JP2004149779A - Poly(arylene ether) compound, composition containing the same and method for producing them - Google Patents

Poly(arylene ether) compound, composition containing the same and method for producing them Download PDF

Info

Publication number
JP2004149779A
JP2004149779A JP2003348477A JP2003348477A JP2004149779A JP 2004149779 A JP2004149779 A JP 2004149779A JP 2003348477 A JP2003348477 A JP 2003348477A JP 2003348477 A JP2003348477 A JP 2003348477A JP 2004149779 A JP2004149779 A JP 2004149779A
Authority
JP
Japan
Prior art keywords
compound
general formula
polyarylene ether
group
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003348477A
Other languages
Japanese (ja)
Other versions
JP3928611B2 (en
Inventor
Yoshimitsu Sakaguchi
佳充 坂口
Kota Kitamura
幸太 北村
Shigenori Nagahara
重徳 永原
Masahiro Yamashita
全広 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003348477A priority Critical patent/JP3928611B2/en
Publication of JP2004149779A publication Critical patent/JP2004149779A/en
Application granted granted Critical
Publication of JP3928611B2 publication Critical patent/JP3928611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a poly(arylene ether) compound which is produced by using a monomer with a good polymerizability, has sulfo groups introduced thereinto, is useful for a polyelectrolyte film, and gives a polymeric material excellent in heat resistance, processability and ion conductivity and particularly useful for an ion-conductive film. <P>SOLUTION: The poly(arylene ether) compound comprises components represented by formula (1) and components represented by formula (2). In formula (1), Ar denotes a bivalent aromatic group; Y denotes a sulfone group or a ketone group; and X denotes H or a monovalent cation species. In formula (2), Ar' denotes a bivalent aromatic group. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、高分子電解質膜として有用なスルホン酸基含有ポリアリーレンエーテル系化合物に関するものである。   The present invention relates to a sulfonic acid group-containing polyarylene ether compound useful as a polymer electrolyte membrane.

液体電解質のかわりに高分子固体電解質をイオン伝導体として用いる電気化学的装置の例として、水電解槽や燃料電池を上げることができる。これらに用いられる高分子膜は、カチオン交換膜としてプロトン導電率とともに化学的、熱的、電気化学的および力学的に十分安定なものでなくてはならない。このため、長期にわたり使用できるものとしては、主に米デュポン社製の「ナフィオン(R)」を代表例とするパーフルオロカーボンスルホン酸膜が使用されてきた。しかしながら、ナフィオン膜を100℃を越える条件で運転しようとすると、膜の含水率が急激に落ちるほか、膜の軟化も顕著となる。このため、将来が期待されるメタノールを燃料とする燃料電池においては、膜内のメタノール透過による性能低下がおこり、十分な性能を発揮することはできない。また、現在主に検討されている水素を燃料として80℃付近で運転する燃料電池においても、膜のコストが高すぎることが燃料電池技術の確立の障害として指摘されている。   As an example of an electrochemical device using a polymer solid electrolyte as an ionic conductor instead of a liquid electrolyte, a water electrolyzer and a fuel cell can be raised. The polymer membrane used for these must be sufficiently stable chemically, thermally, electrochemically and mechanically with proton conductivity as a cation exchange membrane. For this reason, as a thing which can be used for a long period of time, the perfluorocarbon sulfonic acid membrane which made the representative example "Nafion (R)" by DuPont of the United States mainly has been used. However, if the Nafion membrane is operated under conditions exceeding 100 ° C., the moisture content of the membrane drops rapidly and the membrane softens significantly. For this reason, in a fuel cell that uses methanol as a fuel, which is expected in the future, the performance is deteriorated due to the permeation of methanol in the membrane, so that sufficient performance cannot be exhibited. Further, even in a fuel cell that is currently studied mainly using hydrogen as a fuel and operated at around 80 ° C., it is pointed out that the cost of the membrane is too high as an obstacle to the establishment of fuel cell technology.

このような欠点を克服するため、非フッ素系芳香族環含有ポリマーにスルホン酸基を導入した高分子電解質膜が種々検討されている。ポリマー骨格としては、耐熱性や化学的安定性を考慮すると、芳香族ポリアリーレンエーテルケトン類や芳香族ポリアリーレンエーテルスルホン類などの、芳香族ポリアリーレンエーテル化合物を有望な構造としてとらえることができ、ポリアリールエーテルスルホンをスルホン化したもの(例えば、非特許文献1参照。)、ポリエーテルエーテルケトンをスルホン化したもの(例えば、特許文献1参照。)、スルホン化ポリスチレン等が報告されている。しかしながら、これらのポリマーのスルホン化反応により芳香環上に導入されたスルホン酸基は一般に熱により脱離しやすい傾向にあり、これを改善する方法として電子吸引性芳香環上にスルホン酸基を導入したモノマーを用いて重合することで、熱的に安定性の高いスルホン化ポリアリールエーテルスルホン系化合物が報告されている(例えば、特許文献2参照。)。この場合、モノマーの反応性が低いために、ポリマーを得るのに長時間の重合を必要とする問題が生じている(例えば、非特許文献2参照)。
特開平6−93114号公報(第15−17頁) 米国特許出願公開第2002/0091225号明細書(第1−2頁) ジャーナル・オブ・メンブラン・サイエンス(Journal of Membrane Science)、(オランダ)1993年、83巻、P.211−220 エーシーエス・ポリマー・プレプリント(ACS Polymer Preprints)、(米国)、2000年、41(2)巻、P.1388−1389
In order to overcome such drawbacks, various polymer electrolyte membranes in which a sulfonic acid group is introduced into a non-fluorinated aromatic ring-containing polymer have been studied. As a polymer skeleton, considering heat resistance and chemical stability, aromatic polyarylene ether compounds such as aromatic polyarylene ether ketones and aromatic polyarylene ether sulfones can be regarded as promising structures, A sulfonated polyarylethersulfone (for example, see Non-Patent Document 1), a sulfonated polyetheretherketone (for example, see Patent Document 1), sulfonated polystyrene, and the like have been reported. However, sulfonic acid groups introduced onto aromatic rings by sulfonation reaction of these polymers generally tend to be easily removed by heat, and as a method for improving this, sulfonic acid groups are introduced onto electron-withdrawing aromatic rings. A sulfonated polyarylether sulfone compound having high thermal stability has been reported by polymerization using a monomer (see, for example, Patent Document 2). In this case, since the reactivity of a monomer is low, the problem which requires superposition | polymerization for a long time in order to obtain a polymer has arisen (for example, refer nonpatent literature 2).
JP-A-6-93114 (pages 15-17) US Patent Application Publication No. 2002/0091225 (page 1-2) Journal of Membrane Science (Netherlands) 1993, 83, p. 211-220 ACS Polymer Preprints, (USA), 2000, 41 (2), P.C. 1388-1389

本発明の目的は、重合性が良好であるとともに高分子電解質膜として有用なスルホン酸基を導入したポリアリーレンエーテル系化合物により、耐熱性、加工性、イオン伝導性にすぐれた、特にイオン伝導膜として有用な高分子材料を得ることにある。   The object of the present invention is to improve the heat resistance, workability, and ion conductivity, particularly the ion conductive membrane, by the polyarylene ether compound having a good polymerizability and a sulfonic acid group useful as a polymer electrolyte membrane. It is to obtain a useful polymer material.

本発明者らは鋭意研究を重ねた結果、芳香環上にスルホン酸を導入したモノマーとともに反応性の高い特定のモノマーを併用して合成したポリアリーレンエーテル系化合物により、上記目的が達成されることを見いだすに至った。   As a result of intensive research, the present inventors have achieved the above object by using a polyarylene ether compound synthesized by combining a monomer having a sulfonic acid introduced onto an aromatic ring and a specific monomer having high reactivity. I came to find.

本発明は、一般式(1)とともに一般式(2)で示される構成成分を含むことを特徴とするポリアリーレンエーテル系化合物を提供する。   This invention provides the polyarylene ether type compound characterized by including the structural component shown by General formula (2) with General formula (1).

Figure 2004149779
Figure 2004149779

ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。 Here, Ar represents a divalent aromatic group, Y represents a sulfone group or a ketone group, and X represents H or a monovalent cation species.

Figure 2004149779
Figure 2004149779

ただし、Ar’は2価の芳香族基を示す。 However, Ar 'shows a bivalent aromatic group.

本発明はまた、一般式(1)とともに一般式(3)で示される構成成分を含むことを特徴とするポリアリーレンエーテル系化合物を提供する。   The present invention also provides a polyarylene ether-based compound characterized by including a component represented by the general formula (3) together with the general formula (1).

Figure 2004149779
Figure 2004149779

ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。 Here, Ar represents a divalent aromatic group, Y represents a sulfone group or a ketone group, and X represents H or a monovalent cation species.

Figure 2004149779
Figure 2004149779

ただし、Ar’は2価の芳香族基を示す。 However, Ar 'shows a bivalent aromatic group.

好ましくは、スルホン酸基含有量が、0.3〜3.5meq/gの範囲にある。   Preferably, the sulfonic acid group content is in the range of 0.3 to 3.5 meq / g.

好ましくは、一般式(4)とともに一般式(5)で示される構成成分を含む。   Preferably, the structural component shown by General formula (5) is included with General formula (4).

Figure 2004149779
Figure 2004149779

ただし、XはHまたは1価のカチオン種を示す。 X represents H or a monovalent cation species.

本発明はまた、上記いずれかに記載のポリアリーレンエーテル系化合物を50〜100質量%含むことを特徴とする組成物を提供する。   The present invention also provides a composition comprising 50 to 100% by mass of any of the polyarylene ether compounds described above.

本発明はまた、上記いずれかに記載の化合物を含有することを特徴とするイオン伝導膜を提供する。   The present invention also provides an ion conductive membrane comprising any of the compounds described above.

好ましくは、本発明のイオン伝導膜は、平均厚さ50μmの膜を作製し、5Mメタノール水溶液を用いて25℃で測定したメタノール透過速度が7mmol/m・sec以下の値を示す。 Preferably, the ion-conducting membrane of the present invention is a membrane having an average thickness of 50 μm, and the methanol permeation rate measured at 25 ° C. using a 5 M aqueous methanol solution shows a value of 7 mmol / m 2 · sec or less.

本発明はまた、上記のイオン伝導膜と電極とを含有することを特徴とする複合体を提供する。   The present invention also provides a composite comprising the above ion conductive membrane and an electrode.

