JP2004151017A - Multilayer gas sensing element - Google Patents

Multilayer gas sensing element Download PDF

Info

Publication number
JP2004151017A
JP2004151017A JP2002318520A JP2002318520A JP2004151017A JP 2004151017 A JP2004151017 A JP 2004151017A JP 2002318520 A JP2002318520 A JP 2002318520A JP 2002318520 A JP2002318520 A JP 2002318520A JP 2004151017 A JP2004151017 A JP 2004151017A
Authority
JP
Japan
Prior art keywords
oxygen
measured
heater
gas chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318520A
Other languages
Japanese (ja)
Inventor
Keigo Mizutani
圭吾 水谷
Tasuke Makino
太輔 牧野
Toru Katabuchi
亨 片渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2002318520A priority Critical patent/JP2004151017A/en
Priority to DE10339967A priority patent/DE10339967A1/en
Priority to US10/652,555 priority patent/US7316767B2/en
Publication of JP2004151017A publication Critical patent/JP2004151017A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer gas sensing element having a high measurement accuracy and less susceptible to a leakage current. <P>SOLUTION: This multilayer gas sensing element is provided with an oxygen pump cell 2 for adjusting an oxygen concentration in a measuring-object gas chamber 11, a sensor cell for detecting a specified gas concentration in a measuring-object gas chamber 12, and a heater 19 for heating the oxygen pump cell 2 and the sensor cell 4 up to an activating temperature. The heater 19 includes a heat generator part 191 for generating heat when energized, a heater terminal part provided externally and a heater lead part 192 for making electrical connection between the heat generator part 191 and the heater terminal part. When the electrical resistance value of the heat generator part 191 is taken as RH and the electrical resistance value of the heater lead part 192 is taken as RL, these values are set to satisfy the relationship of 1.5≤ RH/RL. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,自動車用内燃機関の排気系等に使用され,NOx濃度等の検出に利用できる積層型ガスセンサ素子に関する。
【0002】
【従来技術】
自動車用内燃機関等から排出される排気ガスを原因とする大気汚染は現代社会に深刻な問題を引き起こしており,排気ガス中の公害物質であるNOx等に対する浄化基準法規が年々厳しくなっている。
排気ガス中のNOx濃度を検出し,検出結果をエンジン燃焼制御モニタ,触媒モニタ等にフィードバックすれば,より効率よく排気ガス浄化を行うことができると考えられる。このような背景から,排気ガス中のNOx濃度を精度高く検出可能なガスセンサ素子が求められていた。
【0003】
ところで,従来よく知られた積層型のガスセンサ素子として,図10に示す構成の素子が挙げられる。
図10に示す積層型ガスセンサ素子9は,第1被測定ガス室11と対面するよう酸素ポンプセル92が配置され,該酸素ポンプセル92に電圧を印加することで,第1被測定ガス室11内にある酸素を素子外部ヘポンピングする。または,第1被測定ガス室11内へ素子外部の酸素をポンピングする。
そして,第1被測定ガス室11内の酸素濃度を検知可能な酸素モニタセル93を設け,この酸素モニタセル93が検出する第1被測定ガス室11内の酸素濃度が定常状態となるように,酸素ポンプセル92がフィードバック制御される。
【0004】
第1被測定ガス室11と連通する第2被測定ガス室12には,NOxを電極上で分解して生成した酸素イオンによるイオン電流を測定することで,NOx濃度を測定するよう構成したセンサセル94を設けておく。
上述したごとく第1被測定ガス室11内の酸素濃度は定常状態となるよう制御されているため,第2被測定ガス室12内の酸素濃度も一定となる。従って,センサセル94における電極間を移動する酸素イオンの量,即ちセンサセル94における酸素イオン電流の大きさはNOx濃度に対応する。
このように,第1及び第2被測定ガス室11,12に導入した被測定ガス中のNOx濃度を,素子外の雰囲気中の酸素濃度増減にかかわらず,精度高く測定することができる。
【0005】
【特許文献1】
特許第2885336号公報
【0006】
【解決しようとする課題】
ところで,積層型ガスセンサ素子において,酸素ポンプセル,センサセル,モニタセルといったセルは活性温度に加熱しなくては機能が発現しない。
この加熱のために,図10に示すように,積層型ガスセンサ素子9には,通電により発熱する発熱部191やヒータリード部192を備えたヒータ19が一体的に設けてある。
【0007】
上記ヒータ19において,発熱部191とヒータリード部192の電気抵抗値の差が小さい場合,各セルを加熱する発熱部191に近い温度にヒータリード部192も発熱する。従って,ヒータリード部192近傍の温度が上昇し,その部分の電気抵抗値が小さくなって,リーク電流が流れやすい環境となってしまう。
【0008】
そして,積層型ガスセンサ素子において,酸素モニタセルやセンサセルに流れる電流はμAオーダーの微小電流であり,僅かのリーク電流が流れ込んでも検出精度が悪化してしまう。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,リーク電流の影響を受け難く,検出精度の高い積層型ガスセンサ素子を提供しようとするものである。
【0010】
【課題の解決手段】
第1の発明は,所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極へ通電することにより上記被測定ガス室に酸素を導入または排出し,上記被測定ガス室の酸素濃度を調整する酸素ポンプセルと,
酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極間に生じる酸素イオン電流に基づいて,上記被測定ガス室内の特定ガス濃度を検出するセンサセルと,上記酸素ポンプセルと上記センサセルとを活性温度に加熱するヒータとを備える積層型ガスセンサ素子であって,
上記ヒータは,通電により発熱する発熱部と,
上記積層型ガスセンサ素子の外部に設けたヒータ端子部と,
上記発熱部及び上記ヒータ端子部との間を電気的に導通するヒータリード部とを有し,上記発熱部の電気抵抗値をRH,上記ヒータリード部の電気抵抗値をRLとした場合,1.5≦RH/RLなる関係が成立することを特徴とする積層型ガスセンサ素子にある(請求項1)。
【0011】
本発明の作用効果につき説明する。
本発明にかかる積層型ガスセンサ素子は発熱部の電気抵抗値RH,ヒータリード部の電気抵抗値RLとの間に1.5≦RH/RLなる関係が成立する。
通電により発熱部もヒータリード部もそれぞれの電気抵抗値に応じて発熱する。仮にヒータリード部に対して発熱部の電気抵抗値が相対的に低い場合,ヒータリード部からの発熱量も相対的に大きくなる。
【0012】
そして,一般にアルミナ,ジルコニア等のセラミック材料は温度上昇に伴って電気抵抗値が下がり,電流が流れやすくなるため,ヒータリード部による加熱によって電気抵抗値の下がった部分がリーク電流の経路となりやすい。
本例は,ヒータリード部の電気抵抗値を発熱部と比較してRH/1.5以下とすることで,ヒータリード部における発生熱量を減らし,ヒータリード部の近傍の温度を下げ,リーク電流の経路となりやすい部分を減らすことでリーク電流を生じ難くし,センサセルに対するリーク電流の影響をより小さくすることができる。
【0013】
以上,本発明によれば,リーク電流の影響を受け難く,検出精度の高い積層型ガスセンサ素子を提供することができる。
【0014】
【発明の実施の形態】
本発明にかかる積層型ガスセンサ素子において,発熱部とヒータリード部は,基板(例えば実施例1の図3参照)の上にパターニングした薄い導体層から形成する構成が一般的である。
通電することで主として発熱部からは大きな熱量が発せられ,積層型ガスセンサ素子の酸素ポンプセルやセンサセル,後述する酸素モニタセル,またその他の温度によって作動状態が影響される固体電解質板と一対の電極からなる各種の電気化学的セル(実施例4にかかる第2ポンプセルが一例である)を作動可能な活性温度に加熱したり,活性温度に保持することができる。
また,発熱部は後述する図3〜図6に例示したように,ヒータリード部よりも相対的に幅細として発熱しやすく構成することが多い。ヒータリード部は電流の流れやすさを重視して幅太に形成することが多い。
【0015】
本発明にかかる積層型ガスセンサ素子において,RH/RLの上限は10とすることが好ましい。これより大きくなると,発熱部とヒータリード部とを含む全体の電気抵抗値が高くなりすぎ,加える電圧が大きくなりすぎるおそれがある。
また,2≦RH/RL≦5とすることがより好ましい。
【0016】
また,本発明にかかる積層型ガスセンサ素子は2セルまたはそれ以上のセルを備えた構成のNOxセンサ素子やCOセンサ素子,HCセンサ素子に適用することができる。
【0017】
次に,上記発熱部と上記ヒータリード部とは電気抵抗値の異なる材料から構成することが好ましい(請求項2)。
これにより,容易に発熱部やヒータリード部の電気抵抗値を調節することができる。
また,材料を変えて電気抵抗値を調節する場合,上記発熱部及び上記ヒータリード部は,Ptを含有する金属粒子と,アルミナを含有するセラミック粒子とを含むサーメット材料から構成し,上記発熱部を構成する発熱部用サーメット材料におけるセラミック粒子含有量は,上記ヒータリード部を構成するヒータリード部用サーメット材料におけるセラミック粒子含有量よりも大であることが好ましい(請求項3)。
金属粒子は導体であり,サーメット材料は絶縁材料であり,両者を混ぜ,両者の含有量を適宜調整することで容易に所定の電気抵抗値を持つように発熱部やヒータリード部を作製することができる。
また,ヒータの本体はアルミナで構成することが一般的であり,同じ材料を発熱部やリード部が含むことで両者の接合性も向上し,剥離などのトラブルも減る。
【0018】
