JP2004143034A - Method for modifying steel making slag and modified steel making slag - Google Patents

Method for modifying steel making slag and modified steel making slag Download PDF

Info

Publication number
JP2004143034A
JP2004143034A JP2003207542A JP2003207542A JP2004143034A JP 2004143034 A JP2004143034 A JP 2004143034A JP 2003207542 A JP2003207542 A JP 2003207542A JP 2003207542 A JP2003207542 A JP 2003207542A JP 2004143034 A JP2004143034 A JP 2004143034A
Authority
JP
Japan
Prior art keywords
slag
steelmaking slag
furnace
ash
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003207542A
Other languages
Japanese (ja)
Other versions
JP4351490B2 (en
Inventor
Kenichi Yamamoto
山本 研一
Hiroshi Nagahama
永浜 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003207542A priority Critical patent/JP4351490B2/en
Publication of JP2004143034A publication Critical patent/JP2004143034A/en
Application granted granted Critical
Publication of JP4351490B2 publication Critical patent/JP4351490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for modifying steel making slag to improve the method for reducing not only the free CaO but also the water absorption and the modified steel making slag. <P>SOLUTION: The steel making slag is modified by mixing substances containing SiO<SB>2</SB>and Al<SB>2</SB>O<SB>3</SB>(e.g. blast furnace slag, desiliconized slag, fly ash, waste glass, concrete waste, waste brick, aluminum ash, aluminum dross, aluminum smelting slag, incinerator ash of urban waste/sewage sludge, ash melting slag, sewage sludge melting slag, car shredder dust incineration ash, etc.) with the steel making slag and heat-treating at a temperature ≥1,100°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、上層路盤材、加熱アスファルト混合道路用材、アスファルト舗装用骨材、コンクリート用骨材等の有用な原料、硬化体・固化体原料、底質・海水浄化剤原料、もしくは鉄鋼、非鉄の製錬・精錬工程、廃棄物燃焼溶融炉、灰溶融炉、スラグ溶融炉における原料等に適用することができる改質製鋼スラグ及びその製造方法に関するものである。
【0002】
【従来の技術】
製鋼スラグは遊離CaO(以降f.CaOと記載する)を含み、その水和反応時の体積変化から膨脹崩壊性を示す。また、微小な亀裂、開気孔が多いため、吸水率が高く強度が低い。これにより、土木工事用の仮設材、道路の地盤改良材、下層路盤材等の低級用途でしか使用されておらず、より高級用途である上層路盤材、コンクリート用骨材、石材原料等には用いられていない。
しかし、低級用途の需要の低下から在庫が増大しており、発生した製鋼スラグの置き場等の問題も発生している。このため、上層路磐材、コンクリート用骨材、石材原料等、高級用途への有効利用が必要である。従来、スラグ中のf.CaOを減少させるスラグ熱間改質法、エージング法が種々検討されている。
【0003】
スラグ熱間改質法は、特許文献1に提案されているように、製鋼スラグに、珪酸含有改質剤、炭素含有還元剤及び鉄スクラップを混合し、該混合物を、酸素ガス含有気体を供給しつつ還元性雰囲気に維持しながら溶融することを特徴とする製鋼スラグの熱間改質法である。
また、エージング法は、特許文献2に提案されているように、製鋼スラグを精錬時の装入副原料のCaO量を50kg/粗鋼ton以下およびスラグ塩基度3.5以下を基準として分別して、これに適合するスラグを放冷固化後、スラグ温度が400〜1000℃の顕熱を保持した状態で40〜100℃の温水槽に投入してf.CaOの水和反応を促進させ安定化処理することを特徴とする方法である。
【0004】
【特許文献1】
特開平6−115984号公報
【特許文献2】
特開平6−183792号公報
【0005】
【発明が解決しようとする課題】
しかし、上記スラグ熱間改質法は鉄スクラップを混合するため、1550℃以上に加熱し、該混合物を溶融する必要がある。この溶解に多量の熱と時間を必要とし、処理能力が低い。また還元性雰囲気で酸化鉄、酸化燐、酸化マンガン等の金属酸化物を還元して回収するため、f.CaOが完全にSiOや低融点金属酸化物と反応しきれずに、改質スラグにはf.CaOが残存していた。
また、上記エージング法は、改質可能なスラグを限定しており、改質できないスラグが約半数程度残存する。スラグの塩基度が高い場合、エージング期間を短くしたときにf.CaOが低減できずにスラグの安定化が不十分となる。また、改質可能なスラグであっても数日以内のエージング期間が必要であり、処理能力が低い。また、100℃以下程度での完全固相反応では、f.CaOが完全にSiO等と反応しきれずに、スラグの膨脹、粉化を単に軽減することはできるものの、上層路盤材に使用可能なまでに安定化することはできない。また、改質スラグは、砕石等と比較すると吸水率が高く、強度が不十分である。
【0006】
すなわち、従来の技術によって製造された改質スラグは、残存したf.CaOを未だ含み、吸水率も高く強度が低いため、上層路盤材等の高級用途、固化体等の原料をはじめ、もしくは鉄鋼・非鉄の製錬・精錬工程等の原料に、有効利用することが不可能であった。
本発明は、このような従来の技術の課題に鑑みてなされたもので、製鋼スラグの改質法を改良し、f.CaOのみならず、吸水率をも減少させる製鋼スラグの改質方法、および改質製鋼スラグを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の要旨は、以下の通りである。
(1)製鋼スラグを、1100℃以上で熱処理することを特徴とする製鋼スラグの改質方法。
(2)製鋼スラグを、1350℃以上で固相率40質量%以下となるように熱処理することを特徴とする製鋼スラグの改質方法。
(3)熱処理後に、850℃〜1100℃で保定処理、もしくはその温度域で10℃/分以下の冷却速度で徐冷処理することを特徴とする(1)または(2)記載の製鋼スラグの改質方法。
(4)製鋼スラグにSiO、Al、FeO、Fe、Pの1種以上を含有する物質を添加した物を熱処理することを特徴とする(1)〜(3)いずれかに記載の製鋼スラグの改質方法。
(5)前記SiO、Al、FeO、Fe、Pの1種以上を含有する物質として、高炉スラグ、脱珪スラグ、フライアッシュ、廃ガラス、コンクリート廃材、廃レンガ、アルミ灰、アルミドロス、アルミニウム精錬スラグ、都市ゴミ・下水汚泥の焼却灰、灰溶融スラグ、下水汚泥溶融スラグ、カーシュレッダーダスト燃焼灰、転炉ダスト、電炉ダスト、高炉二次灰、天然砂、珪砂、廃棄鋳砂、粘土、土壌、天然砕石、鉄鉱石の1種以上を用いることを特徴とする(4)に記載の製鋼スラグの改質方法。
(6)製鋼スラグとして、溶銑予備処理スラグ、溶融還元炉スラグ、転炉スラグ、電気炉スラグ、二次精錬スラグまたはステンレス鋼スラグの1種又は2種以上を用いることを特徴とする(1)〜(5)いずれかに記載の製鋼スラグの改質方法。
(7)熱処理、保定処理、もしくは徐冷処理に際し、転炉、電炉、精錬炉、滓鍋、混銑車、エージング処理工程、高炉排滓工程、ロータリーキルン、焼結機、回転炉床型炉、流動床加熱炉、バッチ式加熱炉、連続式加熱炉、キュポラ炉、コークスベッド式炉の1種又は2種以上を用いることを特徴とする(1)〜(6)いずれかに記載の製鋼スラグの改質方法。
(8)遊離CaO≦2.7質量%かつ吸水率≦4.0質量%であることを特徴とする改質製鋼スラグ。
(9)上層路盤材、加熱アスファルト混合道路用材、アスファルト舗装用骨材、コンクリート用骨材、コンクリート二次製品用原料、窯業用原料、タイル用原料、人工石材原料、硬化体・固化体原料、底質・海水浄化剤原料、もしくは鉄鋼、非鉄の製錬・精錬工程、廃棄物燃焼溶融炉・灰溶融炉・スラグ溶融炉における主原料、副原料、耐火物保護剤、助剤、保温材原料、鎮静材原料のいずれかの用途に用いられる(8)に記載の改質製鋼スラグ。