本発明はまた、上記の複合体を含有することを特徴とする燃料電池を提供する。   The present invention also provides a fuel cell comprising the above composite.

好ましくは、本発明の燃料電池は、メタノールを燃料として使用する。   Preferably, the fuel cell of the present invention uses methanol as the fuel.

本発明はまた、上記のポリアリーレンエーテル系化合物を含有することを特徴とする接着剤を提供する。   The present invention also provides an adhesive comprising the above polyarylene ether compound.

本発明はまた、一般式(6)および一般式(7)で表される化合物とビスフェノール系化合物とをモノマーとして含む芳香族求核置換反応により重合することを特徴とする上記に記載のポリアリーレンエーテル系化合物の製造方法を提供する。   The present invention also provides the polyarylene as described above, which is polymerized by an aromatic nucleophilic substitution reaction containing the compound represented by the general formula (6) and the general formula (7) and a bisphenol compound as monomers. A method for producing an ether compound is provided.

Figure 2004149779
Figure 2004149779

ただし、Yはスルホン基またはケトン基、Xは1価のカチオン種、Zは塩素またはフッ素を示す。 Y represents a sulfone group or a ketone group, X represents a monovalent cation species, and Z represents chlorine or fluorine.

本発明はまた、上記のポリアリーレンエーテル系化合物と、溶剤とを含有する溶液を、キャスト厚が10〜1000μmの範囲となるようにキャストする工程と、キャストした溶液を乾燥させる工程とを含むことを特徴とする上記に記載のイオン伝導膜の製造方法を提供する。   The present invention also includes a step of casting a solution containing the above polyarylene ether compound and a solvent so that the cast thickness is in the range of 10 to 1000 μm, and a step of drying the cast solution. A method for producing the ion conductive membrane as described above is provided.

本発明のスルホン酸基含有芳香族ポリアリーレンエーテル系化合物により、イオン伝導性だけでなく耐熱性、加工性および寸法安定性に優れた、燃料電池などの高分子電解質として際立った性能を示す材料を提供することができる。また、本発明のスルホン酸基含有芳香族ポリアリーレンエーテル系化合物は、メタノール透過性が低いという特徴もあり、ダイレクトメタノール型燃料電池用の高分子電解質膜としても有用である。   With the sulfonic acid group-containing aromatic polyarylene ether compound of the present invention, a material exhibiting outstanding performance as a polymer electrolyte such as a fuel cell, which is excellent not only in ion conductivity but also in heat resistance, workability and dimensional stability. Can be provided. The sulfonic acid group-containing aromatic polyarylene ether compound of the present invention is also characterized by low methanol permeability and is useful as a polymer electrolyte membrane for a direct methanol fuel cell.

以下、本発明を詳細に説明する。本発明は、芳香環上にスルホン酸を導入したポリアリーレンエーテル系化合物により、耐熱性、加工性、イオン伝導性にすぐれた、特にイオン伝導膜として有用な高分子材料を提供するものである。すなわち、電子吸引性の芳香環上にスルホン酸基を導入したモノマーとして、3,3’−ジスルホ−4,4‘−ジクロロジフェニルスルホン誘導体またはその類似化合物を用いてポリアリーレンエーテルを合成することにより、高温でもスルホン酸基が脱離しにくいポリマーを提供することができるとともに、3,3’−ジスルホ−4,4‘−ジクロロジフェニルスルホン誘導体またはその類似化合物とともに2,6−ジクロロベンゾニトリルまたはその類似化合物を併用していることにより、重合性の低い3,3’−ジスルホ−4,4‘−ジクロロジフェニルスルホン誘導体またはその類似化合物を使用していても短時間で高重合度のポリアリーレンエーテル化合物が得られる特徴も有している。   Hereinafter, the present invention will be described in detail. The present invention provides a polymer material excellent in heat resistance, processability, and ion conductivity, particularly useful as an ion conductive film, by a polyarylene ether compound in which a sulfonic acid is introduced onto an aromatic ring. That is, by synthesizing a polyarylene ether using a 3,3′-disulfo-4,4′-dichlorodiphenylsulfone derivative or a similar compound as a monomer having a sulfonic acid group introduced on an electron-withdrawing aromatic ring. In addition, it is possible to provide a polymer in which a sulfonic acid group is not easily removed even at a high temperature, and 2,6-dichlorobenzonitrile or a similar compound together with a 3,3′-disulfo-4,4′-dichlorodiphenylsulfone derivative or a similar compound. A polyarylene ether compound having a high degree of polymerization in a short time even when a 3,3′-disulfo-4,4′-dichlorodiphenylsulfone derivative or a similar compound having a low polymerization property is used by using the compound in combination Is also obtained.

すなわち、本発明のスルホン酸基含有ポリアリーレンエーテル系化合物は、下記一般式(1)とともに一般式(2)で示される構成成分を含むことを特徴とする。   That is, the sulfonic acid group-containing polyarylene ether-based compound of the present invention is characterized in that it contains a structural component represented by the general formula (2) together with the following general formula (1).

Figure 2004149779
Figure 2004149779

ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。 Here, Ar represents a divalent aromatic group, Y represents a sulfone group or a ketone group, and X represents H or a monovalent cation species.

Figure 2004149779
Figure 2004149779

ただし、Ar’は2価の芳香族基を示す。 However, Ar 'shows a bivalent aromatic group.

上記一般式(2)で示される構成成分は、下記一般式(3)で示される構成成分であることが好ましい。   The component represented by the general formula (2) is preferably a component represented by the following general formula (3).

Figure 2004149779
Figure 2004149779

ただし、Ar’は2価の芳香族基を示す。 However, Ar 'shows a bivalent aromatic group.

また、本発明のスルホン酸基含有ポリアリーレンエーテル系化合部においては上記一般式(1)および一般式(2)で示される以外の構造単位が含まれていてもかまわない。このとき、上記一般式(1)または一般式(2)で示される以外の構造単位は本発明のスルホン酸を導入したポリアリーレンエーテルの50質量%以下であることが好ましい。50質量%以下とすることにより、本発明のスルホン酸基含有ポリアリーレンエーテル系化合物の特性を活かした組成物とすることができる。   In addition, the sulfonic acid group-containing polyarylene ether-based compound part of the present invention may contain structural units other than those represented by the above general formula (1) and general formula (2). At this time, it is preferable that structural units other than those represented by the general formula (1) or the general formula (2) are 50% by mass or less of the polyarylene ether introduced with the sulfonic acid of the present invention. By setting it as 50 mass% or less, it can be set as the composition which utilized the characteristic of the sulfonic acid group containing polyarylene ether type compound of this invention.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物としては、スルホン酸基含有量が0.3〜3.5meq/gの範囲にあることが好ましい。0.3meq/gよりも少ない場合には、イオン伝導膜として使用したときに十分なイオン伝導性を示さない傾向があり、3.5meq/gよりも大きい場合にはイオン伝導膜を高温高湿条件においた場合に膜膨潤が大きくなりすぎて使用に適さなくなる傾向がある。なお、スルホン酸基含有量は後述する滴定により求めることができる。より好ましくは1.0〜3.0meq/gである。   The sulfonic acid group-containing polyarylene ether compound of the present invention preferably has a sulfonic acid group content in the range of 0.3 to 3.5 meq / g. When it is less than 0.3 meq / g, there is a tendency that sufficient ion conductivity is not exhibited when used as an ion conductive membrane, and when it is greater than 3.5 meq / g, the ion conductive membrane is not heated and humidified. When the conditions are met, membrane swelling tends to be too large to be suitable for use. In addition, sulfonic acid group content can be calculated | required by titration mentioned later. More preferably, it is 1.0-3.0 meq / g.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物としては、下記一般式(4)とともに一般式(5)で示される構成成分を含むものが特に好ましい。ビフェニレン構造を有していることにより高温高湿条件での寸法安定性に優れるとともに、フィルムの強靱性も高いものとなる。   As the sulfonic acid group-containing polyarylene ether-based compound of the present invention, a compound containing the structural component represented by the general formula (5) together with the following general formula (4) is particularly preferable. By having a biphenylene structure, the film has excellent dimensional stability under high-temperature and high-humidity conditions, and also has high film toughness.

Figure 2004149779
Figure 2004149779

ただし、XはHまたは1価のカチオン種を示す。 X represents H or a monovalent cation species.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物は、下記一般式(6)および一般式(7)で表される化合物をモノマーとして含む芳香族求核置換反応により重合することができる。一般式(6)で表される化合物の具体例としては、3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホ−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホ−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホ−4,4’−ジフルオロジフェニルスルホン、およびそれらのスルホン酸基が1価カチオン種との塩になったもの等が挙げられる。1価カチオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限される訳ではない。一般式(7)で表される化合物としては、2,6−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、2,4−ジクロロベンゾニトリル、2,4−ジフルオロベンゾニトリル、等を挙げることができる。   The sulfonic acid group-containing polyarylene ether compound of the present invention can be polymerized by an aromatic nucleophilic substitution reaction containing compounds represented by the following general formulas (6) and (7) as monomers. Specific examples of the compound represented by the general formula (6) include 3,3′-disulfo-4,4′-dichlorodiphenyl sulfone, 3,3′-disulfo-4,4′-difluorodiphenyl sulfone, 3, 3'-disulfo-4,4'-dichlorodiphenyl ketone, 3,3'-disulfo-4,4'-difluorodiphenyl sulfone, and those whose sulfonic acid groups are converted to salts with monovalent cation species Can be mentioned. The monovalent cation species may be sodium, potassium, other metal species, various amines, or the like, but is not limited thereto. Examples of the compound represented by the general formula (7) include 2,6-dichlorobenzonitrile, 2,6-difluorobenzonitrile, 2,4-dichlorobenzonitrile, 2,4-difluorobenzonitrile, and the like. it can.

Figure 2004149779
Figure 2004149779

ただし、Yはスルホン基またはケトン基、Xは1価のカチオン種、Zは塩素またはフッ素を示す。本発明において、上記2,6−ジクロロベンゾニトリルおよび2,4−ジクロロベンゾニトリルは、異性体の関係にあり、いずれを用いたとしても良好なイオン伝導性、耐熱性、加工性および寸法安定性を達成することができる。その理由としては両モノマーとも反応性に優れるとともに、小さな繰り返し単位を構成することで分子全体の構造をより硬いものとしていると考えられている。 Y represents a sulfone group or a ketone group, X represents a monovalent cation species, and Z represents chlorine or fluorine. In the present invention, the above 2,6-dichlorobenzonitrile and 2,4-dichlorobenzonitrile are in an isomer relationship, and any of them is used, good ion conductivity, heat resistance, workability and dimensional stability. Can be achieved. The reason is considered that both monomers are excellent in reactivity and that the structure of the whole molecule is made harder by constituting a small repeating unit.