発熱部用サーメット材料におけるセラミック粒子の含有量は5〜15wt%とすることが好ましい。セラミック粒子の含有量が5wt%より小さいと,ヒータの本体との接合性が低下するおそれがある。また,発熱部は幅細に形成することが多いので,セラミック粒子の含有量が15wt%より大きいと断線するおそれがある。
【0019】
また,Ptを含有する金属粒子としては,Pt単体の粒子粉末や,PtとRh(ロジウム)の混合粉末を用いることができる。
アルミナを含有するセラミック粒子としては,アルミナ粉末からなるセラミック粒子やアルミナにジルコニアを混合した粉末を用いることができる。
【0020】
また,上記発熱部の厚みは,上記ヒータリード部の厚みよりも薄いことが好ましい(請求項4)。
これにより,容易に所望の電気抵抗値を備えた発熱部とヒータリード部とを得ることができる。また,発熱部とヒータリード部で同じサーメット材料を使うので,製造が容易である。
発熱部の厚みは,20〜70μmであることが好ましい。厚みが20μmより薄いと断線したり,電気抵抗値が高くなりすぎて加える電圧が大きくなりすぎる恐れがある。また,70μmより厚いとパターンを均一に形成するのが難しく,製造が困難になる恐れがある。
【0021】
また,酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極間に生じる電流値または起電力に基づいて,上記被測定ガス室内の酸素濃度を検出する酸素モニタセルを備えることが好ましい(請求項5)。
これにより被測定ガス室の酸素濃度を監視することができる。
そして,例えば被測定ガス室の酸素濃度が所定の範囲内に納まるように酸素ポンプセルの作動を制御するなどの構成を加えて,センサセルの一対の電極間に流れる酸素イオン電流がより正確に測定したい特定ガス濃度に対応するように積層型ガスセンサ素子を構成することができる。
なお,電流値に基づいて酸素濃度を検出する酸素モニタセルは限界電流式の酸素センサとして機能し,起電力に基づいて酸素濃度を検出する酸素モニタセルは酸素濃淡起電力式の酸素センサとして機能するよう構成する(後述する図1,実施例1参照)。
【0022】
【実施例】
以下に,図面を用いて本発明の実施例について説明する。
(実施例1)
本例にかかる積層型ガスセンサ素子について説明する。
図1,図2に示すごとく,本例にかかる積層型ガスセンサ素子1は,所定の拡散抵抗の下に被測定ガスを導入する第1被測定ガス室11,第2被測定ガス室12と,酸素イオン導電性の固体電解質板16の表面に,一方の電極21が上記第1被測定ガス室11に面するように設けた一対の電極21,22を有し,これら一対の電極21,22へ通電することにより上記第1被測定ガス室11に酸素を導入または排出し,上記第1被測定ガス室11の酸素濃度を調整する酸素ポンプセル2と,酸素イオン導電性の固体電解質板14の表面に,一方の電極42が上記第2被測定ガス室12に面するように設けた一対の電極41,42を有し,これら一対の電極41,42間に生じる酸素イオン電流に基づいて,上記第2被測定ガス室12内の特定ガス濃度(本例はNOx)を検出するセンサセル4と,上記酸素ポンプセル2と上記センサセル4とを活性温度に加熱するヒータ19とを備える。
【0023】
上記ヒータ19は,通電により発熱する発熱部191と,上記積層型ガスセンサ素子1の外部に設けたヒータ端子部190と,上記発熱部191及び上記ヒータ端子部190との間を電気的に導通するヒータリード部192とを有する。
そして,上記発熱部191の電気抵抗値をRH,上記ヒータリード部192の電気抵抗値をRLとした場合,1.5≦RH/RLなる関係が成立する。
【0024】
以下,詳細に説明する。
本例にかかる積層型ガスセンサ素子1は,酸素ポンプセル2を構成するシート状の固体電解質板16と,酸素モニタセル3,センサセル4を構成するシート状の固体電解質板14と,第1被測定ガス室11及び第2被測定ガス室12を構成するシート状のスペーサ15と,基準ガス室121,122を形成するシート状のスペーサ17,133,132と,各セル2,3,4を加熱するヒータ19とを,図1や図2に示すごとく,順次積層して構成する。
【0025】
第1被測定ガス室11及び第2被測定ガス室12は,素子外部から被測定ガスを導入する内室であり,図2に示すごとく,固体電解質板14,16との間に位置するスペーサ15に設けた2つの抜き穴110,120にて形成する。上記抜き穴110,120間には抜き穴110,120よりも幅細の絞り部102を設け,該絞り部102を境として,積層型ガスセンサ素子1の先端部側(図1及び図2における左側)から順に,抜き穴110により第1被測定ガス室11が,抜き穴120により第2被測定ガス室12を構成する。
【0026】
また,第1被測定ガス室11は,固体電解質板14を貫通する拡散抵抗手段としてのピンホール101を介して,素子の外部と連通する。
このピンホール101の穴径は,該ピンホール101を通過して第1被測定ガス室11及び第2被測定ガス室12に導入する被測定ガスの拡散速度が所定の速度となるよう適宜設定する。
【0027】
また,固体電解質板14には,素子外部側からピンホール101の開口端を覆うように多孔質アルミナ等よりなる多孔質保護層131を形成する。
これにより,第1被測定ガス室11及び第2被測定ガス室12内に位置する電極21,32,42の被毒や,ピンホール101の目詰まりを防止する。
【0028】
基準ガス室121,122は,一定の酸素濃度をもつ基準酸素濃度ガスとして大気を導入する内室である。
基準ガス室121は,固体電解質板16の下方に積層したスペーサ17に設けた抜き穴1210,基準ガス室122は,固体電解質板14の上方に積層したスペーサ133に設けた抜き穴1220にて形成する。
この抜き穴1210,1220は,それぞれ積層型ガスセンサ素子1の長手方向に伸びる溝としての通路部1211,1221を有し,この通路部1211,1221を通して大気を導入することができる。
【0029】
酸素ポンプセル2は,固体電解質板16と,該固体電解質板16を挟むように対向配置した一対の電極21,22とより構成する。
一対の電極21,22のうち,電極21は,第1被測定ガス室11及び第2被測定ガス室12におけるガス流れ上流側に位置する第1被測定ガス室11に面して固体電解質板16に接して設け,他方の電極22は基準ガス室121に面して固体電解質板16に接して設ける。
【0030】
センサセル4は,固体電解質板14と,該固体電解質板14を挟むように対向配置した一対の電極41,42とより構成する。
一対の電極41,42のうち一方の電極42は,第1被測定ガス室11及び第2被測定ガス室12におけるガス流れ下流側に位置する第2被測定ガス室12に面して固体電解質板14に接して設け,他方の電極41は基準ガス室122に面して固体電解質板14に接して設ける。
【0031】
酸素モニタセル3は,固体電解質板14と,固体電解質板14を挟むように対向配置した一対の電極31,32とより構成する。
一対の電極31,32のうち一方の電極32は,第1被測定ガス室11及び第2被測定ガス室12におけるガス流れ下流側に位置する第2被測定ガス室12に面して固体電解質板14に接して設け,他方の電極31は基準ガス室122に面して固体電解質板14に接して設ける。
【0032】
また,図2に示すように,これら各電極21,22,31,32,41,42には,電気信号を取出したり,電源から電力を供給するために,電極リード部211,221,311,321,411,421が一体に形成されている。
また,固体電解質板14,16上の電極21等以外の部位,特に電極リード部211等の形成部位には,固体電解質板14,16と電極リード部211,321,421等の間にアルミナ等の絶縁層を形成しておくことが好ましい(図示略)。
【0033】
また,図2に示すように,各セル2,3,4の電極21等は,それぞれ各リード部221等及び各スペーサ17等に形成したスルーホール180を通して,積層型ガスセンサ素子1の外部に露出形成された外部端子部310,320,410,420,210,220に電気的に接続する。
外部端子部310等に適当なコネクタを介し圧着やろう付け等によりリード線を接続することで,外部に設けた回路(詳細は後述する)と各セル2,3,4との間で電気信号のやりとり等が可能となる。
また,符合322,422は電極リード部321,421と導通する内部端子である。
【0034】
酸素ポンプセル2はポンプ電源251と電流計252を備えたポンプ回路250に,酸素モニタセル3は電源351と電流計352を備えたモニタ回路350に,センサセル4は電源451と電流計452を備えたセンサ回路450に上記外部端子部310等を介して接続する。
【0035】
ヒータ19は,発熱部191を外部電源(図示略)からの給電により発熱させ,各セル2,3,4を活性温度まで加熱するために設けてある。
上記ヒータ19は,アルミナ製のヒータ基板195の上面に,通電発熱する発熱部191をパターニング形成し,この発熱部191の上面(スペーサ17側の面)に,絶縁のため被覆板196を積層してなる。
図3に,ヒータ19における発熱部191とヒータリード部192との形状を記載した。
発熱部191は幅細に,ヒータリード部192は幅太に構成され,また発熱部191の形成位置は,図2より明らかであるが,各セル2,3,4の形成位置の真下となるよう構成した。
また,図示を省略したがヒータ19のヒータ端子部190はヒータ電源を備えたヒータ回路に接続する。
【0036】
なお,図2より明らかであるが,ヒータ端子部190,外部端子部210,220は積層型ガスセンサ素子1のヒータ19側の表面(図面下方)に,外部端子部310,320,410,420は,スペーサ132側の表面(図面上方)に設けた。
【0037】
次に,本例にかかる積層型ガスセンサ素子1の各部の組成について説明する。
各スペーサ17,15,133,132はアルミナ等の絶縁材料よりなる。
酸素ポンプセル2,酸素モニタセル3,センサセル4を構成するための固体電解質板14,16は,ジルコニアやセリア等の酸素イオン導電性を有するセラミックよりなる。
酸素ポンプセル2及び酸素モニタセル3の一方の電極21,32には,第1被測定ガス室11及び第2被測定ガス室12におけるNOxの分解を抑制するため,NOx分解活性の低い電極を用いることが好ましく,具体的には,PtとAuを含有する多孔質サーメット電極を好適に用いることができる。この場合,上記多孔質サーメット電極において,金属成分中のAuの含有量は,1〜10重量%程度とすることが好ましい。
【0038】
また,センサセル4の第2被測定ガス室12に面した電極42は,被測定ガス中のNOxを分解するために,NOxの分解活性の高い電極を用いることが好ましく,具体的には,PtとRhを含有する多孔質サーメット電極を好適に用いることができる。この場合,上記多孔質サーメット電極において,金属成分中のRhの含有量は10〜50重量%程度とすることが好ましい。
【0039】
固体電解質板14,16,スペーサ15,17,133,132,アルミナ絶縁板196及びヒータシート195は,ドクターブレード法や押し出し成形法等により,シート形状に成形することができる。
また,上記の各電極21等,リード211等及び端子部210等は,スクリーン印刷等により形成することができる。そして,各シートは積層して焼成することにより,一体化される。
【0040】
また,酸素ポンプセル2,酸素モニタセル3,センサセル4の基準ガス室121,122と対面する電極22,31,41には,例えば,Pt多孔質サーメット電極を用いることが好ましい。
そして,発熱部191及びヒータリード部192は,Ptとアルミナ含有セラミックとからなるサーメット材料より構成する。
ここに発熱部191のサーメット材料の組成は,Pt85%,アルミナ含有セラミック15wt%である。
また,ヒータリード部192のサーメット材料の組成は,Pt90wt%,アルミナ含有セラミック10wt%である。
そして,上記発熱部191の電気抵抗値RHは1.5Ωで,ヒータリード部192の電気抵抗値RLは0.5Ωに構成する。
【0041】
次に,上記構成のガスセンサ素子の動作原理を説明する。
被測定ガスは多孔質保護層131,ピンホール101を通過して第1被測定ガス室11に導入される。このとき導入されるガス量は多孔質保護層131,ピンホール101の拡散抵抗により定まる。その後,被測定ガスは絞り部102を通過して第2被測定ガス室12に導入される。
【0042】
酸素ポンプセル2の一対の電極21,22に基準ガス室121側の電極22が+極となるようにポンプ電源にて電圧を印加した場合,上記第1被測定ガス室11側の電極21上で被測定ガス中の酸素が還元されて酸素イオンとなり,ポンピング作用により電極22側に排出される。
逆に,第1被測定ガス室11側の電極21が+極となるように電圧を印加した場合,基準ガス室121側の電極22上で酸素が還元されて酸素イオンとなり,ポンピング作用により電極21側に排出される。
この酸素ポンプ作用を利用して第1被測定ガス室11,これと連通した第2被測定ガス室12の酸素濃度を制御することができる。
【0043】
酸素モニタセル3の一対の電極31,32に,基準ガス室122側の電極31が+極となるように所定の電圧(例えば0.40V)を印加することで,上記第2被測定ガス室12側の電極32上で被測定ガス中の酸素が還元されて酸素イオンとなり,ポンピング作用により電極31側に排出される。
電極32はNOxの分解に不活性なPt−Auサーメット電極であるため,電極31,32間に流れる酸素イオン電流は,多孔質保護層131,ピンホール101,第1被測定ガス室11等を通過して,電極32に到達する被測定ガス中の酸素量に依存し,NOx量には依存しない。
従って,この電極31,32間の電流値が所定の一定値(例えば,0.2μA)となるように,酸素ポンプセル2の電極21,22間の印加電圧を制御すれば,第2被測定ガス室12を常に一定の酸素濃度となるよう制御できる。
【0044】
センサセル4の一対の電極41,42に,基準ガス室122側の電極41が+極となるように所定の電圧(例えば0.40V)を印加する。電極42は,NOxの分解に活性なPt−Rhサーメット電極であるため,上記第2被測定ガス室12側の電極42上で被測定ガス中の酸素やNOxが還元されて酸素イオンとなり,ポンピング作用により電極41側に排出される。
【0045】
そして,図1に示すごとく,本例にかかる積層型ガスセンサ素子1では,酸素モニタセル3の電極31,32間の電流値が一定値(例えば0.2μA)となるように,酸素ポンプセル2を制御する。
このとき,被測定ガス中にNOxが存在しなければ,センサセル4の電極41,42間の電流値も一定値(例えば0.2μA)となる。一方,被測定ガス中にNOxが存在すると,NOx濃度に応じて電流値が増加する。これにより,被測定ガス中のNOx濃度が検出可能となる。
【0046】
次に,本例の作用効果について説明する。
ヒータリード部192に対して,発熱部191の電気抵抗値が相対的に低い場合,ヒータリード部192からの発熱量が大きくなる。
本例にかかる積層型ガスセンサ素子1では,図2より明らかであるが,ヒータリード部192の上側に,センサセル4や酸素モニタセル3の一対の電極41,42や31,32と電気的に導通したリード部421,321等が存在する。
従って,ヒータリード部192の発熱により電極リード部や外部端子部間でリーク電流が発生しやすくなる。
【0047】
特に,本例の構成では,スルーホール180を各固体電解質板14,スペーサ17などを貫通して形成しているため,固体電解質板14やスペーサ17の,ヒータリード部192直上の温度が上昇するとリーク電流が発生しやすい。
【0048】
本例にかかる積層型ガスセンサ素子1は発熱部191の電気抵抗値RHを1.5Ω,ヒータリード部192の電気抵抗値RLを0.5Ωとして1.5≦RH/RLなる関係が成立する。このため,ヒータリード部192の直上でリーク電流が流れ難く,より正確な濃度を測定することができる(実施例2参照)。
以上,本例によればリーク電流の影響を受け難く,検出精度の高い積層型ガスセンサ素子を得ることができる。
【0049】
また,図3以外の形状を備えた図4〜図6にかかる発熱部191を備えた積層型ガスセンサ素子1についても,発熱部191とヒータリード部192との電気抵抗値の比が1.5≦RH/RLとして,本例と同様の効果を得ることができる。
図4は図3と同様の形状であるが,発熱部191の角を丸く曲線に構成した。
図5はより密度高く発熱部191を構成した例である。また図6に示すように,幅方向に波型に発熱部191を構成することもできる。
【0050】
また,図3に示す形状の発熱部191とヒータリード部192を同じ組成の材料で構成し,発熱部191の厚さを40μm,ヒータリード部192の厚さを60μmとすることで,発熱部191の電気抵抗値を1.5Ω,ヒータリード部192の電気抵抗値を0.5Ωとすることもできる。
この場合も本例と同様の効果を得ることができる。
【0051】
(実施例2)
本例は,実施例1に記載した積層型ガスセンサ素子の性能について評価した。
すなわち,RHが十分大きい条件としてRH/RL=10となる積層型ガスセンサ素子を作成し,この積層型ガスセンサ素子の検出誤差を1として,RH/RLが異なる他の積層型ガスセンサ素子についても同様に検出誤差を測定し,まとめて図7に記載した。
【0052】
検出誤差の測定方法について説明する。RH/RLの異なるガスセンサ素子を準備し,100ppmのNOを含有する被測定ガス中にさらし,被測定ガスの温度を30℃から100℃まで変化させたときの,NOx濃度の検出誤差を測定した。なお,ガスセンサ素子の検出部の温度は,ヒータに加える電圧を変化させて一定に保持した。この測定では,被測定ガスの温度により,ヒータに加える電圧が変化し,ヒータリード部の発熱量も変化するので,リーク電流による誤差の影響を見積もることができる。
図7より,RH/RLが小さくなると検出誤差が大きくなり,高い検出精度を得るにはRH/RLが2以上(好ましくは3以上)であることが必要だと判明した。
【0053】
(実施例3)
本例にかかる積層型ガスセンサ素子1は,図8に示すごとく,素子の各部構成は実施例1と略同じであるが回路構成が異なる。
すなわち,ポンプ回路250は電源251と電流計252とを備え,予め求めておいた酸素ポンプセル2に対する印加電圧と酸素ポンプセル2に流れる電流の関係に基づいて,酸素ポンプ電流が限界電流と一致するように,酸素濃度に応じた電圧を印加する。
これにより,第1被測定ガス室11と第2被測定ガス室12の酸素濃度を所定の低濃度に制御することができる。
【0054】
この方法で第1被測定ガス室11,第2被測定ガス室12の酸素濃度を制御すると,実施例1にかかる酸素モニタセルに基づいた制御に比べて,第2被測定ガス室12内の酸素濃度は変動しやすく,したがってセンサセル4の電極41,42間に流れる電流をそのままセンサ信号とするとNOxの検出精度が悪化する。
そこで,センサセル4の電極41,42間に流れる電流と酸素モニタセル3の電極31,32間に流れる電流との差を電流差検出回路459において検出し,この値をセンサ信号とすることにより,第2被測定ガス室12内の酸素濃度変動の影響を減らして,被測定ガス中の酸素濃度に依存しないより正確なNOx濃度にかかるセンサセル出力を得ることができる。
【0055】
(実施例4)
本例にかかる積層型ガスセンサ素子6は,図9に示すごとく,第2の酸素ポンプセル5を設けた4セル構成素子である。
本例の積層型ガスセンサ素子1は,実施例1と同様のヒータ19に基準ガス室640用のスペーサ64,酸素モニタセル3とセンサセル4を設けた固体電解質板63,第1被測定ガス室11,第2被測定ガス室12用のスペーサ62,酸素ポンプセル2と第2酸素ポンプセル5用の固体電解質板61を積層して構成した。
【0056】
酸素ポンプセル2は,第1被測定ガス室11に面した電極21と,多孔質保護層131で覆われて素子外部の被測定ガスにさらされた電極22を有し,電源251を備えたポンプ回路250に接続される。
モニタセル3は,第1被測定ガス室11に面した電極32と基準ガス室640に面した電極31を有し,電圧計357を備えた回路350に接続される。
センサセル4は,第2被測定ガス室12に面した電極42と基準ガス室640に面した電極41を有し,電流計457を備えた回路450に接続される。
また,電極31,41は一体の電極である。
電圧計357と電源251との間には,電圧計357で検出した電圧値に基づいて酸素ポンプセル2の電源251を制御する制御回路255が接続される。
【0057】
第2酸素ポンプセル5は,第1酸素ポンプセル2の電極22と一体に形成した電極51と,第2被測定ガス室12にさらされる電極52を有し,電源551を備えた回路550に接続される。
【0058】
実施例1では,第2被測定ガス室12の酸素濃度を酸素モニタセル3に流れる電流値により検出したが,本例は,酸素モニタセル3の電極31,32間に発生する起電力から検出する。
この場合の作動の一例を図9に基づいて説明する。
酸素モニタセル3の電極32は第1被測定ガス室11に面し,電極31は大気が導入される基準ガス室640に面している。電極31,32間には,第1被測定ガス室11と基準ガス室640との酸素濃度の違いにより,ネルンストの式に基づいた起電力が発生する。
【0059】
基準ガス室640の酸素濃度は一定であるので,電極31,32間に発生する起電力は第1被測定ガス室11の酸素濃度を反映する事になる。したがって,電極31,32間に発生する起電力が所定の一定値(例えぱ0.20V)になるように酸素ポンプセル2の電極21,22間の印加電圧を制御すれぱ,第2被測定ガス室12へ流れ込む酸素濃度を一定に制御できる。
【0060】
さらに,本例では,第2酸素ポンプセル5が形成してあり,酸素ポンプセル2で排出できずに第2被測定ガス室12に流入した酸素を外部に排気する。
これにより,第2被測定ガス室12内の酸素濃度はほぽ0となり,センサセル4により,高精度なNOx濃度測定が可能となる。
その他ヒータ19の構成などは実施例1と同様であり,同様の作用効果を得ることができる。
【図面の簡単な説明】
【図1】実施例1における,(a)積層型ガスセンサ素子の長手方向の断面説明図,(b)幅方向の断面説明図(図1(a)のA−A矢視断面説明図)。
【図2】実施例1における,積層型ガスセンサ素子の斜視展開図。
【図3】実施例1における,ヒータにおける発熱部とヒータリード部の形状を示す平面図(図1(a)のB−B矢視断面説明図)。
【図4】実施例1における,発熱部とヒータリード部の他の形状を示す平面図。
【図5】実施例1における,発熱部とヒータリード部の他の形状を示す平面図。
【図6】実施例1における,発熱部とヒータリード部の他の形状を示す平面図。
【図7】実施例2における,RH/RLと検出誤差との関係を示す線図。
【図8】実施例3における,酸素ポンプセルに対する印加電圧と酸素ポンプセルに流れる電流に基づいて制御する構成の積層型ガスセンサ素子の長手方向の断面説明図,(b)幅方向の断面説明図(図8(a)のC−C矢視断面説明図)。
【図9】実施例4における,第1と第2の酸素ポンプセルを備えた積層型ガスセンサ素子の長手方向の断面説明図。
【図10】従来における,積層型ガスセンサ素子の説明図。
【符号の説明】
1...積層型ガスセンサ素子,
11,12...第1及び第2被測定ガス室,
14,16...固体電解質板,
21,22,31,32,41,42...電極,
19...ヒータ,
191...発熱部,
192...ヒータリード部,
2...酸素ポンプセル,
3...酸素モニタセル,
4...センサセル,
[0001]
【Technical field】
The present invention relates to a stacked gas sensor element used for an exhaust system of an internal combustion engine for a vehicle and used for detecting NOx concentration and the like.
[0002]
[Prior art]
Air pollution caused by exhaust gas emitted from automobile internal combustion engines and the like causes serious problems in modern society, and purification standards and regulations for NOx, etc., which are pollutants in exhaust gas, are becoming stricter every year.