【0008】
【発明の実施の形態】
本発明者らは上記課題を解決するために、製鋼スラグ中のf.CaOを減少させると共に、開気孔を減少させることで吸水率を低減し、強度を向上させる製鋼スラグの改質法を発明するに至った。
以下に詳細を説明する。
まず、製鋼スラグを1100℃以上で熱処理する方法について説明する。
製鋼スラグを1100℃以上の温度で熱処理することにより、製鋼スラグ中のf.CaOを反応により低減することができる。同様に開気孔を減少することができる。これにより、水浸膨張比を低減し、強度を向上することができ、各用途別の基準を満足することで、さまざまな用途に利用することができる。
【0009】
製鋼スラグ中のf.CaOを減少させる点については、製鋼スラグにはSiOが含まれていることに着目し、製鋼スラグ中のf.CaOとSiOとの反応が起こる条件を検討したところ、1100℃以上で熱処理すれば良いことを見出した。熱処理前の製鋼スラグの成分としては、塩基度が小さい方が好ましい。ここで、スラグの塩基度とは、スラグのCaOとSiOの質量比(CaO/SiO)である。すなわち、熱処理前スラグの塩基度が小さいほど、f.CaOに対するSiO量が多くなるため、反応が促進される。
従って、熱処理前の製鋼スラグの成分を必要に応じて適宜選択して、1100℃以上で熱処理することで、スラグ中のf.CaOとSiOとの反応が起こって、改質製鋼スラグ中のf.CaOを低減することができる。
【0010】
次に、製鋼スラグ中の吸水率を減少させる点についても、1100℃以上で熱処理すれば良いことを見出した。さらに、熱処理前スラグの塩基度が小さいほど好ましいことが判明した。これについては、1100℃以上で熱処理することで、スラグ中の液相率が増加して、製鋼スラグに存在する亀裂、開気孔に液相が侵入することで空隙が減少し、これにより吸水率が減少し、これが各製品別の割れ、強度基準を満足することができるものと考えられる。
このことは、従来技術の様な低温処理、固相反応では、製鋼スラグに多数存在している亀裂、開気孔を塞ぐことができず、吸水率が高くなり、強度が低い改質製鋼スラグとなり、本発明の様に固相の少ない状態、すなわち液相状態での反応で製鋼スラグに存在する亀裂、開気孔を塞いで、吸水率を低減できる反応が起こることを示しているものと考えられる。また、SiOは融点を低下させる作用があるため、同じ熱処理温度でも、反応に寄与する液相率が大きくなるため、その点で塩基度が低い方が好ましい。
【0011】
従って、熱処理前の製鋼スラグの成分を必要に応じて適宜選択して、1100℃以上で熱処理することで、スラグ中の液相率が大きくなり、改質製鋼スラグ中の吸水率を低減することができる。また、熱処理温度は高いほど、液相率も大きくなるため、改質反応が促進される。
以上の様に、熱処理前の製鋼スラグの成分を必要に応じて適宜選択して、1100℃以上で所望の時間の熱処理を行うことで、熱処理後スラグ性状をf.CaO≦2.7質量%かつ吸水率≦4.0質量%に改質することができる。ここで、f.CaO≦2.7質量%であれば、改質製鋼スラグが膨張崩壊しても、水浸膨張比1.5%を達成でき、また吸水率≦4.0質量%であれば、さまざまな用途に用いても必要な強度を確保することができる。また、1100℃以上の熱処理の所望の時間とは、特に規定するものではなく、熱処理前の製鋼スラグの成分と熱処理温度に応じて、適宜設定すれば良い。
【0012】
加熱方法については特に規定されない。具体的には、酸素、酸素ガス含有気体としては空気の使用、酸素富化燃料バーナー、コークス燃焼、電気抵抗加熱、高周波加熱、アーク加熱、マイクロ波加熱等が例示できるが、いずれもスラグを均一に1100℃以上に熱処理が可能なものであれば良い。
また、熱処理温度の上限は特に規定するものではなくが、コスト等を考慮して、適宜温度を設定すればよいが、高々1500℃程度とする。さらに、熱処理時間については、所望のスラグ成分に改質できる様に、塩基度や熱処理温度等を考慮して、適宜設定すれば良い。
【0013】
スラグ成分の分析には蛍光X線分析(JIS K 0119)を、f.CaOの分析にはエチレングリコール抽出法ICP発光分光分析を用いることができる。f.CaOの分析において同様にf.CaOを抽出する方法としてTBP(トリブロムフェノール)法等があり、抽出が正しくできればいずれの方法を用いてもよい。また、吸水率の測定には、JIS A1109もしくはA1110に規定される試験方法を用いた。
【0014】
次に、製鋼スラグを、1350℃以上で固相率40質量%以下となるように熱処理する方法について説明する。
製鋼スラグを改質するにあたり、さらにf.CaOを減少させて、厳しい条件であるf.CaO≦0.7質量%かつ吸水率≦4.0質量%を満足させると、各製品群の中でもより高級な用途である上層路盤材、コンクリート骨材等に適用できるようになる。
本発明者らは実験結果から、改質製鋼スラグのf.CaO≦0.7質量%を満足するための熱処理温度は、1280℃以上とすれば、スラグ中のf.CaOとSiOとの反応が促進されやすくなるため、好ましいことがわかった。すなわち、熱処理前の製鋼スラグの成分を適宜選択して、1280℃以上で熱処理することで、スラグ中のf.CaOとSiOとの反応がより促進されるため、改質製鋼スラグ中のf.CaO≦0.7質量%が達成されやすい。
【0015】
さらに、1280℃以上で熱処理を行った場合の、改質製鋼スラグにおけるスラグの塩基度と(f.CaO)の関係を検討した結果の一例を図1に示す。この様に、改質製鋼スラグの塩基度が2.5以下であればf.CaOを0.7質量%以下にまで低減でき、また更には塩基度が1.2であればf.CaOを0.05質量%にまで低減可能である。すなわち、1280℃以上の温度で熱処理を行うと、改質製鋼スラグの塩基度が小さいほど、f.CaOが減少しやすくなる傾向を示すことが判明した。従って、f.CaO≦0.7質量%を達成するためには熱処理温度を1280℃以上とすることが好ましい条件である。
このように、製鋼スラグ中のf.CaOをより減少させるためには、これと反応するSiOの存在下、熱間(1280℃以上)で反応させることで達成されやすくなる。従って、製鋼スラグ自体にSiOが多く含まれている様な塩基度が低いものであれば、より短時間の熱処理で製鋼スラグ中のf.CaOを減少させることが可能であるため好ましい。
【0016】
一方、上層路盤材、コンクリート骨材等高級用途に適用するための、もう1つの条件である吸水率を、より低減しやすい方法について検討した。その結果、改質製鋼スラグの吸水率を低減する条件として、図2に示す様に一定の処理時間においては、1350℃以上で固相率40質量%以下となるように熱処理することで、熱処理後スラグ性状として、吸水率≦4.0質量%をより達成しやすくなることを見出した。
すなわち、熱処理前の各種製鋼スラグの成分であれば、1350℃以上で熱処理することで、液相部分が多くなり固相率40質量%以下を達成でき、この固相率40質量%以下の条件において、液相状態での反応で製鋼スラグに存在する亀裂、開気孔を塞いで、吸水率を低減できる反応がより促進されるため、改質製鋼スラグ中の吸水率≦4.0質量%がより達成されやすい。
【0017】
以上のことから、製鋼スラグ中のf.CaOを減少させること及び吸水率を低減させることの両者を満足する方法としては、1350℃以上で固相率40質量%以下となるように熱処理することが、反応効率の面でより好ましい。
熱処理に際して、製鋼スラグの塩基度が低く、処理時間は長い程、より反応は促進される。但し、熱処理時間については、所望のスラグ成分に改質できる様に、塩基度や熱処理温度等を考慮して、適宜設定すれば良く、特に規定するものではないが、生産性・コストの面から10分程度が好ましい。
【0018】
ここで、固相率とは、スラグ全体に対する固相として晶出するスラグの質量分率であり、市販の熱力学平衡計算ソフトで計算される値を使用できる。市販の平衡計算ソフトで計算した場合、スラグ中の成分SiO、ZrO、TiO、Cr、Al、Fe、FeO、MnO、MgO、CaO、NaO、CaF等の分析値から、マスバランスを考慮して、系全体の自由エネルギーが最小となるように、各相の組み合わせを求め、その時の固相の総和を求めたものが固相率として計算される。
また、実測しても同様の固相率が得られ、これを用いても良い。実測した場合、スラグを複数個に分断し、その断面を観察することで固相と液相の境界が判別できるので、断面の固相の面積率を求め、そこから体積分率を計算し、固相の各相の密度から質量分率として固相率を求める。
【0019】
次に、熱処理後に850℃〜1100℃で保定処理、もしくはその温度域で10℃/分以下の冷却速度で徐冷処理する方法について説明する。
製鋼スラグを熱処理後、さらに850〜1100℃での保定処理を行うことで、凝固冷却時期に発生する製鋼スラグ中の亀裂を抑制し、なおかつ微細な亀裂の修復が起こることを見出し、吸水率をさらに低下させることができるため、より好ましい。保定時間は特に規定するものではないが、20分以上保定すると、その効果が発揮され易くなるため好ましい。保定時間は長いほど好ましいので、上限値は特に規定するものではない。
また、製鋼スラグの熱処理後に、850℃〜1100℃の温度域で10℃/分以下の冷却速度で徐冷処理を行うことでも、同様の効果が発揮される。
850〜1100℃での保定処理方法としては、加熱炉・回転炉床・流動床等で実施でき加熱している炉内で保定処理を行うことができる。また、この温度域で10℃/分以下の冷却速度で徐冷処理を行う方法としては、製鋼スラグ搬送用鋼滓鍋に保温蓋を装着し、場合によっては一部熱補償することで実施することができる。また、保定処理同様、加熱炉・回転炉床・流動床炉等を活用して、所定の冷却速度を確保できる程度に加熱・保温することで実施できる。
【0020】
次に、製鋼スラグにSiO、Al、FeO、Fe、Pの1種以上を含有する物質を添加した物を熱処理する方法について説明する。
塩基度の低い製鋼スラグを改質する場合は、上述の通り熱処理を行うだけでも良いが、塩基度の高い製鋼スラグを改質する場合は、SiO源が不足するため、これを補うためにSiO源を添加して熱処理することで、f.CaOの低減を実施できるため、好ましい。
SiOの添加量は、所望とする製鋼スラグ中のf.CaOに応じて、適宜SiOを添加して熱処理すれば良い。その上、前述の通りSiOには製鋼スラグ組成域において、融点を低下させる効果があるため、SiO源を添加することで固相率を低減して、改質を行うことが可能である。
【0021】
また、Al、FeO、Fe、Pはそれぞれ、f.CaOと反応してf.CaOの低減を実施でき、さらに融点を低下させる効果があるため、上記と同様の効果を得ることができるため、添加することが好ましい。特に、FeOは酸化反応によりFeになるものもあり、その際に発熱するため、この熱を熱処理時の反応に有効利用できるという作用もある。さらに、SiO、Al、FeO、Fe、Pの複数種を含有する物質を添加して、同様に熱処理することでも良い。
従って、製鋼スラグ中には低融点金属酸化物、例えばFeO、MnO、Al、SiOが含まれているが、更にSiO、Alを加え、熱処理することで、改質製鋼スラグの吸水率をより低減でき、強度の向上を達成できる。また、同じスラグ組成であれば、温度が高い程、固相が少なくなり液相が増加するため、処理後スラグの吸水率はより小さくなる。しかし、反応温度を高くするには加熱が必要で、加熱処理コストが大きくなるため、可能な限り低い温度で反応させることがコスト的にも重要である。
以上の様に、SiO、Al、FeO、Fe、Pの1種以上を含有する物質を添加することが好ましく、添加量や熱処理時間は実験等で適宜設定すれば良い。
【0022】
実際に1350℃以上で固相率40質量%以下を達成する方法としては、大きく三つの方法がある。
一つ目は、製鋼スラグの組成から、固相率が40質量%以下となるような温度を求め、その温度が1350℃以上の場合、求めた温度で熱処理を行う。
二つ目は、1350℃以上で固相率が40%となるような、製鋼スラグ組成に必要なSiO、Al、FeO、Fe、Pの1種以上の量を求め、それを添加して熱処理を行う。
三つ目は製鋼スラグにある程度のSiO、Al、FeO、Fe、Pの1種以上を添加し、そのときの固相率が40質量%以下となるような温度を求め、その温度が1350℃以上となった場合、その温度で熱処理を行うという方法である。求めた温度が1350℃未満であれば、再度SiO、Al、FeO、Fe、Pの1種以上を添加することを繰り返し、1350℃以上となった場合、熱処理を行えば良い。
【0023】
次に、前記SiO、Al、FeO、Fe、Pの1種以上を含有する物質について説明する。
これらの物質として、高炉スラグ、脱珪スラグ、フライアッシュ、廃ガラス、コンクリート廃材、廃レンガ、アルミ灰、アルミドロス、アルミニウム精錬スラグ、都市ゴミ・下水汚泥の焼却灰、灰溶融スラグ、下水汚泥溶融スラグ、カーシュレッダーダスト燃焼灰、転炉ダスト、電炉ダスト、高炉二次灰、天然砂、珪砂、廃棄鋳砂、粘土、土壌、天然砕石、鉄鉱石の1種以上を用いることで、今回の改質は可能である。
これらは、一部廃棄物として指定されているものであり、安価に入手できるためコスト的に有利であり、廃棄物処理にもなるため好ましい。それぞれ改質されたスラグに悪影響を与える不純物を含まないものであれば特に限定されるものではない。もちろん、試薬のシリカも使用可能である。
【0024】
本発明に用いられる製鋼スラグは特に限定されるものではなく、溶銑予備処理スラグ、溶融還元炉スラグ、転炉スラグ、電気炉スラグ、二次精錬スラグまたはステンレス鋼スラグ等を使用することができ、既に冷却したものも使用できるが、溶融状態又は半凝固状態で熱量を保有するものを使用すると、本発明において加熱に必要なエネルギーを減少し得るので好ましい。
【0025】
熱処理に際しては、前記の加熱手段を用いて行えば良い。但し、転炉、電炉、精錬炉、滓鍋、混銑車、高炉排滓工程を用いると、排出された製鋼スラグが高温状態であり、そのままその熱を利用できるため、新たに加熱する温度が小さくなるため好ましい。特に半溶融高炉スラグを滓鍋内に保持して使用すれば、更に加熱が必要なくなり好ましい。転炉の場合、製鋼スラグに対し、ランスを用いて吹き込んだ強制供給が好ましいが、入れ置き、上方投入した改質材の拡散による自然供給でもよい。エージング処理工程を用いると、現状のスラグ処理工程に加熱手段を増工程すればよいので、設備費が少なくてすむため好ましい。
ロータリーキルン、焼結機、回転炉床型炉、流動床加熱炉、バッチ式加熱炉、連続式加熱炉、キュポラ炉、コークスベッド式炉の場合は、凝固した中間温度から常温の製鋼スラグも全量改質することができ、在庫削減にも繋がるため好ましい。
【0026】
熱処理後に行う保定・徐冷処理についても、上記の熱処理とほぼ同様の方法で行えば良いが、転炉、電炉等の炉で行う場合、炉内の顕熱を利用して、LPG−酸素、炭材−酸素等の熱源を調整しながら、保定・徐冷処理を行うことができる。
滓鍋、エージング処理工程等で保定・徐冷処理を行う場合、蓋をつけ、もしくは箱で囲んで、バーナー等の加熱装置を用いて加熱しながら、保定・徐冷処理を行うことができる。いずれの場合も、熱処理後の製鋼スラグが高温状態であり、その顕熱を利用することで新たに加熱する温度が小さくなるため好ましい。
【0027】
本発明の改質製鋼スラグの性状は、f.CaO≦2.7質量%かつ吸水率≦4.0質量%である。f. CaO≦2.7質量%であれば、改質製鋼スラグが膨張崩壊しても、水浸膨張比1.5%を達成できる。ここで、水浸膨張比とは、例えばJIS A5015の附属書2で測定される値であり、鐵鋼スラグ協会による製鋼スラグ路盤設計施工指針によれば、上層路盤材等の高級用途に供するには、路盤の膨脹による支持力の低下を防ぐため水浸膨張比1.5%以下とすることが重要である。
中級の用途である加熱アスファルト混合道路用材、アスファルト舗装用骨材については水浸膨張比を2.0%以下とすることで使用可能であるため、本発明の改質製鋼スラグは十分満足できる。
【0028】
また、一方吸水率は強度と相関があり、JIS A1109、または A1110で規定されている吸水率3%以下を満足することで、これら高級用途に適用可能である。他のJISで吸水率が規定されていない高級用途においては、吸水率4%以下を満足することで、いずれの用途でも使用できる強度を確保することができる。従って、本発明の示すようにいずれの高級用途向けに於いても吸水率≦4.0質量%が、強度の点で重要である。
さらに、高級用途において安定した使用が可能であるスラグ性状として、本発明の改質スラグのより好ましい性状は、f.CaO≦0.7質量%かつ吸水率≦4.0質量%である。f.CaO≦0.7質量%であれば、水浸膨張比1.0%以下を達成できる。こうして水浸膨張比を低位安定化することでJISの規格は十分満足し、路盤を施工するメーカーにおいても、安定した路盤強度を確保できる改質製鋼スラグとしての安心した使用が可能となる。
実際に上層路盤材に使用されている天然砕石並みの膨脹特性を確保するために、水浸膨張比を最大1%以下でかつ実質平均を0.5%程度に求める場合、f.CaO≦0.5質量%が望ましい。また更に、コンクリート用骨材等に適用する場合、天然砕石並みの、膨脹がほとんど無い状態を求める場合は、f.CaO≦0.2質量%が望ましい。
【0029】
このように、f.CaO≦0.7質量%かつ吸水率≦4.0質量%である改質製鋼スラグは、より高級な性状であるため、上層路盤材、加熱アスファルト混合道路用材、アスファルト舗装用骨材、コンクリート用骨材、コンクリート二次製品用原料、窯業・タイル用原料、人工石材原料用途として用いることができる。また、吸水率は強度と相関があり、いずれの高級用途向けに於いても吸水率≦4.0質量%が、強度の点で好ましい。
【0030】
以上説明してきた規格が存在する高級用途以外の、中級用途として、本発明での上記のf.CaO≦2.7質量%かつ吸水率≦4.0質量%である改質製鋼スラグは、鉄鋼・非鉄の製錬・精錬工程、廃棄物燃焼溶融炉、灰溶融炉、スラグ溶融炉において主原料、副原料、耐火物保護剤、助剤、保温材原料、鎮静材原料、もしくは硬化体・固化体原料、底質・海水浄化剤原料として用いることができる。
【0031】
【実施例】
本発明による製鋼スラグの改質法の実施例を示す。
製鋼スラグとして、溶銑予備処理スラグを用いた。表1は本実施例に供した溶銑予備処理スラグ、高炉スラグ、フライアッシュの代表組成分析値を示す。
溶銑予備処理スラグAは、塩基度が2.2でかつf.CaOが3.8質量%含まれる。また、溶銑予備処理スラグBは、塩基度が3.4でかつf.CaOが13質量%含まれる。この溶銑予備処理スラグにSiO、Alを含む高炉スラグ、フライアッシュを改質剤として添加した。
溶銑予備処理スラグAもしくはBと高炉スラグもしくはフライアッシュをあらかじめ混合してからマグネシアるつぼに装入し、高周波溶解炉を用いて所定の温度まで加熱し、約10分保持した。具体的な実施水準等を表2に示す。尚、固相率は市販の平衡計算ソフトSOLGASMIXを用いて計算により求めた。
【0032】
表2の実施例1、2、3、4、5、6、7は、熱処理温度1100℃以上での実施例である。この結果より、改質スラグ中のf.CaOの濃度は2.7質量%以下となっており、水和による膨張を呈しない濃度になり、良好に改質されている。また、吸水率も4質量%程度以下まで改質されており、強度が高い改質製鋼スラグが得られている。
特に、実施例4、5は固相率0質量%の場合であり、熱処理後の吸水率が低く良好である。これを、保定処理を行うことで、更に吸水率を低減できた。これに対し、比較例1、2ともに、改質温度が低いため、熱処理後スラグのf.CaO濃度が低下せず、吸水率も高かった。
【0033】
【表1】

Figure 2004143034
【0034】
【表2】
Figure 2004143034
【0035】
【発明の効果】
本発明による改質製鋼スラグとその製造方法によれば、f.CaOが低く、かつ吸水率の小さい強度が高いスラグを得ることができる。比較的低温で確実な改質が可能となるので処理能力が向上し、改質されたスラグは、上層路盤材、加熱アスファルト混合道路用材、アスファルト舗装用骨材、コンクリート用骨材、コンクリート二次製品用原料、窯業・タイル用原料、人工石材原料用途等の有用な原料に適用することができ、再生資源として高度に有効利用でき、また、経済的効果も大きい。さらに、製鋼スラグの在庫の縮小に伴ない、在庫管理が容易となり、さらにスラグヤードの占有率を小さくできることから、スラグの運搬、払い出し等の作業の負荷が軽減できる。
【図面の簡単な説明】
【図1】改質製鋼スラグの塩基度に対するf.CaOを示す図。
【図2】改質製鋼スラグの固相率に対する吸水率を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides useful raw materials such as upper roadbed materials, heated asphalt mixed road materials, asphalt pavement aggregates, concrete aggregates, etc., hardened / solidified materials, sediment / seawater purifier materials, or steel, non-ferrous materials. The present invention relates to a modified steelmaking slag applicable to raw materials in a smelting / refining process, a waste combustion melting furnace, an ash melting furnace, and a slag melting furnace, and a method for producing the same.
[0002]
[Prior art]
The steelmaking slag contains free CaO (hereinafter referred to as f.CaO), and exhibits swelling disintegration due to its volume change during the hydration reaction. Further, since there are many fine cracks and open pores, the water absorption is high and the strength is low. As a result, it is used only for low-grade applications such as temporary materials for civil engineering work, road ground improvement materials, lower-grade subgrade materials, etc., and is used for higher-grade subgrade materials, upper-grade subgrade materials, concrete aggregates, stone materials, etc. Not used.
However, inventory is increasing due to a decrease in demand for low-grade applications, and problems such as a place where the generated steelmaking slag is stored are occurring. For this reason, it is necessary to make effective use for high-grade applications such as upper road rock materials, concrete aggregate, and stone materials. Conventionally, f. Various slag hot reforming methods and aging methods for reducing CaO have been studied.
[0003]
In the slag hot reforming method, as proposed in Patent Document 1, a silicate-containing modifier, a carbon-containing reducing agent, and iron scrap are mixed with steelmaking slag, and the mixture is supplied with an oxygen-containing gas. This is a method for hot reforming steelmaking slag characterized by melting while maintaining a reducing atmosphere.
Further, as proposed in Patent Document 2, the aging method separates the steelmaking slag based on the CaO amount of the auxiliary material charged at the time of refining at 50 kg / crude steel ton or less and slag basicity 3.5 or less, After cooling and solidifying a slag suitable for this, the slag is put into a hot water tank at 40 to 100 ° C. while maintaining sensible heat at a slag temperature of 400 to 1000 ° f. This is a method characterized by promoting a hydration reaction of CaO and performing a stabilization treatment.
[0004]
[Patent Document 1]
JP-A-6-115984
[Patent Document 2]
JP-A-6-183792
[0005]
[Problems to be solved by the invention]
However, the slag hot reforming method requires heating to 1550 ° C. or more to melt the mixture in order to mix iron scrap. This dissolution requires a large amount of heat and time, and the processing capacity is low. Further, in order to reduce and recover metal oxides such as iron oxide, phosphorus oxide and manganese oxide in a reducing atmosphere, f. CaO is completely SiO 2 And low-melting-point metal oxides, the modified slag contains f. CaO remained.
Moreover, the aging method limits the slag that can be modified, and about half of the slag that cannot be modified remains. When the basicity of the slag is high, when the aging period is shortened, f. Since CaO cannot be reduced, slag stabilization becomes insufficient. Further, even slag that can be modified requires an aging period of several days or less, and has a low processing capacity. In a complete solid phase reaction at about 100 ° C. or less, f. CaO is completely SiO 2 Although it is not possible to completely react with the slag, it is possible to simply reduce the expansion and powdering of the slag, but it is not possible to stabilize the slag until it can be used for the upper roadbed material. Further, the modified slag has a higher water absorption rate than crushed stone and the like, and has insufficient strength.
[0006]
That is, the modified slag produced by the conventional technique has the remaining f. Since it still contains CaO and has high water absorption and low strength, it can be effectively used for high-grade applications such as upper roadbed materials, raw materials such as solidified bodies, or raw materials for smelting and refining processes of steel and non-ferrous metals. It was impossible.
The present invention has been made in view of such problems of the conventional technology, and has improved a method of reforming steelmaking slag, and has been developed to f. An object of the present invention is to provide a method for reforming steel slag that reduces not only CaO but also the water absorption, and a modified steel slag.
[0007]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) A method for reforming steelmaking slag, which comprises heat-treating steelmaking slag at 1100 ° C. or higher.
(2) A method for reforming steelmaking slag, which comprises heat-treating steelmaking slag at a temperature of 1350 ° C. or more so as to have a solid phase ratio of 40% by mass or less.
(3) The steelmaking slag according to (1) or (2), wherein after the heat treatment, the steelmaking slag according to (1) or (2) is subjected to a holding treatment at 850 ° C. to 1100 ° C. or a slow cooling treatment at a cooling rate of 10 ° C./min or less in the temperature range. Reforming method.
(4) SiO for steelmaking slag 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 (1) The method for modifying steelmaking slag according to any one of (1) to (3), wherein a material to which a substance containing at least one of the following is added is heat-treated.
(5) The SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 Blast furnace slag, desiliconized slag, fly ash, waste glass, concrete waste material, waste brick, aluminum ash, aluminum dross, aluminum refining slag, incineration ash of municipal garbage and sewage sludge, ash melting Use one or more of slag, sewage sludge molten slag, car shredder dust combustion ash, converter dust, electric furnace dust, blast furnace secondary ash, natural sand, silica sand, waste cast sand, clay, soil, natural crushed stone, iron ore (4) The method for modifying steelmaking slag according to (4).
(6) As the steelmaking slag, one or more of molten iron pretreatment slag, smelting reduction furnace slag, converter slag, electric furnace slag, secondary refining slag, and stainless steel slag are used (1). The method for modifying steelmaking slag according to any one of (1) to (5).
(7) Converter, electric furnace, refining furnace, slag pot, mixed iron wheel, aging process, blast furnace waste process, rotary kiln, sintering machine, rotary hearth furnace, flow The steelmaking slag according to any one of (1) to (6), wherein one or more of a floor heating furnace, a batch heating furnace, a continuous heating furnace, a cupola furnace, and a coke bed furnace are used. Reforming method.
(8) A modified steelmaking slag, wherein free CaO ≦ 2.7% by mass and water absorption ≦ 4.0% by mass.
(9) Upper roadbed material, heated asphalt mixed road material, asphalt pavement aggregate, concrete aggregate, concrete secondary material raw material, ceramic industry raw material, tile raw material, artificial stone raw material, hardened / solidified raw material, Raw material for bottom sediment / seawater purifier, or smelting / refining process of iron and steel, non-ferrous metals, main raw material, auxiliary raw material, refractory protective agent, auxiliary agent, heat insulating material in waste combustion melting furnace, ash melting furnace, slag melting furnace The modified steelmaking slag according to (8), which is used for any of sedative materials.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problems, the present inventors have proposed f. The present inventors have invented a method for reforming steelmaking slag in which CaO is reduced and the number of open pores is reduced, thereby reducing the water absorption and improving the strength.
The details will be described below.
First, a method of heat-treating steelmaking slag at 1100 ° C. or higher will be described.
By subjecting the steelmaking slag to a heat treatment at a temperature of 1100 ° C. or higher, f. CaO can be reduced by the reaction. Similarly, open pores can be reduced. Thereby, the water immersion expansion ratio can be reduced and the strength can be improved. By satisfying the criteria for each application, it can be used for various applications.
[0009]
F. In steelmaking slag Regarding the reduction of CaO, steelmaking slag contains SiO 2 And f. In the steelmaking slag. CaO and SiO 2 Examination of the conditions under which the reaction occurs with the reaction revealed that heat treatment at 1100 ° C. or higher should be performed. As a component of the steelmaking slag before the heat treatment, a smaller basicity is preferable. Here, the basicity of slag refers to CaO and SiO of slag. 2 Mass ratio (CaO / SiO 2 ). That is, the lower the basicity of the slag before the heat treatment, the higher the f. SiO for CaO 2 The reaction is accelerated due to the large amount.
Therefore, the components of the steelmaking slag before the heat treatment are appropriately selected as necessary, and the heat treatment is performed at 1100 ° C. or more, so that the f. CaO and SiO 2 And f. In the modified steelmaking slag. CaO can be reduced.
[0010]
Next, it was found that heat treatment at 1100 ° C. or more should be performed to reduce the water absorption rate in steelmaking slag. Furthermore, it was found that the smaller the basicity of the slag before the heat treatment, the better. Regarding this, by performing heat treatment at 1100 ° C. or more, the liquid phase ratio in the slag increases, and the liquid phase penetrates into cracks and open pores in the steelmaking slag to reduce the voids, thereby reducing the water absorption. It is thought that this can satisfy the crack and strength standards for each product.
This means that in the low-temperature treatment and solid-state reaction as in the prior art, cracks and open pores that exist in a large number of steelmaking slags cannot be closed, resulting in a high water absorption and a low-strength modified steelmaking slag. It is considered that this indicates that a reaction capable of reducing the water absorption by blocking the cracks and open pores present in the steelmaking slag by the reaction in the state of a small solid phase, that is, the liquid phase state, as in the present invention, occurs. . In addition, SiO 2 Has the effect of lowering the melting point, so that even at the same heat treatment temperature, the ratio of the liquid phase contributing to the reaction increases, and in that regard, it is preferable that the basicity is low.
[0011]
Therefore, by appropriately selecting the components of the steelmaking slag before the heat treatment as necessary and performing the heat treatment at 1100 ° C. or more, the liquid phase ratio in the slag increases, and the water absorption rate in the modified steelmaking slag is reduced. Can be. Further, the higher the heat treatment temperature, the higher the liquid phase ratio, so that the reforming reaction is promoted.
As described above, the components of the steelmaking slag before the heat treatment are appropriately selected as necessary, and the heat treatment is performed at a temperature of 1100 ° C. or more for a desired time, so that the slag properties after the heat treatment are f. CaO ≦ 2.7% by mass and water absorption ≦ 4.0% by mass. Here, f. If CaO ≤ 2.7% by mass, even if the modified steelmaking slag expands and collapses, a water immersion expansion ratio of 1.5% can be achieved, and if water absorption ≤ 4.0% by mass, various applications can be achieved. Required strength can be secured. Further, the desired time of the heat treatment at 1100 ° C. or more is not particularly specified, and may be appropriately set according to the components of the steelmaking slag before the heat treatment and the heat treatment temperature.
[0012]
There is no particular limitation on the heating method. Specifically, the use of air, oxygen-enriched fuel burner, coke combustion, electric resistance heating, high-frequency heating, arc heating, microwave heating, and the like can be exemplified as oxygen and oxygen gas-containing gas. Any material that can be heat-treated at 1100 ° C. or more may be used.
The upper limit of the heat treatment temperature is not particularly limited, but may be appropriately set in consideration of cost and the like, but is set at about 1500 ° C. at the most. Furthermore, the heat treatment time may be appropriately set in consideration of the basicity, the heat treatment temperature, and the like so that the slag component can be modified into a desired slag component.
[0013]
X-ray fluorescence analysis (JIS K 0119) was used for the analysis of the slag component, and f. CaO can be analyzed by ethylene glycol extraction ICP emission spectroscopy. f. In the analysis of CaO, f. As a method for extracting CaO, there is a TBP (tribromophenol) method or the like, and any method may be used as long as the extraction can be performed correctly. The water absorption was measured by a test method specified in JIS A1109 or A1110.
[0014]
Next, a method of heat-treating steelmaking slag so as to have a solid fraction of 40% by mass or less at 1350 ° C. or more will be described.
In modifying the steelmaking slag, f. CaO is reduced, and f. By satisfying CaO ≦ 0.7% by mass and water absorption ≦ 4.0% by mass, it can be applied to higher-grade roadbed materials, concrete aggregates and the like, which are more advanced uses in each product group.
The present inventors have determined from the experimental results that the f. If the heat treatment temperature for satisfying CaO ≦ 0.7% by mass is 1280 ° C. or higher, f. CaO and SiO 2 It has been found that the reaction with is easily promoted, which is preferable. That is, by appropriately selecting the components of the steelmaking slag before the heat treatment and performing the heat treatment at 1280 ° C. or higher, the f. CaO and SiO 2 Is further promoted, so that f. CaO ≦ 0.7% by mass is easily achieved.
[0015]
Further, FIG. 1 shows an example of the result of examining the relationship between the basicity of the slag and (f. CaO) in the modified steelmaking slag when the heat treatment is performed at 1280 ° C. or higher. Thus, if the basicity of the modified steelmaking slag is 2.5 or less, f. If CaO can be reduced to 0.7% by mass or less, and furthermore, if the basicity is 1.2, f. CaO can be reduced to 0.05% by mass. That is, when the heat treatment is performed at a temperature of 1280 ° C. or higher, the lower the basicity of the modified steelmaking slag, the higher the f. It was found that CaO tends to decrease. Therefore, f. In order to achieve CaO ≦ 0.7% by mass, it is preferable that the heat treatment temperature be 1280 ° C. or higher.
Thus, f. In order to further reduce CaO, it is necessary to react with SiO2. 2 The reaction can be easily achieved by performing the reaction at a hot temperature (1280 ° C. or higher) in the presence of. Therefore, the steelmaking slag itself contains SiO 2 If the basicity is low such that a large amount of f. Is contained, f. It is preferable because CaO can be reduced.
[0016]
On the other hand, a method for easily reducing the water absorption, which is another condition, for applying to high-grade applications such as upper roadbed materials and concrete aggregates was studied. As a result, as shown in FIG. 2, as a condition for reducing the water absorption of the modified steelmaking slag, a heat treatment is performed so that the solid phase ratio becomes 40% by mass or less at a temperature of 1350 ° C. or more for a certain treatment time. As the post-slag properties, it has been found that it is easier to achieve a water absorption rate of 4.0% by mass.
That is, in the case of components of various steelmaking slags before the heat treatment, the heat treatment at 1350 ° C. or more can increase the liquid phase portion and achieve a solid phase ratio of 40% by mass or less. In the reaction in the liquid phase, the cracks present in the steelmaking slag and the open pores are closed, and the reaction capable of reducing the water absorption is further promoted. Therefore, the water absorption ≤ 4.0% by mass in the modified steelmaking slag is improved. More easily achieved.
[0017]
From the above, f. As a method that satisfies both the reduction of CaO and the reduction of water absorption, it is more preferable to perform heat treatment at a temperature of 1350 ° C. or more and a solid phase ratio of 40% by mass or less from the viewpoint of reaction efficiency.
In the heat treatment, the lower the basicity of the steelmaking slag and the longer the treatment time, the more the reaction is promoted. However, the heat treatment time may be appropriately set in consideration of the basicity, the heat treatment temperature, and the like so that the slag component can be modified into a desired slag component, and is not particularly limited, but from the viewpoint of productivity and cost. About 10 minutes is preferable.
[0018]
Here, the solid fraction is a mass fraction of slag crystallized as a solid phase with respect to the entire slag, and a value calculated by commercially available thermodynamic equilibrium calculation software can be used. When calculated using commercially available equilibrium calculation software, the component SiO in the slag 2 , ZrO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , Fe 2 O 3 , FeO, MnO, MgO, CaO, Na 2 O, CaF 2 From the analysis values such as the above, the combination of each phase is calculated so that the free energy of the entire system is minimized in consideration of the mass balance, and the sum of the solid phases at that time is calculated as the solid fraction. .
The same solid fraction can be obtained by actual measurement, and this may be used. In the case of actual measurement, the boundary between the solid phase and the liquid phase can be determined by dividing the slag into multiple pieces and observing the cross section.Therefore, the area ratio of the solid phase in the cross section is calculated, and the volume fraction is calculated therefrom. The solid fraction is determined as a mass fraction from the density of each phase of the solid phase.
[0019]
Next, a description will be given of a method of holding at 850 ° C. to 1100 ° C. after the heat treatment or gradually cooling at a cooling rate of 10 ° C./min or less in the temperature range.
After the heat treatment of the steelmaking slag, by further performing a holding treatment at 850 to 1100 ° C, it was found that cracks in the steelmaking slag generated during the solidification cooling time were suppressed, and that repair of fine cracks occurred, and that the water absorption was reduced. It is more preferable because it can be further reduced. The retention time is not particularly limited, but it is preferable to keep the retention time for 20 minutes or more because the effect is easily exhibited. The longer the retention time, the better, so the upper limit is not particularly specified.
The same effect can be obtained by performing slow cooling at a cooling rate of 10 ° C./min or less in a temperature range of 850 ° C. to 1100 ° C. after the heat treatment of the steelmaking slag.
As a holding treatment method at 850 to 1100 ° C., the holding treatment can be performed in a heating furnace, a rotary hearth, a fluidized bed, or the like, and the holding treatment can be performed in a heating furnace. In addition, as a method of performing the slow cooling process at a cooling rate of 10 ° C./min or less in this temperature range, a heat retaining lid is attached to a steelmaking slag conveying steel slag pot, and in some cases, the heat is partially compensated for. be able to. Further, similarly to the holding process, the heating can be performed by using a heating furnace, a rotary hearth, a fluidized-bed furnace, or the like, and heating and maintaining the temperature to an extent that a predetermined cooling rate can be secured.
[0020]
Next, the steelmaking slag is made of SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 A method of heat-treating a material to which a substance containing at least one of the above is added will be described.
When reforming steel slag having a low basicity, only heat treatment may be performed as described above. 2 In order to compensate for the lack of the source, SiO 2 Heat treatment with the addition of a source, f. This is preferable because CaO can be reduced.
SiO 2 Depends on the amount of f. In the desired steelmaking slag. Depending on CaO, SiO 2 And heat treatment. In addition, as described above, SiO 2 Has the effect of lowering the melting point in the steelmaking slag composition region, 2 By adding a source, it is possible to reduce the solid phase ratio and perform the reforming.
[0021]
Also, Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 Are f. Reacts with CaO and f. Since CaO can be reduced and the melting point can be further reduced, the same effect as described above can be obtained. Therefore, it is preferable to add CaO. In particular, FeO becomes FeO by an oxidation reaction. 2 O 3 In some cases, heat is generated, and this heat can be effectively used for the reaction during the heat treatment. Furthermore, SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 May be added and a heat treatment may be performed in the same manner.
Therefore, low melting point metal oxides such as FeO, MnO, Al 2 O 3 , SiO 2 But also SiO 2 , Al 2 O 3 , And by heat treatment, the water absorption of the modified steelmaking slag can be further reduced, and the strength can be improved. Further, with the same slag composition, the higher the temperature, the smaller the solid phase and the more the liquid phase, so that the water absorption of the slag after the treatment becomes smaller. However, heating is required to increase the reaction temperature, which increases the cost of the heat treatment. Therefore, it is important from the viewpoint of cost to carry out the reaction at the lowest possible temperature.
As described above, SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 It is preferable to add a substance containing at least one of the following, and the amount of addition and the heat treatment time may be appropriately set by experiments or the like.
[0022]
There are three major methods for actually achieving a solid phase fraction of 40% by mass or less at 1350 ° C. or higher.
First, from the composition of the steelmaking slag, a temperature at which the solid fraction is 40% by mass or less is determined. If the temperature is 1350 ° C or more, heat treatment is performed at the determined temperature.
Second, the SiO 2 required for the steelmaking slag composition such that the solid fraction becomes 40% at 1350 ° C. or higher. 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 , And heat treatment is performed by adding it.
Third, some amount of SiO is added to steelmaking slag. 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 Is added, and a temperature is determined so that the solid fraction at that time becomes 40% by mass or less, and when the temperature becomes 1350 ° C. or more, heat treatment is performed at that temperature. If the determined temperature is lower than 1350 ° C., the SiO 2 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 By repeating the addition of at least one of the above, when the temperature becomes 1350 ° C. or more, heat treatment may be performed.
[0023]
Next, the SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , P 2 O 5 A substance containing at least one of the following will be described.
These materials include blast furnace slag, desiliconized slag, fly ash, waste glass, concrete waste, waste brick, aluminum ash, aluminum dross, aluminum refining slag, incineration ash of municipal waste and sewage sludge, ash melting slag, and sewage sludge melting By using one or more of slag, car shredder dust combustion ash, converter dust, electric furnace dust, blast furnace secondary ash, natural sand, silica sand, waste molding sand, clay, soil, natural crushed stone, and iron ore, Quality is possible.
These are partially designated as wastes, are advantageous in terms of cost because they can be obtained at low cost, and are also preferable because they can also be used for waste disposal. There is no particular limitation as long as it does not contain impurities that adversely affect the respective modified slag. Of course, the reagent silica can also be used.
[0024]
The steelmaking slag used in the present invention is not particularly limited, and hot metal pretreatment slag, smelting reduction furnace slag, converter slag, electric furnace slag, secondary refining slag, stainless steel slag, or the like can be used. Although already cooled ones can be used, it is preferable to use one that retains heat in a molten state or a semi-solidified state, because the energy required for heating can be reduced in the present invention.
[0025]
The heat treatment may be performed using the above-described heating means. However, when using the converter, electric furnace, refining furnace, slag pot, mixed iron wheel, blast furnace draining process, the discharged steelmaking slag is in a high temperature state and the heat can be used as it is, so the newly heated temperature is low. Is preferred. In particular, it is preferable to use the semi-molten blast furnace slag held in the slag pot, because further heating is not required. In the case of a converter, forced supply is preferably performed by blowing into a steelmaking slag using a lance, but natural supply may be performed by diffusion of a modified material that has been stored and charged upward. The use of the aging treatment step is preferable because the heating means may be added to the current slag treatment step, and the equipment cost can be reduced.
In the case of rotary kilns, sintering machines, rotary hearth furnaces, fluidized bed heating furnaces, batch heating furnaces, continuous heating furnaces, cupola furnaces, and coke bed furnaces, all of the steelmaking slag from the intermediate solidified temperature to room temperature is changed. It is preferable because it can improve quality and leads to reduction of inventory.
[0026]
The holding / slow-cooling treatment performed after the heat treatment may be performed in substantially the same manner as the above heat treatment.However, when performed in a furnace such as a converter or an electric furnace, LPG-oxygen, The holding / gradual cooling process can be performed while adjusting the heat source such as carbon material and oxygen.
When the holding / gradual cooling process is performed in a slag pot, an aging process, or the like, the holding / gradual cooling process can be performed while heating using a heating device such as a burner with a lid or enclosed in a box. In any case, the steelmaking slag after the heat treatment is in a high temperature state, and utilizing the sensible heat is preferable because a new heating temperature is reduced.
[0027]
The properties of the modified steelmaking slag of the present invention are described in f. CaO ≦ 2.7% by mass and water absorption ≦ 4.0% by mass. f. If CaO ≦ 2.7% by mass, a water immersion expansion ratio of 1.5% can be achieved even if the modified steelmaking slag expands and collapses. Here, the water immersion expansion ratio is a value measured in, for example, Annex 2 of JIS A5015, and according to the steelmaking slag roadbed design and construction guideline by the Iron and Steel Slag Association, it is used for high-grade applications such as upper layer roadbed materials. It is important that the water immersion expansion ratio is 1.5% or less in order to prevent a decrease in the supporting force due to the expansion of the roadbed.
The modified steelmaking slag of the present invention can sufficiently be used for intermediate-grade heated asphalt-mixed road materials and asphalt pavement aggregates because the water immersion expansion ratio can be set to 2.0% or less.
[0028]
On the other hand, the water absorption has a correlation with the strength, and when it satisfies the water absorption of 3% or less specified in JIS A1109 or A1110, it can be applied to these high-grade applications. In high-grade applications where the water absorption is not specified by other JIS, by satisfying the water absorption of 4% or less, the strength that can be used in any application can be secured. Therefore, as shown in the present invention, in any high-grade application, the water absorption ≦ 4.0% by mass is important in terms of strength.
Further, as slag properties that can be used stably in high-grade applications, more preferred properties of the modified slag of the present invention include f. CaO ≦ 0.7% by mass and water absorption ≦ 4.0% by mass. f. If CaO ≦ 0.7% by mass, a water immersion expansion ratio of 1.0% or less can be achieved. By stabilizing the water immersion expansion ratio at a low level in this manner, the JIS standard is sufficiently satisfied, and even a roadbed builder can safely use as a modified steelmaking slag that can secure stable roadbed strength.
When the water immersion expansion ratio is 1% or less at the maximum and the actual average is about 0.5% in order to ensure the same expansion characteristics as natural crushed stone used for the upper subgrade material, f. It is desirable that CaO ≦ 0.5% by mass. Further, when the present invention is applied to an aggregate for concrete or the like, and when a state of almost no expansion similar to natural crushed stone is required, f. CaO ≦ 0.2% by mass is desirable.
[0029]
Thus, f. Since the modified steelmaking slag having CaO ≦ 0.7% by mass and water absorption ≦ 4.0% by mass has higher quality properties, it is used for upper subgrade, heated asphalt mixed road material, asphalt pavement aggregate, and concrete. It can be used as aggregate, raw material for concrete secondary products, raw material for ceramics and tiles, and raw material for artificial stone. In addition, the water absorption has a correlation with the strength, and for any high-grade application, the water absorption is preferably 4.0% by mass or less in terms of strength.
[0030]
As an intermediate use other than the high-grade use for which the above-described standards exist, the above f. Modified steelmaking slag with CaO ≦ 2.7% by mass and water absorption ≦ 4.0% by mass is used as a main raw material in smelting and refining processes of steel and non-ferrous metals, waste combustion melting furnaces, ash melting furnaces, and slag melting furnaces. , Auxiliary materials, refractory protective agents, auxiliaries, heat insulating materials, calming materials, hardened / solidified materials, sediment / seawater purifying materials.
[0031]
【Example】
1 shows an embodiment of a method for reforming steelmaking slag according to the present invention.
Hot metal pretreatment slag was used as steelmaking slag. Table 1 shows representative composition analysis values of the hot metal pre-treatment slag, blast furnace slag, and fly ash used in this example.
Hot metal pretreatment slag A has a basicity of 2.2 and f. It contains 3.8% by mass of CaO. The hot metal pre-treatment slag B has a basicity of 3.4 and f. 13% by mass of CaO is contained. SiO2 is added to this hot metal pretreatment slag. 2 , Al 2 O 3 Blast furnace slag and fly ash were added as modifiers.
Hot metal pretreatment slag A or B and blast furnace slag or fly ash were previously mixed, charged into a magnesia crucible, heated to a predetermined temperature using a high-frequency melting furnace, and held for about 10 minutes. Table 2 shows the specific implementation levels. The solid fraction was determined by calculation using commercially available equilibrium calculation software SOLGAMIX.
[0032]
Examples 1, 2, 3, 4, 5, 6, and 7 in Table 2 are examples in which the heat treatment temperature is 1100 ° C. or higher. From these results, it was found that f. The concentration of CaO is 2.7% by mass or less, which is a concentration that does not exhibit swelling due to hydration, and is excellently modified. Further, the water absorption is also modified to about 4% by mass or less, and a modified steel slag having high strength is obtained.
In particular, Examples 4 and 5 are cases where the solid fraction is 0% by mass, and the water absorption after the heat treatment is low and good. By subjecting this to a retention treatment, the water absorption rate could be further reduced. In contrast, in both Comparative Examples 1 and 2, since the reforming temperature was low, the f. The CaO concentration did not decrease and the water absorption was high.
[0033]
[Table 1]
Figure 2004143034
[0034]
[Table 2]
Figure 2004143034
[0035]
【The invention's effect】
According to the modified steelmaking slag and the method for producing the same according to the present invention, f. A slag with low CaO and high strength with low water absorption can be obtained. The processing capacity is improved because reliable reforming is possible at relatively low temperatures, and the reformed slag is used for upper subgrade materials, heated asphalt mixed road materials, asphalt pavement aggregates, concrete aggregates, concrete secondary It can be applied to useful raw materials such as raw materials for products, raw materials for ceramics / tiles, and raw materials for artificial stones, and can be highly effectively used as recycled resources, and has a great economic effect. Further, as the inventory of steelmaking slag is reduced, inventory management becomes easier, and the occupancy of the slag yard can be reduced, so that the load of operations such as slag transportation and payout can be reduced.
[Brief description of the drawings]
FIG. 1 f. Vs. basicity of modified steelmaking slag The figure which shows CaO.
FIG. 2 is a view showing a water absorption rate with respect to a solid phase rate of the modified steelmaking slag.

Claims (9)

製鋼スラグを、1100℃以上で熱処理することを特徴とする製鋼スラグの改質方法。A method for reforming steelmaking slag, comprising heat-treating steelmaking slag at 1100 ° C. or higher. 製鋼スラグを、1350℃以上で固相率40質量%以下となるように熱処理することを特徴とする製鋼スラグの改質方法。A method for reforming steelmaking slag, comprising heat-treating steelmaking slag at a temperature of 1350 ° C. or more so as to have a solid phase ratio of 40% by mass or less. 熱処理後に、850℃〜1100℃で保定処理、もしくはその温度域で10℃/分以下の冷却速度で徐冷処理することを特徴とする請求項1または2記載の製鋼スラグの改質方法。The method for modifying steelmaking slag according to claim 1 or 2, wherein after the heat treatment, the steel is subjected to a holding treatment at 850C to 1100C or a slow cooling treatment at a cooling rate of 10C / min or less in the temperature range. 製鋼スラグにSiO、Al、FeO、Fe、Pの1種以上を含有する物質を添加した物を熱処理することを特徴とする請求項1〜3いずれかに記載の製鋼スラグの改質方法。Steelmaking slag SiO 2, Al 2 O 3, FeO, Fe 2 O 3, P 2 O 5 to heat treatment a material obtained by adding a substance containing one or more to any one of claims 1 to 3, characterized The method for modifying steelmaking slag according to the above. 前記SiO、Al、FeO、Fe、Pの1種以上を含有する物質として、高炉スラグ、脱珪スラグ、フライアッシュ、廃ガラス、コンクリート廃材、廃レンガ、アルミ灰、アルミドロス、アルミニウム精錬スラグ、都市ゴミ・下水汚泥の焼却灰、灰溶融スラグ、下水汚泥溶融スラグ、カーシュレッダーダスト燃焼灰、転炉ダスト、電炉ダスト、高炉二次灰、天然砂、珪砂、廃棄鋳砂、粘土、土壌、天然砕石、鉄鉱石の1種以上を用いることを特徴とする請求項4に記載の製鋼スラグの改質方法。Examples of the substance containing at least one of SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , and P 2 O 5 include blast furnace slag, desiliconized slag, fly ash, waste glass, concrete waste material, waste brick, and aluminum. Ash, aluminum dross, aluminum refining slag, incineration ash of municipal waste and sewage sludge, ash melting slag, sewage sludge melting slag, car shredder dust combustion ash, converter dust, electric furnace dust, blast furnace secondary ash, natural sand, silica sand, The method for modifying steelmaking slag according to claim 4, wherein one or more of waste casting sand, clay, soil, natural crushed stone, and iron ore are used. 製鋼スラグとして、溶銑予備処理スラグ、溶融還元炉スラグ、転炉スラグ、電気炉スラグ、二次精錬スラグまたはステンレス鋼スラグの1種又は2種以上を用いることを特徴とする請求項1〜5いずれかに記載の製鋼スラグの改質方法。6. The steelmaking slag according to claim 1, wherein one or more of molten iron pretreatment slag, smelting reduction furnace slag, converter slag, electric furnace slag, secondary refining slag, and stainless steel slag are used. A method for reforming steelmaking slag according to any one of the claims. 熱処理、保定処理、もしくは徐冷処理に際し、転炉、電炉、精錬炉、滓鍋、混銑車、エージング処理工程、高炉排滓工程、ロータリーキルン、焼結機、回転炉床型炉、流動床加熱炉、バッチ式加熱炉、連続式加熱炉、キュポラ炉、コークスベッド式炉の1種又は2種以上を用いることを特徴とする請求項1〜6いずれかに記載の製鋼スラグの改質方法。Converter, electric furnace, refining furnace, slag pot, mixed iron wheel, aging process, blast furnace drainage process, rotary kiln, sintering machine, rotary hearth furnace, fluidized bed heating furnace for heat treatment, holding process, or slow cooling process The method of reforming steelmaking slag according to any one of claims 1 to 6, wherein one or more of a batch heating furnace, a continuous heating furnace, a cupola furnace, and a coke bed furnace are used. 遊離CaO≦2.7質量%かつ吸水率≦4.0質量%であることを特徴とする改質製鋼スラグ。A modified steelmaking slag, wherein free CaO ≦ 2.7% by mass and water absorption ≦ 4.0% by mass. 上層路盤材、加熱アスファルト混合道路用材、アスファルト舗装用骨材、コンクリート用骨材、コンクリート二次製品用原料、窯業用原料、タイル用原料、人工石材原料、硬化体・固化体原料、底質・海水浄化剤原料、もしくは鉄鋼、非鉄の製錬・精錬工程、廃棄物燃焼溶融炉・灰溶融炉・スラグ溶融炉における主原料、副原料、耐火物保護剤、助剤、保温材原料、鎮静材原料のいずれかの用途に用いられる請求項8に記載の改質製鋼スラグ。Upper roadbed material, heated asphalt mixed road material, asphalt pavement aggregate, concrete aggregate, concrete secondary material raw material, ceramic industry raw material, tile raw material, artificial stone raw material, hardened / solidified raw material, sediment Raw materials for seawater purifiers, or smelting and refining processes for iron and steel, non-ferrous metals, main raw materials, auxiliary raw materials, refractory protectants, assistants, heat insulating materials, calming materials in waste combustion melting furnaces, ash melting furnaces, and slag melting furnaces The modified steelmaking slag according to claim 8, which is used for any use of the raw material.
JP2003207542A 2002-08-29 2003-08-14 Method for modifying steelmaking slag and modified steelmaking slag Expired - Fee Related JP4351490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207542A JP4351490B2 (en) 2002-08-29 2003-08-14 Method for modifying steelmaking slag and modified steelmaking slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002250092 2002-08-29
JP2003207542A JP4351490B2 (en) 2002-08-29 2003-08-14 Method for modifying steelmaking slag and modified steelmaking slag

Publications (2)

Publication Number Publication Date
JP2004143034A true JP2004143034A (en) 2004-05-20
JP4351490B2 JP4351490B2 (en) 2009-10-28

Family

ID=32472765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207542A Expired - Fee Related JP4351490B2 (en) 2002-08-29 2003-08-14 Method for modifying steelmaking slag and modified steelmaking slag

Country Status (1)

Country Link
JP (1) JP4351490B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136914A3 (en) * 2006-05-16 2008-09-12 Harsco Technologies Corp Regenerated calcium aluminate product and process of manufacture
CN101811876A (en) * 2010-04-29 2010-08-25 郑州德赛尔陶粒有限公司 Production method of haydite proppant
CN101905967A (en) * 2010-06-22 2010-12-08 上海应用技术学院 Fly ash baked brick prepared by washed incineration fly ash of house refuse and preparation method thereof
CN101921099A (en) * 2010-09-07 2010-12-22 济南大学 Floatation algal residue paving brick
CN101481221B (en) * 2008-01-07 2011-12-21 宝山钢铁股份有限公司 Method for treating silicate slag from wastewater treatment
CN102003029B (en) * 2009-09-02 2011-12-28 广东绿由环保科技股份有限公司 Lightweight baking-free brick produced by using various wastes in stainless steel smelting and manufacturing method thereof
CN102566526A (en) * 2010-12-30 2012-07-11 中国瑞林工程技术有限公司 Auxiliary system for aluminum alloy casting producing
CN102559960A (en) * 2012-03-13 2012-07-11 北京联合荣大工程材料有限责任公司 Steel slag treating method
KR101310660B1 (en) 2011-11-29 2013-09-25 재단법인 포항산업과학연구원 Deslopping agent of converter having sewage sludge and method for manufacturing the same
JP2013543474A (en) * 2010-09-27 2013-12-05 シャンドン コーキング グループ カンパニー リミテッド Method for producing flat inorganic nonmetallic material using molten slag
KR101419403B1 (en) * 2012-08-13 2014-08-13 주식회사 포스코 Method for producing high strength tile of slag
KR101532667B1 (en) * 2013-06-18 2015-06-30 주식회사 포스코 Method for producing tile of by-product
KR20150089297A (en) * 2014-01-27 2015-08-05 주식회사 포스코 Method for producing tile of by-product
JP2016145125A (en) * 2015-02-06 2016-08-12 新日鐵住金株式会社 Slag product raw material and manufacturing method therefor
KR101786757B1 (en) * 2012-03-23 2017-10-18 제이에프이 스틸 가부시키가이샤 Method for suppressing generation of methane-containing gas from bottom sediment in water area
CN111960703A (en) * 2020-08-24 2020-11-20 武汉武新新型建材股份有限公司 Preparation process of modified steel slag micro powder, and modified steel slag micro powder and concrete prepared by preparation process
CN113151638A (en) * 2021-01-04 2021-07-23 湖南紫荆新材料科技有限公司 Composite molten steel purifying agent and preparation method thereof
CN113578914A (en) * 2021-06-02 2021-11-02 长安大学 Steel slag strengthening treatment method integrating physicochemical reaction
CN113718109A (en) * 2021-09-01 2021-11-30 兰州有色冶金设计研究院有限公司 Method for determining slag form of electronic waste smelted in molten pool and slag form
CN113735611A (en) * 2021-09-26 2021-12-03 北京科技大学 Method for preparing low-shrinkage porous ceramic by high-temperature self-foaming of aluminum ash
CN113953076A (en) * 2021-09-03 2022-01-21 福建省建筑科学研究院有限责任公司 Method for improving grinding efficiency and activity of nickel alloy refining slag of AOD furnace
CN114044685A (en) * 2022-01-12 2022-02-15 北京高能时代环境技术股份有限公司 Method for producing high-aluminum inorganic material by using aluminum ash based on pelletizing method
CN114058744A (en) * 2021-10-20 2022-02-18 首钢集团有限公司 Method for modifying slag
CN114163147A (en) * 2021-11-24 2022-03-11 江苏科技大学 Method for reducing free calcium oxide in steel slag by using nickel-iron slag and application thereof
CN114455861A (en) * 2022-03-02 2022-05-10 北京科技大学 Modified AOD slag, preparation method and application thereof, and building material
CN114606379A (en) * 2022-03-04 2022-06-10 中南大学 Smelting method of high-phosphorus iron ore

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571818B2 (en) * 2004-04-21 2010-10-27 新日本製鐵株式会社 Method for reforming steelmaking slag
KR101881448B1 (en) * 2016-12-28 2018-07-24 서울대학교산학협력단 Method of treating steel slag

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727328B2 (en) 2006-05-16 2010-06-01 Harsco Corporation Regenerated calcium aluminate product and process of manufacture
US7811379B2 (en) 2006-05-16 2010-10-12 Harsco Corporation Regenerated calcium aluminate product and process of manufacture
WO2007136914A3 (en) * 2006-05-16 2008-09-12 Harsco Technologies Corp Regenerated calcium aluminate product and process of manufacture
CN101481221B (en) * 2008-01-07 2011-12-21 宝山钢铁股份有限公司 Method for treating silicate slag from wastewater treatment
CN102003029B (en) * 2009-09-02 2011-12-28 广东绿由环保科技股份有限公司 Lightweight baking-free brick produced by using various wastes in stainless steel smelting and manufacturing method thereof
CN101811876A (en) * 2010-04-29 2010-08-25 郑州德赛尔陶粒有限公司 Production method of haydite proppant
CN101905967A (en) * 2010-06-22 2010-12-08 上海应用技术学院 Fly ash baked brick prepared by washed incineration fly ash of house refuse and preparation method thereof
CN101921099A (en) * 2010-09-07 2010-12-22 济南大学 Floatation algal residue paving brick
JP2013543474A (en) * 2010-09-27 2013-12-05 シャンドン コーキング グループ カンパニー リミテッド Method for producing flat inorganic nonmetallic material using molten slag
CN102566526A (en) * 2010-12-30 2012-07-11 中国瑞林工程技术有限公司 Auxiliary system for aluminum alloy casting producing
KR101310660B1 (en) 2011-11-29 2013-09-25 재단법인 포항산업과학연구원 Deslopping agent of converter having sewage sludge and method for manufacturing the same
CN102559960A (en) * 2012-03-13 2012-07-11 北京联合荣大工程材料有限责任公司 Steel slag treating method
KR101786757B1 (en) * 2012-03-23 2017-10-18 제이에프이 스틸 가부시키가이샤 Method for suppressing generation of methane-containing gas from bottom sediment in water area
KR101419403B1 (en) * 2012-08-13 2014-08-13 주식회사 포스코 Method for producing high strength tile of slag
KR101532667B1 (en) * 2013-06-18 2015-06-30 주식회사 포스코 Method for producing tile of by-product
KR20150089297A (en) * 2014-01-27 2015-08-05 주식회사 포스코 Method for producing tile of by-product
KR101597708B1 (en) 2014-01-27 2016-03-02 주식회사 포스코 Method for producing tile of by-product
JP2016145125A (en) * 2015-02-06 2016-08-12 新日鐵住金株式会社 Slag product raw material and manufacturing method therefor
CN111960703A (en) * 2020-08-24 2020-11-20 武汉武新新型建材股份有限公司 Preparation process of modified steel slag micro powder, and modified steel slag micro powder and concrete prepared by preparation process
CN113151638A (en) * 2021-01-04 2021-07-23 湖南紫荆新材料科技有限公司 Composite molten steel purifying agent and preparation method thereof
CN113578914A (en) * 2021-06-02 2021-11-02 长安大学 Steel slag strengthening treatment method integrating physicochemical reaction
CN113718109B (en) * 2021-09-01 2022-10-18 兰州有色冶金设计研究院有限公司 Method for determining slag form of electronic waste smelted in molten pool and slag form
CN113718109A (en) * 2021-09-01 2021-11-30 兰州有色冶金设计研究院有限公司 Method for determining slag form of electronic waste smelted in molten pool and slag form
CN113953076A (en) * 2021-09-03 2022-01-21 福建省建筑科学研究院有限责任公司 Method for improving grinding efficiency and activity of nickel alloy refining slag of AOD furnace
CN113953076B (en) * 2021-09-03 2022-10-28 福建省建筑科学研究院有限责任公司 Method for improving grinding efficiency and activity of nickel alloy refining slag of AOD furnace
CN113735611A (en) * 2021-09-26 2021-12-03 北京科技大学 Method for preparing low-shrinkage porous ceramic by high-temperature self-foaming of aluminum ash
CN114058744A (en) * 2021-10-20 2022-02-18 首钢集团有限公司 Method for modifying slag
CN114163147A (en) * 2021-11-24 2022-03-11 江苏科技大学 Method for reducing free calcium oxide in steel slag by using nickel-iron slag and application thereof
CN114044685A (en) * 2022-01-12 2022-02-15 北京高能时代环境技术股份有限公司 Method for producing high-aluminum inorganic material by using aluminum ash based on pelletizing method
CN114455861A (en) * 2022-03-02 2022-05-10 北京科技大学 Modified AOD slag, preparation method and application thereof, and building material
CN114606379A (en) * 2022-03-04 2022-06-10 中南大学 Smelting method of high-phosphorus iron ore
CN114606379B (en) * 2022-03-04 2023-07-18 中南大学 Smelting method of high-phosphorus iron ore

Also Published As

Publication number Publication date
JP4351490B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4351490B2 (en) Method for modifying steelmaking slag and modified steelmaking slag
Murphy et al. Enhancement of the cementitious properties of steelmaking slag
El-Mahllawy Characteristics of acid resisting bricks made from quarry residues and waste steel slag
US4124404A (en) Steel slag cement and method for manufacturing same
JP4571818B2 (en) Method for reforming steelmaking slag
JP5800387B2 (en) Soil improvement material
KR100806173B1 (en) Method for oxidizing treatment of steel plant slag to obtain cement-based materials
JP4033894B2 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
JP3965139B2 (en) Method for reforming steelmaking slag
RU2278834C2 (en) Method of oxidative treatment of the slag wastes of the steel work, ld oxide scale produced by this method and the material produced with its utilization
JP3091177B2 (en) Steelmaking reduction slag reforming method
JP2005132721A (en) Method for manufacturing stabilizer for steelmaking slag containing fluorine
JP5205262B2 (en) Method for converting basic oxygen furnace slag into construction material
Brandaleze et al. Treatments and recycling of metallurgical slags
KR101949165B1 (en) Method for processing steel slag and hydraulic mineral binder
KR102221329B1 (en) Supplimentary cementitious material manufactured by using the secondary slag generated from valuable metal recovery process for Cupper slag and Zinc slag
JP7131534B2 (en) Aggregate manufacturing method, coarse aggregate and fine aggregate
JP7095674B2 (en) How to make concrete
WO2024123281A1 (en) A concrete comprising dusts and/or ashes obtained from ferrochrome chimneys as a component
JP3674365B2 (en) Method for stabilizing steelmaking slag containing fluorine
Pribulová et al. Utilization of slags from foundry process
RU2112070C1 (en) Method of production of ferrovanadium
Ylipekkala Quality management of chromium containing steel slags from melt phase to cooling
JPH11139854A (en) Admixture for mortar or concrete and mortar or concrete
JP3598843B2 (en) Method for reducing unslagged CaO and MgO in slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4351490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees