gas sensor element according to the first invention has a sufficiently small total clearance between the side surface of the pump electrode and the inner surface of the gas chamber to be measured (claim 1), or the stacked gas sensor element according to the second invention. The area of the clearance portion is sufficiently smaller than the area of the pump electrode (claim 3), so that more gas to be measured can pass through the pump electrode of the oxygen pump cell.
Accordingly, the oxygen concentration in the gas chamber to be measured is made thinner, the influence of oxygen on the detection of the specific gas concentration is made smaller, and the measurement of the specific gas concentration with high accuracy becomes possible.
[0015]
As described above, according to the present invention, it is possible to provide a stacked gas sensor element capable of reducing the influence of oxygen coexisting in a measured gas chamber and detecting a specific gas concentration with high accuracy.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the stacked gas sensor element according to the first invention (claim 1) and the second invention (claim 3), the shape of the pump electrode of the oxygen pump cell is in the width direction orthogonal to the longitudinal direction as shown in FIG. Various shapes such as a rectangle having a substantially uniform width, a shape having an uneven width (FIG. 5), and a substantially elliptical shape having four rounded vertexes (FIG. 12) can be used.
The shape of the gas chamber to be measured can be rectangular or substantially elliptical, as with the pump electrode. However, in order to make the clearance between the inner surface and the side surface of the pump electrode smaller, It is preferable to configure the electrode to have substantially the same shape as that of the electrode.
[0017]
Here, the total G of the clearance portions in the first invention will be described with reference to FIG. 4 which is a schematic view of a cross section of the stacked gas sensor element cut along a plane including the surface of the pump electrode.
S is the inner surface of the gas chamber to be measured, T is a curve showing the side surface of the pump electrode, U01 and U02 are straight lines passing through the ends in the longitudinal direction of the pump electrode, U1 to U3 are straight lines crossing the pump electrode, U01, U02, U1 to U3 are all straight lines parallel to the width direction orthogonal to the longitudinal direction of the stacked gas sensor element.
The intersections where the straight lines U01, U02, U1 to U3 intersect S and T are S01 to S04, S11 to S16, and T11 to T16.
[0018]
In FIG. 4, G is a value obtained by adding the distances S11-T11 and S12-T12 on the same straight line U1, a value obtained by summing S13-T13 and S14-T14 on U2, and the like. Alternatively, the length is S01-S02 and S03-S04.
The first invention is established when G is 0.5 mm or less on any of the side surfaces of the pump electrode.
In the case of the pump electrode shown in FIG. 4, the G on S13-T13 and T14-S14 on the straight line U2 is the smallest part, and the other parts are larger than this. Therefore, even if the distance of this part is 0.5 mm or less. Thus, the first invention is established.
Note that G can be considered in the same manner when there are a plurality of curves indicating the side surfaces of the pump electrode.
[0019]
The effect of the first invention can be obtained by satisfying the condition that the total amount G of the clearance portion is 0.5 mm or less at the minimum. A stacked gas sensor element can be obtained.
In addition, when the total G of the clearances is 0, that is, when the side surface of the pump electrode is in contact with the inner surface of the gas chamber to be measured, a stacked gas sensor element with the highest detection accuracy can be obtained.
The longitudinal direction of the stacked gas sensor element is the long axis direction of the columnar stacked gas sensor element having a substantially rectangular cross section.
[0020]
Next, in the first invention, the length of the portion in which the total G of the clearances is 0.5 mm or less along the longitudinal direction of the multilayer gas sensor element is equal to the length of the entire pump electrode along the longitudinal direction. On the other hand, when it accounts for 1 / or more, it is possible to obtain a stacked gas sensor element with higher detection accuracy.
In addition, when a portion where the total G of the clearances is 0.5 mm or less occupies more than 1/2 of the entire length of the pump electrode, it is possible to obtain an excellent stacked gas sensor element having higher detection accuracy. it can.
[0021]
The area and the like of the pump electrode in the second invention will be described with reference to FIG. 7, which is a schematic cross-sectional view of the stacked gas sensor element cut along a plane including the surface of the pump electrode.
S is an inner surface of the gas chamber to be measured, T is a curve showing the side surface of the pump electrode, point V is the center position of the gas introduction part to be measured, V0 is a straight line parallel to the width direction passing through point V, and V1 is the pump electrode. Is a straight line that passes through the end in the longitudinal direction and is parallel to the width direction.
The area Se of the pump electrode in the second invention is the area of the region surrounded by the curve T and the straight line V0, and the total area Sg of the clearance is surrounded by the straight lines V0 and V1 curves T and S. The area of the region.
[0022]
Note that, as shown in FIG. 11, which will be described later, in the method in which the gas to be measured is introduced from the end face of the stacked gas sensor element, the entire pump electrode is included on the downstream side of the gas flow. Sg is an area delimited by a line in the width direction passing through both ends in the longitudinal direction of the electrode.
If the area Sg of the clearance and the area Se of the pump electrode are Sg / Se ≦ 0.3, the effect according to the second invention can be obtained.
When Sg = 0, that is, when the side surface of the pump electrode is in contact with the inner surface of the gas chamber to be measured, a stacked gas sensor element with the highest detection accuracy can be obtained.
[0023]
Further, the stacked gas sensor element according to the first and second aspects of the invention can be applied to a NOx sensor element, a CO sensor element, and an HC sensor element having a configuration including two or more cells.
[0024]
In the first and second inventions, a pair of electrodes is provided on the surface of the oxygen-ion-conductive solid electrolyte plate such that one electrode faces the gas chamber to be measured. It is preferable that an oxygen monitor cell for detecting the oxygen concentration in the measured gas chamber be provided based on a current value or an electromotive force generated therebetween (claim 4).
Thus, the oxygen concentration in the measured gas chamber can be monitored.
[0025]
Then, for example, by adding a configuration for controlling the operation of the oxygen pump cell so that the oxygen concentration in the gas chamber to be measured falls within a predetermined range, it is desired to more accurately measure the oxygen ion current flowing between the pair of electrodes of the sensor cell. The stacked gas sensor element can be configured to correspond to a specific gas concentration.
The oxygen monitor cell that detects the oxygen concentration based on the current value functions as a limiting current type oxygen sensor, and the oxygen monitor cell that detects the oxygen concentration based on the electromotive force functions as an oxygen concentration electromotive force type oxygen sensor. (See FIG. 1 and Example 1 to be described later).
[0026]
【Example】
Hereinafter, embodiments of the first invention will be described with reference to the drawings.
(Example 1)
The stacked gas sensor element according to this example will be described.
As shown in FIG. 1, the laminated gas sensor element 1 of the present embodiment has a gas chamber to be measured into which a gas to be measured is introduced under a predetermined diffusion resistance and a surface of a solid electrolyte plate 16 having oxygen ion conductivity. The pump electrode 21 has a pair of pump electrodes 21 and 22 provided so as to face the gas chamber 11 to be measured. Oxygen pump cell 2 for introducing or discharging oxygen to adjust the oxygen concentration in the gas chamber 11 to be measured, and one sensor electrode 42 on the surface of the solid electrolyte plate 14 having oxygen ion conductivity. And a pair of sensor electrodes 41 and 42 provided to face the sensor gas electrode 12 based on an oxygen ion current generated between the pair of sensor electrodes 41 and 42. And a sensor cell 4 to detect a specific gas concentration in the.
[0027]
Then, as shown in FIG. 3, at the pump pump electrode 21 facing the measured gas chamber 11 of the oxygen pump cell 2, the side surfaces 211 and 212 of the pump pump electrode 21 along the longitudinal direction of the stacked gas sensor element 1. And the total length G1 + G2 = G of the clearance along the width direction orthogonal to the longitudinal direction of the clearance between the inner surfaces 111 and 112 of the measured gas chamber 11 facing the side surfaces 211 and 212 is 0.5 mm or less. It is.
[0028]
The details are described below.
The laminated gas sensor element 1 according to the present embodiment includes a sheet-like solid electrolyte plate 16 constituting the oxygen pump cell 2, a sheet-like solid electrolyte plate 14 constituting the oxygen monitor cell 3 and the sensor cell 4, and a first gas chamber to be measured. 11 and the sheet-shaped spacer 15 forming the second measured gas chamber 12, sheet-shaped spacers 17, 133, 132 forming the reference gas chambers 121, 122, and heaters for heating the cells 2, 3, 4 1 and 2 are sequentially laminated as shown in FIGS.
[0029]
The first gas chamber 11 to be measured and the second gas chamber 12 to be measured are inner chambers for introducing a gas to be measured from outside the element, and as shown in FIG. 2, spacers located between the solid electrolyte plates 14 and 16 are provided. 15 are formed by two punched holes 110 and 120. A narrowed portion 102 narrower than the holes 110 and 120 is provided between the holes 110 and 120, and a front end portion of the stacked gas sensor element 1 (the left side in FIGS. ), The first measured gas chamber 11 is constituted by the hole 110, and the second gas chamber 12 is constituted by the hole 120.
[0030]
In addition, the first measured gas chamber 11 communicates with the outside of the element via a pinhole 101 as a diffusion resistance means penetrating through the solid electrolyte plate 14.
The hole diameter of the pinhole 101 is appropriately set so that the diffusion rate of the gas to be measured which is introduced into the first gas chamber 11 and the second gas chamber 12 through the pinhole 101 becomes a predetermined speed. I do.
[0031]
In addition, a porous protective layer 131 made of porous alumina or the like is formed on the solid electrolyte plate 14 so as to cover the opening end of the pinhole 101 from the outside of the element.
This prevents poisoning of the pump electrodes 21, 32, and 42 located in the first measured gas chamber 11 and the second measured gas chamber 12 and clogging of the pinhole 101.
[0032]
The reference gas chambers 121 and 122 are internal chambers for introducing the atmosphere as a reference oxygen concentration gas having a constant oxygen concentration.
The reference gas chamber 121 is formed by a hole 1210 provided in the spacer 17 stacked below the solid electrolyte plate 16, and the reference gas chamber 122 is formed by a hole 1220 provided in the spacer 133 stacked above the solid electrolyte plate 14. I do.
The holes 1210 and 1220 have passages 1211 and 1221 as grooves extending in the longitudinal direction of the multilayer gas sensor element 1, respectively, and the atmosphere can be introduced through the passages 1211 and 1221.
[0033]
The oxygen pump cell 2 is composed of a solid electrolyte plate 16 and a pair of pump electrodes 21 and 22 disposed so as to sandwich the solid electrolyte plate 16 therebetween.
Of the pair of pump electrodes 21 and 22, the pump electrode 21 is a solid facing the first measured gas chamber 11 located upstream of the gas flow in the first measured gas chamber 11 and the second measured gas chamber 12. The other electrode 22 is provided in contact with the electrolyte plate 16 and is provided in contact with the solid electrolyte plate 16 so as to face the reference gas chamber 121.
[0034]
The sensor cell 4 includes a solid electrolyte plate 14 and a pair of sensor electrodes 41 and 42 opposed to each other with the solid electrolyte plate 14 interposed therebetween.
One sensor electrode 42 of the pair of sensor electrodes 41 and 42 faces the second measured gas chamber 12 located downstream of the gas flow in the first measured gas chamber 11 and the second measured gas chamber 12. The other sensor electrode 41 is provided in contact with the solid electrolyte plate 14 and is provided in contact with the solid electrolyte plate 14 so as to face the reference gas chamber 122.
[0035]
The oxygen monitor cell 3 includes a solid electrolyte plate 14 and a pair of monitor electrodes 31 and 32 opposed to each other with the solid electrolyte plate 14 interposed therebetween.
One monitor electrode 32 of the pair of monitor electrodes 31 and 32 faces the second measured gas chamber 12 located downstream of the gas flow in the first measured gas chamber 11 and the second measured gas chamber 12. The monitor electrode 31 is provided in contact with the solid electrolyte plate 14, and the other monitor electrode 31 is provided in contact with the solid electrolyte plate 14 so as to face the reference gas chamber 122.
[0036]
As shown in FIG. 2, the electrodes 21, 22, 31, 32, 41, and 42 are connected to electrode leads 211, 221 and 311, respectively, for extracting electric signals and supplying power from a power source. 321, 411 and 421 are formed integrally.
In addition, the portions of the solid electrolyte plates 14 and 16 other than the pump electrodes 21 and the like, particularly the portions where the electrode leads 211 and the like are formed, are provided between the solid electrolyte plates 14 and 16 and the electrode leads 211, 321, 421 and the like. It is preferable to form an insulating layer (not shown).
[0037]
As shown in FIG. 2, the electrodes 21 of the cells 2, 3, and 4 are exposed to the outside of the multilayer gas sensor element 1 through through holes 180 formed in the lead portions 221 and the spacers 17 and the like. The external terminals 310, 320, 410, 420, 210, and 220 are electrically connected.
By connecting a lead wire to the external terminal section 310 or the like via a suitable connector by crimping, brazing, or the like, an electric signal is transmitted between an external circuit (to be described in detail later) and each of the cells 2, 3, and 4. Exchange etc. becomes possible.
Reference numerals 322 and 422 denote internal terminals electrically connected to the electrode lead portions 321 and 421.
[0038]
The oxygen pump cell 2 is a pump circuit 250 having a pump power supply 251 and an ammeter 252, the oxygen monitor cell 3 is a monitor circuit 350 having a power supply 351 and an ammeter 352, and the sensor cell 4 is a sensor having a power supply 451 and an ammeter 452. It is connected to the circuit 450 via the external terminal 310 and the like.
[0039]
The heater 19 is provided to heat the heat generating portion 191 by power supply from an external power supply (not shown) and heat each of the cells 2, 3, and 4 to an activation temperature.
The heater 19 is formed by patterning a heat generating portion 191 for generating and supplying electricity on the upper surface of a heater substrate 195 made of alumina. It becomes.
As is apparent from FIG. 2, the heater terminal portion 190 and the external terminal portions 210 and 220 are provided on the surface (downward in the drawing) of the multilayer gas sensor element 1 on the heater 19 side, and the external terminal portions 310, 320, 410 and 420 are provided. , On the side of the spacer 132 (above the drawing).
[0040]
Next, dimensions and the like of the pump electrode 21 and the first measured gas chamber 11 according to the oxygen pump cell 2 will be described below.
As shown in FIG. 3, each of the pump electrode 21 and the first measured gas chamber 11 is a rectangle whose long side is in the same direction as the longitudinal direction of the multilayer gas sensor element 1. The extension of one side surface 211 of the pump electrode 21 is M1, the extension of the inner side surface 111 facing the side surface 211 is N1, and the distance between M1 and N1 is in the range from the end 213 to the end 214 of the pump electrode 21. Is uniform and G1.
The extension of the other side surface 212 of the pump electrode 21 is M2, and the extension of the opposing inner surface 112 is N2, and the distance between M2 and N2 is uniform in the range from the end 213 to the end 214 of the pump electrode 21. And G2.
Therefore, the total G of the clearances between the side surfaces 211 and 212 of the pump electrode 21 and the opposing inner surfaces 111 and 112 is G1 + G2. In the multilayer gas sensor element 1 according to this example, G is 0.5 mm or less. I do.
[0041]
Next, the composition of each part of the multilayer gas sensor element 1 according to the present embodiment will be described.
Each spacer 17, 15, 133, 132 is made of an insulating material such as alumina.
The solid electrolyte plates 14, 16 for constituting the oxygen pump cell 2, the oxygen monitor cell 3, and the sensor cell 4 are made of a ceramic having oxygen ion conductivity such as zirconia or ceria.
The electrodes 21 and 32 of the oxygen pump cell 2 and the oxygen monitor cell 3 use electrodes having low NOx decomposition activity in order to suppress the decomposition of NOx in the first measured gas chamber 11 and the second measured gas chamber 12. More specifically, a porous cermet electrode containing Pt and Au can be suitably used. In this case, in the porous cermet electrode, the content of Au in the metal component is preferably about 1 to 10% by weight.
[0042]
Further, as the sensor electrode 42 facing the second measured gas chamber 12 of the sensor cell 4, it is preferable to use an electrode having a high NOx decomposition activity in order to decompose NOx in the measured gas. A porous cermet electrode containing Pt and Rh can be suitably used. In this case, in the porous cermet electrode, the content of Rh in the metal component is preferably about 10 to 50% by weight.
[0043]
The solid electrolyte plates 14, 16, the spacers 15, 17, 133, 132, the alumina insulating plate 196, and the heater sheet 195 can be formed into a sheet shape by a doctor blade method, an extrusion method, or the like.
Further, the above-described pump electrodes 21 and the like, the leads 211 and the like, and the terminal portions 210 and the like can be formed by screen printing or the like. Then, the respective sheets are laminated and fired to be integrated.
[0044]
Further, it is preferable to use, for example, a Pt porous cermet electrode as the electrodes 22, 31, 41 facing the reference gas chambers 121, 122 of the oxygen pump cell 2, the oxygen monitor cell 3, and the sensor cell 4.
The heat generating portion 191 and the heater lead portion 192 are made of a cermet material composed of Pt and alumina-containing ceramic.
[0045]
Next, the operation principle of the laminated gas sensor element having the above configuration will be described.
The measured gas passes through the porous protective layer 131 and the pinhole 101 and is introduced into the first measured gas chamber 11. The amount of gas introduced at this time is determined by the diffusion resistance of the porous protective layer 131 and the pinhole 101. Thereafter, the measured gas passes through the throttle unit 102 and is introduced into the second measured gas chamber 12.
[0046]
When a voltage is applied to the pair of pump electrodes 21 and 22 of the oxygen pump cell 2 by a pump power supply so that the electrode 22 on the reference gas chamber 121 side becomes a positive electrode, the pump electrode 21 on the first gas chamber 11 side to be measured is applied. Above, oxygen in the gas to be measured is reduced to oxygen ions, and is discharged to the electrode 22 side by a pumping action.
[0047]
Conversely, when a voltage is applied so that the pump electrode 21 on the first measured gas chamber 11 side becomes a positive electrode, oxygen is reduced on the electrode 22 on the reference gas chamber 121 side to become oxygen ions, and the oxygen ions are reduced by the pumping action. It is discharged to the pump electrode 21 side.
The oxygen concentration of the first measured gas chamber 11 and the second measured gas chamber 12 communicating with the first measured gas chamber 11 can be controlled by using the oxygen pumping action.
At this time, oxygen of the gas to be measured as indicated by an arrow 118 passing over the pump electrode 21 is sufficiently ionized, but oxygen from the gas to be measured passing through the arrow 119 is not so ionized.
[0048]
By applying a predetermined voltage (for example, 0.40 V) to the pair of monitor electrodes 31 and 32 of the oxygen monitor cell 3 so that the monitor electrode 31 on the reference gas chamber 122 side becomes a positive electrode, the second gas to be measured is applied. Oxygen in the measured gas is reduced to oxygen ions on the monitor electrode 32 on the chamber 12 side, and is discharged to the monitor electrode 31 side by a pumping action.
Since the monitor electrode 32 is a Pt-Au cermet electrode which is inactive for decomposition of NOx, the oxygen ion current flowing between the monitor electrodes 31 and 32 flows through the porous protective layer 131, the pinhole 101, and the first gas chamber 11 to be measured. And the like, and depends on the amount of oxygen in the gas to be measured reaching the monitor electrode 32, and does not depend on the amount of NOx.
Therefore, if the voltage applied between the pump electrodes 21 and 22 of the oxygen pump cell 2 is controlled so that the current value between the monitor electrodes 31 and 32 becomes a predetermined constant value (for example, 0.2 μA), the second voltage The measurement gas chamber 12 can be controlled so as to always have a constant oxygen concentration.
[0049]
A predetermined voltage (for example, 0.40 V) is applied to the pair of sensor electrodes 41 and 42 of the sensor cell 4 so that the sensor electrode 41 on the reference gas chamber 122 side becomes a positive electrode. Since the sensor electrode 42 is a Pt-Rh cermet electrode that is active in decomposing NOx, oxygen and NOx in the measured gas are reduced to oxygen ions on the sensor electrode 42 on the second measured gas chamber 12 side. Is discharged to the sensor electrode 41 side by the pumping action.
[0050]
As shown in FIG. 1, in the multilayer gas sensor element 1 according to the present embodiment, the oxygen pump cell 2 is controlled so that the current value between the monitor electrodes 31 and 32 of the oxygen monitor cell 3 becomes a constant value (for example, 0.2 μA). Control.
At this time, if NOx does not exist in the gas to be measured, the current value between the sensor electrodes 41 and 42 of the sensor cell 4 also becomes a constant value (for example, 0.2 μA). On the other hand, when NOx is present in the gas to be measured, the current value increases according to the NOx concentration. Thereby, the NOx concentration in the gas to be measured can be detected.
[0051]
Next, the operation and effect of this example will be described.
As shown in FIG. 3, the multilayer gas sensor element 1 of this example has a total clearance G of 0 between the side surfaces 211 and 212 of the pump electrode 21 facing the gas chamber 11 to be measured and the inner surfaces 111 and 112 facing each other. 0.5 mm or less, which is sufficiently small.
Therefore, more gas to be measured can be passed over the pump electrode 21 of the oxygen pump cell 2 as shown by the arrow 118.
Therefore, the oxygen concentration in the gas chambers 11 and 12 to be measured is made thinner, the influence of oxygen on the NOx concentration detection is made smaller, and the specific gas concentration can be measured with high accuracy.
[0052]
As described above, according to the present invention, it is possible to provide a laminated gas sensor element capable of reducing the influence of oxygen coexisting in the gas chamber to be measured and detecting the specific gas concentration (NOx in this example) with high accuracy.
[0053]
FIG. 4 is an explanatory view of the case where the pump electrode 21 and the first gas chamber 11 to be measured are provided.
In FIG. 4, G is different for each location, such as S01-S02, S11-T11 distance + T12-S12 distance...
In such a case, if the smallest G is 0.5 mm or less, the effect according to the present example can be obtained.
[0054]
(Example 2)
In this example, a stacked gas sensor element including a pump electrode 21 having a total clearance G different from place to place will be described.
As shown in FIG. 5, in the pump electrode 21 of this example, the distance between the inner side surface 111 facing the left side surface 211 on the left side of the drawing is wider than the right side G1 ′, the distance on the right side is G1, and the left side surface 212 on the left side of the drawing The distance from the opposing inner side surface 112 is wider than the right side and G2 ', and the right side is G2. The length along the longitudinal direction of the wide pump electrode 21 at the portion corresponding to G1 and G2 is L, and the entire length of the pump electrode 21 is Le.
[0055]
In the laminated gas sensor element according to the present example, the total clearance at the left side of the drawing is G1 ′ + G2 ′ = 0.8 mm, the total clearance at the right side of the drawing is G1 + G2 = 0.4 mm, Le = 6 mm, L = 4 mm. It is.
[0056]
Therefore, the length of the portion where the total G of the clearance is 0.5 mm or less occupies 1/4 or more of the entire length of the pump electrode, so that a more accurate laminated gas sensor element can be obtained. (For details, refer to the measurement in Example 4.)
Other configurations of the stacked gas sensor element of this embodiment are the same as those of the first embodiment.
[0057]
(Example 3)
In this embodiment, a laminated gas sensor element having the same configuration as that of the first embodiment and satisfying the following conditions regarding the area of the pump electrode will be described.
As shown in FIG. 6, the pump electrode 21 of this embodiment has the same shape as that of the first embodiment. The position where the center position of the pinhole 101 (see FIG. 1 of the first embodiment) serving as the introduction path of the gas to be measured is projected on FIG. 6 is V, and a straight line passing through V and parallel to the width direction is V0. In the pump electrode 21, a straight line parallel to the width direction passing through the end on the side of the second measured gas chamber 12 in the longitudinal direction is V1.
[0058]
In the stacked gas sensor element according to the present example, the surface area of the pump electrode 21 on the right side of the drawing with respect to V0 (the area hatched in FIG. 6) is 10 mm in Se. 2 The area Sg (the area indicated by hatching in FIG. 6) surrounded by the inner surfaces 111 and 112 of the gas chamber to be measured, the side surfaces 211 and 212 of the pump electrode 21, and the straight lines V0 and V1 is 1.5 mm. 2 And Sg / Se ≦ 0.3.
[0059]
As shown in FIG. 6, the laminated gas sensor element 1 of the present embodiment has an inner side surface 111 and a side surface 211 which are smaller than the area Se with a broken line on the right side of V0 of the pump electrode 21 facing the measured gas chamber 11. The area Sg surrounded by dots and hatched with dots is sufficiently small to satisfy Sg / Se ≦ 0.3.
Therefore, more gas to be measured can be passed over the pump electrode 21 of the oxygen pump cell.
Therefore, the oxygen concentration in the gas chambers 11 and 12 to be measured is made thinner, the influence of oxygen on the NOx concentration detection is made smaller, and the specific gas concentration can be measured with high accuracy.
Otherwise, the detailed configuration of the stacked gas sensor element is the same as that of the first embodiment.
[0060]
FIG. 7 is an explanatory diagram of a case where the pump electrode 21 and the first gas chamber 11 to be measured are provided.
Also in this case, similarly to FIG. 6, the area Sg surrounded by V0, V1, T, and S is sufficiently smaller than the area Se on the right side of V0 of the pump electrode, and Sg / Se ≦ 0.3. For example, the same effect as in the present embodiment can be obtained.
[0061]
(Example 4)
In this example, detection errors were measured for various stacked gas sensor elements, and the performance of each was evaluated.
In the stacked gas sensor element as shown in Example 1, several samples having different G were prepared, and the measurement of the detection error was performed for each of them.
That is, assuming that the detection error in the case of G = 0 is 1, the detection errors were similarly measured for other stacked gas sensor elements having different Gs, and the results are collectively shown in FIG.
[0062]
A method for measuring the detection error will be described.
A stacked gas sensor element having a different G was prepared, exposed to a gas to be measured containing 100 ppm of NO, and the detection error of the NOx concentration when the oxygen concentration in the gas to be measured was changed from 10 ppm to 20% was measured. . This is based on the fact that when the clearance increases (that is, G increases), the amount of oxygen that cannot be exhausted by the oxygen pump cell increases, and the detection error due to the oxygen concentration increases.
From FIG. 8, it has been found that as G increases, the detection error increases, and it is necessary to satisfy G ≦ 0.5 or less (preferably 0.2 or less) in order to obtain high detection accuracy.
[0063]
In a similar test, in a stacked gas sensor element as shown in Example 2, several samples having different L / Le were prepared and the detection error was measured.
Assuming that the detection error when L / Le = 1 is 1, detection errors were similarly measured for other stacked gas sensor elements having different L / Le, and the results are collectively shown in FIG.
From FIG. 9, since the detection error increases as L / Le decreases, it is desirable that G ≦ 0.5 mm and that L / Le be 0.25 or more in order to obtain higher detection accuracy. Do you get it.
[0064]
In a similar test, in a laminated gas sensor element as shown in Example 3, several samples having different Sg / Se were prepared, and the detection error was measured.
Assuming that the detection error when Sg / Se = 0 is 1, the detection errors were similarly measured for other stacked gas sensor elements having different Sg / Se, and the results are collectively shown in FIG.
From FIG. 10, it has been found that the detection error increases as Sg / Se increases, so that Sg / Se needs to be 0.3 or less in order to obtain high detection accuracy.
[0065]
(Example 5)
In this embodiment, as shown in FIG. 11, a pinhole 103 is provided on the end face 150 to pass through the first measured gas chamber 11, and the gas to be measured is introduced into the first measured gas chamber 11 from there. Element.
Even in the stacked gas sensor element having such a configuration, the pump electrode 21 and the first gas chamber 11 to be measured are configured under the conditions shown in the first to third embodiments, so that the first to the third embodiments can be implemented. It was found that the same effect as in Example 3 was obtained.
In this case, Se shown in the third embodiment is the surface area of the pump electrode 21. This is because the entire pump electrode 21 is included downstream of the gas flow of the gas to be measured.
[0066]
(Example 6)
In this example, as shown in FIGS. 12 and 13, the pump gas 21 and the first measured gas chamber 11 are both elliptical gas sensors.
As shown in FIG. 12, the total length G1 + G2 = G of the side surfaces 211 and 212 of the pump electrode 21 along the longitudinal direction and the inner surfaces 111 and 112 facing the side surfaces 211 and 212 is 0.5 mm. The following operation and effect can be obtained as in the first embodiment.
[0067]
Further, as shown in FIG. 13, S is a curve showing the inner surface of the first gas chamber 11 to be measured, T is a curve showing the side surface of the pump electrode 21, and point V is a pinhole (not shown) serving as a gas introduction part to be measured. The center position, V0 is a straight line parallel to the width direction passing through the point V, and V1 is a straight line parallel to the width direction passing through the end of the pump electrode 21 in the longitudinal direction and surrounded by a curve T and a straight line V0. The area surrounded by the pump electrode area Se and the straight lines V0 and V1 curves T and S is the total area Sg of the clearance.
By setting Se / Sg ≦ 0.3, the same operation and effect as in the third embodiment can be obtained.
[0068]
(Example 7)
As shown in FIG. 14, the multilayer gas sensor element 1 according to the present embodiment has substantially the same configuration as that of the first embodiment, but has a different circuit configuration.
That is, the pump circuit 250 includes a power supply 251 and an ammeter 252 so that the oxygen pump current matches the limit current based on the relationship between the applied voltage to the oxygen pump cell 2 and the current flowing through the oxygen pump cell 2 determined in advance. Is applied with a voltage corresponding to the oxygen concentration.
Thereby, the oxygen concentration in the first measured gas chamber 11 and the second measured gas chamber 12 can be controlled to a predetermined low concentration.
[0069]
When the oxygen concentration in the first measured gas chamber 11 and the second measured gas chamber 12 is controlled by this method, the oxygen concentration in the second measured gas chamber 12 is smaller than the control based on the oxygen monitor cell according to the first embodiment. The concentration tends to fluctuate. Therefore, if the current flowing between the sensor electrodes 41 and 42 of the sensor cell 4 is used as a sensor signal as it is, the detection accuracy of NOx deteriorates.
Therefore, the difference between the current flowing between the sensor electrodes 41 and 42 of the sensor cell 4 and the current flowing between the monitor electrodes 31 and 32 of the oxygen monitor cell 3 is detected by a current difference detection circuit 459, and this value is used as a sensor signal. Thus, the effect of the fluctuation of the oxygen concentration in the second measured gas chamber 12 can be reduced, and a more accurate sensor cell output concerning the NOx concentration independent of the oxygen concentration in the measured gas can be obtained.
[0070]
By providing the pump electrode 21 according to FIGS. 3, 5, 7, 11 to 13 in such a stacked gas sensor element 1, an element having high measurement accuracy can be obtained as in the other embodiments. Can be.
[0071]
(Example 8)
The stacked gas sensor element 6 according to the present embodiment is a four-cell element provided with the second oxygen pump cell 5, as shown in FIG.
The stacked gas sensor element 1 of the present embodiment has a heater 19 similar to that of the first embodiment, a spacer 64 for a reference gas chamber 640, a solid electrolyte plate 63 provided with an oxygen monitor cell 3 and a sensor cell 4, a first measured gas chamber 11, The spacer 62 for the second measured gas chamber 12 and the solid electrolyte plate 61 for the oxygen pump cell 2 and the second oxygen pump cell 5 are laminated.
[0072]
The oxygen pump cell 2 has a pump electrode 21 facing the first measured gas chamber 11, an electrode 22 covered with the porous protective layer 131 and exposed to the measured gas outside the element, and has a power supply 251. Connected to pump circuit 250.
The monitor cell 3 has the monitor electrode 32 facing the first measured gas chamber 11 and the monitor electrode 31 facing the reference gas chamber 640, and is connected to a circuit 350 having a voltmeter 357.
The sensor cell 4 has a sensor electrode 42 facing the second measured gas chamber 12 and a sensor electrode 41 facing the reference gas chamber 640, and is connected to a circuit 450 having an ammeter 457.
The monitor electrodes 31, 41 are integral electrodes.
A control circuit 255 that controls the power supply 251 of the oxygen pump cell 2 based on the voltage value detected by the voltmeter 357 is connected between the voltmeter 357 and the power supply 251.
[0073]
The second oxygen pump cell 5 has an electrode 51 formed integrally with the electrode 22 of the first oxygen pump cell 2 and an electrode 52 exposed to the second gas chamber 12 to be measured, and is connected to a circuit 550 having a power supply 551. You.
[0074]
In the first embodiment, the oxygen concentration in the second measured gas chamber 12 is detected based on the current value flowing through the oxygen monitor cell 3. In this embodiment, the oxygen concentration is detected from the electromotive force generated between the monitor electrodes 31 and 32 of the oxygen monitor cell 3. .
An example of the operation in this case will be described with reference to FIG.
The monitor electrode 32 of the oxygen monitor cell 3 faces the first measured gas chamber 11, and the monitor electrode 31 faces the reference gas chamber 640 into which the atmosphere is introduced. An electromotive force based on the Nernst equation is generated between the monitor electrodes 31 and 32 due to a difference in oxygen concentration between the first measured gas chamber 11 and the reference gas chamber 640.
[0075]
Since the oxygen concentration in the reference gas chamber 640 is constant, the electromotive force generated between the monitor electrodes 31 and 32 reflects the oxygen concentration in the first measured gas chamber 11. Therefore, by controlling the applied voltage between the pump electrodes 21 and 22 of the oxygen pump cell 2 so that the electromotive force generated between the monitor electrodes 31 and 32 becomes a predetermined constant value (for example, 0.20 V), The concentration of oxygen flowing into the measurement gas chamber 12 can be controlled to be constant.
[0076]
Further, in this example, the second oxygen pump cell 5 is formed, and oxygen that cannot be exhausted by the oxygen pump cell 2 and flows into the second measured gas chamber 12 is exhausted to the outside.
As a result, the oxygen concentration in the second measured gas chamber 12 becomes almost zero, and the sensor cell 4 enables highly accurate NOx concentration measurement.
[0077]
By providing the pump electrode 21 according to FIGS. 3, 5, 7, 11 to 13 in such a stacked gas sensor element 1, an element having high measurement accuracy can be obtained as in the other embodiments. Can be.
[Brief description of the drawings]
FIGS. 1A and 1B are cross-sectional explanatory views in a longitudinal direction of a laminated gas sensor element according to a first embodiment, and FIG. 1B is a cross-sectional explanatory view in a width direction (A-A cross-sectional explanatory view of FIG. 1A).
FIG. 2 is an exploded perspective view of the multilayer gas sensor element according to the first embodiment.
FIG. 3 is a plan view showing a total clearance portion between a side surface and an inner surface of a pump electrode and a first gas-to-be-measured chamber in Example 1 (a sectional view taken along the line BB in FIG. 1A); ).
FIG. 4 is an explanatory diagram of a total of an irregular-shaped pump electrode and a clearance portion in a first gas chamber to be measured in the first embodiment.
FIG. 5 is a cross-sectional explanatory view of a stacked gas sensor element in which the width of a pump electrode is partially different in Example 2.
FIG. 6 is a cross-sectional explanatory view of a multilayer gas sensor element showing an area of a pump electrode facing a gas chamber to be measured and a total area of a clearance portion in a third embodiment.
FIG. 7 is an explanatory diagram of an area of a pump electrode and a total area of a clearance portion in an irregular shaped pump electrode and a first gas chamber to be measured in a third embodiment.
FIG. 8 is a diagram showing the relationship between the total length G of the clearance portion and the detection error in the stacked gas sensor element according to the fourth embodiment.
FIG. 9 is a diagram showing a relationship between L / Le and a detection error in the laminated gas sensor element according to the fourth embodiment.
FIG. 10 is a graph showing the relationship between the ratio Sg / Se between the area Se of the pump electrode facing the gas chamber to be measured and the total area Sg of the clearance portion and the detection error in the stacked gas sensor element according to the fourth embodiment. FIG.
FIG. 11 is a cross-sectional explanatory view of a stacked gas sensor element configured to introduce a gas to be measured from an end face into a gas chamber to be measured in a fifth embodiment.
FIG. 12 is a cross-sectional explanatory diagram illustrating G1 and G2 in the stacked gas sensor element having an elliptical pump electrode in the sixth embodiment.
FIG. 13 is a cross-sectional explanatory diagram illustrating Se and Sg in a stacked gas sensor element having an elliptical pump electrode in a sixth embodiment.
14A and 14B are cross-sectional views in a longitudinal direction and a cross-sectional view in a width direction of a multilayer gas sensor element having a configuration in which control is performed based on a voltage applied to an oxygen pump cell and a current flowing through the oxygen pump cell in a seventh embodiment. FIG. 14 is an explanatory cross-sectional view taken along the line CC in FIG.
FIG. 15 is an explanatory view of a stacked gas sensor element provided with first and second oxygen pump cells in Example 8.
FIG. 16 is an explanatory view of a conventional laminated gas sensor element.
[Explanation of symbols]
1. . . Stacked gas sensor element,
11,12. . . First and second gas chambers to be measured,
14,16. . . Solid electrolyte plate,
2. . . Oxygen pump cell,
21, 22. . . Pump electrode,
3. . . Oxygen monitor cell,
31, 32. . . Monitor electrode,
4. . . Sensor cell,
41, 42. . . Sensor electrode,

Claims (4)

所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,
酸素イオン導電性の固体電解質板の表面に,一方のポンプ電極が上記被測定ガス室に面するように設けた一対のポンプ電極を有し,これら一対のポンプ電極へ通電することにより上記被測定ガス室に酸素を導入または排出し,上記被測定ガス室の酸素濃度を調整する酸素ポンプセルと,
酸素イオン導電性の固体電解質板の表面に,一方のセンサ電極が上記被測定ガス室に面するように設けた一対のセンサ電極を有し,これら一対のセンサ電極間に生じる酸素イオン電流に基づいて,上記被測定ガス室内の特定ガス濃度を検出するセンサセルとを有する積層型ガスセンサ素子であって,
上記酸素ポンプセルの上記被測定ガス室に面するポンプ電極において,
上記積層型ガスセンサ素子の長手方向に沿った上記ポンプ電極の側面と,該側面と対向する上記被測定ガス室の内側面とのクリアランス部の上記長手方向と直交する幅方向の長さの総計Gの最小値は0.5mm以下であることを特徴とする積層型ガスセンサ素子。
A measured gas chamber for introducing the measured gas under a predetermined diffusion resistance;
A pair of pump electrodes is provided on the surface of the oxygen-ion conductive solid electrolyte plate so that one pump electrode faces the gas chamber to be measured. An oxygen pump cell for introducing or discharging oxygen into the gas chamber and adjusting the oxygen concentration in the gas chamber to be measured;
On the surface of the oxygen ion conductive solid electrolyte plate, there is provided a pair of sensor electrodes provided so that one sensor electrode faces the gas chamber to be measured, and based on an oxygen ion current generated between the pair of sensor electrodes. A gas sensor element for detecting a specific gas concentration in the gas chamber to be measured.
In the pump electrode facing the measured gas chamber of the oxygen pump cell,
The total length G of the clearance in the width direction orthogonal to the longitudinal direction of the clearance between the side surface of the pump electrode along the longitudinal direction of the stacked gas sensor element and the inner surface of the gas chamber to be measured facing the side surface. Is a minimum value of 0.5 mm or less.
請求項1において,上記クリアランス部の総計Gが0.5mm以下である部分の積層型ガスセンサ素子の長手方向に沿った長さがポンプ電極全体の上記長手方向に沿った長さに対して1/4以上を占めていることを特徴とする積層型ガスセンサ素子。In Claim 1, the length along the longitudinal direction of the laminated gas sensor element at a portion where the total G of the clearances is 0.5 mm or less is 1/1 / the length of the entire pump electrode along the longitudinal direction. A stacked gas sensor element occupying at least four. 所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,
酸素イオン導電性の固体電解質板の表面に,一方のポンプ電極が上記被測定ガス室に面するように設けた一対のポンプ電極を有し,これら一対のポンプ電極へ通電することにより上記被測定ガス室に酸素を導入または排出し,上記被測定ガス室の酸素濃度を調整する酸素ポンプセルと,
酸素イオン導電性の固体電解質板の表面に,一方のセンサ電極が上記被測定ガス室に面するように設けた一対のセンサ電極を有し,これら一対のセンサ電極間に生じる酸素イオン電流に基づいて,上記被測定ガス室内の特定ガス濃度を検出するセンサセルとを有する積層型ガスセンサ素子であって,
上記被測定ガス室に対し被測定ガスを導入する導入部よりガス流れ下流における上記酸素ポンプセルにおける上記被測定ガス室に面するポンプ電極の形成範囲において,
上記被測定ガス室に面するポンプ電極の面積をSe,上記積層型ガスセンサ素子の長手方向に沿った上記ポンプ電極の側面と該側面と対向する上記被測定ガス室の内側面との間のクリアランス部の面積の総計をSgとした場合,Sg/Se≦0.3であることを特徴とする積層型ガスセンサ素子。
A measured gas chamber for introducing the measured gas under a predetermined diffusion resistance;
A pair of pump electrodes is provided on the surface of the oxygen-ion conductive solid electrolyte plate so that one pump electrode faces the gas chamber to be measured. An oxygen pump cell for introducing or discharging oxygen into the gas chamber and adjusting the oxygen concentration in the gas chamber to be measured;
On the surface of the oxygen ion conductive solid electrolyte plate, there is provided a pair of sensor electrodes provided so that one sensor electrode faces the gas chamber to be measured, and based on an oxygen ion current generated between the pair of sensor electrodes. A gas sensor element for detecting a specific gas concentration in the gas chamber to be measured.
In the formation range of the pump electrode facing the measured gas chamber in the oxygen pump cell downstream of the gas flow from the inlet for introducing the measured gas into the measured gas chamber,
The area of the pump electrode facing the measured gas chamber is Se, and the clearance between the side surface of the pump electrode along the longitudinal direction of the stacked gas sensor element and the inner surface of the measured gas chamber facing the side surface. Where the total area of the parts is Sg, Sg / Se ≦ 0.3.
請求項1〜3のいずれか1項において,酸素イオン導電性の固体電解質板の表面に,一方のモニタ電極が上記被測定ガス室に面するように設けた一対のモニタ電極を有し,これら一対のモニタ電極間に生じる電流値または起電力に基づいて,上記被測定ガス室内の酸素濃度を検出する酸素モニタセルを備えることを特徴とする積層型ガスセンサ素子。4. The method according to claim 1, further comprising a pair of monitor electrodes provided on the surface of the oxygen-ion conductive solid electrolyte plate such that one monitor electrode faces the gas chamber to be measured. A stacked gas sensor element comprising: an oxygen monitor cell that detects an oxygen concentration in the measured gas chamber based on a current value or an electromotive force generated between a pair of monitor electrodes.
JP2002318521A 2002-08-29 2002-10-31 Laminated gas sensing element Pending JP2004151018A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002318521A JP2004151018A (en) 2002-10-31 2002-10-31 Laminated gas sensing element
DE10339976A DE10339976A1 (en) 2002-08-29 2003-08-29 Gas sensor
US10/651,088 US20040069629A1 (en) 2002-08-29 2003-08-29 Gas sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318521A JP2004151018A (en) 2002-10-31 2002-10-31 Laminated gas sensing element

Publications (1)

Publication Number Publication Date
JP2004151018A true JP2004151018A (en) 2004-05-27

Family

ID=32461639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318521A Pending JP2004151018A (en) 2002-08-29 2002-10-31 Laminated gas sensing element

Country Status (1)

Country Link
JP (1) JP2004151018A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048647A (en) * 2008-08-21 2010-03-04 Denso Corp Nox sensor element
JP2010145133A (en) * 2008-12-16 2010-07-01 Ngk Spark Plug Co Ltd Gas sensor
JP2010249801A (en) * 2009-03-27 2010-11-04 Ngk Spark Plug Co Ltd Gas sensor
US7947159B2 (en) 2006-12-28 2011-05-24 Ngk Insulators, Ltd. NOx-decomposing electrode and method for producing NOx sensor
JP2015148503A (en) * 2014-02-06 2015-08-20 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP2019158802A (en) * 2018-03-16 2019-09-19 日本碍子株式会社 Gas sensor
DE102021005075A1 (en) 2020-10-12 2022-04-14 Ngk Insulators, Ltd. GAS SOR
DE102021005076A1 (en) 2020-10-12 2022-04-14 Ngk Insulators, Ltd. GAS SOR
DE102021005074A1 (en) 2020-10-12 2022-04-14 Ngk Insulators, Ltd. GAS SOR

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947159B2 (en) 2006-12-28 2011-05-24 Ngk Insulators, Ltd. NOx-decomposing electrode and method for producing NOx sensor
JP2010048647A (en) * 2008-08-21 2010-03-04 Denso Corp Nox sensor element
JP2010145133A (en) * 2008-12-16 2010-07-01 Ngk Spark Plug Co Ltd Gas sensor
JP2010249801A (en) * 2009-03-27 2010-11-04 Ngk Spark Plug Co Ltd Gas sensor
JP2015148503A (en) * 2014-02-06 2015-08-20 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP2019158802A (en) * 2018-03-16 2019-09-19 日本碍子株式会社 Gas sensor
CN110274943A (en) * 2018-03-16 2019-09-24 日本碍子株式会社 Gas sensor
CN110274943B (en) * 2018-03-16 2023-05-23 日本碍子株式会社 Gas sensor
DE102021005075A1 (en) 2020-10-12 2022-04-14 Ngk Insulators, Ltd. GAS SOR
DE102021005076A1 (en) 2020-10-12 2022-04-14 Ngk Insulators, Ltd. GAS SOR
DE102021005074A1 (en) 2020-10-12 2022-04-14 Ngk Insulators, Ltd. GAS SOR

Similar Documents

Publication Publication Date Title
JP3973900B2 (en) Gas sensor element
JP6393722B2 (en) Gas sensor
JP3876506B2 (en) Gas concentration measuring method and composite gas sensor
JP5367044B2 (en) Gas sensor element and gas sensor for internal combustion engine
US20070084723A1 (en) Structure of gas sensor element to provide enhanced measurement accuracy
JP7124644B2 (en) gas sensor element
US20220390410A1 (en) Gas sensor element
JP4283686B2 (en) Gas sensor element and control method and manufacturing method of gas sensor element.
JP3993122B2 (en) Gas sensor element and method for measuring hydrogen-containing gas
JP2004003964A (en) Gas sensor element
JP2001141696A (en) Gas-detecting apparatus
JP2004151018A (en) Laminated gas sensing element
US6740217B2 (en) Structure of gas sensor designed to minimize error of sensor output
JP2000146906A (en) Gas sensor element
US20040069629A1 (en) Gas sensing element
JP4304963B2 (en) Gas sensor element and manufacturing method thereof
JP2004132960A (en) Gas sensor element
JP2004151017A (en) Multilayer gas sensing element
JP3973851B2 (en) Gas sensor element
JP4003879B2 (en) Method for manufacturing gas sensor element and gas sensor element
JP2002328112A (en) Gas sensor element
JP4101501B2 (en) Compound gas sensor element
JP2000214130A (en) Method for measuring concentration of gas
JP2003090819A (en) Method for detecting gas concentration
JP3314782B2 (en) Composite gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324