If the NOx concentration in the exhaust gas is detected and the detection result is fed back to an engine combustion control monitor, a catalyst monitor, etc., it is considered that the exhaust gas can be more efficiently purified. From such a background, there has been a demand for a gas sensor element capable of detecting the NOx concentration in exhaust gas with high accuracy.
[0003]
Meanwhile, as a conventionally well-known stacked gas sensor element, there is an element having a configuration shown in FIG.
In the stacked gas sensor element 9 shown in FIG. 10, an oxygen pump cell 92 is arranged so as to face the first measured gas chamber 11, and by applying a voltage to the oxygen pump cell 92, the oxygen gas is supplied into the first measured gas chamber 11. Some oxygen is pumped outside the device. Alternatively, oxygen outside the element is pumped into the first measured gas chamber 11.
An oxygen monitor cell 93 capable of detecting the oxygen concentration in the first measured gas chamber 11 is provided. The oxygen monitor cell 93 detects the oxygen concentration in the first measured gas chamber 11 so that the oxygen concentration in the first measured gas chamber 11 becomes a steady state. The pump cell 92 is feedback-controlled.
[0004]
A sensor cell configured to measure a NOx concentration by measuring an ion current due to oxygen ions generated by decomposing NOx on an electrode is provided in a second measured gas chamber 12 communicating with the first measured gas chamber 11. 94 is provided.
As described above, since the oxygen concentration in the first measured gas chamber 11 is controlled to be in a steady state, the oxygen concentration in the second measured gas chamber 12 is also constant. Therefore, the amount of oxygen ions moving between the electrodes in the sensor cell 94, that is, the magnitude of the oxygen ion current in the sensor cell 94 corresponds to the NOx concentration.
As described above, the NOx concentration in the gas to be measured introduced into the first and second gas-to-be-measured chambers 11 and 12 can be measured with high accuracy irrespective of the increase or decrease in the oxygen concentration in the atmosphere outside the element.
[0005]
[Patent Document 1]
Japanese Patent No. 2885336
[0006]
[Problem to be solved]
Incidentally, in the stacked gas sensor element, cells such as an oxygen pump cell, a sensor cell, and a monitor cell do not function unless they are heated to an activation temperature.
For this heating, as shown in FIG. 10, the laminated gas sensor element 9 is integrally provided with a heater 19 provided with a heating section 191 and a heater lead section 192 which generate heat when energized.
[0007]
In the heater 19, when the difference between the electric resistance values of the heat generating portion 191 and the heater lead portion 192 is small, the heater lead portion 192 also generates heat at a temperature close to the heat generating portion 191 that heats each cell. Therefore, the temperature in the vicinity of the heater lead portion 192 rises, the electrical resistance of that portion becomes small, and an environment in which a leak current flows easily is created.
[0008]
In the stacked gas sensor element, the current flowing through the oxygen monitor cell or the sensor cell is a very small current on the order of μA, and even if a small leak current flows, the detection accuracy deteriorates.
[0009]
The present invention has been made in view of such a conventional problem, and has as its object to provide a laminated gas sensor element which is hardly affected by a leak current and has high detection accuracy.
[0010]
[Means for solving the problem]
According to a first aspect of the present invention, a measurement target gas chamber into which a measurement target gas is introduced under a predetermined diffusion resistance, and a surface of an oxygen ion conductive solid electrolyte plate having one electrode facing the measurement target gas chamber. An oxygen pump cell having a pair of electrodes provided in the chamber, and introducing or discharging oxygen into or from the measured gas chamber by applying a current to the pair of electrodes to adjust the oxygen concentration in the measured gas chamber;
On the surface of the oxygen ion conductive solid electrolyte plate, there is provided a pair of electrodes with one electrode facing the gas chamber to be measured, and based on the oxygen ion current generated between the pair of electrodes, A laminated gas sensor element comprising: a sensor cell for detecting a specific gas concentration in a gas chamber to be measured; and a heater for heating the oxygen pump cell and the sensor cell to an activation temperature.
The heater includes a heating section that generates heat when energized,
A heater terminal provided outside the multilayer gas sensor element;
A heater lead portion that electrically connects between the heat generating portion and the heater terminal portion, wherein when the electric resistance value of the heat generating portion is RH and the electric resistance value of the heater lead portion is RL, The stacked gas sensor element is characterized in that a relation of 0.5 ≦ RH / RL is satisfied (claim 1).
[0011]
The operation and effect of the present invention will be described.
In the stacked gas sensor element according to the present invention, a relationship of 1.5 ≦ RH / RL is established between the electric resistance RH of the heat generating portion and the electric resistance RL of the heater lead.
By the energization, both the heat generating portion and the heater lead generate heat according to their respective electric resistance values. If the electric resistance value of the heat generating portion is relatively lower than that of the heater lead portion, the amount of heat generated from the heater lead portion also becomes relatively large.
[0012]
In general, ceramic materials such as alumina and zirconia decrease in electrical resistance as the temperature rises, and the current easily flows. Therefore, a portion where the electrical resistance decreases due to heating by the heater lead portion tends to be a path of a leak current.
In this example, the amount of heat generated in the heater lead portion is reduced, the temperature in the vicinity of the heater lead portion is reduced, and the leakage current is reduced by setting the electric resistance value of the heater lead portion to RH / 1.5 or less as compared with the heating portion. By reducing the portion that is likely to be the path of the leakage current, it is possible to make the leakage current less likely to occur, and to further reduce the influence of the leakage current on the sensor cell.
[0013]
As described above, according to the present invention, it is possible to provide a laminated gas sensor element which is hardly affected by a leak current and has high detection accuracy.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the laminated gas sensor element according to the present invention, the heat generating portion and the heater lead portion are generally formed of a thin conductor layer patterned on a substrate (for example, see FIG. 3 of the first embodiment).
When energized, a large amount of heat is generated mainly from the heat generating portion, and is composed of an oxygen pump cell and a sensor cell of a stacked gas sensor element, an oxygen monitor cell described later, and a solid electrolyte plate whose operating state is affected by other temperatures and a pair of electrodes. Various electrochemical cells (the second pump cell according to the fourth embodiment is an example) can be heated to or maintained at an operable activation temperature.
Further, as illustrated in FIGS. 3 to 6 described later, the heat generating portion is often configured to be relatively narrower than the heater lead portion and to easily generate heat. In many cases, the heater lead portion is formed to be wide in consideration of the ease of current flow.
[0015]
In the stacked gas sensor element according to the present invention, the upper limit of RH / RL is preferably set to 10. If it is larger than this, the entire electric resistance including the heat generating portion and the heater lead portion may be too high, and the applied voltage may be too high.
It is more preferable that 2 ≦ RH / RL ≦ 5.
[0016]
Further, the stacked gas sensor element according to the present invention can be applied to a NOx sensor element, a CO sensor element, and an HC sensor element having a configuration including two or more cells.
[0017]
Next, it is preferable that the heat generating portion and the heater lead portion are made of materials having different electric resistance values.
This makes it possible to easily adjust the electric resistance value of the heat generating portion and the heater lead portion.
When the electric resistance value is adjusted by changing the material, the heating section and the heater lead section are made of a cermet material containing metal particles containing Pt and ceramic particles containing alumina. It is preferable that the ceramic particle content of the cermet material for the heat generating portion constituting the heater lead portion is larger than the ceramic particle content of the cermet material for the heater lead portion constituting the heater lead portion.
The metal particles are conductors, the cermet material is an insulating material, and the heat-generating parts and heater-lead parts can be easily made to have a predetermined electric resistance value by mixing both and adjusting the content of both. Can be.
Further, the main body of the heater is generally made of alumina, and since the same material is included in the heat generating portion and the lead portion, the joining property between the both is improved, and troubles such as peeling are reduced.
[0018]
The content of the ceramic particles in the cermet material for the heat generating part is preferably 5 to 15 wt%. If the content of the ceramic particles is less than 5 wt%, the bonding property with the heater main body may be reduced. Further, since the heat generating portion is often formed to be narrow, if the content of the ceramic particles is more than 15 wt%, there is a possibility that the wire is disconnected.
[0019]
Further, as the metal particles containing Pt, a particle powder of Pt alone or a mixed powder of Pt and Rh (rhodium) can be used.
As the ceramic particles containing alumina, ceramic particles made of alumina powder or powder obtained by mixing zirconia with alumina can be used.
[0020]
Preferably, the thickness of the heat generating portion is smaller than the thickness of the heater lead portion.
As a result, it is possible to easily obtain a heat generating portion and a heater lead portion having a desired electric resistance value. In addition, since the same cermet material is used for the heat generating portion and the heater lead portion, manufacturing is easy.
It is preferable that the thickness of the heat generating part is 20 to 70 μm. If the thickness is less than 20 μm, there is a possibility that the wire is disconnected or the electric resistance value is too high and the applied voltage is too high. On the other hand, if the thickness is more than 70 μm, it is difficult to form the pattern uniformly, and there is a possibility that the production becomes difficult.
[0021]
In addition, a pair of electrodes is provided on the surface of the oxygen-ion conductive solid electrolyte plate such that one electrode faces the gas chamber to be measured, and a current value or an electromotive force generated between the pair of electrodes is measured. Preferably, an oxygen monitor cell for detecting the oxygen concentration in the gas chamber to be measured is provided based on the measured value.
Thus, the oxygen concentration in the measured gas chamber can be monitored.
In addition, it is desired to more accurately measure the oxygen ion current flowing between the pair of electrodes of the sensor cell by adding a configuration such as controlling the operation of the oxygen pump cell so that the oxygen concentration of the gas chamber to be measured falls within a predetermined range. The stacked gas sensor element can be configured to correspond to a specific gas concentration.
The oxygen monitor cell that detects the oxygen concentration based on the current value functions as a limiting current type oxygen sensor, and the oxygen monitor cell that detects the oxygen concentration based on the electromotive force functions as an oxygen concentration electromotive force type oxygen sensor. (See FIG. 1 and Example 1 to be described later).
[0022]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
The stacked gas sensor element according to this example will be described.
As shown in FIGS. 1 and 2, the laminated gas sensor element 1 according to the present embodiment includes a first measured gas chamber 11 and a second measured gas chamber 12 for introducing a measured gas under a predetermined diffusion resistance. A pair of electrodes 21 and 22 are provided on the surface of the oxygen ion conductive solid electrolyte plate 16 such that one electrode 21 faces the first gas chamber 11 to be measured. The oxygen pump cell 2 for adjusting the oxygen concentration in the first measured gas chamber 11 by introducing or discharging oxygen into the first measured gas chamber 11 by supplying electricity to the first measured gas chamber 11, and the oxygen ion-conductive solid electrolyte plate 14 On the surface, one electrode 42 has a pair of electrodes 41 and 42 provided so as to face the second gas chamber 12 to be measured, and based on an oxygen ion current generated between the pair of electrodes 41 and 42, Identification in the above-mentioned second measured gas chamber 12 Scan concentration (this example NOx) comprises a sensor cell 4 to detect the, and a heater 19 for heating the activation temperature and the oxygen pump cell 2 and the sensor cell 4.
[0023]
The heater 19 electrically connects the heat generating portion 191 that generates heat by energization, the heater terminal portion 190 provided outside the multilayer gas sensor element 1, and the heat generating portion 191 and the heater terminal portion 190. And a heater lead portion 192.
When the electric resistance value of the heating portion 191 is RH and the electric resistance value of the heater lead portion 192 is RL, a relationship of 1.5 ≦ RH / RL is established.
[0024]
The details are described below.
The laminated gas sensor element 1 according to the present embodiment includes a sheet-like solid electrolyte plate 16 constituting the oxygen pump cell 2, a sheet-like solid electrolyte plate 14 constituting the oxygen monitor cell 3 and the sensor cell 4, and a first gas chamber to be measured. 11 and the sheet-shaped spacer 15 forming the second measured gas chamber 12, sheet-shaped spacers 17, 133, 132 forming the reference gas chambers 121, 122, and heaters for heating the cells 2, 3, 4 1 and 2 are sequentially laminated as shown in FIGS.
[0025]
The first gas chamber 11 to be measured and the second gas chamber 12 to be measured are inner chambers for introducing a gas to be measured from outside the element, and as shown in FIG. 2, spacers located between the solid electrolyte plates 14 and 16 are provided. 15 are formed by two punched holes 110 and 120. A narrowed portion 102 narrower than the holes 110 and 120 is provided between the holes 110 and 120, and a front end portion of the stacked gas sensor element 1 (the left side in FIGS. ), The first measured gas chamber 11 is constituted by the hole 110, and the second gas chamber 12 is constituted by the hole 120.
[0026]
In addition, the first measured gas chamber 11 communicates with the outside of the element via a pinhole 101 as a diffusion resistance means penetrating through the solid electrolyte plate 14.
The hole diameter of the pinhole 101 is appropriately set so that the diffusion rate of the gas to be measured which is introduced into the first gas chamber 11 and the second gas chamber 12 through the pinhole 101 becomes a predetermined speed. I do.
[0027]
In addition, a porous protective layer 131 made of porous alumina or the like is formed on the solid electrolyte plate 14 so as to cover the opening end of the pinhole 101 from the outside of the element.
This prevents the electrodes 21, 32, and 42 located in the first measured gas chamber 11 and the second measured gas chamber 12 from being poisoned and the pinhole 101 from being clogged.
[0028]
The reference gas chambers 121 and 122 are internal chambers for introducing the atmosphere as a reference oxygen concentration gas having a constant oxygen concentration.
The reference gas chamber 121 is formed by a hole 1210 provided in the spacer 17 stacked below the solid electrolyte plate 16, and the reference gas chamber 122 is formed by a hole 1220 provided in the spacer 133 stacked above the solid electrolyte plate 14. I do.
The holes 1210 and 1220 have passages 1211 and 1221 as grooves extending in the longitudinal direction of the multilayer gas sensor element 1, respectively, and the atmosphere can be introduced through the passages 1211 and 1221.
[0029]
The oxygen pump cell 2 is composed of a solid electrolyte plate 16 and a pair of electrodes 21 and 22 facing each other with the solid electrolyte plate 16 interposed therebetween.
Among the pair of electrodes 21 and 22, the electrode 21 faces the first measured gas chamber 11 located on the upstream side of the gas flow in the first measured gas chamber 11 and the second measured gas chamber 12, and the solid electrolyte plate. The other electrode 22 is provided in contact with the solid electrolyte plate 16 so as to face the reference gas chamber 121.
[0030]
The sensor cell 4 is composed of a solid electrolyte plate 14 and a pair of electrodes 41 and 42 opposed to each other so as to sandwich the solid electrolyte plate 14.
One electrode 42 of the pair of electrodes 41, 42 faces the second measured gas chamber 12 located downstream of the gas flow in the first measured gas chamber 11 and the second measured gas chamber 12. The other electrode 41 is provided in contact with the solid electrolyte plate 14 facing the reference gas chamber 122.
[0031]
The oxygen monitor cell 3 includes a solid electrolyte plate 14 and a pair of electrodes 31 and 32 facing each other with the solid electrolyte plate 14 interposed therebetween.
One electrode 32 of the pair of electrodes 31 and 32 faces the second measured gas chamber 12 located on the downstream side of the gas flow in the first measured gas chamber 11 and the second measured gas chamber 12. The other electrode 31 is provided in contact with the solid electrolyte plate 14 facing the reference gas chamber 122.
[0032]
As shown in FIG. 2, the electrodes 21, 22, 31, 32, 41, and 42 are connected to electrode leads 211, 221 and 311, respectively, for extracting electric signals and supplying power from a power source. 321, 411 and 421 are formed integrally.
In addition, on the portions of the solid electrolyte plates 14 and 16 other than the electrodes 21 and the like, in particular, on the portions where the electrode leads 211 and the like are formed, alumina or the like is provided between the solid electrolyte plates 14 and 16 and the electrode leads 211 321 and 421. It is preferable to form an insulating layer (not shown).
[0033]
As shown in FIG. 2, the electrodes 21 of the cells 2, 3, and 4 are exposed to the outside of the multilayer gas sensor element 1 through through holes 180 formed in the lead portions 221 and the spacers 17 and the like. The external terminals 310, 320, 410, 420, 210, and 220 are electrically connected.
By connecting a lead wire to the external terminal section 310 or the like via a suitable connector by crimping, brazing, or the like, an electric signal is transmitted between an external circuit (to be described in detail later) and each of the cells 2, 3, and 4. Exchange etc. becomes possible.
Reference numerals 322 and 422 denote internal terminals electrically connected to the electrode lead portions 321 and 421.
[0034]
The oxygen pump cell 2 is a pump circuit 250 having a pump power supply 251 and an ammeter 252, the oxygen monitor cell 3 is a monitor circuit 350 having a power supply 351 and an ammeter 352, and the sensor cell 4 is a sensor having a power supply 451 and an ammeter 452. It is connected to the circuit 450 via the external terminal 310 and the like.
[0035]
The heater 19 is provided to heat the heat generating portion 191 by power supply from an external power supply (not shown) and heat each of the cells 2, 3, and 4 to an activation temperature.
The heater 19 is formed by patterning a heat generating portion 191 for generating and supplying electricity on the upper surface of a heater substrate 195 made of alumina. It becomes.
FIG. 3 illustrates the shapes of the heat generating portion 191 and the heater lead portion 192 in the heater 19.
The heat generating portion 191 is configured to be narrow and the heater lead portion 192 is configured to be wide. The formation position of the heat generation portion 191 is clear from FIG. It was configured as follows.
Although not shown, the heater terminal 190 of the heater 19 is connected to a heater circuit having a heater power supply.
[0036]
As is apparent from FIG. 2, the heater terminal portion 190 and the external terminal portions 210 and 220 are provided on the surface (downward in the drawing) of the multilayer gas sensor element 1 on the heater 19 side, and the external terminal portions 310, 320, 410 and 420 are provided. , On the surface on the spacer 132 side (above the drawing).
[0037]
Next, the composition of each part of the multilayer gas sensor element 1 according to the present embodiment will be described.
Each spacer 17, 15, 133, 132 is made of an insulating material such as alumina.
The solid electrolyte plates 14, 16 for constituting the oxygen pump cell 2, the oxygen monitor cell 3, and the sensor cell 4 are made of a ceramic having oxygen ion conductivity such as zirconia or ceria.
The electrodes 21 and 32 of the oxygen pump cell 2 and the oxygen monitor cell 3 use electrodes having low NOx decomposition activity in order to suppress the decomposition of NOx in the first measured gas chamber 11 and the second measured gas chamber 12. More specifically, a porous cermet electrode containing Pt and Au can be suitably used. In this case, in the porous cermet electrode, the content of Au in the metal component is preferably about 1 to 10% by weight.
[0038]
Further, as the electrode 42 facing the second measured gas chamber 12 of the sensor cell 4, it is preferable to use an electrode having a high activity of decomposing NOx in order to decompose NOx in the gas to be measured. And a porous cermet electrode containing Rh. In this case, in the porous cermet electrode, the content of Rh in the metal component is preferably about 10 to 50% by weight.
[0039]
The solid electrolyte plates 14, 16, the spacers 15, 17, 133, 132, the alumina insulating plate 196, and the heater sheet 195 can be formed into a sheet shape by a doctor blade method, an extrusion method, or the like.
The electrodes 21 and the like, the leads 211 and the like, and the terminal portions 210 and the like can be formed by screen printing or the like. Then, the respective sheets are laminated and fired to be integrated.
[0040]
Further, it is preferable to use, for example, a Pt porous cermet electrode as the electrodes 22, 31, 41 facing the reference gas chambers 121, 122 of the oxygen pump cell 2, the oxygen monitor cell 3, and the sensor cell 4.
The heat generating portion 191 and the heater lead portion 192 are made of a cermet material composed of Pt and alumina-containing ceramic.
Here, the composition of the cermet material of the heat generating portion 191 is Pt 85% and alumina-containing ceramic 15% by weight.
The composition of the cermet material of the heater lead portion 192 is Pt 90 wt% and alumina-containing ceramic 10 wt%.
The electric resistance RH of the heat generating portion 191 is 1.5Ω and the electric resistance RL of the heater lead 192 is 0.5Ω.
[0041]
Next, the operation principle of the gas sensor element having the above configuration will be described.
The measured gas passes through the porous protective layer 131 and the pinhole 101 and is introduced into the first measured gas chamber 11. The amount of gas introduced at this time is determined by the diffusion resistance of the porous protective layer 131 and the pinhole 101. Thereafter, the measured gas passes through the throttle unit 102 and is introduced into the second measured gas chamber 12.
[0042]
When a voltage is applied to the pair of electrodes 21 and 22 of the oxygen pump cell 2 with a pump power supply such that the electrode 22 on the reference gas chamber 121 side becomes a positive electrode, the voltage on the electrode 21 on the first gas chamber 11 to be measured is increased. Oxygen in the gas to be measured is reduced to oxygen ions, and is discharged to the electrode 22 side by a pumping action.
Conversely, when a voltage is applied so that the electrode 21 on the first measured gas chamber 11 side becomes a positive electrode, oxygen is reduced on the electrode 22 on the reference gas chamber 121 side to become oxygen ions, and the electrode is pumped. It is discharged to the 21 side.
The oxygen concentration of the first measured gas chamber 11 and the second measured gas chamber 12 communicating with the first measured gas chamber 11 can be controlled by using the oxygen pumping action.
[0043]
By applying a predetermined voltage (for example, 0.40 V) to the pair of electrodes 31 and 32 of the oxygen monitor cell 3 so that the electrode 31 on the reference gas chamber 122 side becomes a positive electrode, the second gas chamber 12 to be measured Oxygen in the gas to be measured is reduced on the side electrode 32 to become oxygen ions, and is discharged to the electrode 31 side by a pumping action.
Since the electrode 32 is a Pt-Au cermet electrode that is inert to the decomposition of NOx, the oxygen ion current flowing between the electrodes 31 and 32 passes through the porous protective layer 131, the pinhole 101, the first gas chamber 11 to be measured, and the like. It depends on the amount of oxygen in the gas to be measured passing through and reaching the electrode 32, and does not depend on the amount of NOx.
Therefore, if the applied voltage between the electrodes 21 and 22 of the oxygen pump cell 2 is controlled so that the current value between the electrodes 31 and 32 becomes a predetermined constant value (for example, 0.2 μA), the second gas to be measured can be obtained. The chamber 12 can be controlled to have a constant oxygen concentration.
[0044]
A predetermined voltage (for example, 0.40 V) is applied to the pair of electrodes 41 and 42 of the sensor cell 4 so that the electrode 41 on the reference gas chamber 122 side becomes a positive electrode. Since the electrode 42 is a Pt-Rh cermet electrode that is active in decomposing NOx, oxygen and NOx in the gas to be measured are reduced to oxygen ions on the electrode 42 on the side of the second gas to be measured 12, and pumping is performed. It is discharged to the electrode 41 side by the action.
[0045]
Then, as shown in FIG. 1, in the multilayer gas sensor element 1 according to the present embodiment, the oxygen pump cell 2 is controlled so that the current value between the electrodes 31 and 32 of the oxygen monitor cell 3 becomes a constant value (for example, 0.2 μA). I do.
At this time, if NOx does not exist in the gas to be measured, the current value between the electrodes 41 and 42 of the sensor cell 4 also becomes a constant value (for example, 0.2 μA). On the other hand, when NOx is present in the gas to be measured, the current value increases according to the NOx concentration. Thereby, the NOx concentration in the gas to be measured can be detected.
[0046]
Next, the operation and effect of this example will be described.
When the electric resistance value of the heat generating portion 191 is relatively lower than that of the heater lead portion 192, the amount of heat generated from the heater lead portion 192 increases.
In the laminated gas sensor element 1 according to the present embodiment, as is apparent from FIG. 2, the pair of electrodes 41, 42, 31, and 32 of the sensor cell 4 and the oxygen monitor cell 3 were electrically connected to the upper side of the heater lead 192. Lead portions 421, 321 and the like exist.
Therefore, a leak current is easily generated between the electrode lead portions and the external terminal portions due to the heat generated by the heater lead portions 192.
[0047]
In particular, in the configuration of this example, since the through holes 180 are formed through the respective solid electrolyte plates 14 and the spacers 17, the temperature of the solid electrolyte plates 14 and the spacers 17 immediately above the heater leads 192 increases. Leak current is likely to occur.
[0048]
In the laminated gas sensor element 1 according to the present example, the relationship of 1.5 ≦ RH / RL is established where the electric resistance RH of the heat generating portion 191 is 1.5Ω and the electric resistance RL of the heater lead 192 is 0.5Ω. Therefore, it is difficult for a leak current to flow directly above the heater lead portion 192, and a more accurate concentration can be measured (see Example 2).
As described above, according to the present embodiment, it is possible to obtain a laminated gas sensor element which is hardly affected by the leak current and has high detection accuracy.
[0049]
Also, in the stacked gas sensor element 1 having the heat generating portion 191 according to FIGS. 4 to 6 having a shape other than that of FIG. 3, the ratio of the electric resistance between the heat generating portion 191 and the heater lead portion 192 is 1.5. By setting ≤RH / RL, the same effect as in the present embodiment can be obtained.
FIG. 4 has the same shape as that of FIG. 3, except that the corners of the heat generating portion 191 are rounded and curved.
FIG. 5 shows an example in which the heat generating portion 191 is configured with a higher density. Further, as shown in FIG. 6, the heat generating portion 191 can be configured in a wave shape in the width direction.
[0050]
The heating section 191 and the heater lead section 192 having the same composition as shown in FIG. 3 are made of the same material, and the thickness of the heating section 191 is set to 40 μm and the thickness of the heater lead section 192 is set to 60 μm. The electric resistance of the heater lead portion 192 may be set to 0.5Ω while the electric resistance of the heater lead portion 192 may be set to 1.5Ω.
In this case, the same effect as in the present embodiment can be obtained.
[0051]
(Example 2)
In this example, the performance of the multilayer gas sensor element described in Example 1 was evaluated.
That is, a stacked gas sensor element in which RH / RL = 10 is prepared under the condition that RH is sufficiently large, and the detection error of this stacked gas sensor element is set to 1, and the same applies to other stacked gas sensor elements having different RH / RL. The detection errors were measured and are summarized in FIG.
[0052]
A method for measuring the detection error will be described. Gas sensor elements having different RH / RL were prepared, exposed to a gas to be measured containing 100 ppm of NO, and the detection error of NOx concentration was measured when the temperature of the gas to be measured was changed from 30 ° C. to 100 ° C. . The temperature of the detection section of the gas sensor element was kept constant by changing the voltage applied to the heater. In this measurement, the voltage applied to the heater changes according to the temperature of the gas to be measured, and the calorific value of the heater lead also changes, so that the effect of the error due to the leak current can be estimated.
From FIG. 7, it has been found that as RH / RL decreases, the detection error increases, and it is necessary that RH / RL is 2 or more (preferably 3 or more) in order to obtain high detection accuracy.
[0053]
(Example 3)
As shown in FIG. 8, the laminated gas sensor element 1 according to the present embodiment has substantially the same components as in the first embodiment, but a different circuit configuration.
That is, the pump circuit 250 includes a power supply 251 and an ammeter 252 so that the oxygen pump current matches the limit current based on the relationship between the applied voltage to the oxygen pump cell 2 and the current flowing through the oxygen pump cell 2 determined in advance. Is applied with a voltage corresponding to the oxygen concentration.
Thereby, the oxygen concentration in the first measured gas chamber 11 and the second measured gas chamber 12 can be controlled to a predetermined low concentration.
[0054]
When the oxygen concentration in the first measured gas chamber 11 and the second measured gas chamber 12 is controlled by this method, the oxygen concentration in the second measured gas chamber 12 is smaller than the control based on the oxygen monitor cell according to the first embodiment. The concentration tends to fluctuate. Therefore, if the current flowing between the electrodes 41 and 42 of the sensor cell 4 is directly used as a sensor signal, the detection accuracy of NOx deteriorates.
Therefore, the difference between the current flowing between the electrodes 41 and 42 of the sensor cell 4 and the current flowing between the electrodes 31 and 32 of the oxygen monitor cell 3 is detected by a current difference detection circuit 459, and this value is used as a sensor signal, thereby (2) By reducing the influence of the oxygen concentration fluctuation in the measured gas chamber 12, a more accurate sensor cell output relating to the NOx concentration independent of the oxygen concentration in the measured gas can be obtained.
[0055]
(Example 4)
The stacked gas sensor element 6 according to the present example is a four-cell element provided with a second oxygen pump cell 5, as shown in FIG.
The stacked gas sensor element 1 of the present embodiment has a heater 19 similar to that of the first embodiment, a spacer 64 for a reference gas chamber 640, a solid electrolyte plate 63 provided with an oxygen monitor cell 3 and a sensor cell 4, a first measured gas chamber 11, The spacer 62 for the second measured gas chamber 12 and the solid electrolyte plate 61 for the oxygen pump cell 2 and the second oxygen pump cell 5 are laminated.
[0056]
The oxygen pump cell 2 has an electrode 21 facing the first gas-to-be-measured gas chamber 11 and an electrode 22 covered with the porous protective layer 131 and exposed to the gas to be measured outside the element. Connected to circuit 250.
The monitor cell 3 has an electrode 32 facing the first measured gas chamber 11 and an electrode 31 facing the reference gas chamber 640, and is connected to a circuit 350 having a voltmeter 357.
The sensor cell 4 has an electrode 42 facing the second measured gas chamber 12 and an electrode 41 facing the reference gas chamber 640, and is connected to a circuit 450 having an ammeter 457.
The electrodes 31, 41 are integral electrodes.
A control circuit 255 that controls the power supply 251 of the oxygen pump cell 2 based on the voltage value detected by the voltmeter 357 is connected between the voltmeter 357 and the power supply 251.
[0057]
The second oxygen pump cell 5 has an electrode 51 formed integrally with the electrode 22 of the first oxygen pump cell 2 and an electrode 52 exposed to the second gas chamber 12 to be measured, and is connected to a circuit 550 having a power supply 551. You.
[0058]
In the first embodiment, the oxygen concentration in the second measured gas chamber 12 is detected by the value of the current flowing through the oxygen monitor cell 3. In this embodiment, the oxygen concentration is detected from the electromotive force generated between the electrodes 31 and 32 of the oxygen monitor cell 3.
An example of the operation in this case will be described with reference to FIG.
The electrode 32 of the oxygen monitor cell 3 faces the first measured gas chamber 11, and the electrode 31 faces the reference gas chamber 640 into which the atmosphere is introduced. An electromotive force based on the Nernst equation is generated between the electrodes 31 and 32 due to the difference in oxygen concentration between the first measured gas chamber 11 and the reference gas chamber 640.
[0059]
Since the oxygen concentration in the reference gas chamber 640 is constant, the electromotive force generated between the electrodes 31 and 32 reflects the oxygen concentration in the first measured gas chamber 11. Therefore, by controlling the voltage applied between the electrodes 21 and 22 of the oxygen pump cell 2 so that the electromotive force generated between the electrodes 31 and 32 becomes a predetermined constant value (for example, 0.20 V), the second gas to be measured is controlled. The concentration of oxygen flowing into the chamber 12 can be controlled to be constant.
[0060]
Further, in this example, the second oxygen pump cell 5 is formed, and oxygen that cannot be exhausted by the oxygen pump cell 2 and flows into the second measured gas chamber 12 is exhausted to the outside.
As a result, the oxygen concentration in the second measured gas chamber 12 becomes almost zero, and the sensor cell 4 enables highly accurate NOx concentration measurement.
Other configurations of the heater 19 are the same as those of the first embodiment, and the same operation and effect can be obtained.
[Brief description of the drawings]
FIGS. 1A and 1B are cross-sectional explanatory views in a longitudinal direction of a laminated gas sensor element according to a first embodiment, and FIG. 1B is a cross-sectional explanatory view in a width direction (A-A cross-sectional explanatory view of FIG. 1A).
FIG. 2 is an exploded perspective view of the multilayer gas sensor element according to the first embodiment.
FIG. 3 is a plan view showing a shape of a heat generating portion and a heater lead portion of the heater in the first embodiment (a cross-sectional explanatory view taken along a line BB in FIG. 1A).
FIG. 4 is a plan view showing another shape of the heat generating portion and the heater lead portion in the first embodiment.
FIG. 5 is a plan view showing another shape of the heat generating portion and the heater lead portion in the first embodiment.
FIG. 6 is a plan view showing another shape of the heat generating portion and the heater lead portion in the first embodiment.
FIG. 7 is a diagram showing a relationship between RH / RL and a detection error in the second embodiment.
FIG. 8 is a cross-sectional view in the longitudinal direction of a laminated gas sensor element having a configuration in which control is performed based on an applied voltage to the oxygen pump cell and a current flowing in the oxygen pump cell in the third embodiment, and FIG. 8 (a) is a sectional view taken along the line CC.)
FIG. 9 is an explanatory cross-sectional view in a longitudinal direction of a stacked gas sensor element including first and second oxygen pump cells according to a fourth embodiment.
FIG. 10 is an explanatory view of a conventional laminated gas sensor element.
[Explanation of symbols]
1. . . Stacked gas sensor element,
11,12. . . First and second gas chambers to be measured,
14,16. . . Solid electrolyte plate,
21, 22, 31, 32, 41, 42. . . electrode,
19. . . heater,
191. . . Heating section,
192. . . Heater lead,
2. . . Oxygen pump cell,
3. . . Oxygen monitor cell,
4. . . Sensor cell,

Claims (5)

所定の拡散抵抗の下に被測定ガスを導入する被測定ガス室と,
酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極へ通電することにより上記被測定ガス室に酸素を導入または排出し,上記被測定ガス室の酸素濃度を調整する酸素ポンプセルと,
酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極間に生じる酸素イオン電流に基づいて,上記被測定ガス室内の特定ガス濃度を検出するセンサセルと,上記酸素ポンプセルと上記センサセルとを活性温度に加熱するヒータとを備える積層型ガスセンサ素子であって,
上記ヒータは,通電により発熱する発熱部と,上記積層型ガスセンサ素子の外部に設けたヒータ端子部と,上記発熱部及び上記ヒータ端子部との間を電気的に導通するヒータリード部とを有し,
上記発熱部の電気抵抗値をRH,上記ヒータリード部の電気抵抗値をRLとした場合,1.5≦RH/RLなる関係が成立することを特徴とする積層型ガスセンサ素子。
A measured gas chamber for introducing the measured gas under a predetermined diffusion resistance;
On the surface of the oxygen ion conductive solid electrolyte plate, there is a pair of electrodes provided so that one electrode faces the above-mentioned gas chamber to be measured. An oxygen pump cell for introducing or discharging oxygen and adjusting the oxygen concentration in the gas chamber to be measured;
On the surface of the oxygen ion conductive solid electrolyte plate, there is provided a pair of electrodes with one electrode facing the gas chamber to be measured, and based on the oxygen ion current generated between the pair of electrodes, A laminated gas sensor element comprising: a sensor cell for detecting a specific gas concentration in a gas chamber to be measured; and a heater for heating the oxygen pump cell and the sensor cell to an activation temperature.
The heater has a heat generating portion that generates heat when energized, a heater terminal portion provided outside the multilayer gas sensor element, and a heater lead portion that electrically connects the heat generating portion and the heater terminal portion. And
A multilayer gas sensor element, wherein the relationship 1.5 ≦ RH / RL is satisfied, where RH is the electric resistance value of the heating portion and RL is the electric resistance value of the heater lead portion.
請求項1において,上記発熱部と上記ヒータリード部とは電気抵抗値の異なる材料から構成することを特徴とする積層型ガスセンサ素子。2. The stacked gas sensor element according to claim 1, wherein said heat generating portion and said heater lead portion are made of materials having different electric resistance values. 請求項2において,上記発熱部及び上記ヒータリード部は,Ptを含有する金属粒子と,アルミナを含有するセラミック粒子とを含むサーメット材料から構成し,
上記発熱部を構成する発熱部用サーメット材料におけるセラミック粒子含有量は,上記ヒータリード部を構成するヒータリード部用サーメット材料におけるセラミック粒子含有量よりも大であることを特徴とする積層型ガスセンサ素子。
In claim 2, the heating section and the heater lead section are made of a cermet material containing metal particles containing Pt and ceramic particles containing alumina.
The ceramic gas content of the cermet material for the heating portion constituting the heating portion is larger than the ceramic particle content of the cermet material for the heating portion constituting the heater lead portion. .
請求項1において,上記発熱部の厚みは,上記ヒータリード部の厚みよりも薄いことを特徴とする積層型ガスセンサ素子。2. The stacked gas sensor element according to claim 1, wherein a thickness of the heat generating portion is smaller than a thickness of the heater lead portion. 請求項1〜4のいずれか1項において,酸素イオン導電性の固体電解質板の表面に,一方の電極が上記被測定ガス室に面するように設けた一対の電極を有し,これら一対の電極間に生じる電流値または起電力に基づいて,上記被測定ガス室内の酸素濃度を検出する酸素モニタセルを備えることを特徴とする積層型ガスセンサ素子。5. The device according to claim 1, further comprising a pair of electrodes provided on a surface of the oxygen-ion-conductive solid electrolyte plate such that one electrode faces the gas chamber to be measured. 6. A stacked gas sensor element comprising: an oxygen monitor cell that detects an oxygen concentration in the measured gas chamber based on a current value or an electromotive force generated between the electrodes.
JP2002318520A 2002-08-30 2002-10-31 Multilayer gas sensing element Pending JP2004151017A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002318520A JP2004151017A (en) 2002-10-31 2002-10-31 Multilayer gas sensing element
DE10339967A DE10339967A1 (en) 2002-08-30 2003-08-29 Multilayer gas sensor element
US10/652,555 US7316767B2 (en) 2002-08-30 2003-09-02 Gas sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318520A JP2004151017A (en) 2002-10-31 2002-10-31 Multilayer gas sensing element

Publications (1)

Publication Number Publication Date
JP2004151017A true JP2004151017A (en) 2004-05-27

Family

ID=32461638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318520A Pending JP2004151017A (en) 2002-08-30 2002-10-31 Multilayer gas sensing element

Country Status (1)

Country Link
JP (1) JP2004151017A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308739A (en) * 2004-04-01 2005-11-04 Robert Bosch Gmbh Ceramic heating element for gas sensor
JP2007040820A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
JP2009265085A (en) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd Gas sensor
JP2010266429A (en) * 2009-04-17 2010-11-25 Ngk Spark Plug Co Ltd Gas sensor
JP2015010861A (en) * 2013-06-27 2015-01-19 日本特殊陶業株式会社 Heater and gas sensor element
JP2018169328A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Sensor element and gas sensor
CN115087863A (en) * 2020-02-17 2022-09-20 株式会社电装 Gas sensor element
JP7382263B2 (en) 2020-03-26 2023-11-16 日本碍子株式会社 Abnormality detection method and gas sensor manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308739A (en) * 2004-04-01 2005-11-04 Robert Bosch Gmbh Ceramic heating element for gas sensor
JP4662803B2 (en) * 2004-04-01 2011-03-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic heating element for gas sensor
JP2007040820A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
JP4527626B2 (en) * 2005-08-03 2010-08-18 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP2009265085A (en) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd Gas sensor
JP4659889B2 (en) * 2008-04-02 2011-03-30 日本特殊陶業株式会社 Gas sensor
JP2010266429A (en) * 2009-04-17 2010-11-25 Ngk Spark Plug Co Ltd Gas sensor
JP2015010861A (en) * 2013-06-27 2015-01-19 日本特殊陶業株式会社 Heater and gas sensor element
US9594048B2 (en) 2013-06-27 2017-03-14 Ngk Spark Plug Co., Ltd. Heater and gas sensor element
JP2018169328A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Sensor element and gas sensor
CN115087863A (en) * 2020-02-17 2022-09-20 株式会社电装 Gas sensor element
JP7382263B2 (en) 2020-03-26 2023-11-16 日本碍子株式会社 Abnormality detection method and gas sensor manufacturing method

Similar Documents

Publication Publication Date Title
JP3855483B2 (en) Stacked air-fuel ratio sensor element
JP3876506B2 (en) Gas concentration measuring method and composite gas sensor
JP3973900B2 (en) Gas sensor element
US7045047B2 (en) Gas sensor element
WO1998012550A1 (en) Gas sensor
JP3993122B2 (en) Gas sensor element and method for measuring hydrogen-containing gas
JP3587290B2 (en) NOx gas sensor
JP3835022B2 (en) Gas sensor element
US6068747A (en) Solid electrolyte gas sensor
US6740217B2 (en) Structure of gas sensor designed to minimize error of sensor output
JP2004151017A (en) Multilayer gas sensing element
JP4248265B2 (en) Gas sensor element
US7316767B2 (en) Gas sensing element
JP4304963B2 (en) Gas sensor element and manufacturing method thereof
JP2004151018A (en) Laminated gas sensing element
JPH11237366A (en) Gas sensor
JPH11166911A (en) Air-fuel ratio sensor
JP4003879B2 (en) Method for manufacturing gas sensor element and gas sensor element
JP4516168B2 (en) Gas concentration measurement method
JP4101501B2 (en) Compound gas sensor element
JP2002328112A (en) Gas sensor element
JP2004205357A (en) Detection method of gas concentration
JP4037220B2 (en) Gas sensor element
JP3314782B2 (en) Composite gas sensor
JP2004093307A (en) Gas sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701