上述の芳香族求核置換反応において、上記一般式(6)、(7)で表される化合物とともに各種活性化ジフルオロ芳香族化合物やジクロロ芳香族化合物をモノマーとして併用することもできる。これらの化合物例としては、4,4’−ジクロロジフェニルスルホン、4,4’−ジフルオロジフェニルスルホン、4,4’−ジフルオロベンゾフェノン、4,4’−ジクロロベンゾフェノン、デカフルオロビフェニル等が挙げられるがこれらに制限されることなく、芳香族求核置換反応に活性のある他の芳香族ジハロゲン化合物、芳香族ジニトロ化合物、芳香族ジシアノ化合物なども使用することができる。   In the above-described aromatic nucleophilic substitution reaction, various activated difluoroaromatic compounds and dichloroaromatic compounds can be used in combination with the compounds represented by the general formulas (6) and (7) as monomers. Examples of these compounds include 4,4′-dichlorodiphenyl sulfone, 4,4′-difluorodiphenyl sulfone, 4,4′-difluorobenzophenone, 4,4′-dichlorobenzophenone, decafluorobiphenyl, and the like. However, other aromatic dihalogen compounds, aromatic dinitro compounds, aromatic dicyano compounds and the like that are active in aromatic nucleophilic substitution can also be used.

また、上述の一般式(1)で表される構成成分中のArおよび上述の一般式(2)で表される構成成分中のAr’は、一般には芳香族求核置換重合において上述の一般式(6)、(7)で表される化合物とともに使用される芳香族ジオール成分モノマーより導入される構造である。このような芳香族ジオールモノマーの例としては、4,4’−ビフェノール、ビス(4−ヒドロキシフェニル)スルホン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス(4−ヒドロキシ−2,5−ジメチルフェニル)メタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、ハイドロキノン、レゾルシン、ビス(4−ヒドロキシフェニル)ケトン等があげられるが、この他にも芳香族求核置換反応によるポリアリーレンエーテル系化合物の重合に用いることができる各種芳香族ジオールを使用することもできる。これら芳香族ジオールは、単独で使用することができるが、複数の芳香族ジオールを併用することも可能である。   In addition, Ar in the structural component represented by the general formula (1) and Ar ′ in the structural component represented by the general formula (2) are generally the same as those described above in the aromatic nucleophilic substitution polymerization. It is a structure introduced from an aromatic diol component monomer used together with the compounds represented by formulas (6) and (7). Examples of such aromatic diol monomers include 4,4′-biphenol, bis (4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxy). Phenyl) propane, bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) butane, 3,3-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxy-3) , 5-dimethylphenyl) propane, bis (4-hydroxy-3,5-dimethylphenyl) methane, bis (4-hydroxy-2,5-dimethylphenyl) methane, bis (4-hydroxyphenyl) phenylmethane, bis ( 4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9- (3-methyl-4-hydroxyphenyl) fluorene, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, hydroquinone, resorcin, bis (4-hydroxyphenyl) ketone, etc. Various aromatic diols that can be used for polymerization of polyarylene ether compounds by aromatic nucleophilic substitution reaction can also be used. These aromatic diols can be used alone, but a plurality of aromatic diols can be used in combination.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物を芳香族求核置換反応により重合する場合、上記一般式(6)および一般式(7)で表せる化合物を含む活性化ジフルオロ芳香族化合物および/またはジクロロ芳香族化合物と芳香族ジオール類を塩基性化合物の存在下で反応させることで重合体を得ることができる。重合は、0〜350℃の温度範囲で行うことができるが、50〜250℃の温度であることが好ましい。0℃より低い場合には、十分に反応が進まない傾向にあり、350℃より高い場合には、ポリマーの分解も起こり始める傾向がある。反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ジフェニルスルホン、スルホランなどを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されても良い。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、芳香族ジオール類を活性なフェノキシド構造にしうるものであれば、これらに限定されず使用することができる。芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水材を使用することもできる。芳香族求核置換反応を溶媒中で行う場合、得られるポリマー濃度として5〜50質量%となるようにモノマーを仕込むことが好ましい。5質量%よりも少ない場合は、重合度が上がりにくい傾向がある。一方、50質量%よりも多い場合には、反応系の粘性が高くなりすぎ、反応物の後処理が困難になる傾向がある。重合反応終了後は、反応溶液より蒸発によって溶媒を除去し、必要に応じて残留物を洗浄することによって、所望のポリマーが得られる。また、反応溶液を、ポリマーの溶解度が低い溶媒中に加えることによって、ポリマーを固体として沈殿させ、沈殿物の濾取によりポリマーを得ることもできる。   When the sulfonic acid group-containing polyarylene ether compound of the present invention is polymerized by an aromatic nucleophilic substitution reaction, an activated difluoroaromatic compound containing a compound represented by the above general formula (6) and general formula (7) and / or A polymer can be obtained by reacting a dichloroaromatic compound and an aromatic diol in the presence of a basic compound. The polymerization can be carried out in the temperature range of 0 to 350 ° C., but is preferably 50 to 250 ° C. When the temperature is lower than 0 ° C., the reaction does not proceed sufficiently, and when the temperature is higher than 350 ° C., the polymer tends to be decomposed. The reaction can be carried out in the absence of a solvent, but is preferably carried out in a solvent. Examples of the solvent that can be used include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, diphenyl sulfone, sulfolane, and the like. And any solvent that can be used as a stable solvent in the aromatic nucleophilic substitution reaction. These organic solvents may be used alone or as a mixture of two or more. Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and the like, and those that can convert an aromatic diol into an active phenoxide structure may be used. It can use without being limited to. In the aromatic nucleophilic substitution reaction, water may be generated as a by-product. In this case, regardless of the polymerization solvent, water can be removed from the system as an azeotrope by coexisting toluene or the like in the reaction system. As a method for removing water out of the system, a water absorbing material such as molecular sieve can also be used. When the aromatic nucleophilic substitution reaction is carried out in a solvent, it is preferable to charge the monomer so that the resulting polymer concentration is 5 to 50% by mass. When the amount is less than 5% by mass, the degree of polymerization tends to be difficult to increase. On the other hand, when the amount is more than 50% by mass, the viscosity of the reaction system becomes too high, and the post-treatment of the reaction product tends to be difficult. After completion of the polymerization reaction, the solvent is removed from the reaction solution by evaporation, and the residue is washed as necessary to obtain the desired polymer. In addition, the polymer can be obtained by precipitating the polymer as a solid by adding the reaction solution in a solvent having low polymer solubility, and collecting the precipitate by filtration.

また、本発明のスルホン酸基含有ポリアリーレンエーテル系化合物は、後で述べる方法により測定したポリマー対数粘度が0.1以上であることが好ましい。対数粘度が0.1よりも小さいと、イオン伝導膜として成形したときに、膜が脆くなりやすくなる。還元比粘度は、0.3以上であることがさらに好ましい。一方、還元比粘度が5を超えると、ポリマーの溶解が困難になるなど、加工性での問題が出てくるので好ましくない。なお、対数粘度を測定する溶媒としては、一般にN−メチルピロリドン、N,N−ジメチルアセトアミドなどの極性有機溶媒を使用することができるが、これらに溶解性が低い場合には濃硫酸を用いて測定することもできる。   The sulfonic acid group-containing polyarylene ether compound of the present invention preferably has a polymer log viscosity measured by a method described later of 0.1 or more. When the logarithmic viscosity is less than 0.1, the membrane is likely to be brittle when formed as an ion conductive membrane. The reduced specific viscosity is more preferably 0.3 or more. On the other hand, if the reduced specific viscosity exceeds 5, problems in processability such as difficulty in dissolving the polymer occur, which is not preferable. As a solvent for measuring the logarithmic viscosity, polar organic solvents such as N-methylpyrrolidone and N, N-dimethylacetamide can be generally used. When the solubility in these is low, concentrated sulfuric acid is used. It can also be measured.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物は、単体として使用することができるが、他のポリマーとの組み合わせによる組成物として使用することもできる。これらのポリマーとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン12などのポリアミド類、ポリメチルメタクリレート、ポリメタクリル酸エステル類、ポリメチルアクリレート、ポリアクリル酸エステル類などのアクリレート系樹脂、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂、ポリエチレン、ポリプロピレン、ポリスチレンやジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾールなどの芳香族系ポリマー、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂等、特に制限はない。ポリベンズイミダゾールやポリビニルピリジンなどの塩基性ポリマーとの組成物は、ポリマー寸法性の向上のために好ましい組み合わせと言える、これらの塩基性ポリマー中に、さらにスルホン酸基を導入しておくと、組成物の加工性がより好ましいものとなる。これら組成物として使用する場合には、本発明のスルホン酸基含有ポリアリーレンエーテル系化合物は、組成物全体の50質量%以上100質量%未満含まれていることが好ましい。より好ましくは70質量%以上100質量%未満である。本発明のスルホン酸基含有ポリアリーレンエーテル系化合物の含有量が組成物全体の50質量%未満の場合には、この組成物を含むイオン伝導膜のスルホン酸基濃度が低くなり良好なイオン伝導性が得られない傾向にあり、また、スルホン酸基を含有するユニットが非連続相となり伝導するイオンの移動度が低下する傾向にある。なお、本発明の組成物は、必要に応じて、例えば酸化防止剤、熱安定剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散剤、重合禁止剤、などの各種添加剤を含んでいても良い。   The sulfonic acid group-containing polyarylene ether compound of the present invention can be used as a simple substance, but can also be used as a composition in combination with other polymers. Examples of these polymers include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6, nylon 6,6, nylon 6,10, and nylon 12, polymethyl methacrylate, and polymethacrylate. Acrylate resins such as polymethyl acrylate and polyacrylic acid esters, polyacrylic acid resins, polymethacrylic acid resins, polyethylene, polypropylene, various polyolefins including polystyrene and diene polymers, polyurethane resins, cellulose acetate, Cellulosic resins such as ethyl cellulose, polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyether Thermosetting of sulfone, polyether ether ketone, polyether imide, polyimide, polyamide imide, polybenzimidazole, polybenzoxazole, polybenzthiazole and other aromatic polymers, epoxy resin, phenol resin, novolac resin, benzoxazine resin, etc. There are no particular restrictions on the conductive resin. A composition with a basic polymer such as polybenzimidazole or polyvinylpyridine can be said to be a preferable combination for improving polymer dimensionality. If a sulfonic acid group is further introduced into these basic polymers, the composition The workability of the product becomes more preferable. When used as these compositions, the sulfonic acid group-containing polyarylene ether compound of the present invention is preferably contained in an amount of 50% by mass or more and less than 100% by mass of the entire composition. More preferably, it is 70 mass% or more and less than 100 mass%. When the content of the sulfonic acid group-containing polyarylene ether compound of the present invention is less than 50% by mass of the entire composition, the sulfonic acid group concentration of the ion conductive membrane containing this composition is lowered and good ion conductivity is obtained. The unit containing a sulfonic acid group tends to be a discontinuous phase and the mobility of ions to be conducted tends to decrease. In addition, the composition of the present invention, if necessary, for example, an antioxidant, a heat stabilizer, a lubricant, a tackifier, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, an antifoaming agent, Various additives such as a dispersant and a polymerization inhibitor may be included.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物およびその組成物は、押し出し、紡糸、圧延またはキャストなど任意の方法で繊維やフィルムなどの成形体とすることができる。中でも適当な溶媒に溶解した溶液から成形することが好ましい。この溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒や、メタノール、エタノール等のアルコール類から適切なものを選ぶことができるがこれらに限定されるものではない。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。溶液中の化合物濃度は0.1〜50質量%の範囲であることが好ましい。溶液中の化合物濃度が0.1質量%未満であると良好な成形物を得るのが困難となる傾向にあり、50質量%を超えると加工性が悪化する傾向にある。溶液から成形体を得る方法は従来から公知の方法を用いて行うことができる。たとえば、加熱、減圧乾燥、化合物を溶解する溶媒と混和することができる化合物非溶媒への浸漬等によって、溶媒を除去し成形体を得ることができる。溶媒が、有機溶媒の場合には、加熱又は減圧乾燥によって溶媒を留去させることが好ましい。この際、必要に応じて他の化合物と複合された形で繊維状、フィルム状、ペレット状、プレート状、ロッド状、パイプ状、ボール状、ブロック状などの様々な形状に成形することもできる。溶解挙動が類似する化合物と組み合わせた場合には、良好な成形ができる点で好ましい。このようにして得られた成形体中のスルホン酸基はカチオン種との塩の形のものを含んでいても良いが、必要に応じて酸処理することによりフリーのスルホン酸基に変換することもできる。   The sulfonic acid group-containing polyarylene ether compound and the composition thereof of the present invention can be formed into a molded body such as a fiber or a film by any method such as extrusion, spinning, rolling or casting. Among these, it is preferable to mold from a solution dissolved in an appropriate solvent. Examples of the solvent include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and hexamethylphosphonamide, and alcohols such as methanol and ethanol. An appropriate one can be selected, but is not limited thereto. A plurality of these solvents may be used as a mixture within a possible range. The compound concentration in the solution is preferably in the range of 0.1 to 50% by mass. If the compound concentration in the solution is less than 0.1% by mass, it tends to be difficult to obtain a good molded product, and if it exceeds 50% by mass, the workability tends to deteriorate. A method of obtaining a molded body from a solution can be performed using a conventionally known method. For example, the molded product can be obtained by removing the solvent by heating, drying under reduced pressure, immersion in a compound non-solvent that can be mixed with a solvent that dissolves the compound, or the like. When the solvent is an organic solvent, the solvent is preferably distilled off by heating or drying under reduced pressure. At this time, it can be formed into various shapes such as a fiber shape, a film shape, a pellet shape, a plate shape, a rod shape, a pipe shape, a ball shape, and a block shape in a composite form with other compounds as necessary. . When combined with a compound having a similar dissolution behavior, it is preferable in that good molding can be achieved. The sulfonic acid group in the molded article thus obtained may contain a salt form with a cationic species, but it can be converted to a free sulfonic acid group by acid treatment as necessary. You can also.

本発明のスルホン酸基含有ポリアリーレンエーテル系化合物およびその組成物からイオン伝導膜を作製することもできる。イオン伝導膜を成形する手法として最も好ましいのは、溶液からのキャストであり、キャストした溶液から上記のように溶媒を除去してイオン伝導膜を得ることができる。当該溶液としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、ジメチルスルホキシドなどの有機極性溶媒を用いた溶媒や、場合によってはアルコール系溶媒なども使用することができる。溶媒の除去は、乾燥によることがイオン伝導膜の均一性からは好ましい。また、化合物や溶媒の分解や変質を避けるため、減圧下でできるだけ低い温度で乾燥することもできる。また、溶液の粘度が高い場合には、基板や溶液を加熱して高温でキャストすると溶液の粘度が低下して容易にキャストすることができる。キャストする際の溶液の厚みは特に制限されないが、10〜1000μmであることが好ましい。より好ましくは50〜500μmである。溶液の厚みが10μmよりも薄いとイオン伝導膜としての形態を保てなくなる傾向にあり、1000μmよりも厚いと不均一な高分子電解質膜ができやすくなる傾向にある。溶液のキャスト厚を制御する方法は公知の方法を用いることができる。例えば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラスシャーレなどを用いてキャスト面積を一定にして溶液の量や濃度で厚みを制御することができる。キャストした溶液は、溶媒の除去速度を調整することでより均一な膜を得ることができる。例えば、加熱する場合には最初の段階では低温にして蒸発速度を下げたりすることができる。また、水などの非溶媒に浸漬する場合には、溶液を空気中や不活性ガス中に適当な時間放置しておくなどして化合物の凝固速度を調整することができる。本発明のイオン伝導膜は目的に応じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが好ましい。具体的には5〜200μmであることが好ましく、5〜50μmであることがさらに好ましく、5〜20μmであることが最も好ましい。イオン伝導膜の厚みが5μmより薄いとイオン伝導膜の取扱が困難となり燃料電池を作製した場合に短絡等が起こる傾向にあり、200μmよりも厚いとイオン伝導膜の電気抵抗値が高くなり燃料電池の発電性能が低下する傾向にある。イオン伝導膜として使用する場合、膜中のスルホン酸基は金属塩になっているものを含んでいても良いが、適当な酸処理によりフリーのスルホン酸に変換することもできる。この場合、硫酸、塩酸、等の水溶液中に加熱下あるいは加熱せずに膜を浸漬処理することで行うことも効果的である。また、イオン伝導膜のイオン伝導率は1.0x10−3S/cm以上であることが好ましい。イオン伝導率が1.0x10−3S/cm以上である場合には、そのイオン伝導膜を用いた燃料電池において良好な出力が得られる傾向にあり、1.0x10−3S/cm未満である場合には燃料電池の出力低下が起こる傾向にある。 An ion conductive membrane can also be produced from the sulfonic acid group-containing polyarylene ether compound of the present invention and its composition. The most preferable method for forming the ion conductive membrane is casting from a solution, and the ion conductive membrane can be obtained by removing the solvent from the cast solution as described above. As the solution, a solvent using an organic polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, or an alcohol solvent may be used. The removal of the solvent is preferably by drying from the uniformity of the ion conductive membrane. Moreover, in order to avoid decomposition | disassembly and alteration of a compound or a solvent, it can also dry at the lowest temperature possible under reduced pressure. Further, when the viscosity of the solution is high, when the substrate or the solution is heated and cast at a high temperature, the viscosity of the solution is lowered and can be easily cast. The thickness of the solution at the time of casting is not particularly limited, but is preferably 10 to 1000 μm. More preferably, it is 50-500 micrometers. If the thickness of the solution is less than 10 μm, it tends to be unable to maintain the form as an ion conductive membrane, and if it is thicker than 1000 μm, a non-uniform polymer electrolyte membrane tends to be easily formed. As a method for controlling the cast thickness of the solution, a known method can be used. For example, the thickness can be controlled with the amount and concentration of the solution with a constant thickness using an applicator, a doctor blade or the like, or with a cast area constant using a glass petri dish or the like. The cast solution can obtain a more uniform film by adjusting the solvent removal rate. For example, in the case of heating, the evaporation rate can be reduced by lowering the temperature in the first stage. In addition, when immersed in a non-solvent such as water, the coagulation rate of the compound can be adjusted by leaving the solution in air or an inert gas for an appropriate time. The ion conductive film of the present invention can have any film thickness depending on the purpose, but it is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, it is preferably 5 to 200 μm, more preferably 5 to 50 μm, and most preferably 5 to 20 μm. If the thickness of the ion conductive membrane is less than 5 μm, handling of the ion conductive membrane is difficult and a short circuit or the like tends to occur when a fuel cell is produced. The power generation performance tends to decrease. When used as an ion conductive membrane, the sulfonic acid group in the membrane may contain a metal salt, but it can be converted to free sulfonic acid by an appropriate acid treatment. In this case, it is also effective to immerse the membrane in an aqueous solution of sulfuric acid, hydrochloric acid, or the like with or without heating. Moreover, it is preferable that the ion conductivity of an ion conductive film is 1.0x10 < -3 > S / cm or more. When the ionic conductivity is 1.0 × 10 −3 S / cm or more, a good output tends to be obtained in a fuel cell using the ion conductive membrane, and is less than 1.0 × 10 −3 S / cm. In some cases, the output of the fuel cell tends to decrease.

本発明のイオン伝導膜は、メタノールを燃料とするダイレクトメタノール型燃料電池にも有用であることが特徴である。平均厚さ50μmの膜を作製し、5Mメタノール水溶液を用いて25℃で測定したメタノール透過速度が7mmol/m・sec以下の値を示すイオン伝導膜が好ましい(測定法については後述する)。メタノール透過速度は4mmol/m・sec以下であればさらに好ましく、1mmol/m・sec以下であればより好ましい。このようなメタノール透過性を示すときに特に優れた発電特性を示すためである。なお、膜厚が異なるとメタノール透過速度は一般に大きく異なる傾向を示す。このためメタノール透過性評価は平均厚み50μmの試料を作成して評価しているが、実際に燃料電池用イオン伝導膜として使用する際には、特に膜厚を限定しているわけではない。平均厚み50μmの膜とは、実質上は平均厚み48μmから平均厚み52μmの範囲に入っているものを示すものとする。 The ion conductive membrane of the present invention is also useful for direct methanol fuel cells using methanol as fuel. An ion conductive membrane having a methanol permeation rate of 7 mmol / m 2 · sec or less measured at 25 ° C. using a 5 M aqueous methanol solution and having an average thickness of 50 μm is preferable (the measurement method will be described later). The methanol permeation rate is further preferably 4 mmol / m 2 · sec or less, and more preferably 1 mmol / m 2 · sec or less. This is because power generation characteristics particularly excellent when such methanol permeability is exhibited. In addition, when the film thickness is different, the methanol permeation rate generally tends to vary greatly. For this reason, in the methanol permeability evaluation, a sample having an average thickness of 50 μm is prepared and evaluated. However, when actually used as an ion conductive membrane for a fuel cell, the thickness is not particularly limited. The film having an average thickness of 50 μm substantially indicates a film having an average thickness in the range of 48 μm to 52 μm.

また、上述した本発明のイオン伝導膜またはフィルム等を電極に設置することによって、本発明のイオン伝導膜またはフィルム等と電極との接合体を得ることができる。この接合体の作製方法としては、従来から公知の方法を用いて行うことができ、例えば、電極表面に接着剤を塗布しイオン伝導膜と電極とを接着する方法またはイオン伝導膜と電極とを加熱加圧する方法等がある。この中でも本発明のスルホン酸基含有ポリアリーレンエーテル系化合物およびその組成物を主成分とした接着剤を電極表面に塗布して接着する方法が好ましい。イオン伝導膜と電極との接着性が向上し、また、イオン伝導膜のイオン伝導性を損なうことが少なくなると考えられるためである。   Further, by installing the above-described ion conductive membrane or film of the present invention on an electrode, a joined body of the ion conductive membrane or film of the present invention and the electrode can be obtained. As a method for producing this joined body, a conventionally known method can be used. For example, an adhesive is applied to the electrode surface and the ion conductive film and the electrode are bonded, or the ion conductive film and the electrode are bonded. There is a method of heating and pressurizing. Among these, the method of applying and bonding the sulfonic acid group-containing polyarylene ether compound of the present invention and an adhesive mainly comprising the composition to the electrode surface is preferable. This is because it is considered that the adhesion between the ion conductive film and the electrode is improved, and that the ion conductivity of the ion conductive film is less impaired.

上述したイオン伝導膜またはフィルム等と電極との接合体を用いて、燃料電池を作製することもできる。本発明のイオン伝導膜またはフィルム等は、耐熱性、加工性、イオン伝導性および寸法安定性に優れているため、高温での運転にも耐えることができ、作製が容易で、良好な出力を有する燃料電池を提供することができる。また、メタノールを直接燃料とする燃料電池として使用することも好ましい。   A fuel cell can also be produced using the above-described joined body of an ion conductive membrane or film and an electrode. Since the ion conductive membrane or film of the present invention is excellent in heat resistance, processability, ion conductivity and dimensional stability, it can withstand operation at high temperatures, is easy to produce, and has good output. A fuel cell can be provided. It is also preferable to use it as a fuel cell using methanol as a direct fuel.

以下本発明を実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。なお、各種測定は次のように行った。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. Various measurements were performed as follows.

溶液粘度:ポリマー粉末を0.5g/dlの濃度でN−メチルピロリドンに溶解し、30℃の恒温槽中でウベローデ型粘度計を用いて粘度測定を行い、対数粘度ln[ta/tb]/c)で評価した(taは試料溶液の落下秒数、tbは溶媒のみの落下秒数、cはポリマー濃度)。   Solution viscosity: The polymer powder was dissolved in N-methylpyrrolidone at a concentration of 0.5 g / dl, the viscosity was measured using an Ubbelohde viscometer in a constant temperature bath at 30 ° C., and the logarithmic viscosity ln [ta / tb] / Evaluation was made in c) (ta is the number of seconds for dropping the sample solution, tb is the number of seconds for dropping the solvent alone, and c is the polymer concentration).

TGA:島津製作所製熱重量測定計(TGA-50)を用い、アルゴン雰囲気中、昇温速度10℃/minで測定を行った(途中、150℃で30分保持して水分を十分除去する)。
イオン伝導性測定:自作測定用プローブ(ポリテトラフルオロエチレン製)上で短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃95%RHの恒温・恒湿オーブン(株式会社ナガノ科学機械製作所、LH−20−01)中に試料を保持し、白金線間のインピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を変化させて測定し、極間距離とC−Cプロットから見積もられる抵抗測定値をプロットした勾配から以下の式により膜と白金線間の接触抵抗をキャンセルした導電率を算出した。
導電率[S/cm]=1/膜幅[cm]x膜厚[cm]x抵抗極間勾配[Ω/cm]
メタノール透過速度:イオン交換膜の液体燃料透過速度はメタノールの透過速度として、以下の方法で測定した。25℃に調整した5M(モル/リットル)のメタノール水溶液に24時間浸漬した平均厚み50μmのイオン交換膜(平均厚みが48μmから52μmの範囲に入っているものを平均厚み50μmの膜とする)をH型セルに挟み込み、セルの片側に100mlの5Mメタノール水溶液を、他方のセルに100mlの超純水(18MΩ・cm)を注入し、25℃で両側のセルを撹拌しながら、イオン交換膜を通って超純水中に拡散してくるメタノール量をガスクロマトグラフを用いて測定することで算出した(イオン交換膜の面積は、2.0cm)。
TGA: Using a thermogravimetry meter (TGA-50) manufactured by Shimadzu Corporation, measurement was performed in an argon atmosphere at a heating rate of 10 ° C./min (while maintaining at 150 ° C. for 30 minutes to sufficiently remove moisture) .
Ion conductivity measurement: A platinum wire (diameter: 0.2 mm) was pressed against the surface of a strip-shaped film sample on a probe for self-made measurement (made of polytetrafluoroethylene), and a constant temperature / humidity oven at 80 ° C. and 95% RH ( The sample was held in Nagano Scientific Machinery Co., Ltd., LH-20-01), and the impedance between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. The measurement was performed while changing the distance between the electrodes, and the conductivity obtained by canceling the contact resistance between the film and the platinum wire was calculated from the gradient obtained by plotting the distance measured between the electrodes and the resistance measurement value estimated from the CC plot.
Conductivity [S / cm] = 1 / film width [cm] × film thickness [cm] × resistance interelectrode gradient [Ω / cm]
Methanol permeation rate: The liquid fuel permeation rate of the ion exchange membrane was measured as the permeation rate of methanol by the following method. An ion-exchange membrane having an average thickness of 50 μm (24 μm average thickness in the range of 48 μm to 52 μm as an average thickness of 50 μm) immersed in a 5M (mol / liter) methanol aqueous solution adjusted to 25 ° C. for 24 hours. Placed in an H-type cell, 100 ml of 5M aqueous methanol solution was poured into one side of the cell, 100 ml of ultrapure water (18 MΩ · cm) was poured into the other side, and the ion-exchange membrane was placed while stirring the cells on both sides at 25 ° C. The amount of methanol that diffused through the ultrapure water was measured by using a gas chromatograph (the area of the ion exchange membrane was 2.0 cm 2 ).

発電評価:Pt/Ru触媒担持カーボン(田中貴金属工業株式会社TEC61E54)に少量の超純水およびイソプロピルアルコールを加えて湿らせた後、デュポン社製20%ナフィオン溶液(品番:SE−20192)を、Pt/Ru触媒担持カーボンとナフィオンの重量比が2.5:1になるように加えた。次いで撹拌してアノード用触媒ペーストを調製した。この触媒ペーストを、ガス拡散層となる東レ製カーボンペーパーTGPH−060に白金の付着量が2mg/cmになるようにスクリーン印刷により塗布乾燥して、アノード用電極触媒層付きカーボンペーパーを作製した。また、Pt触媒担持カーボン(田中貴金属工業株式会社TEC10V40E)に少量の超純水およびイソプロピルアルコールを加えて湿らせた後、デュポン社製20%ナフィオン溶液(品番:SE−20192)を、Pt触媒担持カーボンとナフィオンの重量比が2.5:1となるように加え、撹拌してカソード用触媒ペーストを調製した。この触媒ペーストを、撥水加工を施した東レ製カーボンペーパーTGPH−060に白金の付着量が1mg/cmとなるように塗布・乾燥して、カソード用電極触媒層付きカーボンペーパーを作製した。上記2種類の電極触媒層付きカーボンペーパーの間に、膜試料を、電極触媒層が膜試料に接するように挟み、ホットプレス法により130℃、8MPaにて3分間加圧、加熱することにより、膜−電極接合体とした。この接合体をElectrochem社製評価用燃料電池セルFC25−02SPに組み込み、燃料電池発電試験機(株式会社東陽テクニカ製)を用いて発電試験を行った。発電は、セル温度40℃で、アノードおよびカソードにそれぞれ40℃に調整した2mol/lのメタノール水溶液(1.5ml/min)および高純度酸素ガス(80ml/min)を供給しながら行った。 Power generation evaluation: After adding a small amount of ultrapure water and isopropyl alcohol to Pt / Ru catalyst-supported carbon (TEC61E54) and moistening, DuPont 20% Nafion solution (product number: SE-20192), The Pt / Ru catalyst-supported carbon and Nafion were added so that the weight ratio was 2.5: 1. Next, stirring was performed to prepare an anode catalyst paste. The catalyst paste was applied to Toray carbon paper TGPH-060 to be a gas diffusion layer by screen printing so that the adhesion amount of platinum was 2 mg / cm 2, and a carbon paper with an electrode catalyst layer for anode was produced. . Further, after adding a small amount of ultrapure water and isopropyl alcohol to a Pt catalyst-supporting carbon (Tanaka Kikinzoku Kogyo Co., Ltd. TEC10V40E) and moistening it, a 20% Nafion solution (product number: SE-20192) manufactured by DuPont was added to the Pt catalyst-supporting carbon. A cathode catalyst paste was prepared by adding carbon and Nafion at a weight ratio of 2.5: 1 and stirring. This catalyst paste was applied and dried on Toray carbon paper TGPH-060 that had been subjected to water-repellent treatment so that the amount of platinum deposited was 1 mg / cm 2 , thereby producing a carbon paper with an electrode catalyst layer for cathode. By sandwiching the membrane sample between the two types of carbon paper with the electrode catalyst layer so that the electrode catalyst layer is in contact with the membrane sample, by pressurizing and heating at 130 ° C. and 8 MPa for 3 minutes by a hot press method, A membrane-electrode assembly was obtained. This joined body was incorporated into an evaluation fuel cell FC25-02SP manufactured by Electrochem, and a power generation test was performed using a fuel cell power generation tester (manufactured by Toyo Corporation). Power generation was performed at a cell temperature of 40 ° C. while supplying a 2 mol / l aqueous methanol solution (1.5 ml / min) and high-purity oxygen gas (80 ml / min) adjusted to 40 ° C. to the anode and cathode, respectively.

スルホン酸基含有量:窒素雰囲気下で一晩乾燥した試料の重量をはかり、水酸化ナトリウム水溶液と攪拌処理した後、塩酸水溶液による逆的定でイオン交換容量(IEC)を求めた。   Sulfonic acid group content: A sample dried overnight under a nitrogen atmosphere was weighed, stirred with an aqueous sodium hydroxide solution, and then ion exchange capacity (IEC) was determined by inverse determination with an aqueous hydrochloric acid solution.

(実施例1)
3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩(略号:S−DCDPS)5.2335g(0.01065mole)、2,6−ジクロロベンゾニトリル(略号:DCBN)2.3323g(0.013559mole)、4,4’−ビフェノール4.5086g(0.02421mole)、炭酸カリウム3.8484g(0.02784mole)、モレキュラーシーブ2.61gを100ml四つ口フラスコに計り取り、窒素を流した。35mlのNMPを入れて、150℃で一時間撹拌した後、反応温度を195−200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた(約5時間)。放冷の後、沈降しているモレキュラーシーブを除いて水中にストランド状に沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、乾燥した。ポリマーの対数粘度は1.24を示した。
(Example 1)
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 5.2335 g (0.01065 mole), 2,6-dichlorobenzonitrile (abbreviation: DCBN) 2.3323 g ( 0.013559 mole), 4,4′-biphenol 4.5086 g (0.02421 mole), potassium carbonate 3.8484 g (0.02784 mole), and 2.61 g of molecular sieves were weighed into a 100 ml four-necked flask and flushed with nitrogen. . After adding 35 ml of NMP and stirring at 150 ° C. for 1 hour, the reaction was continued by raising the reaction temperature to 195-200 ° C. and sufficiently increasing the viscosity of the system (about 5 hours). After standing to cool, the precipitated molecular sieve was removed and the mixture was precipitated in water as a strand. The obtained polymer was washed in boiling water for 1 hour and then dried. The logarithmic viscosity of the polymer was 1.24.

ポリマー1gをNMP5mlに溶解し、ホットプレート上ガラス板に約200μm厚にキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間沸騰水処理して塩をはずした後、純水でさらに1時間煮沸することで酸成分を除去した。得られたフィルムのIRスペクトルを図1に示す。本フィルムのイオン伝導性を測定したところ、0.17S/cmの値を示した。本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は389℃であった。滴定で求めたIECは2.03を示した。   1 g of the polymer was dissolved in 5 ml of NMP, cast on a glass plate on a hot plate to a thickness of about 200 μm, NMP was distilled off until it became a film, and then immersed in water overnight. The obtained film was treated with boiling water in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then boiled with pure water for 1 hour to remove the acid component. The IR spectrum of the obtained film is shown in FIG. When the ionic conductivity of this film was measured, it showed a value of 0.17 S / cm. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 389 ° C. The IEC determined by titration was 2.03.

(実施例2)
3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩(略号:S−DCDPS)を3.9251g(0.00799mole)、2,6−ジクロロベンゾニトリル(略号:DCBN)を2.7904g(0.01622mole)とする以外は、実施例1と同様にして重合を行い、ポリマーを得た。ポリマーの対数粘度は、1.58を示した。
(Example 2)
3.9251 g (0.00799 mole) of 3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) and 2.6-dichlorobenzonitrile (abbreviation: DCBN) Polymerization was carried out in the same manner as in Example 1 except that 7904 g (0.01622 mole) was obtained, to obtain a polymer. The logarithmic viscosity of the polymer was 1.58.

濃度を調整したポリマーNMP溶液を、ホットプレート上ガラス板に厚みを調節してキャストし、フィルム状になるまでNMPを留去した後、水中に一晩以上浸漬することで、厚さ平均50μmのフィルムを調整した。得られたフィルムは、希硫酸(濃硫酸6ml、水300ml)中で1時間処理して塩をはずした後、純水でさらに1時間浸漬することで酸成分を除去した。本フィルムのイオン伝導性を測定したところ、0.11S/cmの値を示した。本フィルムの熱重量測定による3%重量減少温度(200℃での試料重量を基準にして測定)は389℃であった。滴定で求めたIECは1.60を示した。メタノール透過速度は、3.92mmol/m・secを示した。得られたフィルムを沸騰水中5時間浸積しても、膜形態を良好に保持していた。 The polymer NMP solution with the adjusted concentration was cast on a glass plate on a hot plate by adjusting the thickness, and after NMP was distilled off until it became a film, it was immersed in water for more than one night. The film was adjusted. The obtained film was treated in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 hour to remove the salt, and then immersed in pure water for 1 hour to remove the acid component. When the ion conductivity of this film was measured, it showed a value of 0.11 S / cm. The 3% weight loss temperature (measured based on the sample weight at 200 ° C.) by thermogravimetry of this film was 389 ° C. The IEC determined by titration was 1.60. The methanol permeation rate was 3.92 mmol / m 2 · sec. Even when the obtained film was immersed in boiling water for 5 hours, the film morphology was maintained well.

(実施例3)
実施例2においてS−DCDPSとDCBNの比率を変えてポリマーを合成し、同様の評価を行った。結果を表1に示す。また、S−DCDPS:DCBN=38:62(モル比)から得られたポリマーフィルムのIRスペクトルとTGAチャートを図2、3に示す。
Example 3
In Example 2, a polymer was synthesized by changing the ratio of S-DCDPS and DCBN, and the same evaluation was performed. The results are shown in Table 1. Moreover, the IR spectrum and TGA chart of the polymer film obtained from S-DCDPS: DCBN = 38: 62 (molar ratio) are shown in FIGS.

Figure 2004149779
Figure 2004149779

(比較例1)
実施例1においてDCBNを用いずにポリマーを合成したところ、得られたポリマーは水溶性となり、イオン伝導膜としての評価をすることは出来なかった。
(Comparative Example 1)
When a polymer was synthesized without using DCBN in Example 1, the obtained polymer was water-soluble and could not be evaluated as an ion conductive membrane.

(比較例2)
実施例1においてS−DCDPSを用いずにポリマーを合成したところ、反応時間2.5時間で対数粘度2.76のポリマーが得られた。フィルムのイオン伝導性は測定限界以下だった。
(Comparative Example 2)
When a polymer was synthesized without using S-DCDPS in Example 1, a polymer having a logarithmic viscosity of 2.76 was obtained in a reaction time of 2.5 hours. The ionic conductivity of the film was below the measurement limit.

(比較例3)
実施例1においてDCBNの代わりに4,4’−ジクロロジフェニルスルホン3.8934g(0.013559mole)を用いて重合したところ、対数粘度0.70のポリマーを得るのに、16時間を要した。
(Comparative Example 3)
In Example 1, polymerization was performed using 3.8934 g (0.013559 mole) of 4,4′-dichlorodiphenylsulfone instead of DCBN, and it took 16 hours to obtain a polymer having a logarithmic viscosity of 0.70.

(実施例4)
4,4‘−ビフェノールの代わりにビスフェノールA5.5199gを用いる以外は実施例2と同様にして重合を行い、ポリマーを得た。ポリマーの対数粘度は、1.31を示した。作製したフィルムのイオン伝導性を測定したところ、0.14S/cmの値を示した。本フィルムの熱重量測定による3%重量減少温度は362℃であった。滴定で求めたIECは1.52を示した。メタノール透過速度は、6.61mmol/m・secを示した。得られたフィルムを沸騰水中5時間浸積しても、膜形態を良好に保持していた。
Example 4
Polymerization was carried out in the same manner as in Example 2 except that 5.5199 g of bisphenol A was used instead of 4,4′-biphenol to obtain a polymer. The logarithmic viscosity of the polymer was 1.31. When the ion conductivity of the produced film was measured, it was 0.14 S / cm. The 3% weight loss temperature measured by thermogravimetry of this film was 362 ° C. The IEC determined by titration was 1.52. The methanol permeation rate was 6.61 mmol / m 2 · sec. Even when the obtained film was immersed in boiling water for 5 hours, the film morphology was maintained well.

(実施例5)
実施例2において、2,6−ジクロロベンゾニトリルの代わりに等モル量の2,4−ジフルオロベンゾニトリルを用いてポリマーを合成した。ポリマーの対数粘度は、0.61を示した。作製したフィルムのイオン伝導性を測定したところ、0.11S/cmの値を示した。本フィルムの熱重量測定による3%重量減少温度は371℃であった。滴定で求めたIECは1.59を示した。メタノール透過速度は、4.24mmol/m・secを示した。得られたフィルムを沸騰水中5時間浸積しても、膜形態を良好に保持していた。
(Example 5)
In Example 2, a polymer was synthesized using an equimolar amount of 2,4-difluorobenzonitrile instead of 2,6-dichlorobenzonitrile. The logarithmic viscosity of the polymer was 0.61. When the ion conductivity of the produced film was measured, it showed a value of 0.11 S / cm. The 3% weight loss temperature measured by thermogravimetry of this film was 371 ° C. The IEC determined by titration was 1.59. The methanol permeation rate was 4.24 mmol / m 2 · sec. Even when the obtained film was immersed in boiling water for 5 hours, the film morphology was maintained well.

(実施例6)
実施例3においてS−DCDPS:DCBN=38:62(モル比)で得られたポリマーから作製したフィルムを用いて、発電評価を実施した。得られた結果を図4に示す。デュポン社製ナフィオン112(R)フィルムを用いて、同様に評価したものに比べ、優れた発電特性を示していることが認められた。
(Example 6)
Electric power generation evaluation was implemented using the film produced from the polymer obtained by Example 3 by S-DCDPS: DCBN = 38: 62 (molar ratio). The obtained results are shown in FIG. It was recognized that the Nafion 112 (R) film manufactured by DuPont exhibited excellent power generation characteristics as compared with those similarly evaluated.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明のスルホン酸基含有芳香族ポリアリーレンエーテル系化合物により、イオン伝導性だけでなく耐熱性、加工性および寸法安定性に優れた、高分子電解質材料を提供することができる。これらは、イオン伝導膜として、水素やメタノールを原料として使用する燃料電池や水電解槽に使うことができるが、各種電池用電解質、表示素子、センサー、バインダー類、添加剤などとしても利用することが期待される。   The sulfonic acid group-containing aromatic polyarylene ether compound of the present invention can provide a polymer electrolyte material that is excellent not only in ion conductivity but also in heat resistance, workability, and dimensional stability. These can be used for fuel cells and water electrolyzers that use hydrogen or methanol as raw materials as ion-conducting membranes, but can also be used as various battery electrolytes, display elements, sensors, binders, additives, etc. There is expected.

S−DCDPS:DCBN=44:56で得られたスルホン化ポリアリールエーテルのIRスペクトルである。It is IR spectrum of the sulfonated polyaryl ether obtained by S-DCDPS: DCBN = 44: 56. S−DCDPS:DCBN=38:62で得られたスルホン化ポリアリールエーテルのIRスペクトルである。It is IR spectrum of the sulfonated polyaryl ether obtained by S-DCDPS: DCBN = 38: 62. S−DCDPS:DCBN=38:62で得られたスルホン化ポリアリールエーテルのTGAチャートである。It is a TGA chart of the sulfonated polyaryl ether obtained by S-DCDPS: DCBN = 38: 62. S−DCDPS:DCBN=38:62で得られたスルホン化ポリアリールエーテルおよびナフィオン112(R)の発電特性である。It is the electric power generation characteristic of the sulfonated polyaryl ether and Nafion 112 (R) obtained by S-DCDPS: DCBN = 38: 62.

Claims (13)

一般式(1)とともに一般式(2)で示される構成成分を含むことを特徴とするポリアリーレンエーテル系化合物。
Figure 2004149779
ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。
Figure 2004149779
ただし、Ar’は2価の芳香族基を示す。
A polyarylene ether-based compound comprising a component represented by the general formula (2) together with the general formula (1).
Figure 2004149779
Here, Ar represents a divalent aromatic group, Y represents a sulfone group or a ketone group, and X represents H or a monovalent cation species.
Figure 2004149779
However, Ar ′ represents a divalent aromatic group.
一般式(1)とともに一般式(3)で示される構成成分を含むことを特徴とするポリアリーレンエーテル系化合物。
Figure 2004149779
ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。
Figure 2004149779
ただし、Ar’は2価の芳香族基を示す。
A polyarylene ether-based compound comprising a component represented by the general formula (3) together with the general formula (1).
Figure 2004149779
Here, Ar represents a divalent aromatic group, Y represents a sulfone group or a ketone group, and X represents H or a monovalent cation species.
Figure 2004149779
However, Ar ′ represents a divalent aromatic group.
スルホン酸基含有量が、0.3〜3.5meq/gの範囲にあることを特徴とする請求項1または2に記載のポリアリーレンエーテル系化合物。   The polyarylene ether compound according to claim 1 or 2, wherein the sulfonic acid group content is in the range of 0.3 to 3.5 meq / g. 一般式(4)とともに一般式(5)で示される構成成分を含むことを特徴とする請求項1〜3のいずれかに記載のポリアリーレンエーテル系化合物。
Figure 2004149779
ただし、XはHまたは1価のカチオン種を示す。
The polyarylene ether compound according to any one of claims 1 to 3, comprising a constituent represented by the general formula (5) together with the general formula (4).
Figure 2004149779
X represents H or a monovalent cation species.
請求項1〜4のいずれかに記載のポリアリーレンエーテル系化合物を50〜100質量%含むことを特徴とする組成物。   A composition comprising 50 to 100% by mass of the polyarylene ether compound according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の化合物および/または請求項5に記載の組成物を含有することを特徴とするイオン伝導膜。   An ion conductive membrane comprising the compound according to claim 1 and / or the composition according to claim 5. 平均厚さ50μmの膜を作製し、5Mメタノール水溶液を用いて25℃で測定したメタノール透過速度が7mmol/m・sec以下の値を示すことを特徴とする請求項6に記載のイオン伝導膜。 7. An ion conductive membrane according to claim 6, wherein a membrane having an average thickness of 50 [mu] m is prepared, and the methanol permeation rate measured at 25 [deg.] C. using a 5M aqueous methanol solution shows a value of 7 mmol / m < 2 > sec or less. . 請求項6または7に記載のイオン伝導膜と電極とを含有することを特徴とする複合体。   A composite comprising the ion conductive membrane according to claim 6 or 7 and an electrode. 請求項8に記載の複合体を含有することを特徴とする燃料電池。   A fuel cell comprising the composite according to claim 8. メタノールを燃料として使用することを特徴とする請求項9に記載の燃料電池。   The fuel cell according to claim 9, wherein methanol is used as a fuel. 請求項1〜4のいずれかに記載の化合物を含有することを特徴とする接着剤。   An adhesive comprising the compound according to claim 1. 一般式(6)および一般式(7)で表される化合物とビスフェノール系化合物とをモノマーとして含む芳香族求核置換反応により重合することを特徴とする請求項1〜4のいずれかに記載のポリアリーレンエーテル系化合物の製造方法。
Figure 2004149779
ただし、Yはスルホン基またはケトン基、Xは1価のカチオン種、Zは塩素またはフッ素を示す。
It polymerizes by the aromatic nucleophilic substitution reaction which contains the compound represented by General formula (6) and General formula (7), and a bisphenol type compound as a monomer, The any one of Claims 1-4 characterized by the above-mentioned. A method for producing a polyarylene ether compound.
Figure 2004149779
Y represents a sulfone group or a ketone group, X represents a monovalent cation species, and Z represents chlorine or fluorine.
請求項1〜4のいずれかに記載の化合物と、溶剤とを含有する溶液を、キャスト厚が10〜1000μmの範囲となるようにキャストする工程と、キャストした溶液を乾燥させる工程とを含むことを特徴とする請求項6または7に記載のイオン伝導膜の製造方法。   Including a step of casting a solution containing the compound according to any one of claims 1 to 4 and a solvent so that a cast thickness is in a range of 10 to 1000 µm, and a step of drying the cast solution. A method for producing an ion conductive membrane according to claim 6 or 7.
JP2003348477A 2002-10-08 2003-10-07 Polyarylene ether compounds, compositions containing them, and methods for producing them Expired - Fee Related JP3928611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348477A JP3928611B2 (en) 2002-10-08 2003-10-07 Polyarylene ether compounds, compositions containing them, and methods for producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002295284 2002-10-08
JP2003348477A JP3928611B2 (en) 2002-10-08 2003-10-07 Polyarylene ether compounds, compositions containing them, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2004149779A true JP2004149779A (en) 2004-05-27
JP3928611B2 JP3928611B2 (en) 2007-06-13

Family

ID=32473506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348477A Expired - Fee Related JP3928611B2 (en) 2002-10-08 2003-10-07 Polyarylene ether compounds, compositions containing them, and methods for producing them

Country Status (1)

Country Link
JP (1) JP3928611B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243383A (en) * 2004-02-26 2005-09-08 Toyobo Co Ltd Sulfonic acid group containing polyelectrolyte film and goods using it
JP2005243384A (en) * 2004-02-26 2005-09-08 Toyobo Co Ltd Sulfonic acid group containing polyelectrolyte film and goods using it
JP2005243492A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion conductive membrane
JP2005243493A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion exchange membrane
JP2006049303A (en) * 2004-07-05 2006-02-16 Toray Ind Inc Polymer electrolyte membrane
JP2006073530A (en) * 2004-08-31 2006-03-16 Samsung Sdi Co Ltd Polymer electrolyte membrane and fuel cell employing the same
JP2006104381A (en) * 2004-10-07 2006-04-20 Toyobo Co Ltd Polyarylene ether compound having sulfonic acid group-containing naphthylene structure
JP2006111664A (en) * 2004-10-12 2006-04-27 Toyobo Co Ltd Method for producing polyarylene-based polymer
JP2006111663A (en) * 2004-10-12 2006-04-27 Toyobo Co Ltd Method for producing polyarylene-based polymer
JP2006111665A (en) * 2004-10-12 2006-04-27 Toyobo Co Ltd Method for producing polyarylene-based polymer
WO2006048942A1 (en) * 2004-11-01 2006-05-11 Honda Motor Co., Ltd. Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
WO2006051749A1 (en) * 2004-11-10 2006-05-18 Toyo Boseki Kabushiki Kaisha Aromatic hydrocarbon-base proton exchange membrane and direct methanol fuel cell using same
JP2006139933A (en) * 2004-11-10 2006-06-01 Toyobo Co Ltd Direct methanol fuel cell
JP2006164931A (en) * 2004-11-10 2006-06-22 Toyobo Co Ltd Proton conductive polymer composition, ink and electrode for fuel cell electrode catalyst layer, and electrolyte film joining element
JP2006176666A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd New sulfonate group-containing segmented block copolymer and application of the same
JP2006253002A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Manufacturing method of ion exchange membrane
JP2006253003A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Manufacturing method of ion exchange membrane
JP2006523258A (en) * 2003-03-19 2006-10-12 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド Nitrile-containing ion-conducting sulfonated polymer
JP2007002099A (en) * 2005-06-23 2007-01-11 Toyobo Co Ltd Moisture permeable material
JP2007039525A (en) * 2005-08-02 2007-02-15 Toyobo Co Ltd Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
JP2007042622A (en) * 2005-07-07 2007-02-15 Toyobo Co Ltd Polymer electrolyte membrane, polymer electrolyte membrane/electrode assembly, fuel cell and operation method of fuel cell
KR100760452B1 (en) 2006-11-20 2007-10-04 광주과학기술원 Poly(arylene ether) co-polymer and membrane using the same
JP2007280946A (en) * 2006-03-16 2007-10-25 Fujifilm Corp Membrane electrode assembly and fuel cell
JP2007324132A (en) * 2006-05-29 2007-12-13 Samsung Sdi Co Ltd Cross-linked material of poly-benzoxazine group compound, electrolyte membrane, its manufacturing method, and fuel cell
DE112006003456T5 (en) 2005-12-20 2008-10-30 Sumitomo Chemical Co., Ltd. Copolymer, polymer electrolyte and its use
WO2008157194A1 (en) * 2007-06-13 2008-12-24 Gm Global Technology Operations, Inc. Organic superacids, polymers derived from organic superacids, and methods of making and using the same
WO2009038239A1 (en) * 2007-09-20 2009-03-26 Sumitomo Chemical Company, Limited Polymer electrolyte composition
JP2009249770A (en) * 2008-04-07 2009-10-29 Toyobo Co Ltd Extra-fine fiber and method for producing the same
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
JP2013016500A (en) * 2012-08-22 2013-01-24 Toyobo Co Ltd Direct methanol fuel cell
JP5181474B2 (en) * 2004-09-03 2013-04-10 東レ株式会社 Polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
US8445141B2 (en) 2005-06-09 2013-05-21 Toyo Boseki Kabushiki Kaisha Sulfonic acid group-containing polymer, method for producing the same, resin composition containing such sulfonic acid group-containing polymer, polymer electrolyte membrane, polymer electrolyte membrane/electrode assembly, and fuel cell
US8642228B2 (en) 2004-08-31 2014-02-04 Samsung Sdi Co., Ltd. Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane
US8679705B2 (en) * 2006-07-21 2014-03-25 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell employing the electrode
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
JP2014514150A (en) * 2011-04-29 2014-06-19 ビーエーエスエフ ソシエタス・ヨーロピア Composite membranes containing sulfonated polyaryl ethers and their use in forward osmosis processes
CN110071329A (en) * 2018-11-27 2019-07-30 欣旺达电子股份有限公司 Lithium battery and its electrolyte

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523258A (en) * 2003-03-19 2006-10-12 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド Nitrile-containing ion-conducting sulfonated polymer
JP2005243383A (en) * 2004-02-26 2005-09-08 Toyobo Co Ltd Sulfonic acid group containing polyelectrolyte film and goods using it
JP2005243384A (en) * 2004-02-26 2005-09-08 Toyobo Co Ltd Sulfonic acid group containing polyelectrolyte film and goods using it
JP4720090B2 (en) * 2004-02-26 2011-07-13 東洋紡績株式会社 Sulfonic acid group-containing polymer electrolyte membrane and article using the same
JP2005243492A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion conductive membrane
JP2005243493A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion exchange membrane
JP4720091B2 (en) * 2004-02-27 2011-07-13 東洋紡績株式会社 Ion exchange membrane
JP2006049303A (en) * 2004-07-05 2006-02-16 Toray Ind Inc Polymer electrolyte membrane
JP2006073530A (en) * 2004-08-31 2006-03-16 Samsung Sdi Co Ltd Polymer electrolyte membrane and fuel cell employing the same
US8642228B2 (en) 2004-08-31 2014-02-04 Samsung Sdi Co., Ltd. Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane
US8026016B2 (en) 2004-08-31 2011-09-27 Samsung Sdi Co., Ltd. Polymer electrolyte membrane and fuel cell employing the same
JP5181474B2 (en) * 2004-09-03 2013-04-10 東レ株式会社 Polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP2006104381A (en) * 2004-10-07 2006-04-20 Toyobo Co Ltd Polyarylene ether compound having sulfonic acid group-containing naphthylene structure
JP2006111663A (en) * 2004-10-12 2006-04-27 Toyobo Co Ltd Method for producing polyarylene-based polymer
JP2006111665A (en) * 2004-10-12 2006-04-27 Toyobo Co Ltd Method for producing polyarylene-based polymer
JP2006111664A (en) * 2004-10-12 2006-04-27 Toyobo Co Ltd Method for producing polyarylene-based polymer
JP4754496B2 (en) * 2004-11-01 2011-08-24 本田技研工業株式会社 Sulfonated polymers and solid polymer electrolytes with nitrile-type hydrophobic blocks
WO2006048942A1 (en) * 2004-11-01 2006-05-11 Honda Motor Co., Ltd. Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
JP2006164931A (en) * 2004-11-10 2006-06-22 Toyobo Co Ltd Proton conductive polymer composition, ink and electrode for fuel cell electrode catalyst layer, and electrolyte film joining element
JP2006139933A (en) * 2004-11-10 2006-06-01 Toyobo Co Ltd Direct methanol fuel cell
US8216727B2 (en) 2004-11-10 2012-07-10 Toyo Boseki Kabushiki Kaisha Aromatic hydrocarbon based proton exchange membrane and direct methanol fuel cell using same
WO2006051749A1 (en) * 2004-11-10 2006-05-18 Toyo Boseki Kabushiki Kaisha Aromatic hydrocarbon-base proton exchange membrane and direct methanol fuel cell using same
JP2006176666A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd New sulfonate group-containing segmented block copolymer and application of the same
JP2006253002A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Manufacturing method of ion exchange membrane
JP2006253003A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Manufacturing method of ion exchange membrane
US8445141B2 (en) 2005-06-09 2013-05-21 Toyo Boseki Kabushiki Kaisha Sulfonic acid group-containing polymer, method for producing the same, resin composition containing such sulfonic acid group-containing polymer, polymer electrolyte membrane, polymer electrolyte membrane/electrode assembly, and fuel cell
JP2007002099A (en) * 2005-06-23 2007-01-11 Toyobo Co Ltd Moisture permeable material
JP2007042622A (en) * 2005-07-07 2007-02-15 Toyobo Co Ltd Polymer electrolyte membrane, polymer electrolyte membrane/electrode assembly, fuel cell and operation method of fuel cell
JP2007039525A (en) * 2005-08-02 2007-02-15 Toyobo Co Ltd Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
US8349515B2 (en) 2005-09-03 2013-01-08 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8426081B2 (en) 2005-09-03 2013-04-23 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
DE112006003456T5 (en) 2005-12-20 2008-10-30 Sumitomo Chemical Co., Ltd. Copolymer, polymer electrolyte and its use
JP2007280946A (en) * 2006-03-16 2007-10-25 Fujifilm Corp Membrane electrode assembly and fuel cell
US8148028B2 (en) * 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
JP2007324132A (en) * 2006-05-29 2007-12-13 Samsung Sdi Co Ltd Cross-linked material of poly-benzoxazine group compound, electrolyte membrane, its manufacturing method, and fuel cell
US8580455B2 (en) 2006-05-29 2013-11-12 Samsung Sdi Co., Ltd. Crosslinked polybenzoxazines, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8679705B2 (en) * 2006-07-21 2014-03-25 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell employing the electrode
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
KR100760452B1 (en) 2006-11-20 2007-10-04 광주과학기술원 Poly(arylene ether) co-polymer and membrane using the same
WO2008157194A1 (en) * 2007-06-13 2008-12-24 Gm Global Technology Operations, Inc. Organic superacids, polymers derived from organic superacids, and methods of making and using the same
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US9243012B2 (en) 2007-09-11 2016-01-26 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, or polymer thereof
US8715881B2 (en) 2007-09-11 2014-05-06 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
WO2009038239A1 (en) * 2007-09-20 2009-03-26 Sumitomo Chemical Company, Limited Polymer electrolyte composition
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8551669B2 (en) 2007-11-02 2013-10-08 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8512914B2 (en) 2007-11-02 2013-08-20 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8808941B2 (en) 2007-11-02 2014-08-19 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8507148B2 (en) 2007-11-06 2013-08-13 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
JP2009249770A (en) * 2008-04-07 2009-10-29 Toyobo Co Ltd Extra-fine fiber and method for producing the same
JP2014514150A (en) * 2011-04-29 2014-06-19 ビーエーエスエフ ソシエタス・ヨーロピア Composite membranes containing sulfonated polyaryl ethers and their use in forward osmosis processes
JP2013016500A (en) * 2012-08-22 2013-01-24 Toyobo Co Ltd Direct methanol fuel cell
CN110071329A (en) * 2018-11-27 2019-07-30 欣旺达电子股份有限公司 Lithium battery and its electrolyte
CN110071329B (en) * 2018-11-27 2021-06-22 欣旺达电子股份有限公司 Lithium battery and electrolyte thereof

Also Published As

Publication number Publication date
JP3928611B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP3928611B2 (en) Polyarylene ether compounds, compositions containing them, and methods for producing them
US8216727B2 (en) Aromatic hydrocarbon based proton exchange membrane and direct methanol fuel cell using same
JP4135728B2 (en) Sulfonic acid group-containing polyarylene ether compound and method for producing the same, resin composition containing sulfonic acid group-containing polyarylene ether compound, polymer electrolyte membrane, electrolyte membrane / electrode composite, fuel cell, and adhesive
JP2007146111A (en) Sulfonic acid group-containing polymer, ion-exchange membrane, membrane/electrode assembly, fuel cell, and polymer composition
JP2005264008A (en) Crosslinkable sulfo-containing polyarylene ether compound
JP2008115340A (en) Polymer containing sulfonic acid group, its composition and its use
JP4337038B2 (en) Composition comprising an acidic group-containing polybenzimidazole compound
JP2008120956A (en) Sulfonic acid group-containing polymer, production method and application of the same
JP4821946B2 (en) Electrolyte membrane and method for producing the same
JP2006206808A (en) Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, and membrane/electrode assembly and fuel cell obtained using said ion exchange membrane
JP2006104382A (en) Sulfonic acid group-containing polyarylene ether compound
JP4529068B2 (en) Method for producing solid polymer electrolyte membrane
JP2005133146A (en) Solid polymer type electrolytic membrane
JP2006137792A (en) Polyarylene ether-based compound having sulfo group-containing biphenylene structure
JP2007063533A (en) Sulfonic group-containing polymer, use of the same, and method for producing the same
JP2005235404A (en) Blend ion exchange membrane, membrane/electrode joining body, and fuel cell
JP2008120957A (en) Sulfonic acid group-containing polyarylene ether based compound, and method for preparation thereof
JP5470674B2 (en) Polymer electrolyte membrane, polymer electrolyte membrane / electrode assembly, fuel cell, and fuel cell operating method
JP4720090B2 (en) Sulfonic acid group-containing polymer electrolyte membrane and article using the same
JP3651683B1 (en) Sulfonic acid group-containing polymer compound, ion conductive membrane obtained thereby, and article using the same
JP4310688B2 (en) Aromatic polyether compounds containing sulfonic acid groups, composites thereof, and methods for producing them.
JP4534126B2 (en) Method for producing solid polymer electrolyte membrane
JP4697385B2 (en) Ion exchange membrane, membrane / electrode assembly, fuel cell
JP4022833B2 (en) Sulfonic acid group-containing polymer and use thereof
JP3651682B1 (en) Durable ion exchange membrane, membrane electrode assembly, fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R151 Written notification of patent or utility model registration

Ref document number: 3928611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees