JP2004149912A - High tensile galvanized steel sheet, production method therefor, high tensile galvannealed steel sheet, and production method therefor - Google Patents

High tensile galvanized steel sheet, production method therefor, high tensile galvannealed steel sheet, and production method therefor Download PDF

Info

Publication number
JP2004149912A
JP2004149912A JP2003032455A JP2003032455A JP2004149912A JP 2004149912 A JP2004149912 A JP 2004149912A JP 2003032455 A JP2003032455 A JP 2003032455A JP 2003032455 A JP2003032455 A JP 2003032455A JP 2004149912 A JP2004149912 A JP 2004149912A
Authority
JP
Japan
Prior art keywords
steel sheet
mass
strength
hot
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003032455A
Other languages
Japanese (ja)
Other versions
JP4275424B2 (en
Inventor
Noriko Makiishi
規子 槇石
Kaoru Okuyama
薫 奥山
Susumu Sato
佐藤  進
Yoshitsugu Suzuki
善継 鈴木
Kazuaki Kyono
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003032455A priority Critical patent/JP4275424B2/en
Publication of JP2004149912A publication Critical patent/JP2004149912A/en
Application granted granted Critical
Publication of JP4275424B2 publication Critical patent/JP4275424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve plating properties without causing bare spots even when a high tensile steel sheet having high contents of solid solution strengthening elements such as Si and Mn is used as a base steel sheet. <P>SOLUTION: The base steel sheet consists of a high tensile steel sheet 1 comprising, by mass, 0.001 to 0.20% C, 0.10 to 2.00% Si, 1.00 to 3.00% Mn, 0.01 to 0.50% of one or more kinds of metals selected from Nb and Ti, 0.01 to 1.00% Mo, and the balance Fe with inevitable impurities. Further, an oxidizing layer 3 comprising intergranular oxide or transgranular oxide is formed on the surface layer part of the high tensile steel sheet 1 to form into the boundary with galvanizing 2, and a region where Nb-Mo based or Ti-Mo based precipitates with a diameter of ≤20 nm are dispersed by one piece/μm<SP>3</SP>or above, preferably 10 pieces/μm<SP>3</SP>or above is allowed to exist. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高張力溶融亜鉛めっき鋼板及びその製造方法、並びに高張力合金化溶融亜鉛めっき鋼板及びその製造方法に関し、特に、Si、Mn、Pなどの固溶強化元素の含有量が高い高張力鋼板への不めっきの発生を抑制するために有効な技術に関する。
【0002】
【従来の技術】
近年、自動車の衝突安全性の向上及び地球環境保全における観点から、燃費改善のための軽量化を目的として、自動車鋼板への高張力溶融亜鉛めっき鋼板の適用が広く検討されている。
この高張力鋼板亜鉛めっき鋼板とは、Si、Mn、Pなどの固溶強化元素を多々含む高張力鋼板を下地鋼板とし、この下地鋼板に溶融亜鉛めっきを施すことで形成されてなるものであり、高強度・高加工性を有している。
【0003】
しかしながら、上記高張力鋼板に強度向上のために添加される上記固溶強化元素の添加量が増大すると、連続溶融亜鉛めっきライン(CGL:Continuous Galvanizing Line)にてめっき処理を行う前の焼鈍処理工程において、鋼板表面に固溶強化元素であるSiやMnなどの濃化層が生成されてしまう恐れがあった。この濃化層は、Feを還元させるための還元性雰囲気が、鋼板中に存在するSi、Mnなどにとっては酸化性雰囲気であることにより選択酸化され、鋼板表面にこれらの酸化物を蓄積させてしまうことで形成される。
【0004】
このような濃化層が鋼板表面に形成されてしまうと、鋼板と溶融亜鉛との濡れ性が著しく低下するため、めっき性が低下するとともに、特に、SiやMnの含有量が高い高張力鋼板の場合には、部分的にめっきがなされない、いわゆる不めっきが発生するという問題があった。
このような問題を解決するために、めっき処理における加熱に先立ち、高酸素分圧下で鋼板を強制的に酸化した後に還元することで、めっき性を向上させる手段が提案されている(例えば、特許文献1参照)。
【0005】
また、強酸化雰囲気中で加熱処理する前の鋼板にショットブラスト処理を施すことによって、めっき性を向上させる手段が提案されている(例えば、特許文献2)。
さらに、めっき処理を施す前にプレめっきを施すことで、めっき性を向上させる手段が提案されている(例えば、特許文献3参照)。
【0006】
さらに、下地鋼板となる高張力鋼板へのSi、Mn、及びPの添加量を最適化することで、めっき性を向上させる手段が提案されている(例えば、特許文献4参照)。
さらに、めっき処理を施す前に再結晶焼鈍を施して、予め表面酸化物を生成しておき、この表面酸化物を酸洗除去した後、溶融亜鉛めっきを行うことで、めっき性を向上させる手段が提案されている(例えば、特許文献5及び特許文献6参照)。
【0007】
【特許文献1】
特開昭55−1212865号公報
【特許文献2】
特開平6−158254号公報
【特許文献3】
特開昭58−104163号公報
【特許文献4】
特開平6−287684号公報
【特許文献5】
特開平7−70723号公報
【特許文献6】
特開平8−85858号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述の特許文献1で提案された手段においては、強制酸化における濃化層の制御が十分行われないという課題が未だ未解決のままであった。また、特に、Si濃度が0.5質量%以上含まれるような鋼中成分条件やめっき処理条件によっては、安定なめっきを確保することが困難であるという不具合があった。
【0009】
また、上述の特許文献2で提案された手段においては、高い濃度のSiを含む場合には、安定しためっきを確保することが困難であるという不具合があった。さらに、上述の特許文献3で提案された手段においては、めっき処理を行うための設備や運転にかかるコストが増大してしまい、製造単価の上昇を招いてしまうという不具合があった。
【0010】
さらに、上述の特許文献4乃至特許文献6で提案された手段においては、Si含有量が高い鋼種では不めっきの発生を完全に防止できないという不具合があった。
そこで、本発明は、上記事情に鑑みてなされたものであり、特に、SiやMnなど固溶強化元素の含有量が高い高張力鋼板を下地鋼板とする場合であっても、不めっきを発生させることなく、めっき性の向上を可能とした高張力溶融亜鉛めっき鋼板及びその製造方法、並びに高張力合金化溶融亜鉛めっき鋼板及びその製造方法を提供することを課題としている。
【0011】
【課題を解決するための手段】
このような課題を解決するために、種々検討を重ねた結果、鋼板表層部に形成される酸化層を、微細析出物を分散させた領域を存在させるとともに、粒界酸化物或いは粒内酸化物を含んで構成することで、めっき処理前の焼鈍処理において、鋼板内部からのSiやMnの拡散を阻害し、鋼板表面への濃化層生成を妨げることが可能となり、不めっき発生のない高張力溶融亜鉛めっき鋼板を提供できることを見いだした。
【0012】
本発明は、上記知見に基づいて完成されたものであり、次のような構成からなる。
本発明における高張力溶融亜鉛めっき鋼板は、高張力鋼板からなる下地鋼板に、溶融亜鉛めっきを施してなる高張力溶融亜鉛めっき鋼板において、前記高張力鋼板が、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成されているとともに、前記下地鋼板には、前記溶融亜鉛めっきと前記下地鋼板とが接する表層部に、粒界酸化物或いは粒内酸化物を含む酸化層が形成され、さらに、前記酸化層に直径20nm以下のNb−Mo系或いはTiーMo系析出物が1個/μm以上分散されていることを特徴としている。
【0013】
また、本発明における高張力溶融亜鉛めっき鋼板において、酸化層に、直径20nm以下のNb−Mo系或いはTiーMo系析出物が10個/μm以上分散されていることが好ましい。
本発明における高張力合金化溶融亜鉛めっき鋼板は、本発明における高張力溶融亜鉛めっき鋼板を、さらに合金化することで形成されてなることを特徴としている。
【0014】
本発明における高張力溶融亜鉛めっき鋼板の第一の製造方法は、高張力鋼板からなる下地鋼板に、溶融亜鉛めっきを施してなる高張力溶融亜鉛めっき鋼板の製造方法において、前記下地鋼板が、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成される高張力鋼板であり、前記下地鋼板に、圧下率50〜85%の条件下で冷間圧延処理を行う工程を含むことを特徴としている。
【0015】
本発明における高張力溶融亜鉛めっき鋼板の第二の製造方法は、高張力鋼板からなる下地鋼板に、溶融亜鉛めっきを施してなる高張力溶融亜鉛めっき鋼板の製造方法において、前記下地鋼板が、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成される高張力鋼板であり、前記下地鋼板に、ショットブラスト処理を施す工程と、前記ショットブラスト処理後の下地鋼板に、圧下率30〜85%の条件下で冷間圧延処理を施す工程とを含むことを特徴としている。
本発明における高張力合金化溶融亜鉛めっき鋼板の製造方法は、本発明における高張力溶融亜鉛めっき鋼板の製造方法によって溶融亜鉛めっきが施された前記下地鋼板に、さらに合金化処理を行う工程を含むことを特徴としている。
【0016】
【発明の実施の形態】
本発明における高張力溶融亜鉛めっき鋼板によれば、高張力鋼板における溶融亜鉛めっきとの界面近傍に、Nb−Mo系或いはTi−Mo系析出物を分散させ、Si−Mn系の粒界酸化物或いはSi−Mn系の粒内酸化物を含む酸化層を形成させたことによって、めっき前の焼鈍工程における高張力鋼板表面へのSiやMnの拡散を阻害するため、高張力鋼板表面への濃化層生成を抑制することが可能となる。すなわち、粒界酸化物或いは粒内酸化物としてSiやMnを固定して拡散させないとともに、粒界及び粒内に頻度高く存在するこれら酸化物が、750℃以上となる焼鈍においても鋼板内部からのSiやMnの移動の障壁となって、SiやMnの拡散を抑制するためである。よって、SiやMnなどの固溶強化元素を多々含んだ高張力鋼板であっても、不めっきの発生を抑制し、めっき性を向上させることが可能となるため、高強度・高加工性に優れた高張力溶融亜鉛めっき鋼板を提供することができる。
【0017】
本発明における高張力合金化溶融亜鉛めっき鋼板によれば、本発明における高張力溶融亜鉛めっき鋼板と同様の効果を得ることができる。
本発明における高張力溶融亜鉛めっき鋼板の第一及び第二の製造方法によれば、本発明における高張力溶融亜鉛めっき鋼板を、容易に実現することができる。特に、本発明における高張力溶融亜鉛めっき鋼板の第二の製造方法によれば、下地鋼板に、ショットブラスト処理を施したことによって、酸化層が形成される下地鋼板の表層部に局所的に歪みを導入することが可能となる。このため、冷間圧延処理を圧下率30%程度の条件下で行っても、下地鋼板の表面に形成されるSiやMnなどからなる濃化層を、Mn/Si比やMn+Siの全体量が減少する方向に変化させることが可能となる。
【0018】
本発明における高張力合金化溶融亜鉛めっき鋼板の製造方法によれば、本発明における高張力合金化溶融亜鉛めっき鋼板を容易に実現することができる。
以下、本発明における各数値限定の臨界的意義について説明する。
〔下地鋼板となる高張力鋼板のC含有量:0.001〜0.20質量%〕
C(炭素)は、低温で生成するマルテンサイト相或いはベイナイト相の生成や、Ti(チタン)やNb(ニオブ)の炭化物を析出させることで、強度を向上させることを可能としている。しかし、Cを過剰に添加してしまうと、スポット溶接性が劣化するため、その上限は0.20質量%とすることが望ましい。一方、製造コストなどを考慮して、その下限は0.001質量%とすることが望ましい。
【0019】
〔下地鋼板となる高張力鋼板のSi含有量:0.10〜2.00質量%〕
Si(ケイ素)は、固溶強化を行うとともに、フェライト相中の固溶C量を減少させることで、加工性を向上させることを可能としている。よって、高強度・高加工性の高張力冷延鋼板には必須の元素であり、これらの特性を得るために、その下限は0.1.質量%とすることが望ましい。一方、Siを過剰に添加してしまうと、加工性の阻害してしまうとともに、溶融亜鉛めっき処理前の酸洗処理でSi酸化物が多量に残留して不めっきが発生するため、その上限は2.00質量%とすることが望ましい。
【0020】
〔下地鋼板となる高張力鋼板のMn含有量:1.00〜3.00質量%〕
Mn(マンガン)は、焼入れ性に寄与し、マルテンサイト相を生成させることで、強度を向上させることを可能としており、高強度の高張力鋼板とするために必須の元素である。ここで、1.00質量%未満の添加では、その効果が認められないため、その下限を1.00質量%としている。なお、MnとSiとの組成比(Mn/Si)は、還元性雰囲気中で焼鈍する場合に生成する濃化層の形態を左右する要因となる。つまり、濃化層がSiOであると酸洗処理で除去しにくく、濃化層がMn−Si系又はMn系であると比較的酸洗処理で除去しやすくなるため、Mn/Siを高くすることが望ましい。しかし、Mnの添加物量が3.00質量%を超えると、過度に硬化し延性を劣化させるとともに、スポット溶接性及びめっき性を著しく損なう結果となるため、その上限は3.00質量%とすることが望ましい。
【0021】
〔下地鋼板となる高張力鋼板のNb或いはTiの含有量:0.01〜0.50質量%〕
Nb及びTiは、いずれも微細な炭化物を形成する元素であり、再結晶時に結晶の粗大化を防ぎ、微細な結晶組織とするとともに、再結晶温度を上昇させることを可能としている。そして、再結晶焼鈍処理後の高張力鋼板の表面層に、緻密な粒界酸化物を多々含む内部酸化層の発達に寄与し、高張力鋼板のめっき性を向上させることを可能としている。この微細な炭化物が緻密な内部酸化層形成に寄与する機構は、次のように考えられる。微細な炭化物は、前述のように再結晶温度を上昇させるという働きがある上、鋼の強度を向上させるために、同じ圧下率であれば冷間圧延処理後の鋼板表層にはより多くの歪みを導入できる効果がある。焼鈍工程の加熱過程における表層の変化を考えると、微細炭化物が少ない場合は、再結晶が進んだ後内部酸化層形成が進むのに対し、微細炭化物が多い場合は、この微細炭化物により再結晶温度が上昇し、表層の再結晶が終わらないうちに内部酸化が進行し、加えて表層の局所的歪みが多いことから、より酸素が内部に拡散しやすくなって緻密な内部酸化層が形成されると考えられる。上記効果を得るためには、Nb及びTiいずれの元素であっても0.01質量%以上の添加が必要であるため、その下限を0.01質量%とすることが望ましい。一方、これらの元素が0.50質量%を超えて多量に添加されると、加工性やスポット溶接性が低下するので、その上限を0.50質量%とすることが望ましい。
【0022】
〔下地鋼板となる高張力鋼板のMo含有量:0.01〜1.00質量%〕
Mo(モリブデン)は、Nb或いはTiと複合添加させることで、これらNbーMo或いはTi−Mo系析出物のサイズを微細化することが可能となる。例えば、0.05質量%Nb添加材と、0.05質量%Nb−0.30質量%Mo複合添加材との析出物の大きさを比較すると、前者の大きさが20〜50nmであるのに対し、後者の大きさが10nm以下の析出物を形成することができる。このように、高張力鋼板の表層面に微細な析出物を分散させること、また、固溶したMoが再結晶を抑制する効果を有することにより、高張力鋼板におけるめっき性を向上させることを可能としている。上記効果を発現させるために、その下限は0.01質量%とすることが望ましい。一方、Moの添加量が1.00質量%を超えると、熱間圧延処理後の高張力鋼板における表面性状が良好ではなくなるため、その上限は1.00質量%とすることが望ましい。
【0023】
〔溶融亜鉛めっきと下地鋼板とが接する表層部に形成された酸化層に分散されるNb−Mo系或いはTi−Mo系析出物:直径20μm以下で、1個/μm以上〕
下地鋼板となる高張力鋼板を上述したような構成材料から形成することによって、下地鋼板における表層部には、粒界酸化物或いは緻密に存在する粒内酸化物からなる酸化層が形成される。この酸化層内には、Nb−Mo系或いはTi−Mo系の析出物が分散された状態となる。このNb−Mo系或いはTi−Mo系析出物の直径サイズを20μm以下、その密度1個/μmとすることで、高張力鋼板のめっき性を向上させることが可能となる。また、その中でもこの直径20μm以下のNb−Mo系或いはTi−Mo系の析出物が10個/μm分散されている場合には、高張力鋼板のめっき性をさらに向上させることが可能となる。
【0024】
さらに、本発明の一実施の形態について、図面を参照して説明する。
図1は、本発明の高張力溶融亜鉛めっき鋼板の一構成例を示す断面図である。本実施形態における高張力溶融亜鉛めっき鋼板10は、下地鋼板となる高張力鋼板1の一面に、溶融亜鉛めっき2が施されており、この溶融亜鉛めっき2と接する高張力鋼板(下地鋼板)1の表層部には、酸化層3が形成されている。
【0025】
高張力鋼板1は、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成されている。
ここで、高張力鋼板1の構成材料として、Cを0.001〜0.20質量%含んだことによって、TiやNbの炭化物を析出させることができるため、高強度を実現させることが可能となる。また、Siを0.10〜2.00質量%含んだことによって、高強度・高加工性を向上させることが可能となる。さらに、Mnを1.00〜3.00質量%含んだことによって、高強度を実現させることが可能となる。なお、MnとSiとの組成比(Mn/Si)は、還元性雰囲気下で焼鈍処理する際に高張力鋼板1表面に、酸洗処理に有利なMn−Si系或いはMn系の濃化層を生成するため、Mn/Siをより高くすることが望ましい。さらに、Nb或いはTiを0.01〜0.50質量%含んだことによって、高張力鋼板1の表層部に後述して詳細を述べる酸化層3を形成させることが可能となり、めっき性を向上させることが可能となる。さらに、Moを0.01〜1.00質量%含んだことによって、NbやTiと複合添加することにより、 後述する20nm以下の微細な析出物を析出させることが可能となる。
【0026】
酸化層3は、高張力鋼板(下地鋼板)1の表面から内部に10μm程度まで入り込んだ範囲の表層部に形成され、高張力鋼板1を構成する多結晶固体の各結晶界面(粒界)に酸化物を有する粒界酸化物或いは緻密に存在する粒内酸化物を多く含んだ緻密な構造を有している。また、めっき界面から10μmまでの深さの領域には、図4に示すような直径20nm以下であるNb−Mo系或いはTi−Mo系析出物3aが、1個/μm以上分散した領域が存在する。また、さらにめっき性に優れる場合には、前述の直径20nm以下であるNb−Mo系或いはTi−Mo系析出物3aが、10個/μm以上分散した領域が存在する。
【0027】
次に、本発明における高張力溶融亜鉛めっき鋼板10の製造方法について、説明する。
まず、下地鋼板となる高張力鋼板を形成する溶鋼を、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成する。そして、上記好適成分組成に調整した溶鋼をスラブに形成しておく。
【0028】
次に、このスラブに、熱間圧延処理を行う。ここで、NbーMo系或いはTiーMo系析出物を微細に析出させるために、比較的高温、好ましくは1100℃以上のスラブ加熱温度で熱間圧延処理を行うようにすることが望ましい。
次いで、この熱間圧延処理後の鋼板に酸洗処理を行い、熱間圧延処理によって鋼板の表面に形成された金属酸化物の被膜(スケール)を除去する。
【0029】
次いで、この鋼板に、冷間圧延処理を行う。ここで、冷間圧延処理における圧下率は、50%以上とすることが好ましい。これは、50%未満であると、鋼板表面に付与される表面歪み量が少ないため、焼鈍過程において、圧下率が高い場合に比べて酸素の拡散が減少して内部酸化量が少なくなり、結果的に表面濃化の抑制量が減少してめっき性向上の効果が小さくなるためである。一方、鋼板に、この冷間圧延処理の前工程でショットブラスト処理が施されている場合には、すでに表層部に局所的歪みが形成されているため、圧下率は30%未満であっても、圧下率50%以上とした場合と同様のめっき性向上の効果を得ることができる。なお、圧下率の上限は、工業的に高張力鋼板を製造する場合を考慮して、いずれの場合であっても85%としている。また、このショットブラスト処理は、酸洗処理前に行っても構わないが、鋼板表面に歪みを付与することを考慮した場合に、酸洗処理後に行うことがより効果的である。さらに、ショットブラスト処理は、表面歪み800N/m・min以上がめっき性確保の点から好ましい。
【0030】
次いで、還元性雰囲気下で再結晶焼鈍処理を行う。具体的には、再結晶温度:Ac(加熱時、オーステナイトが生成し始める温度)〜Ac(加熱時、フェライトがオーステナイトへの変態を完了する温度)+50℃、露点:−45〜0℃、雰囲気ガス:Ar、N、Hの単独或いは混合ガスの条件下で行う。そして、再結晶温度に1〜120秒保持した後、40〜100/sの速度で急冷し、マルテンサイト組織を生成するようにすることが望ましい。このとき、図2に示すように、下地鋼板の表層部には、粒界酸化物或いは粒内酸化物が形成されるとともに、鋼板の表面にはMn−Si系或いはMn系の濃化層が生成される。また、この濃化層の直下に存在する鋼板表面から0.3μm内部に入り込んだ領域は、Si、Mnの濃度が減少した層(Si、Mn濃度減少層)となっている。
【0031】
次いで、この冷間圧延処理後の鋼板に、酸洗処理を行い、再結晶焼鈍処理によって鋼板の表面に成されたMn−Si系或いはMn系の濃化層を除去する。ここで、この濃化層直下のSi、Mn濃度減少領域は必要以上に溶解しないようにすることが好ましい。酸洗液としては、1〜20質量%の塩酸を用いることが好ましく、酸洗処理時間は1〜20秒とすることが好ましい。
【0032】
次いで、溶融めっき前の焼鈍処理を行う。具体的には、Ac〜Acのフェライト(α)+オーステナイト(γ)二相領域に加熱処理を行い、α相から炭素を排出させることによってα相自身の延性を向上させるとともに、γ相中の炭素濃度を濃縮させることによってMs点(冷却の間にオーステナイトがマルテンサイトに変態し始める温度)を低下させ、残留γ相を生成させることができるため、加工性を向上させることが可能となる。また、上記加熱処理に限らず、二相領域で焼鈍処理を施した後、さらにAr(冷却時、オーステナイトがフェライト又はフェライト+セメンタイトへの変態を完了する温度)以下の低温で保持し、一部にベイナイト変態を起こさせ、結晶粒を微細化するための加熱処理を行ってもよい。この熱処理温度として、650℃以下では鋼板表面が活性化しないため、650℃以上で行うことが望ましい。
【0033】
なお、上記いずれの加熱処理においても、 鋼板表面は酸化してめっき性を損なうため、露点−10℃以下の条件のもと、Ar、N、Hの単独或いはこれらの混合ガスによって還元焼鈍を行うようにする。この処理工程において、下地鋼板としての高張力鋼板1を完成させる。
次いで、高張力鋼板1を下地鋼板として、この高張力鋼板1に溶融めっき処理を施す。この溶融めっき処理の処理条件としては、いずれの条件でも構わないが、好ましくは、浸入板温:450〜500℃、浴温:440〜500℃、溶解Al(アルミニウム)濃度:0.10〜0.24質量%程度の溶融亜鉛めっき浴に浸すのがよい。この処理工程において、下地鋼板として高張力鋼板に、溶融亜鉛めっきが施された高張力溶融亜鉛めっき鋼板10を完成させる。ここで、図3に示すように、溶融めっき処理の施された高張力鋼板1は、下地鋼板の表層部に、粒界酸化物或いは粒内酸化物を含んだ酸化層3が形成されていることが分かる。
【0034】
そして、上記工程で形成された高張力溶融亜鉛めっき鋼板10に、さらに加熱合金化処理を行うことで、高張力合金化溶融亜鉛めっき鋼板(図示せず)を完成させることもできる。
上記構成の高張力溶融亜鉛めっき鋼板10及び高張力合金化溶融亜鉛めっき鋼板によれば、高張力鋼板1における溶融めっき2と接する表層部に粒界酸化物或いは粒内酸化物を含む酸化層3が形成され、且つ、この酸化層3内に、Nb−Mo系或いはTi−Mo系析出物3aを分散させたことによって、めっき前の焼鈍工程における高張力鋼板1表面へのSiやMnの拡散を阻害するため、高張力鋼板1表面への濃化層生成を抑制することが可能となる。よって、SiやMnなどの固溶強化元素を多々含んだ高張力鋼板1であっても、不めっきの発生を抑制し、めっき性を向上させることが可能となるため、高強度・高加工性に優れた高張力溶融亜鉛めっき鋼板10及び高張力合金化溶融亜鉛めっき鋼板を提供することができる。
【0035】
【実施例】
次に、本発明の高張力溶融亜鉛めっき鋼板10及び高張力合金化溶融亜鉛めっき鋼板と、その比較例とにおけるめっき性を調査した結果について説明する。
表1は、本発明における試験試料A〜Dと、比較例における試験試料E〜Hとの成分組成を示す。
【0036】
【表1】

Figure 2004149912
【0037】
表2は、表1に示した成分組成からなる試験試料への実験条件及びその結果を示す。
ここで、試験試料は、以下のように製造した。
まず、表1の成分組成からなるスラブを1200℃に加熱して熱間圧延処理を行い、50℃、5質量%塩酸で40秒の酸洗処理を行った。ここで、ショットブラスト処理が施される試験鋼板には、0.3mm径の鋼球を用いて密度900N/m・minの条件下で処理を行った後、表2に示した各圧下率で、冷間圧延処理を行った。そして、再結晶焼鈍処理は、露点−30℃、5体積%Hー95体積%Nの混合ガス雰囲気中で、850℃×60秒の焼鈍処理を行った。その後の酸洗処理は、60℃、5質量%塩酸で、浸漬5秒とした。
【0038】
次に、めっき処理前焼鈍処理は、露点−40℃、7体積%Hー93体積%N%の混合ガス雰囲気中で、750℃×40秒のめっき処理前焼鈍処理を行った。その後、浴温:470℃、侵入板温:470℃、めっき浴中Al含有率:0.13質量%(ただし、合金化する場合には、0.18質量%)、めっき付着量:50g/m(片面あたり)、めっき処理時間:1秒、 の条件下溶融亜鉛めっき処理を施し、高張力溶融亜鉛めっき鋼板10を完成させた。なお、一部については、溶融亜鉛めっき処理の後、さらに490℃、20秒の合金化処理を施すことで、高張力合金化溶融亜鉛めっき鋼板を完成させた。
【0039】
【表2】
Figure 2004149912
【0040】
ここで、表2に示すめっき性(不めっきの発生を抑制する効果)の調査は、得られた高張力溶融亜鉛めっき鋼板10或いは高張力合金化溶融亜鉛めっき鋼板へのめっき処理後、40×80mmの試験片を10枚採取し、直径0.5mm以上の不めっきが一個でも観察された場合は不合格(×)とし、直径0.5mm以上の不めっきが全く観察されなかった場合を合格(○)とした。さらに、合格の中でも、直径0.2mm以上の不めっきが全く観察されなかった場合を最良合格(◎)とした。
【0041】
また、合金化ムラの調査は、目視によりムラの有無を確認し、ムラが観察されなかった場合は合格(○)とし、ムラが観察された場合は不合格(×)とした。なお、結果が記されていない比較例2〜比較例9においては、合金化処理を行わなかった。
さらに、酸化層の形成状況の調査は、粒界酸化物の調査により行った。そのため、試験鋼板の圧延方向に垂直な断面を鏡面研磨することで断面試料を作成し、走査型電子顕微鏡を用いて、反射電子線像の組成像を撮影して観察し、直径0.5μm以上の粒界酸化物が試験鋼板の圧延方向30μm中に1箇所以上存在する場合を(+)とし、連続して存在する場合を(++)とした。一方、直径0.5μm以上の粒界酸化物が試験鋼板の圧延方向30μm中に1箇所以上存在していなかった場合を(−)とした。このとき、必要に応じて、試料上部にAu (金)蒸着やNi(ニッケル)めっきを施して最表面を保護した後に、断面試料の作成を行った。なお、本発明における粒界酸化物は微細なものであるため、通常行われている研磨後エッチングする方法では粒界酸化物が除去されてしまうため、エッチングを行わず、5000倍の倍率で各5〜10の視野で観察を行った。
【0042】
ここで、これらの粒界酸化物は、めっき板のめっきを溶解した後、表面からスパッタリングで一定深さ(例えば、0.5μmの深さ)の面を露出させ、その面のBSE(反射電子組成)像を撮影することにより、図5に示すように、二次元的な粒界酸化物の状態を把握することが可能である。なお、図5は、実施例2の観察例であり、めっき界面より約1μm地鉄側の面を観察した像であり、粒界に沿って黒色の粒界酸化物が多く存在していることが確認できる。
【0043】
さらに、析出物の調査は、電界放射型電子銃を搭載した透過型電子顕微鏡を用い、FIB(集中イオンビーム)加工によって試験鋼板の表層部から薄膜試料を作製し、この表層部における析出物サイズ、析出物密度、析出物種類をそれぞれ観察した。ここで、このFIBによる観察は、30万倍の倍率で各10以上の視野で観察を行い、平均的な析出物サイズの調査を行った。また、検出した析出物の一部は、エネルギー分散型X線分光分析を行い、Nb、Ti及びMoのピーク強度から析出物の種類を決定した。
【0044】
さらに、表1中の試料Bにおいては、再結晶焼鈍処理後の濃化層の状態を評価するため、グロー放電発光分光分析を行った。図6は、本発明の高張力溶融亜鉛めっき鋼板を形成工程において、再結晶焼鈍処理後に鋼板表面に生成される濃化層をグロー放電発光分光分析によって測定した結果を示す。ここで、この分析条件として、スパッタリング速度がFe換算で2.5nm/secで行い、濃化層に存在する元素量を評価するため、1〜10秒を積算した強度を比較した。
【0045】
表2に示すように、実施例1、2、6、8の結果より、試料の成分組成として、Nb或いはTiのいずれか一種と、Moをともに含むとともに、ショットブラスト処理を行わずに圧下率を50%以上で冷間圧延処理を行うことで、めっき性を向上させていることが確認できる。このとき、合金化ムラも発生せず、粒界酸化物及び粒内酸化物に加えて20nm以下の微細析出物も確認できた。
【0046】
また、直径0.2mm以上の不めっきが全く観察されず、特にめっき性が良好な実施例1〜実施例6においては、析出物存在密度が10個/μm以上であることも確認できた。
ここで、ショットブラスト処理を行わずに、圧下率を50%未満で冷間圧延処理を行った比較例1、2、7においては、めっき性の向上が認められなかったことが分かる。
【0047】
また、実施例3、4、5、7、9、10、11の結果より、試料の成分組成として、Nb或いはTiのいずれか一種と、Moをともに含むとともに、ショットブラスト処理を行い、圧下率を30%以上で冷間圧延処理を行うことで、めっき性を向上させていることが確認できる。このとき、合金化ムラも発生せず、粒界酸化物及び粒内酸化物に加えて20nm以下の微細析出物も確認できた。
【0048】
さらに、比較例3、4、8の結果より、試料の成分組成として、Nb、Ti、Moのいずれも含まれていないと、めっき性の向上が認められなかったことが分かる。このとき、20nm以下の微細な析出物はほとんど確認できなかった。
さらに、比較例5、6、9の結果より、試料の成分組成として、Nb或いはTiを単独で含み、Moが含まれていないと、めっき性の向上が認められなかったことが分かる。
【0049】
以上の結果より、 めっき性の向上が確認できた試料においては、その溶融めっきと高張力鋼板との界面に、粒界酸化物及び粒内酸化物が存在する酸化層が存在し、且つ、その酸化層内には、直径20nm以下の微細な析出物が分散していることが確認できた。
また、試料の組成成分であるNbやTiは、それぞれの単独添加ではなく、Moが複合添加されることで、めっき性を向上させていることが確認できた。
【0050】
さらに、ショットブラスト処理を施さない場合の冷間圧延処理の圧下率は、50%以上とすることが必要であるが、ショットブラスト処理を施す場合の冷間圧延処理の圧下率は30%以上でもめっき性を向上させていることが確認できた。さらに、図6(a)及び(b)に示すように、冷間圧延処理における圧下率を増加させることで、より粒界酸化物或いは粒内酸化物が多々存在するようになるため、めっき性をさらに向上させることが可能となる。また、図6(c)に示すように、圧下率を増加させるとともに、ショットブラスト処理を行うことによって、粒界酸化物或いは粒内酸化物がより多く存在するようになるようになり、めっき性をさらに向上させることが可能となる。
【0051】
さらに、図7(a)に示すように、冷間圧延処理における圧下率の増大に伴って、鋼板表面におけるMnとSiとの比(Mn/Si)を増大させていることが分かる。つまり、鋼板表面に、酸洗処理で除去されやすいMn−Si系又はMn系の濃化層を生成することが可能となる。また、図7(b)に示すように、ショットブラスト処理は、鋼板表面に生成する濃化層の量を減少させていることが分かる。このことより、冷間圧延処理における圧下率増大及びショットブラスト処理は、酸化層3の緻密な発達に寄与するのみならず、再結晶焼鈍後における酸洗処理を容易且つ確実に行うために有効であることが分かる。
【0052】
【発明の効果】
本発明の高張力溶融亜鉛めっき鋼板によれば、SiやMnなどの固溶強化元素を多々含んだ高張力鋼板を下地鋼板としても、不めっきの発生を抑制し、めっき性を向上させることが可能となる。よって、高強度・高加工性に優れた高張力溶融亜鉛めっき鋼板を提供することができる。
【0053】
また、本発明の高張力溶融亜鉛めっき鋼板を合金化処理することにより、合金化ムラのない高張力合金化溶融亜鉛めっき鋼板を提供することができる。
本発明の高張力溶融亜鉛めっき鋼板及び高張力合金化溶融亜鉛めっき鋼板の製造方法によれば、本発明の高張力溶融亜鉛めっき鋼板及び高張力合金化溶融亜鉛めっき鋼板を容易に実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の高張力溶融亜鉛めっき鋼板の一構成例を示す断面図である。
【図2】再結晶焼鈍処理後に観察される粒界酸化物或いは粒内酸化物を示す走査型電子顕微鏡写真である。
【図3】高張力鋼板における溶融亜鉛めっきとの界面に観察される粒界酸化物或いは粒内酸化物を示す走査型電子顕微鏡写真である。
【図4】酸化層に分散された微細な析出物を示す透過型電子顕微鏡写真である。
【図5】反射電子組成像により粒界に生成した酸化物の分布を示す走査型電子顕微鏡写真である。
【図6】酸化層形成に対するショットブラスト処理及び圧下率増大の効果を示す走査型電子顕微鏡写真である。
【図7】本発明の高張力溶融亜鉛めっき鋼板を形成する工程において、再結晶焼鈍処理後の濃化層をグロー放電発光分光分析によって測定した結果を示す図である。
【符号の説明】
1 高張力鋼板
2 溶融めっき
3 酸化層
3a Nb−Mo系或いはTi−Mo系析出物
10 高張力溶融亜鉛めっき鋼板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength hot-dip galvanized steel sheet and a method for manufacturing the same, and a high-tensile alloyed hot-dip galvanized steel sheet and a method for manufacturing the same, and particularly to a high-tensile steel having a high content of solid solution strengthening elements such as Si, Mn, and P. The present invention relates to a technique effective for suppressing the occurrence of non-plating on a steel sheet.
[0002]
[Prior art]
2. Description of the Related Art In recent years, application of high-strength hot-dip galvanized steel sheets to automobile steel sheets has been widely studied for the purpose of reducing the weight for improving fuel efficiency from the viewpoint of improving the collision safety of automobiles and protecting the global environment.
The high-strength steel sheet galvanized steel sheet is formed by applying a high-strength steel sheet containing many solid solution strengthening elements such as Si, Mn, and P as a base steel sheet and subjecting the base steel sheet to hot-dip galvanizing. It has high strength and high workability.
[0003]
However, when the amount of the solid solution strengthening element added to the high-strength steel sheet for improving the strength increases, an annealing treatment step before plating is performed in a continuous galvanizing line (CGL). In such a case, there is a possibility that a concentrated layer of a solid solution strengthening element such as Si or Mn may be formed on the surface of the steel sheet. This concentrated layer is selectively oxidized because the reducing atmosphere for reducing Fe is an oxidizing atmosphere for Si, Mn, etc. existing in the steel sheet, and these oxides are accumulated on the steel sheet surface. It is formed by putting.
[0004]
When such a thickened layer is formed on the surface of the steel sheet, the wettability between the steel sheet and the molten zinc is significantly reduced, so that the plating property is reduced and, particularly, a high-tensile steel sheet having a high content of Si or Mn. In the case of (1), there is a problem that plating is not performed partially, that is, non-plating occurs.
In order to solve such a problem, prior to heating in the plating treatment, a means for improving the plating property by forcibly oxidizing and reducing the steel sheet under a high oxygen partial pressure has been proposed (for example, Patent Reference 1).
[0005]
Further, a means for improving the plating property by performing shot blast processing on a steel sheet before heat treatment in a strongly oxidizing atmosphere has been proposed (for example, Patent Document 2).
Furthermore, means for improving plating properties by performing pre-plating before plating is proposed (for example, see Patent Document 3).
[0006]
Further, a means for improving the plating property by optimizing the amounts of Si, Mn, and P added to a high-strength steel sheet serving as a base steel sheet has been proposed (for example, see Patent Document 4).
Further, means for improving the plating properties by performing recrystallization annealing before performing the plating treatment to generate a surface oxide in advance, removing the surface oxide by pickling, and then performing hot-dip galvanizing. (For example, see Patent Documents 5 and 6).
[0007]
[Patent Document 1]
JP-A-55-121865
[Patent Document 2]
JP-A-6-158254
[Patent Document 3]
JP-A-58-104163
[Patent Document 4]
JP-A-6-287684
[Patent Document 5]
JP-A-7-70723
[Patent Document 6]
JP-A-8-85858
[0008]
[Problems to be solved by the invention]
However, in the means proposed in Patent Document 1, the problem that the concentrated layer is not sufficiently controlled in forced oxidation has not been solved yet. In addition, there is a problem that it is difficult to secure stable plating depending on a steel component condition or a plating process condition in which the Si concentration is 0.5% by mass or more.
[0009]
Further, the means proposed in Patent Document 2 described above has a problem that it is difficult to secure stable plating when high concentration of Si is contained. Furthermore, the means proposed in the above-mentioned Patent Document 3 has a disadvantage that the cost for equipment and operation for performing the plating process is increased, and the production unit price is increased.
[0010]
Further, in the means proposed in Patent Documents 4 to 6, there is a problem that occurrence of non-plating cannot be completely prevented with a steel type having a high Si content.
Therefore, the present invention has been made in view of the above circumstances, and in particular, non-plating occurs even when a high-strength steel sheet having a high content of a solid solution strengthening element such as Si or Mn is used as a base steel sheet. It is an object to provide a high-strength hot-dip galvanized steel sheet and a method for manufacturing the same, and a high-tensile alloyed hot-dip galvanized steel sheet and a method for manufacturing the same, which can improve the plating properties without causing the improvement.
[0011]
[Means for Solving the Problems]
In order to solve such problems, as a result of various studies, it was found that the oxide layer formed on the surface layer of the steel sheet has a region in which fine precipitates are dispersed and a grain boundary oxide or an intragranular oxide. In the annealing treatment before the plating treatment, it is possible to inhibit the diffusion of Si and Mn from the inside of the steel sheet and to prevent the formation of a concentrated layer on the steel sheet surface. It has been found that a tensile hot-dip galvanized steel sheet can be provided.
[0012]
The present invention has been completed based on the above findings, and has the following configuration.
The high-strength galvanized steel sheet according to the present invention is a high-strength galvanized steel sheet obtained by subjecting a base steel sheet made of a high-strength steel sheet to hot-dip galvanizing. Mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, one or more selected from Nb and Ti: 0.01 to 0.50 mass% , Mo: 0.01 to 1.00% by mass, balance: Fe and unavoidable impurities, and a grain boundary is formed on a surface layer of the base steel sheet where the hot-dip galvanizing and the base steel sheet are in contact with each other. An oxide layer containing an oxide or an intragranular oxide is formed, and an Nb-Mo-based or Ti-Mo-based precipitate having a diameter of 20 nm or less is formed in the oxide layer at a rate of 1 / μm. 3 It is characterized by being dispersed as described above.
[0013]
In the high-strength hot-dip galvanized steel sheet according to the present invention, the oxide layer contains Nb-Mo-based or Ti-Mo-based precipitates having a diameter of 20 nm or less at 10 particles / μm. 3 It is preferable that these are dispersed.
The high-strength galvanized steel sheet of the present invention is characterized by being formed by further alloying the high-strength galvanized steel sheet of the present invention.
[0014]
The first method for producing a high-strength hot-dip galvanized steel sheet according to the present invention is a method for producing a high-strength hot-dip galvanized steel sheet obtained by applying hot-dip galvanizing to a base steel sheet made of a high-strength steel sheet, wherein the base steel sheet has C : 0.001 to 0.20 mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, one or more selected from Nb and Ti: 0 0.01 to 0.50% by mass, Mo: 0.01 to 1.00% by mass, balance: Fe and high-strength steel plate composed of unavoidable impurities. It is characterized by including a step of performing a cold rolling treatment under the conditions.
[0015]
The second method for producing a high-strength hot-dip galvanized steel sheet according to the present invention is a method for producing a high-strength hot-dip galvanized steel sheet obtained by subjecting a base steel sheet made of a high-strength steel sheet to hot-dip galvanizing. : 0.001 to 0.20 mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, one or more selected from Nb and Ti: 0 0.01 to 0.50 mass%, Mo: 0.01 to 1.00 mass%, balance: a high-strength steel sheet composed of Fe and unavoidable impurities, and a step of subjecting the base steel sheet to shot blasting. And subjecting the base steel sheet after the shot blasting treatment to a cold rolling treatment under a condition of a rolling reduction of 30 to 85%.
The method for producing a high-strength galvannealed steel sheet according to the present invention includes a step of further performing an alloying treatment on the base steel sheet that has been subjected to galvanizing by the method for producing a high-strength galvanized steel sheet according to the present invention. It is characterized by:
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the high-strength hot-dip galvanized steel sheet of the present invention, Nb-Mo-based or Ti-Mo-based precipitates are dispersed in the vicinity of the interface with the hot-dip galvanized steel in the high-tensile steel sheet, and the Si-Mn-based grain boundary oxide is dispersed. Alternatively, the formation of an oxide layer containing a Si-Mn based intragranular oxide inhibits the diffusion of Si and Mn to the surface of the high-strength steel sheet during the annealing step before plating. It is possible to suppress the formation of an oxide layer. That is, Si and Mn are not fixed and diffused as grain boundary oxides or intragranular oxides, and these oxides that are frequently present in the grain boundaries and in the grains are also reduced from the inside of the steel sheet during annealing at 750 ° C. or more. This is to prevent the diffusion of Si and Mn by acting as a barrier for the movement of Si and Mn. Therefore, even in the case of a high-strength steel sheet containing many solid-solution strengthening elements such as Si and Mn, it is possible to suppress the occurrence of non-plating and improve the plating property, and to achieve high strength and high workability. An excellent high tensile galvanized steel sheet can be provided.
[0017]
According to the high-strength galvanized steel sheet of the present invention, the same effect as the high-strength galvanized steel sheet of the present invention can be obtained.
According to the first and second methods for producing a high-strength galvanized steel sheet of the present invention, the high-strength galvanized steel sheet of the present invention can be easily realized. In particular, according to the second method for producing a high-tensile hot-dip galvanized steel sheet according to the present invention, by subjecting the base steel sheet to shot blasting, the surface layer portion of the base steel sheet on which the oxide layer is formed is locally strained. Can be introduced. For this reason, even if the cold rolling is performed under the condition of the rolling reduction of about 30%, the concentrated layer formed of Si, Mn, or the like formed on the surface of the base steel sheet has the Mn / Si ratio or the total amount of Mn + Si. It can be changed in a decreasing direction.
[0018]
According to the method for producing a high-tensile alloyed hot-dip galvanized steel sheet of the present invention, the high-tensile alloyed hot-dip galvanized steel sheet of the present invention can be easily realized.
Hereinafter, the critical significance of each numerical limitation in the present invention will be described.
[C content of high-strength steel sheet as base steel sheet: 0.001 to 0.20 mass%]
C (carbon) makes it possible to improve the strength by generating a martensite phase or a bainite phase generated at a low temperature and by precipitating carbides of Ti (titanium) and Nb (niobium). However, if C is excessively added, the spot weldability deteriorates. Therefore, the upper limit is desirably set to 0.20% by mass. On the other hand, the lower limit is desirably 0.001% by mass in consideration of the production cost and the like.
[0019]
[Si content of high-strength steel sheet as base steel sheet: 0.10 to 2.00 mass%]
Si (silicon) enhances workability by performing solid solution strengthening and reducing the amount of solid solution C in the ferrite phase. Therefore, it is an essential element for a high-strength, high-workability, high-tensile cold-rolled steel sheet, and in order to obtain these characteristics, the lower limit is 0.1. It is desirable to set it as mass%. On the other hand, if Si is added excessively, workability is impaired, and a large amount of Si oxide remains in the pickling treatment before hot-dip galvanizing treatment to cause non-plating. It is desirable to set it to 2.00% by mass.
[0020]
[Mn content of high-strength steel sheet as base steel sheet: 1.00 to 3.00 mass%]
Mn (manganese) contributes to quenching properties and enables the strength to be improved by generating a martensite phase, and is an essential element for producing a high-strength, high-tensile steel sheet. Here, if the addition is less than 1.00% by mass, the effect is not recognized, so the lower limit is set to 1.00% by mass. The composition ratio between Mn and Si (Mn / Si) is a factor that affects the form of the concentrated layer generated when annealing is performed in a reducing atmosphere. That is, the concentrated layer is made of SiO 2 If it is, it is difficult to remove by the pickling treatment, and if the concentrated layer is Mn-Si or Mn-based, it is relatively easy to remove by the pickling treatment. Therefore, it is desirable to increase Mn / Si. However, when the additive amount of Mn exceeds 3.00% by mass, it excessively hardens and deteriorates ductility, and results in remarkably impairing spot weldability and plating property. Therefore, the upper limit is set to 3.00% by mass. It is desirable.
[0021]
[Content of Nb or Ti in high-strength steel sheet serving as base steel sheet: 0.01 to 0.50 mass%]
Both Nb and Ti are elements that form fine carbides, which prevent the crystal from becoming coarse during recrystallization, have a fine crystal structure, and increase the recrystallization temperature. And, it contributes to the development of an internal oxide layer containing many dense grain boundary oxides on the surface layer of the high-tensile steel sheet after the recrystallization annealing treatment, thereby making it possible to improve the plating properties of the high-tensile steel sheet. The mechanism by which the fine carbides contribute to the formation of a dense internal oxide layer is considered as follows. The fine carbides have the function of raising the recrystallization temperature as described above, and in order to improve the strength of the steel, the steel sheet surface layer after cold rolling has the same strain at the same reduction rate. There is an effect that can be introduced. Considering the change in the surface layer during the heating process in the annealing step, if the amount of fine carbides is small, the internal oxide layer is formed after recrystallization proceeds, whereas if the amount of fine carbides is large, the recrystallization temperature Rises and internal oxidation proceeds before the recrystallization of the surface layer is completed.In addition, since the surface layer has a lot of local distortion, oxygen is more easily diffused inside and a dense internal oxide layer is formed. it is conceivable that. In order to obtain the above-mentioned effects, it is necessary to add 0.01% by mass or more of any element of Nb and Ti. Therefore, it is desirable to set the lower limit to 0.01% by mass. On the other hand, if these elements are added in a large amount exceeding 0.50% by mass, workability and spot weldability are reduced. Therefore, it is desirable to set the upper limit to 0.50% by mass.
[0022]
[Mo content of high-strength steel sheet serving as base steel sheet: 0.01 to 1.00 mass%]
By adding Mo (molybdenum) in combination with Nb or Ti, the size of these Nb-Mo or Ti-Mo-based precipitates can be reduced. For example, comparing the size of the precipitate between the 0.05 mass% Nb additive and the 0.05 mass% Nb-0.30 mass% Mo composite additive, the size of the former is 20 to 50 nm. On the other hand, a precipitate having the size of the latter of 10 nm or less can be formed. As described above, by dispersing fine precipitates on the surface layer of the high-strength steel sheet, and by having the effect of suppressing the recrystallization of Mo dissolved therein, it is possible to improve the plating properties of the high-tensile steel sheet. And In order to exhibit the above effects, the lower limit is desirably 0.01% by mass. On the other hand, if the amount of Mo exceeds 1.00% by mass, the surface properties of the high-strength steel sheet after the hot rolling treatment become poor, so the upper limit is desirably 1.00% by mass.
[0023]
[Nb-Mo-based or Ti-Mo-based precipitates dispersed in the oxide layer formed on the surface layer where hot-dip galvanizing and the base steel sheet are in contact: 1 μm / μm or less with a diameter of 20 μm or less 3 that's all〕
By forming the high-strength steel sheet serving as the base steel sheet from the above-described constituent materials, an oxide layer formed of a grain boundary oxide or a dense intragranular oxide is formed on the surface layer of the base steel sheet. In this oxide layer, Nb-Mo-based or Ti-Mo-based precipitates are in a dispersed state. The diameter size of the Nb-Mo-based or Ti-Mo-based precipitate is 20 μm or less, and its density is 1 / μm. 3 By doing so, it is possible to improve the plating properties of the high-tensile steel sheet. Among them, Nb-Mo-based or Ti-Mo-based precipitates having a diameter of 20 μm or less are 10 pieces / μm. 3 When dispersed, it is possible to further improve the plating properties of the high-tensile steel sheet.
[0024]
Further, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing one configuration example of the high-strength galvanized steel sheet of the present invention. The high-strength hot-dip galvanized steel sheet 10 in the present embodiment has a hot-dip galvanized layer 2 applied to one surface of a high-strength steel sheet 1 serving as a base steel sheet. The oxide layer 3 is formed on the surface layer of the first embodiment.
[0025]
The high-strength steel sheet 1 is selected from C: 0.001 to 0.20 mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, Nb and Ti. Species or two or more: 0.01 to 0.50 mass%, Mo: 0.01 to 1.00 mass%, balance: Fe and unavoidable impurities.
Here, since the carbide of Ti or Nb can be precipitated by containing 0.001 to 0.20 mass% of C as a constituent material of the high-tensile steel sheet 1, it is possible to realize high strength. Become. Further, by containing 0.10 to 2.00% by mass of Si, high strength and high workability can be improved. Further, by containing 1.00 to 3.00 mass% of Mn, high strength can be realized. The composition ratio of Mn to Si (Mn / Si) is determined by adding a Mn-Si or Mn-based concentrated layer on the surface of the high-strength steel sheet 1 which is advantageous for pickling when annealing in a reducing atmosphere. It is desirable to make Mn / Si higher in order to generate. Furthermore, by containing 0.01 to 0.50 mass% of Nb or Ti, it becomes possible to form an oxide layer 3 described later in detail on the surface layer portion of the high-strength steel sheet 1 and improve the plating property. It becomes possible. Further, by containing Mo in an amount of 0.01 to 1.00% by mass, it becomes possible to precipitate fine precipitates having a size of 20 nm or less, which will be described later, by adding it in combination with Nb or Ti.
[0026]
The oxidized layer 3 is formed on the surface portion of the high-strength steel sheet (base steel sheet) 1 extending from the surface to about 10 μm into the inside, and at each crystal interface (grain boundary) of the polycrystalline solid constituting the high-strength steel sheet 1. It has a dense structure containing a large amount of grain boundary oxides containing oxides or dense intragranular oxides. In a region having a depth of 10 μm from the plating interface, Nb—Mo-based or Ti—Mo-based precipitates 3a having a diameter of 20 nm or less as shown in FIG. 3 There are regions dispersed as described above. Further, when the plating property is further excellent, the Nb-Mo-based or Ti-Mo-based precipitates 3a having a diameter of 20 nm or less are 10 / μm. 3 There are regions dispersed as described above.
[0027]
Next, a method of manufacturing the high-tensile galvanized steel sheet 10 according to the present invention will be described.
First, the molten steel forming the high-strength steel sheet serving as the base steel sheet is prepared as follows: C: 0.001 to 0.20% by mass, Si: 0.10 to 2.00% by mass, Mn: 1.00 to 3.00% by mass. , Nb and Ti: one or more kinds: 0.01 to 0.50 mass%, Mo: 0.01 to 1.00 mass%, balance: Fe and unavoidable impurities. Then, molten steel adjusted to the above-mentioned preferable component composition is formed on a slab.
[0028]
Next, the slab is subjected to hot rolling. Here, it is desirable to perform the hot rolling at a relatively high temperature, preferably at a slab heating temperature of 1100 ° C. or more, in order to finely precipitate the Nb—Mo based or Ti—Mo based precipitate.
Next, the steel sheet after the hot rolling is subjected to an acid pickling treatment to remove a metal oxide film (scale) formed on the surface of the steel sheet by the hot rolling treatment.
[0029]
Next, the steel sheet is subjected to a cold rolling treatment. Here, the rolling reduction in the cold rolling treatment is preferably set to 50% or more. This is because if it is less than 50%, the amount of surface strain applied to the steel sheet surface is small, so that in the annealing process, the diffusion of oxygen is reduced as compared with the case where the rolling reduction is high, and the amount of internal oxidation is reduced. This is because the amount of suppression of the surface concentration is reduced and the effect of improving the plating property is reduced. On the other hand, when the steel sheet has been subjected to the shot blasting in the step before the cold rolling, local distortion has already been formed in the surface layer, so that even if the rolling reduction is less than 30%. In addition, the same effect of improving the plating property as in the case where the rolling reduction is set to 50% or more can be obtained. In addition, the upper limit of the rolling reduction is set to 85% in any case in consideration of the case where a high-tensile steel sheet is industrially manufactured. This shot blasting treatment may be performed before the pickling treatment, but it is more effective to perform the shot blasting treatment after the pickling treatment in consideration of imparting distortion to the steel sheet surface. Further, the shot blasting treatment is performed with a surface distortion of 800 N / m. 2 Min or more is preferable from the viewpoint of ensuring plating property.
[0030]
Next, a recrystallization annealing treatment is performed in a reducing atmosphere. Specifically, recrystallization temperature: Ac 1 (Temperature at which austenite starts to form during heating) to Ac 3 (Temperature at which ferrite completes transformation to austenite during heating) + 50 ° C, dew point: -45 to 0 ° C, atmosphere gas: Ar, N 2 , H 2 Under a single or mixed gas condition. Then, after maintaining the recrystallization temperature for 1 to 120 seconds, it is preferable to rapidly cool at a rate of 40 to 100 / s to generate a martensite structure. At this time, as shown in FIG. 2, a grain boundary oxide or an intragranular oxide is formed on the surface layer of the base steel sheet, and a Mn-Si or Mn-based concentrated layer is formed on the surface of the steel sheet. Generated. In addition, the region that enters the interior of 0.3 μm from the steel sheet surface immediately below the concentrated layer is a layer in which the concentrations of Si and Mn are reduced (a layer in which the concentrations of Si and Mn are reduced).
[0031]
Next, the steel sheet after the cold rolling is subjected to an acid pickling treatment to remove a Mn-Si-based or Mn-based concentrated layer formed on the surface of the steel sheet by a recrystallization annealing treatment. Here, it is preferable that the region where the concentration of Si and Mn is reduced immediately below the concentrated layer is not dissolved more than necessary. As the pickling liquid, 1 to 20% by mass of hydrochloric acid is preferably used, and the pickling treatment time is preferably 1 to 20 seconds.
[0032]
Next, an annealing treatment before hot-dip plating is performed. Specifically, Ac 1 ~ Ac 3 Heat treatment is performed on the ferrite (α) + austenite (γ) two-phase region to improve the ductility of the α-phase itself by discharging carbon from the α-phase, and to increase the Ms by concentrating the carbon concentration in the γ-phase. Since the point (the temperature at which austenite begins to transform to martensite during cooling) can be reduced and a residual γ phase can be generated, workability can be improved. In addition to the above-described heat treatment, after performing the annealing treatment in the two-phase region, Ar 1 (At the time of cooling, the temperature at which austenite completes transformation to ferrite or ferrite + cementite) is maintained at a low temperature or lower, and heat treatment may be performed to partially transform bainite to refine crystal grains. . If the heat treatment temperature is 650 ° C. or lower, the steel sheet surface is not activated.
[0033]
In any of the above heat treatments, the surface of the steel sheet is oxidized and the plating property is impaired. 2 , H 2 Or a mixture of these gases is used for reduction annealing. In this processing step, the high-strength steel sheet 1 as a base steel sheet is completed.
Next, the high-strength steel sheet 1 is subjected to a hot-dip plating process using the high-strength steel sheet 1 as a base steel sheet. As the processing conditions of this hot-dip plating, any conditions may be used, but preferably, the infiltration plate temperature: 450 to 500 ° C., the bath temperature: 440 to 500 ° C., the dissolved Al (aluminum) concentration: 0.10 to 0 It is preferable to immerse it in a hot-dip galvanizing bath of about .24 mass%. In this processing step, a high-strength hot-dip galvanized steel sheet 10 in which a high-strength steel sheet is hot-dip galvanized as a base steel sheet is completed. Here, as shown in FIG. 3, in the high-strength steel sheet 1 subjected to the hot-dip plating process, an oxide layer 3 containing a grain boundary oxide or an intragranular oxide is formed on the surface layer of the base steel sheet. You can see that.
[0034]
Then, the high-strength galvanized steel sheet (not shown) can be completed by further performing a heat alloying treatment on the high-strength galvanized steel sheet 10 formed in the above process.
According to the high-strength hot-dip galvanized steel sheet 10 and the high-strength alloyed hot-dip galvanized steel sheet having the above-described configuration, the oxide layer 3 containing a grain boundary oxide or an intragranular oxide in the surface layer contacting the hot-dip plating 2 in the high-tensile steel sheet 1. Is formed, and Nb-Mo-based or Ti-Mo-based precipitates 3a are dispersed in the oxide layer 3 to diffuse Si and Mn to the surface of the high-tensile steel sheet 1 in an annealing step before plating. Therefore, it is possible to suppress the formation of a concentrated layer on the surface of the high-strength steel sheet 1. Therefore, even in the case of the high-strength steel sheet 1 containing many solid solution strengthening elements such as Si and Mn, the occurrence of non-plating can be suppressed and the plating property can be improved, so that high strength and high workability can be achieved. It is possible to provide a high-strength hot-dip galvanized steel sheet 10 and a high-strength alloyed hot-dip galvanized steel sheet excellent in quality.
[0035]
【Example】
Next, the results of investigating the plating properties of the high-strength hot-dip galvanized steel sheet 10 and the high-strength alloyed hot-dip galvanized steel sheet of the present invention and comparative examples will be described.
Table 1 shows the component compositions of test samples A to D in the present invention and test samples E to H in a comparative example.
[0036]
[Table 1]
Figure 2004149912
[0037]
Table 2 shows experimental conditions and results of test samples having the component compositions shown in Table 1.
Here, the test sample was manufactured as follows.
First, a slab having the component composition shown in Table 1 was heated to 1200 ° C. and subjected to hot rolling, followed by pickling at 50 ° C. and 5% by mass of hydrochloric acid for 40 seconds. Here, the test steel sheet subjected to the shot blast treatment is a steel ball having a diameter of 0.3 mm and a density of 900 N / m. 2 After performing the treatment under the conditions of min, cold rolling was performed at the respective reduction rates shown in Table 2. Then, the recrystallization annealing treatment is performed at a dew point of -30 ° C. 2 -95% by volume N 2 In a mixed gas atmosphere of 850 ° C. × 60 seconds. The subsequent pickling treatment was immersion at 60 ° C. and 5% by mass of hydrochloric acid for 5 seconds.
[0038]
Next, the annealing treatment before the plating treatment is performed at a dew point of −40 ° C. and 7 vol% H. 2 -93% by volume N 2 % In a mixed gas atmosphere at 750 ° C. for 40 seconds. Thereafter, bath temperature: 470 ° C., intrusion plate temperature: 470 ° C., Al content in the plating bath: 0.13% by mass (when alloyed, 0.18% by mass), plating adhesion amount: 50 g / m 2 The hot-dip galvanized steel sheet 10 was completed under the following conditions (per surface), plating time: 1 second. In addition, about a part, after performing a hot dip galvanizing process, the alloying process of 490 degreeC and 20 seconds was further performed, and the high tension alloying hot dip galvanized steel plate was completed.
[0039]
[Table 2]
Figure 2004149912
[0040]
Here, the investigation of the plating properties (the effect of suppressing the occurrence of non-plating) shown in Table 2 was conducted after plating on the obtained high-strength hot-dip galvanized steel sheet 10 or high-strength alloyed hot-dip galvanized steel sheet. Ten test pieces of 80 mm were sampled. If at least one non-plating with a diameter of 0.5 mm or more was observed, it was judged as fail (x), and if no non-plating with a diameter of 0.5 mm or more was observed at all, the test was passed. (O) Further, among the passing, the case where no plating with a diameter of 0.2 mm or more was not observed at all was regarded as the best passing (◎).
[0041]
In addition, in the investigation of alloying unevenness, the presence or absence of unevenness was visually confirmed. If no unevenness was observed, the result was evaluated as pass (○), and if the unevenness was observed, the result was rejected (x). In Comparative Examples 2 to 9 in which the results were not described, the alloying treatment was not performed.
Further, the formation of the oxide layer was investigated by examining the grain boundary oxide. Therefore, a cross-sectional sample was prepared by mirror-polishing a cross section perpendicular to the rolling direction of the test steel sheet, and a composition image of a reflected electron beam image was taken and observed using a scanning electron microscope, and the diameter was 0.5 μm or more. (+) When one or more grain boundary oxides were present in the rolling direction of 30 μm of the test steel sheet, and (++) when they were continuously present. On the other hand, the case where one or more grain boundary oxides having a diameter of 0.5 μm or more were not present in 30 μm in the rolling direction of the test steel sheet was defined as (−). At this time, if necessary, Au (gold) vapor deposition or Ni (nickel) plating was performed on the upper portion of the sample to protect the outermost surface, and then a cross-sectional sample was prepared. In addition, since the grain boundary oxide in the present invention is minute, the grain boundary oxide is removed by the usual method of performing post-polishing etching, so that etching is not performed, and each is performed at a magnification of 5000 times. Observation was performed in 5 to 10 visual fields.
[0042]
Here, after dissolving the plating of the plating plate, these grain boundary oxides expose a surface of a certain depth (for example, 0.5 μm depth) from the surface by sputtering, and the BSE (reflection electron) of the surface is exposed. By photographing the (composition) image, it is possible to grasp the state of the two-dimensional grain boundary oxide as shown in FIG. FIG. 5 is an observation example of Example 2, and is an image obtained by observing the surface on the side of the base iron of about 1 μm from the plating interface, and shows that a large amount of black grain boundary oxides exist along the grain boundaries. Can be confirmed.
[0043]
Further, for the investigation of precipitates, a thin film sample was prepared from the surface layer of the test steel sheet by FIB (focused ion beam) processing using a transmission electron microscope equipped with a field emission electron gun, and the precipitate size in the surface layer was measured. , Precipitate density, and precipitate type were observed. Here, in this FIB observation, observation was performed at a magnification of 300,000 times in 10 or more visual fields, and the average precipitate size was investigated. Some of the detected precipitates were subjected to energy dispersive X-ray spectroscopy, and the types of the precipitates were determined from the peak intensities of Nb, Ti, and Mo.
[0044]
Further, for Sample B in Table 1, glow discharge emission spectroscopy was performed to evaluate the state of the concentrated layer after the recrystallization annealing treatment. FIG. 6 shows the results of measuring, by glow discharge optical emission spectroscopy, a concentrated layer formed on the steel sheet surface after the recrystallization annealing treatment in the step of forming the high-tensile galvanized steel sheet of the present invention. Here, as the analysis conditions, the sputtering speed was set at 2.5 nm / sec in terms of Fe, and the intensity obtained by integrating 1 to 10 seconds was compared in order to evaluate the amount of elements present in the concentrated layer.
[0045]
As shown in Table 2, from the results of Examples 1, 2, 6, and 8, the composition of the sample contained either one of Nb or Ti and Mo, and the draft was reduced without performing shot blasting. By performing cold rolling at 50% or more, it can be confirmed that the plating property is improved. At this time, alloying unevenness did not occur, and a fine precipitate of 20 nm or less was confirmed in addition to the grain boundary oxide and the intragranular oxide.
[0046]
Further, no plating having a diameter of 0.2 mm or more was not observed at all, and in Examples 1 to 6 having particularly good plating properties, the density of the precipitates was 10 / μm. 3 It was confirmed that it was above.
Here, it can be seen that in Comparative Examples 1, 2, and 7 in which the cold rolling was performed at a rolling reduction of less than 50% without performing the shot blasting, no improvement in the plating property was observed.
[0047]
Further, from the results of Examples 3, 4, 5, 7, 9, 10, and 11, the composition of the sample contained either one of Nb or Ti and Mo, and shot blasting was performed. It can be confirmed that the plating property is improved by performing the cold rolling at 30% or more. At this time, alloying unevenness did not occur, and a fine precipitate of 20 nm or less was confirmed in addition to the grain boundary oxide and the intragranular oxide.
[0048]
Furthermore, from the results of Comparative Examples 3, 4, and 8, it can be seen that the plating property was not improved unless Nb, Ti, or Mo was included as the component composition of the sample. At this time, a fine precipitate of 20 nm or less could hardly be confirmed.
Furthermore, from the results of Comparative Examples 5, 6, and 9, it can be seen that no improvement in plating property was observed unless Nb or Ti was used alone as the component composition of the sample and Mo was not included.
[0049]
From the above results, in the sample in which the improvement of the plating property was confirmed, the oxide layer in which the grain boundary oxide and the intragranular oxide exist was present at the interface between the hot-dip coating and the high-strength steel sheet, and It was confirmed that fine precipitates having a diameter of 20 nm or less were dispersed in the oxide layer.
In addition, it was confirmed that Nb and Ti, which are the composition components of the sample, were not individually added but Mo was added in a composite manner, thereby improving the plating property.
[0050]
Furthermore, it is necessary that the rolling reduction of the cold rolling process when the shot blasting process is not performed is 50% or more, but the rolling reduction of the cold rolling process when the shot blasting process is performed is 30% or more. It was confirmed that the plating property was improved. Further, as shown in FIGS. 6A and 6B, by increasing the rolling reduction in the cold rolling process, more grain boundary oxides or intragranular oxides are present, so that the plating property is increased. Can be further improved. Further, as shown in FIG. 6 (c), by increasing the rolling reduction and performing shot blasting, more grain boundary oxides or intragranular oxides are present, and the plating property is increased. Can be further improved.
[0051]
Further, as shown in FIG. 7A, it can be seen that the ratio of Mn to Si (Mn / Si) on the steel sheet surface is increased with the increase in the rolling reduction in the cold rolling process. That is, it is possible to generate a Mn-Si-based or Mn-based concentrated layer that is easily removed by the pickling treatment on the steel sheet surface. Further, as shown in FIG. 7 (b), it can be seen that the shot blasting treatment reduces the amount of the thickened layer generated on the steel sheet surface. From this, the increase of the rolling reduction and the shot blasting in the cold rolling treatment are effective not only for contributing to the dense development of the oxide layer 3 but also for performing the pickling treatment after the recrystallization annealing easily and reliably. You can see that there is.
[0052]
【The invention's effect】
According to the high-strength galvanized steel sheet of the present invention, even if a high-strength steel sheet containing many solid solution strengthening elements such as Si and Mn is used as a base steel sheet, it is possible to suppress the occurrence of non-plating and improve the plating property. It becomes possible. Therefore, a high-strength hot-dip galvanized steel sheet excellent in high strength and high workability can be provided.
[0053]
In addition, by subjecting the high-strength galvanized steel sheet of the present invention to alloying treatment, a high-strength galvannealed steel sheet free from uneven alloying can be provided.
According to the method for producing a high-strength galvanized steel sheet and a high-strength galvannealed steel sheet of the present invention, the high-strength galvanized steel sheet and the high-strength galvannealed steel sheet of the present invention can be easily realized. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one configuration example of a high-strength galvanized steel sheet of the present invention.
FIG. 2 is a scanning electron micrograph showing grain boundary oxides or intragranular oxides observed after recrystallization annealing.
FIG. 3 is a scanning electron micrograph showing grain boundary oxides or intragranular oxides observed at the interface with hot-dip galvanizing in a high-strength steel sheet.
FIG. 4 is a transmission electron micrograph showing fine precipitates dispersed in an oxide layer.
FIG. 5 is a scanning electron micrograph showing the distribution of oxides generated at the grain boundaries based on a reflected electron composition image.
FIG. 6 is a scanning electron micrograph showing the effects of a shot blasting process and an increase in rolling reduction on the formation of an oxide layer.
FIG. 7 is a view showing a result of measuring a concentrated layer after a recrystallization annealing treatment by glow discharge emission spectroscopy in a step of forming a high tensile galvanized steel sheet of the present invention.
[Explanation of symbols]
1 High strength steel plate
2 Hot-dip plating
3 Oxide layer
3a Nb-Mo or Ti-Mo based precipitates
10 High tensile galvanized steel sheet

Claims (6)

高張力鋼板からなる下地鋼板に、溶融亜鉛めっきを施してなる高張力溶融亜鉛めっき鋼板において、
前記高張力鋼板が、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成されているとともに、
前記下地鋼板には、前記溶融亜鉛めっきと前記下地鋼板とが接する表層部に、粒界酸化物或いは粒内酸化物を含む酸化層が形成され、さらに、前記酸化層に直径20nm以下のNb−Mo系或いはTiーMo系析出物が1個/μm以上分散されていることを特徴とする高張力溶融亜鉛めっき鋼板。
In a high-strength hot-dip galvanized steel sheet obtained by applying hot-dip galvanizing to a base steel sheet made of a high-strength steel sheet,
The high-strength steel sheet is selected from C: 0.001 to 0.20 mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, Nb and Ti. Species or two or more: 0.01 to 0.50 mass%, Mo: 0.01 to 1.00 mass%, balance: Fe and unavoidable impurities,
In the base steel sheet, an oxide layer containing a grain boundary oxide or an intragranular oxide is formed on a surface layer where the hot-dip galvanizing and the base steel sheet are in contact with each other. high-tensile galvanized steel sheet Mo type or Ti over Mo system precipitate is characterized in that it is dispersed one / [mu] m 3 or more.
前記酸化層に、直径20nm以下のNb−Mo系或いはTiーMo系析出物が10個/μm以上分散されていることを特徴とする請求項1に記載の高張力溶融亜鉛めっき鋼板。High-tensile galvanized steel sheet according to claim 1, wherein the oxide layer, the following Nb-Mo-based or Ti over Mo system precipitate diameter 20nm is dispersed 10 / [mu] m 3 or more. 請求項1又は2に記載の高張力溶融亜鉛めっき鋼板を、さらに合金化することで形成されてなることを特徴とする高張力合金化溶融亜鉛めっき鋼板。3. A high-strength galvannealed steel sheet formed by further alloying the high-strength galvanized steel sheet according to claim 1 or 2. 高張力鋼板からなる下地鋼板に、溶融亜鉛めっきを施してなる高張力溶融亜鉛めっき鋼板の製造方法において、
前記下地鋼板が、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成される高張力鋼板であり、
前記下地鋼板に、圧下率50〜85%の条件下で冷間圧延処理を行う工程を含むことを特徴とする高張力溶融亜鉛めっき鋼板の製造方法。
In a method of manufacturing a high-strength hot-dip galvanized steel sheet obtained by subjecting a base steel sheet made of a high-strength steel sheet to hot-dip galvanizing,
The base steel sheet is one selected from the group consisting of C: 0.001 to 0.20 mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, Nb and Ti. Or two or more types: 0.01 to 0.50% by mass, Mo: 0.01 to 1.00% by mass, balance: Fe and high-strength steel plate composed of unavoidable impurities,
A method for producing a high-strength hot-dip galvanized steel sheet, comprising a step of subjecting the base steel sheet to a cold rolling treatment under a reduction rate of 50 to 85%.
高張力鋼板からなる下地鋼板に、溶融亜鉛めっきを施してなる高張力溶融亜鉛めっき鋼板の製造方法において、
前記下地鋼板が、C:0.001〜0.20質量%、Si:0.10〜2.00質量%、Mn:1.00〜3.00質量%、Nb及びTiから選択される1種又は2種以上:0.01〜0.50質量%、Mo:0.01〜1.00質量%、残部:Fe及び不可避的不純物から構成される高張力鋼板であり、
前記下地鋼板に、ショットブラスト処理を施す工程と、
前記ショットブラスト処理後の下地鋼板に、圧下率30〜85%の条件下で冷間圧延処理を施す工程とを含むことを特徴とする高張力溶融亜鉛めっき鋼板の製造方法。
In a method of manufacturing a high-strength hot-dip galvanized steel sheet obtained by subjecting a base steel sheet made of a high-strength steel sheet to hot-dip galvanizing,
The base steel sheet is one selected from the group consisting of C: 0.001 to 0.20 mass%, Si: 0.10 to 2.00 mass%, Mn: 1.00 to 3.00 mass%, Nb and Ti. Or two or more types: 0.01 to 0.50% by mass, Mo: 0.01 to 1.00% by mass, balance: Fe and high-strength steel plate composed of unavoidable impurities,
Performing a shot blast treatment on the base steel sheet;
Subjecting the base steel sheet after the shot blasting treatment to a cold rolling treatment under a condition of a rolling reduction of 30 to 85%.
請求項4又は5に記載の高張力溶融亜鉛めっき鋼板の製造方法によって溶融亜鉛めっきが施された前記下地鋼板に、さらに合金化処理を行う工程を含むことを特徴とする高張力合金化溶融亜鉛めっきの製造方法。A high-strength galvannealed steel sheet, comprising a step of further performing an alloying treatment on the base steel sheet that has been hot-dip galvanized by the method for manufacturing a high-strength galvanized steel sheet according to claim 4 or 5. Manufacturing method of plating.
JP2003032455A 2002-02-12 2003-02-10 High tensile hot dip galvanized steel sheet and method for producing the same, high tensile alloyed hot dip galvanized steel sheet and method for producing the same Expired - Fee Related JP4275424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032455A JP4275424B2 (en) 2002-02-12 2003-02-10 High tensile hot dip galvanized steel sheet and method for producing the same, high tensile alloyed hot dip galvanized steel sheet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002034318 2002-02-12
JP2002259212 2002-09-04
JP2003032455A JP4275424B2 (en) 2002-02-12 2003-02-10 High tensile hot dip galvanized steel sheet and method for producing the same, high tensile alloyed hot dip galvanized steel sheet and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007118175A Division JP4438819B2 (en) 2002-02-12 2007-04-27 High tensile hot dip galvanized steel sheet and high tensile alloyed hot dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2004149912A true JP2004149912A (en) 2004-05-27
JP4275424B2 JP4275424B2 (en) 2009-06-10

Family

ID=32475120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032455A Expired - Fee Related JP4275424B2 (en) 2002-02-12 2003-02-10 High tensile hot dip galvanized steel sheet and method for producing the same, high tensile alloyed hot dip galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4275424B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219780A (en) * 2009-03-31 2011-11-04 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for manufacturing the same
EP2762601A4 (en) * 2011-09-30 2015-08-05 Nippon Steel & Sumitomo Metal Corp Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor
WO2018211920A1 (en) * 2017-05-19 2018-11-22 Jfeスチール株式会社 Method for manufacturing high-strength molten zinc plated steel sheet
US10711336B2 (en) 2012-11-06 2020-07-14 Nippon Steel Corporation Alloyed hot-dip galvanized steel sheet and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219780A (en) * 2009-03-31 2011-11-04 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for manufacturing the same
EP2762601A4 (en) * 2011-09-30 2015-08-05 Nippon Steel & Sumitomo Metal Corp Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor
US9752221B2 (en) 2011-09-30 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet provided with hot dip galvanized layer excellent in plating wettability and plating adhesion and method of production of same
US10711336B2 (en) 2012-11-06 2020-07-14 Nippon Steel Corporation Alloyed hot-dip galvanized steel sheet and method of manufacturing the same
WO2018211920A1 (en) * 2017-05-19 2018-11-22 Jfeスチール株式会社 Method for manufacturing high-strength molten zinc plated steel sheet
JP2018193593A (en) * 2017-05-19 2018-12-06 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet
CN110621800A (en) * 2017-05-19 2019-12-27 杰富意钢铁株式会社 Method for producing high-strength hot-dip galvanized steel sheet
US11248277B2 (en) 2017-05-19 2022-02-15 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet

Also Published As

Publication number Publication date
JP4275424B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
CN111492075B (en) Steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet
JP6264507B2 (en) High strength galvanized steel sheet and manufacturing method thereof
KR101935112B1 (en) Hot-dip galvanized steel sheet and process for producing same
JP4718782B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5223360B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4464720B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CA2772026C (en) High-strength galvanized steel sheet and method of manufacturing the same
JP6562180B1 (en) High strength steel plate and manufacturing method thereof
WO2004090187A1 (en) Hot-dip zinc coated steel sheet having high strength and method for production thereof
JP2006265671A (en) High tensile galvannealed steel sheet having excellent workability and molten metal embrittlement crack reistance
TW200424355A (en) Alloyed molten zinc plated steel sheet and process of production of same
WO2020136988A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP7276618B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP7028378B1 (en) Hot pressing member and its manufacturing method
EP2808416B1 (en) Method for manufacturing an alloyed hot-dip zinc-coated steel sheet
JP2004149912A (en) High tensile galvanized steel sheet, production method therefor, high tensile galvannealed steel sheet, and production method therefor
JP4438819B2 (en) High tensile hot dip galvanized steel sheet and high tensile alloyed hot dip galvanized steel sheet
JP2004292869A (en) High strength hot dip galvannealed steel sheet having excellent press formability, and production method therefor
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
JP2002317245A (en) High strength galvanized steel sheet having excellent press workability and production method therefor
WO2022230399A1 (en) Steel sheet and plated steel sheet
EP4227430A1 (en) Hot-dip galvanized steel sheet
WO2023054705A1 (en) Plated steel sheet
EP4332263A1 (en) Steel sheet and plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070521

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Ref document number: 4275424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees