JP2004142321A - Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same - Google Patents

Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same Download PDF

Info

Publication number
JP2004142321A
JP2004142321A JP2002311179A JP2002311179A JP2004142321A JP 2004142321 A JP2004142321 A JP 2004142321A JP 2002311179 A JP2002311179 A JP 2002311179A JP 2002311179 A JP2002311179 A JP 2002311179A JP 2004142321 A JP2004142321 A JP 2004142321A
Authority
JP
Japan
Prior art keywords
layer
film
thermal transfer
transfer recording
polypropylene film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002311179A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
田中 茂
Mihoko Makino
牧野 美保子
Masatoshi Okura
大倉 正寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002311179A priority Critical patent/JP2004142321A/en
Publication of JP2004142321A publication Critical patent/JP2004142321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented polypropylene film with a low specific gravity, a high cushionability, a high optical density OD and an improved anti-creasing property on bending. <P>SOLUTION: A laminated film with a density of 0.5-0.85, an optical density OD of 0.4 or more and a cushion ratio of 10% or more comprises (A) a cell containing polypropylene film layer containing an amorphous resin with a glass transition temperature(Tg) of 100°C or more and β crystal(or crystalloid) ratio of 20% or more and (B) a layer containing non-nucleous cells. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、感熱転写記録用二軸延伸ポリプロピレンフィルム及びそれを用いた感熱転写記録用受容シートに関するものである。更に詳しく述べれば、本発明は、感熱転写記録用の受容シート基材として高感度で、良好な耐折れじわ性を示し、更には高加工性を発現し、感熱転写記録用の受容シート基材として最適な感熱転写記録用二軸延伸ポリプロピレンフィルムおよびそれを用いた受容シートに関するものである。
【0002】
【従来の技術】
ハードコピー技術における記録方法の一つとして、ノンインパクト、操作、保守が容易、低コストおよび小型化が可能等の特徴を持つ感熱転写記録方式が注目されている。この感熱転写記録方式とは、色材含有層であるインキ層を有する転写シート(インキリボン)と受容シートを重ね合わせ、インキリボン側からのサーマルヘッドの加熱に応じて、溶融または昇華して移行する色材含有成分または色材を、受容シート上に微細な網点(ドット)状に転写して印字する方式である。従来、このような感熱転写記録方式に用いられる受容シート基材として、ポリプロピレン中に無機系微粒子やポリエステル系樹脂の非相溶樹脂を含有せしめた白色フィルムが適用されてきた。
【0003】
その従来の白色フィルムの技術として、結晶性ポリプロピレン65〜93重量%と、該結晶性ポリプロピレンに非相溶性で熱変形温度が120℃以上の熱可塑性樹脂5〜20重量%と、該結晶性ポリプロピレンに相溶性で融解温度が140℃以下の樹脂2〜15重量%とからなり、フィルム厚み30μmにおける光学濃度が0.35以上であることを特徴とする白色二軸延伸ポリオレフィンフィルムがある(例えば、特許文献1参照)。また、内部に層状の気孔層が存在する芯材層の表面に気泡を含まないスキン層を有したフィルムがあり(例えば、特許文献2参照)。内部に層状の気泡層が存在する芯材層の表面に、マトリックス材とは非相溶性樹脂を核とした気泡を含くむスキン層を有したフィルムがある(例えば、特許文献3参照)。また、情報記録紙の耐折れじわ性を改善する目的に、ポリプロピレンに非相溶性樹脂性を混合して二軸延伸したポリプロピレン系空洞含有フィルムの気泡形状を規定したものがある(例えば、特許文献4参照)。さらに、β晶核剤を含有した結晶性ポリプロピレンに非相溶性で、溶融結晶化温度が140℃以上の熱可塑性樹脂であるポリ−4−メチルペンテン−1及びポリブチレンテレフタレートを添加して二軸延伸した白色不透明ポリオレフィンフィルムがある(例えば、特許文献5参照)。
【0004】
上記の気泡含有白色フィルムを用いて、色素画像受容層を上方に保有する基材を含むサーマルダイトランスファーに用いる受容素子において、前記基材が支持体に積層された複合材料フィルムを含み、前記色素画像受容層が基材の複合材料フィルム側にあり、そして前記複合材料フィルムがミクロボイドを保有する熱可塑性コア層および少なくとも1層の実質的にボイドを含まない熱可塑性表面層を含み、かつ前記コア層および表面層の同時押出しとそれに続く二軸延伸によって製造されたものであることを特徴とするサーマルダイトランスファーに用いる受容素子がある(例えば、特許文献6参照)。
【0005】
【特許文献1】特許第2800926号公報
【0006】
【特許文献2】特公平3−24334号公報
【0007】
【特許文献3】特許第3108473号公報
【0008】
【特許文献4】特開平11−343357号公報
【0009】
【特許文献5】特許第2917331号公報
【0010】
【特許文献6】特許第2735989号公報
【0011】
【発明が解決しようとする課題】
近年、印刷時や加工時の熱負荷が大きくなり、装置の小型化、加工速度の高速化に伴い、加工条件が過酷になることなど、印刷基材の使用される環境がより厳しいものになりつつある。これらの印刷基材使用環境の変化を背景として、基材に適用される白色フィルムには、感度、光沢を満足しながら、機械強度、耐折れしわ性に例示される優れた加工適性、印刷特性が強く求められている。しかしながら、特許文献1〜6のフィルムでは、感度、光沢と機械強度、耐折れじわの相反する特性を両立するのは困難であった。例えば、特許文献1と4はフィルム厚み方向の気泡の均一性に劣り、感度にむらを生じ、高感度の感熱転写用記録紙が得られ難く、特許文献2と3ではフィルムの気泡の均一性と、耐折れじわ性に劣り、また、特許文献3では内層及びスキン層に気泡を有しているが、気泡の均一性に劣り、感熱転写記録用の受容シートとして感度のばらつきが大きく、また、スキン層に非相溶性樹脂性を核とする気泡を有するために、製膜工程及び感熱転写用記録紙製造工程にて気泡の核が脱落して工程を汚す欠点があった。特許文献5では、β晶核剤を添加したポリプロピレンを用いているが、非相溶性樹脂性のTgが100℃以下と低いために、二軸延伸工程で気泡が消失して気泡の均一性に劣り、クッション率が低いために感度が不十分となる問題があった。また、特許文献3以外は表層に気泡を含有していないために、サーマルヘッドからの熱の断熱性に劣り、高感度の感熱転写用記録紙が得られ難いという問題があった。
【0012】
【課題を解決するための手段】
本発明は、上記問題点を解決する為に、主として、以下の構成を有する。すなわち、本発明の感熱転写記録用二軸延伸ポリプロピレンは、比重が0.5〜0.85、光学濃度ODが0.4以上、クッション率が10%以上の積層フィルムであって、結晶性ポリプロピレンと、ガラス転移点(Tg)100℃以上の非晶性樹脂を含有しβ晶比率が20%以上である気泡含有ポリプロピレンフィルム層(A)と、無核の気泡を含有する層(B)からなることを特徴とする感熱転写記録用二軸延伸ポリプロピレンフィルム、およびそれを用いてなる感熱転写記録用受容シートである。
【0013】
【発明の実施の形態】
本発明の感熱転写記録用二軸延伸ポリプロピレンフィルムは、基本的に結晶性ポリプロピレンを主体として構成されている。
【0014】
本発明における層(A)に用いるポリプロピレン(以下、PPと略称することもある)の極限粘度[η]は1.2〜3.5dl/g、好ましくは1.5〜2.5dl/gであることが二軸延伸性が良好となり好ましい。また、アイソタクチックインデックス(II)は90%以上、好ましくは95%以上であることが機械強度、耐折れじわ性が良好となるので好ましい。メルトフローレート(MFR)は1.0〜20g/10分(230℃、2.16kg)の範囲であることが、押出成形性及びボイド形成性の点で好ましい。
【0015】
ポリプロピレン以外の第2成分、例えばエチレン、ブテン、ヘキセンなどを少量ランダムまたはブロックに共重合させてもよく、特にエチレンを共重合させるとフィルム内のボイドの均一性が向上して好ましい。
【0016】
また、公知の添加剤、例えば酸化防止剤、熱安定剤、帯電防止剤、滑り剤、ブロッキング防止剤、充填剤、白色剤などを含有させてもよい。
【0017】
本発明の積層フィルムの層(A)のβ晶比率は、20%以上であることが必要であり、好ましく30%以上、より好ましくは40%以上である。β晶比率が20%未満であると、層(A)中の気泡形成が不十分であり、フィルムの厚み方向に均一な気泡が得られ難いので好ましくない。β晶比率の上限は、本発明の効果を奏する限りにおいて特に限定されるものではないが、気泡形成向上による感度と耐折れじわ性の両立から95%以下とすることが好ましい。
【0018】
ここで、本発明の層(A)中のβ晶比率とは、層(A)を構成する二軸延伸ポリプロピレンフィルムを走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で250℃まで昇温させ、その後5分間保持した後に20℃/分の冷却速度で20℃まで冷却し、ついで、再度20℃/分の速度で昇温していった際に、145℃〜157℃間にピークを持つポリプロピレン由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)と、160℃以上にピークを持つβ晶以外のポリプロピレン由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)から、次式を用いて求めたものである。
【0019】
β晶比率(%)= {ΔHu−1/(ΔHu−1+ΔHu−2)}×100
層(A)のβ晶比率を20%以上にするには、層(A)に用いるポリプロピレンにβ晶核剤を添加するのが好ましく、添加量はβ晶核剤の効果によるが、0.001重量%〜0.5重量%の範囲が好ましい。添加量が0.001重量%未満ではβ晶比率を20%以上とするのが難しく、0.5重量%以上からは効果が平衡となる。
【0020】
β晶核剤としては、例えば、キナクリドン系、2塩基酸脂肪族系、周期律表第2族アルカリ土類金属の酸化物、アニリン系誘導体、アミド系化合物などのが挙げられ、これらの少なくとも1種以上の混合物である。また、β晶核剤添加PPとして、SUNOCO社製“Bepol”がある。
【0021】
本発明の層(A)に含有されるガラス転移点(Tg)100℃以上の非晶性樹脂は、層(A)の気泡形成材であり気泡の核となるものである。該非晶性樹脂のガラス転移点(Tg)は100℃以上であることが必要であり、好ましくは120℃以上である。本発明のフィルムは特に感熱転写記録用として用いられ、高感度を得るために、低比重で、光学濃度ODが高く、さらに表面平滑性、高光沢度のフィルムが求められることから、二軸延伸フィルムとする必要があるが、二軸延伸工程の縦延伸条件は120℃で3倍以上延伸を行い、横延伸条件は150℃以上で6倍以上の延伸がなされるために、その条件での気泡の核の熱変形が小さく、生成した気泡がつぶれないことが重要である。非晶性樹脂のガラス転移点(Tg)が100℃未満では、二軸延伸工程で、マトリックスのPPと同様に非晶性樹脂が変形して、PPとの界面剥離が十分に行われず、気泡生成が不十分となり、必要とされる比重、光学濃度、クッション率が得られ難い。ガラス転移点(Tg)の上限は、本発明の効果を奏する限りにおいて特に限定されるものではないが、溶融押出性とシート化の容易性から200℃以下とすることが好ましい。
【0022】
また、気泡形成材は非晶性樹脂であることが、PP中に微分散して押出から二軸延伸工程において、結晶性の高いPPとの界面剥離が起こりやすく、微細で均一な気泡を生成する効果が高いので必要である。
【0023】
本発明において、層(A)の気泡形成にはガラス転移点(Tg)100℃以上の非晶性樹脂を含有し、かつ層(A)のβ晶比率が20%以上であることが必須であり、ガラス転移点(Tg)100℃以上の非晶性樹脂添加のみ、または、層(A)のβ晶比率が20%以上であることのみでは微細で均一な気泡生成が得られ難く、両条件を同時に満たすことで分散径が小さくなり延伸により発生する気泡をより微細化でき、結果的にフィルムの光学濃度やクッション率を向上させ、さらに製膜性を向上させることができる。
【0024】
ガラス転移点(Tg)100℃以上の非晶性樹脂であれば特に限定はされないが、例えば、環状ポリオレフィン、ポリカーボネート、ポリスチレン、液晶樹脂(LCP)などが挙げられる。この中で、取り扱い性、製造コスト(原料価格)、PPへの分散性等からポリカーボネート(以下PCと略称することがある)が好ましい。該PCの重量平均分子量(Mw)は、30000以下、好ましくは20000以下であり、MFRは10以上(300℃、1.2kg)、好ましくは20以上であることが、PPへの分散性が良好となり、気泡も均一となるので好ましい。該PCは芳香族系、脂肪族系、直鎖状系のものを用いることができ、また、他の樹脂、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンなどを共重合したものを用いてもよい。
【0025】
本発明の層(A)中の ガラス転移点(Tg)100℃以上の非晶性樹脂の含有量は、5〜30重量%であることが好ましい。含有量が5重量%以上であれば、気泡形成が十分となり比重、クッション率が適度な範囲となり、光学濃度も高くなるので好ましい。30重量%以下であれば、押出性が安定となり、また、フィルム中に過ボイドが生成して製膜性安定性が悪化することもなく好ましい。
【0026】
次に本発明の積層フィルムは、該層(A)と、無核の気泡を含有した層(B)からなることが必要である。B層を積層しない層(A)の単膜では、表面の凹凸が大きくてサーマルヘッドとの密着性が低下して感熱転写記録用の受容シート基材として感度が低下するので好ましくない。また、層(B)は無核の気泡を含有していることが、本発明の課題である感熱転写用記録紙の感度向上として、サーマルヘッドとの密着がよく、また熱の放散を抑制して転写シートからの転写性(感度)をよくするために必要である。層(B)の気泡が、主に核を含有している気泡からなると、サーマルヘッドとの密着が悪く、また熱を放散して転写シートからの転写性(感度)が低下するので好ましくない。
【0027】
ここで、無核の気泡とは、気泡内に核を有しないものをいい、具体的には、フィルムの断面(厚み方向)を走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)などによって観察した場合に、気泡部分の断面を形成する境界線の内側に、気泡形成の為の粒子や非相溶性樹脂が観察されないものをいう。
【0028】
また、層(B)における、無核の気泡の気泡面積の割合は、層(B)の気泡全体の気泡面積の5割以上が好ましく、より好ましくは6割以上である。無核の気泡の気泡面積の割合の上限は、本発明の効果を奏する限りにおいて特に限定されるものではないが、感熱転写記録用受容シートを作成する際のアンカーコート層や受容層のコートなどの工程において、熱や圧力による気泡のつぶれを防ぐために、9割以下とすることが好ましい。
層(B)に無核の気泡を形成する為には、β晶比率が20%以上、好ましくは30%以上、より好ましくは50%以上のPPを含有することが好ましい。含有されるPPのβ晶比率が20%未満では、無核気泡の生成率が低く、二軸延伸工程で気泡が消失する場合がある。β晶比率が20%以上のPPの含有量は70重量%以上、好ましくは80重量%以上、より好ましくは90重量%以上である。該PPの含有量が70重量%未満では、無核気泡の生成率が低くなるので、好ましくない。
【0029】
ここで、β晶比率とは、PPを走査型差動熱量計(DSC)を用いて、JISK−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で250℃まで昇温させ、その後5分間保持した後に20℃/分の冷却速度で20℃まで冷却し、ついで、再度20℃/分の速度で昇温していった際に、145℃〜157℃間にピークを持つポリプロピレン由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)と、160℃以上にピークを持つβ晶以外のポリプロピレン由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)から、次式を用いて求めたものである。
【0030】
β晶比率(%)= {ΔHu−1/(ΔHu−1+ΔHu−2)}×100
含有されるPPのβ晶比率を20%にするには、β晶核剤を添加するのが好ましく、その添加量はβ晶核剤の効果によるが、0.001重量%〜0.5重量%の範囲が好ましい。添加量が0.001重量%未満ではβ晶比率を20%以上とすることが難しく、0.5重量%以上からは効果が平衡となる。
【0031】
β晶核剤としては、例えば、キナクリドン系、2塩基酸脂肪族系、周期律表第2族アルカリ土類金属の酸化物、アニリン系誘導体、アミド系化合物などが挙げられ、少なくともこれらの1種以上の混合物である。
【0032】
さらに、β晶核剤の効果を高め、層(B)のβ晶比率を高めるには、溶融押出温度240℃〜300℃で押出してシート化後、縦延伸の予熱までの間に110℃〜140℃の温度で1秒以上保持することが好ましい。
【0033】
層(B)における無核の気泡の気泡面積の割合がかかる好ましい範囲内であり、気泡形成の為の粒子や非相溶性樹脂などの気泡形成材を核として形成されたものが少ないと、層(B)表面の凹凸が小さくなり、本発明の積層フィルムとサーマルヘッドとの密着性が向上して感熱転写記録用の受容シート基材として感度が上がるので好ましい。さらに、製膜工程及び感熱転写用記録紙製造工程にて気泡の核が脱落することもなく工程の汚れ防止となり好ましい。
【0034】
ここで、気泡面積とは、一定範囲のフィルムの断面(厚み方向)を走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)などによって観察したとき、気泡部分の断面を形成する境界線に囲まれる面積の総和をいう。但し、境界線の内側に、核(気泡形成の為の粒子や非相溶性樹脂)を有する場合には、その部分の面積の総和を差し引いたものをいう。
【0035】
層(B)の気泡面積は、層(A)の気泡面積の1/10未満であることが好ましい。層(B)の気泡面積が、かかる好ましい範囲内であれば積層フィルムの耐摩耗性が良好となり、劈開するおそれがないので好ましい。。
【0036】
本発明の層(B)は、PPを主成分とすることが好ましく、その極限粘度[η]は1.2〜3.5dl/g、好ましくは1.5〜2.5dl/gであることが気泡形成が良好となり好ましい。また、アイソタクチックインデックス(II)は90%以上、好ましくは95%以上であることが表面光沢度が高くなるので好ましい。メルトフローレート(MFR)は1.0〜20g/10分(230℃、2.16kg)の範囲であることが、層(A)との共押出成形性及びボイド形成性の点で好ましい。
【0037】
PP以外の第2成分、例えばエチレン、ブテン、ヘキセンなどを少量ランダムまたはブロックに共重合させてもよく、特にエチレンを共重合させるとフィルム内のボイドの均一性が向上して好ましい。
【0038】
また、公知の添加剤、例えば酸化防止剤、熱安定剤、帯電防止剤、滑り剤、ブロッキング防止剤、充填剤、白色剤などを含有させてもよい。
【0039】
また、層(B)には、易滑剤として上記層(A)と同様のTgが100℃以上の非晶性樹脂、無機粒子、有機粒子の少なくとも1種以上を用いることができる。ただし、この時の添加量は5重量%以下であることが好ましい。添加量が5重量%を越えると、易滑剤が気泡の核となる場合があり、製膜工程、感熱転写用記録紙製造工程等で、樹脂や粒子の脱落が起こり、工程を汚す場合がある。
【0040】
無機粒子としては、例えば湿式および乾式シリカ、コロイダルシリカ、珪酸アルミ、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、アルミナ、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛(亜鉛華)、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、塩基性炭酸鉛(鉛白)、硫酸バリウム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウムおよびフッ化カルシウム等を用いることができる。
【0041】
有機粒子とは、高分子化合物を架橋剤を用いて架橋した粒子である。例えば、ポリメトキシシラン系化合物の架橋粒子、ポリスチレン系化合物の架橋粒子、アクリル系化合物の架橋粒子、ポリウレタン系化合物の架橋粒子、ポリエステル系化合物の架橋粒子、フッソ系化合物の架橋粒子、もしくはこれらの混合物を挙げることができる。
【0042】
無機粒子および架橋有機粒子の平均粒径は0.5〜6μmの範囲が好ましい。平均粒径が1μm未満では易滑効果が低く、6μmを越えると粒子の脱落やフィルム同士を擦った時にフィルム表面に傷がつきやすくなるので好ましくない。
【0043】
また、本発明のフィルムの片面の層(B)の積層厚みは2μm以上であり、層(A)の両面に積層されていることが、製膜工程及び感熱転写用記録紙製造工程での走行性がよく、層(A)からの気泡形成材の脱落を防止して工程汚れを防止できるので、好ましい。層(A)と層(B)の厚み構成差(層(A):層(B))は、2:1〜50:1であることが、感度、光沢度と耐折れしわ性の両立ができて好ましい。
【0044】
本発明では、積層フィルムの比重が0.5〜0.85の範囲であることが必要であり、好ましくは0.6〜0.8の範囲である。比重が0.5より小さい場合、加工性の低下、耐折れじわ性の悪化を引き起こすことがある。また、比重が0.85越えると断熱性が低下して感度が低下するので好ましくない。
【0045】
また、本発明では、積層フィルムの光学濃度ODが0.4以上であることが必要であり、好ましくは0.45以上である。光学濃度ODが0.4未満では印字画像が暗い印象となるので好ましくない。尚、光学濃度ODの上限は、本発明の効果を奏する限りにおいて特に限定されるものではないが、フィルム厚みによって変わるものであり、本発明の構成では、1.0程度であることが好ましい。
【0046】
さらに、本発明の積層フィルムは、クッション率が10%以上であることが必要であり、12%以上がより好ましい。クッション率が10%未満ではサーマルヘッドとの密着性が低下して熱の放熱が起こり、転写シートからの転写性が低下(感度低下)するので好ましくない。尚、クッション率の上限は、本発明の効果を奏する限りにおいて特に限定されるものではないが、耐折れじわ性ととの関係から、本発明の構成では30%以下とすることが好ましい。
【0047】
本発明の積層フィルムのβ晶比率は10%以上、好ましくは20%以上である。フィルムのβ晶比率が10%未満では、フィルム内部の気泡形状が不均一となり、感度がばらつくので好ましくない。積層フィルムのβ晶比率の上限は、本発明の効果を奏する限りにおいて特に限定されるものではないが、表面平滑性と光沢度の観点から90%以下とすることが好ましい。
【0048】
ここで、本発明の積層フィルムのβ晶比率とは、積層フィルムを構成する二軸延伸ポリプロピレンフィルムを走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で250℃まで昇温させ、その後5分間保持した後に20℃/分の冷却速度で20℃まで冷却し、ついで、再度20℃/分の速度で昇温していった際に、145℃〜157℃間にピークを持つポリプロピレン由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)と、160℃以上にピークを持つβ晶以外のポリプロピレン由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)から、次式を用いて求めたものである。
【0049】
β晶比率(%)= {ΔHu−1/(ΔHu−1+ΔHu−2)}×100
また、層(B)の表面光沢度は50%以上であることが、転写された印字や画像が鮮明となり好ましく、70%以上がより好ましい。表面光沢度が50%未満では転写された印字や画像が鮮明性に劣るので好ましくない。
【0050】
本発明は、気泡含有ポリプロピレンフィルム層(A)の少なくとも片面に、無核気泡を含有する層(B)を有する2層以上の積層構成とするのが好ましい。層(A)における気泡は、微細な気泡であることが好ましい。内部に微細な気泡を含有させることにより、感熱転写記録時のサーマルヘッドの加熱に対する断熱効果が得られ、印字部分に効率よく伝熱することが可能となる。さらに、層(B)に気泡を含有させ、クッション性の向上によりサーマルヘッドと印字面との密着性が高められ、印字部分への伝熱がより均一かつより高効率、高感度となるのである。本発明における各々の気泡の断面積は、1〜25μmであるものが好ましく、より好ましくは1.5〜20μm、さらに2〜15μmであることが好ましい。
【0051】
また、本発明の積層フィルムを感熱転写記録用の受容シート基材として用いる際には、単独で用いても、他の素材と貼合わせて用いてもよい。該素材としては、例えば普通紙、上質紙、中質紙、コート紙、アート紙、キャストコート紙、樹脂含浸紙、エマルジョン含浸紙、ラテックス含浸紙、合成樹脂内添紙、グラシン紙、ラミネート紙などの紙、合成紙、不織布、あるいは他種フィルム等を用いることができる。ただし、本発明のフィルムを他の素材と貼合わせる場合、受容層を設ける面と反対側の面に貼合わせることが好ましい。
【0052】
本発明の積層フィルムの層(B)が受容層塗布面となるように上記他の素材と貼合わせ、層(B)に受容層塗布後の表面光沢度は、60%以上であることが、転写された印字や画像が鮮明となり好ましく、80%以上がより好ましい。
【0053】
本発明の積層フィルムの厚みは、10〜100μmが好ましく、より好ましくは20〜80μmの範囲にあることが、感度と耐折れしわ性の両立の点から好ましい。また、本発明の積層フィルムを他の素材と貼合わせる場合には、取扱性の点からその厚みの上限は80μm以下が好ましく、より好ましくは50μm以下である。
【0054】
次に、本発明の感熱転写記録用二軸延伸ポリプロピレンフィルムの製造方法について、その一例を説明するが、本発明は、かかる例のみに限定されるものではない。
【0055】
押出機(a)と押出機(b)を有する複合製膜装置において、気泡含有層(A)を形成するため、結晶性ポリプロピレンに、β晶核剤又はβ晶比率が80%以上の結晶性ポリプロピレンと、ガラス転移点(Tg)100℃以上の非晶性樹脂を添加混合して、これを260〜300℃に加熱された押出機(a)に供給し、溶融してTダイ複合口金内に導入する。また、非晶性樹脂の添加は、予めマスターチップとしたものを使用してもよい。一方、無核気泡含有層(B)を積層するため、β晶比率が20%以上の結晶性ポリプロピレンを70重量%以上、好ましくは95重量%以上を供給する。この原料には、必要に応じて易滑剤として、層(A)と同様のTgが100℃以上の非晶性樹脂、無機粒子、有機粒子の少なくとも1種以上を5重量%以下に添加せしめてもよい。次に、原料を260〜300℃に加熱された押出機(b)に供給し、同様に溶融してTダイ複合口金内に導入し、押出機(b)のポリマーが押出機(a)のポリマーの表層(片面)あるいは両表層(両面)にくるように積層してシート状に共押出成形し、溶融積層シートを得る。
【0056】
この溶融積層シートを、表面温度30〜90℃に冷却されたドラム上で密着冷却固化し、未延伸積層フィルムを作製する。該未延伸積層フィルムを120〜180℃に加熱したロール群またはオーブンに導き、フィルム温度を120℃〜160℃にして、長手方向(縦方向、すなわちフィルムの進行方向)に3〜7倍延伸し、30℃〜100℃のロール群で冷却する。
【0057】
続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、150〜190℃に加熱した雰囲気中(フィルム温度:150℃〜165℃)で長手方向に垂直な方向(横方向)に5〜12倍に延伸する。その面積倍率(縦延伸倍率×横延伸倍率)は15倍〜84倍、製膜安定性から30倍〜50倍であることが好ましい。面積倍率が15倍未満であると得られるフィルムの気泡形成が不十分となり、逆に面積倍率が84倍を超えると延伸時に破れを生じ易くなる傾向がある。
【0058】
このようにして得られた二軸延伸ポリプロピレンフィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、引き続きテンター内にて150〜170℃で1〜30秒間の熱処理を行ない、均一に徐冷後、室温まで冷却して巻き取ることにより、本発明の白色積層ポリエステルフィルムを得ることができる。なお、上記熱処理工程中では、必要に応じて横方向あるいは縦方向に3〜12%の弛緩処理を施してもよい。また、二軸延伸は逐次延伸あるいは同時二軸延伸のいずれでもよく、また二軸延伸後に縦、横いずれかの方向に再延伸してもよい。このようにして得られた本発明の二軸延伸ポリプロピレンフィルムの表面には、受容層の塗布または他基材と貼り合わすために、空気中または窒素ガス、炭酸ガスの1種以上の雰囲気中でコロナ放電処理を行い、表面の濡れ張力を35mN/m以上にして巻き取る。
【0059】
[特性の測定方法および評価方法]
本発明の特性値は、次の評価方法、評価基準により求められる。
【0060】
(1)極限粘度[η]
試料0.1gを135℃のテトラリン100mlに完全に溶解させ、この溶液を135℃の恒温槽中で粘度計で測定して、比粘度Sにより次式に従って極限粘度を求める。単位はdl/gとする。
[η]=S/0.1×(1+0.22×S)
(2)アイソタクチックインデックス(II)沸騰n−ヘプタン抽出残分
アイソタクチックインデックス(II)は、沸騰n−ヘプタン抽出残分から求める。試料を沸騰n−ヘプタンで一定時間抽出を行い、抽出されない部分の重量(%)を求めてアイソタクチックインデックスを算出する。
【0061】
詳しくは円筒濾紙を110±5℃で2時間乾燥し、恒温恒湿の室内で2時間以上放置してから、円筒濾紙中に試料(粉体またはフレーク状)8〜10gを入れ、秤量カップ、ピンセットを用いて精秤する。
【0062】
これをヘプタン約80ccの入った抽出器の上部にセットし、抽出器と冷却器を組み立てる。これをオイルバスまたは電機ヒーターで加熱し、12時間抽出する。加熱は冷却器からの滴下数が1分間130滴以上であるように調節する。抽出残分の入った円筒濾紙を取り出し、真空乾燥器にいれて80℃、100mmHg以下の真空度で5時間乾燥する。乾燥後恒温恒湿中に2時間放置した後精秤し、下記式で算出する。
【0063】
アイソタクチックインデックス(II)(%)=(P/Po)×100
但し、Poは抽出前の試料重量(g),Pは抽出後の試料重量(g)である。
【0064】
(3)MFR(メルトフローレート)
結晶性ポリプロピレンの流れ特性の尺度として、JIS K 7210の条件14に従って測定する(230℃、2.16kg)。また、エチレン系樹脂の流れ特性の尺度として、JIS K 7210の条件4に従って測定する(190℃、2.16kg)。ポリカーボネートはJIS K 7210の条件99に従って測定する(300℃、1.2kg)。
【0065】
(4)β晶比率
ポリプロピレンフィルムを走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で250℃まで昇温させ、その後5分間保持した後に20℃/分の冷却速度で20℃まで冷却する。ついで、再度20℃/分の速度で昇温していった際に、145℃〜157℃間にピークを持つポリプロピレン由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)と、160℃以上にピークを持つβ晶以外のポリプロピレン由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)から次式で求める。なお、層(A)と層(B)のβ晶比率を区別してみるときは、SEMによる断面観察を行い、厚み構成を確認した後に、層(B)を剥離して各々について融解ピークを測定する。
【0066】
β晶比率(%)= {ΔHu−1/(ΔHu−1+ΔHu−2)}×100
(5)ガラス転移点Tg
走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で昇温させていった際に、二次転移に伴う比熱の変化をガラス転移点温度(Tg)として求めた。また、フィルム中の非晶性樹脂のTgは、主原料のPPのTgが0℃以下であることから、0℃を越えた二次転移に伴う比熱の変化を非晶性樹脂のTgとした。
【0067】
(6)フィルム厚み
ダイヤルゲージ式厚み計(JIS B−7509、測定子5mmφ平型)を用いて測定した。
【0068】
(7)フィルム内部の気泡の有無、および気泡内の核の有無
フィルムの断面を、走査型電子顕微鏡S−2100A形((株)日立製作所製)を用いて500〜10,000倍に拡大観察して撮影した断面写真を用いて、気泡の有無を調べた。また、断面写真において、気泡の断面を形成する境界線をマーキングして、その内側における気泡形成の為の粒子や非相溶性樹脂の有無を観察することにより、気泡内の核の有無を調べた。
【0069】
(8)フィルムを構成する各層の厚み
フィルムの断面を、走査型電子顕微鏡S−2100A形((株)日立製作所製)を用いて500〜10,000倍に拡大観察して撮影した断面写真を用いて、各層の厚み方向の長さを計測し、拡大倍率から逆算して各層の厚みを求めた。尚、各層の厚みを求めるに当たっては、互いに異なる測定視野から任意に選んだ計5箇所の断面写真計5枚を使用し、それらの平均値として算出した。
【0070】
(9)気泡面積
フィルムの断面を、走査型電子顕微鏡S−2100A形((株)日立製作所製)を用いて500〜10,000倍に拡大観察して撮影した断面写真を用いて、気泡の断面を形成する境界線を全てマーキングし、また、気泡内部に核を有する場合には、核の断面の境界線も全てマーキングし、該マーキング部分をハイビジョン画像解析装置PIAS−IV((株)ピアス製)を用いて画像処理を行うことにより、算出した。尚、気泡面積を求めるに当たっては、互いに異なる測定視野から任意に選んだ計5箇所の断面写真計5を使用し、それの平均値として算出した。
【0071】
(10)比重
フィルムを50mm×60mmの大きさにカットして得た試料サンプルを、高精度電子比重計SD−120L(ミラージュ貿易(株)製)を用い、JIS K−7112のA法(水中置換法)に準じて測定した。なお、測定は温度23℃、相対湿度65%の条件下にて行なった。
【0072】
(11)光学濃度OD
マクベス社製濃度計TD−504を用いて測定した。
【0073】
(12)クッション率
ダイヤルゲージ(三豊製作所社製)に標準測定子(No.900030)を取り付け、ダイヤルゲージスタンド(No.7001DGS−M)に設置する。ダイヤルゲージ押さえ部分に50gと500gの荷重をかけた時のそれぞれのフィルム厚みをd50、d500とするして下記式で求める。
【0074】
クッション率(%)={(d50−d500)/d50}×100
(13)光沢度
フィルム表面の光沢度をJIS Z8741に基づいて、スガ試験機(株)製デジタル変角光沢度計UGV−5Dを用いて。入出角度45°での光沢度として求めた。また、紙とフィルムをラミネートして受容層を塗布した受容シートの光沢度は、受容層を塗布した面の光沢度を測定した。
【0075】
(14)粒子の平均粒径
堀場製作所(株)製の遠心沈降式粒度分布測定装置CAPA−700を用いて測定した。
【0076】
(15)濡れ張力
ホルムアミドとエチレングリコールモノエチルエーテルとの混合液によるJIS K 6768に規定された測定方法に基づいて測定する。
【0077】
(16)耐折れじわ性
白色フィルムの表面(受容層形成面と反対面)に厚さ65μmの粘着剤付き上質紙(コクヨ(株)ワープロ用ラベルシート、タイ−2110−W)に均一に貼り合わせ、折れじわ評価用のシートを作製した。該シートを長さ200mm、幅15mmに切り出し、一端を固定し、200gの重りをワイヤーにて両サイドに繋げた直径5mmの鉄の円芯を軸にフィルム面を内側にして180度折り返しながら残る一端を200mm/秒で引張し、フィルム面上のしわの発生状態を実体顕微鏡で観察し、以下のように判定した。
【0078】
A級:しわの発生が0〜2個/cm
B級:しわの発生が3〜5個/cm
C級:しわの発生が6〜8個/cm
D級:しわの発生が9個以上/cm
とした。A級、B級が実用に供するものである。
【0079】
(17)感度
本発明の白色フィルムを厚さ150μmの紙に貼合せた後、フィルム表面に以下の受容層形成塗液をマイクログラビアコーターにて塗工量が乾燥時で3g/m2となるように塗布し、感熱転写記録用の受容シートを得た。
[受容層形成塗液]
ポリエステル樹脂(東洋紡績(株)製、バイロン200)      20部
シリコーンオイル(信越化学工業(株)製、X−22−3000T)  2部
トルエン                            39部
メチルエチルケトン                       39部
次にカラープリンターとして「Professional Color Point 1835」(セイコー電子工業(株)製)を用い、専用のインキリボンを用いて、該受容シートの受容層形成面にテスト印字を行った。次に、印字したテストパターン10回実施し、下記により判定し、画像再現性について評価した。
【0080】
A級:全て濃度が高く、きれいであり極めて良好。
【0081】
B級:1〜2回、若干濃度が低いか、僅かに「欠け」が見られるものがあるがそれ以外は濃度が高く、きれいであり良好。
【0082】
C級:3〜5回濃度が低いか、「欠け」や「つぶれ」が見られるものがある。
【0083】
D級:6回以上濃度が低いか、「欠け」や「つぶれ」が見られるものがある。
【0084】
【実施例】
本発明を以下の実施例を用いて説明するが、本発明はこれらに限定されるものではない。
実施例1
まず、気泡含有ポリプロピレンフィルム層(A)の樹脂組成として、結晶性PP(極限粘度[η]:2.25dl/g、MFR:3g/10分、II:96%、以下PPと略称する)99.95重量%と、β晶核剤として、2塩基酸脂肪族系のアゼライン酸と、周期律表第2属アルカリ土類金属の酸化物として酸化マグネシウムを1:1の混合比で0.5重量%を添加混合し、二軸押出機に供給して260℃でガット状に押出し、20℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。。次に、上記PP65重量%と、該β晶核剤添加PP20重量%と、ガラス転移点(Tg)150℃以上の非晶性樹脂ポリカーボネート(分子量:15000、MI:65g/分、以下PCと略称する)15重量%を添加混合して、これを280℃に加熱された押出機(A)に供給し、溶融してTダイ複合口金内に導入した。一方、気泡含有層(B)の樹脂組成として、PP(極限粘度[η]:2.2dl/g、MFR:4g/10分、II:96%)98.95重量%と、上記と同様のβ晶核剤を0.05重量%添加混合し、さらに、平均粒径2μmの架橋シリコン粒子を1重量%を添加混合して、二軸押出機に供給して260℃でガット状に押出し、20℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該乾燥PPチップのβ晶比率は80%であった。次に、該チップを260℃に加熱された押出機(B)に供給し、同様に溶融してTダイ複合口金内に導入し、押出機(B)のポリマーが押出機(A)のポリマーの両表層にくるように積層してシート状に共押出成形し、表面温度40℃に冷却されたドラム上で密着冷却固化し、未延伸積層フィルムを作製した。該未延伸積層フィルムを150℃に加熱保持されたオーブンに導いて予熱後、長手方向(縦方向、すなわちフィルムの進行方向、以下MD方向と略称する)に5倍延伸し、30℃の冷却ロールで冷却する。続いて、MD方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、165℃に加熱した雰囲気中でMD方向に垂直な方向(横方向、以下TD方向と略称する)に9倍延伸後(面積倍率:縦延伸倍率×横延伸倍率=45倍)、引き続き二軸延伸ポリプロピレンフィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて160℃で横方向8%の弛緩熱処理を行い、均一に徐冷後、室温まで冷却した。さらに、本発明の白色積層フィルムの表面に、受像層の塗布または他基材と貼り合わすために、片面を空気中でコロナ放電処理を行い表面の濡れ張力を37mN/mにし、もう片方の面を窒素ガス85%、炭酸ガス15%の混合ガスの雰囲気中でコロナ放電処理を行い、表面の濡れ張力を42mN/m以上にして巻き取った。
【0085】
以上にして得られた該積層フィルムの断面をSEMにて拡大観察することにより、層(A)と層(B)の内部に微細な気泡を含有していることを確認した。層(A)の微細な気泡は、マトリックスのPP中に分散せしめられたPCを核として、その周囲に形成されており、長径が延伸方向、短径がフィルム厚み方向の細長い形状であった。また、層(B)には核のない気泡の割合が5割以上であることを確認した。次に、本発明の白色フィルムを厚さ150μmの紙に貼合せた後、フィルム表面に上記の受容層形成塗液をマイクログラビアコーターにて塗工量が乾燥時で3g/m2となるように塗布し、感熱転写記録用の受容シートを得た。かくして得られた二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートの樹脂組成を表1に、特性を表2示した。本発明のフィルムは感熱転写記録用の受容シート基材として優れていることが分かる。
実施例2
気泡含有ポリプロピレンフィルム層(A)の樹脂組成として、PP(極限粘度[η]:2.0l/g、MFR:2g/10分、II:95%)84.98重量%と、β晶核剤として、N、N’−ジシクロヘキシル−2,6−ナフタレンジカルボキサミド0.2重量%を添加混合し、二軸押出機に供給して260℃でガット状に押出し、20℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。。次に、上記PP80重量%と、該β晶核剤添加PP5重量%と、Tgが150℃のPC15重量%を添加混合して用いた以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本発明のフィルムは、感熱転写記録用の受容シート基材として優れていることが分かる。
実施例3
実施例1において、PPを55重量%、β晶核剤添加PPのSUNOCO社製“Bepol”タイプBI−4020−SPを20重量%、PCを25重量%の組成とした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本発明のフィルムは感熱転写記録用の受容シート基材として優れていることが分かる。
実施例4、5
実施例4では(B)の樹脂組成として、実施例1のβ晶核剤添加のPP単体を用い、実施例5では実施例1のβ晶核剤添加PP98重量%に、ポリメチルペンテン樹脂(三井化学(株)製“TPX”MX002、MI=22(260℃、5kg)、以下PMPと略称する)を2重量%とした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本発明のフィルムは、層(B)に核のない気泡の割合を5割以上含有していることを確認した。感熱転写記録用の受容シート基材として優れていることが分かる。
実施例6
実施例1において、PCの代わりにTgが140℃の非晶性樹脂の環状ポリオレフィンの“アペル”APL6015(三井化学(株)製、以下CPOと略称する)を用いた以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本発明のフィルムは、感熱転写記録用の受容シート基材として優れていることが分かる。
実施例7
実施例1において、層(A)組成として、β晶核剤添加PP93重量%、PC7重量%とし、層(A)と層(B)の厚み構成を2/31/2μmとした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本発明のフィルムは、感熱転写記録用の受容シート基材として優れていることが分かる。
比較例1
実施例1において、層(A)組成をβ晶核剤を含有しないPP85重量%、PC15重量%とした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本発明のフィルムは、層(A)にβ晶が存在しないために、層(A)内の気泡にむらが大きく、また、比重が高く、光学濃度ODとクッション率が低いために、感熱転写記録用の受容シート基材として感度に劣っていることが分かる。
比較例2
実施例1において、層(A)のPCの代わりに、Tgが80℃の非晶性樹脂ポリスチレン(以下PSと略称する)を用いた以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本フィルムは特性は表2のとおりであって、比重が高く、光学濃度ODとクッション率が低いために、感熱転写記録用の受容シート基材として感度に劣っていることが分かる。
比較例3
実施例1のPP99.999重量%と、β晶核剤として、γ−キナクリドンを0.001重量%を添加混合し、二軸押出機に供給して260℃でガット状に押出し、20℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。。次に、層(A)樹脂組成として、PP65重量%と、該β晶核剤添加PP20重量%、該実施例5のPMP15重量%を用いた以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本フィルムは特性は表1のとおりであって、層(A)のβ晶比率が20%未満と低く、比重が高く、光学濃度ODとクッション率が低いために、感熱転写記録用の受容シート基材として感度に劣っていることが分かる。
比較例4
実施例1において、PP15重量%、β晶核剤添加のPP50重量%、PCを35重量%とした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本フィルムは特性は表1のとおりであって、比重が低くなりすぎて、折れじわが発生し、感熱転写記録用の受容シート基材として劣っており、また、製膜性が不安定で生産性に劣るものであった。
比較例5、6
比較例5では、実施例1において層(B)にPP単体を積層し、比較例6では層(B)樹脂組成として、PP90重量%と炭酸カルシウム(CaCO、平均粒径2μm)10重量%をとした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本フィルムは特性は表1のとおりであって、比較例5では層(B)に気泡が存在しないために感熱転写記録用の受容シート基材として感度に劣る。また、比較例6では層(B)の気泡が気泡形成材を核とした気泡であるために、表面凹凸が大きく、サーマルヘッドとの密着性が悪化して感熱転写記録用の受容シート基材として感度に劣るばりではなく、製膜工程及び感熱転写記録用受容シートを製造する際に気泡形成材が脱落して生産性が悪化した。
比較例7
実施例1の層(A)単膜の35μmとした以外は、実施例1と同様に二軸延伸ポリプロピレンフィルム及び感熱転写記録用シートを得た。樹脂組成を表1に、特性を表2示した。本フィルムは特性は表1のとおりであって、層(B)の積層がないために表面凹凸が大きく、サーマルヘッドとの密着性が悪化して感熱転写記録用の受容シート基材として感度に劣るばりではなく、耐折れじわ性に劣り、また、製膜工程及び感熱転写記録用受容シートを製造する際に気泡形成材が脱落して生産性が悪化した。
【0086】
【表1】

Figure 2004142321
【0087】
【表2】
Figure 2004142321
【0088】
【発明の効果】
本発明の感熱転写記録用二軸延伸ポリプロピレンフィルムは、比重が0.5〜0.85、光学濃度ODが0.4以上、クッション率が10%以上の積層フィルムであって、ガラス転移点(Tg)100℃以上の非晶性樹脂を含有しβ晶比率が20%以上の気泡含有ポリプロピレンフィルム層(A)と、無核の気泡を含有する層(B)からなることを特徴とすることから、感度が高く、耐折れじわ性に優れた感熱転写記録用の受容シートとして極めて好適に使用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a biaxially oriented polypropylene film for thermal transfer recording and a receiving sheet for thermal transfer recording using the same. More specifically, the present invention provides a receiving sheet substrate for thermal transfer recording which exhibits high sensitivity as a receiving sheet substrate for thermal transfer recording, exhibits good fold resistance, and exhibits high processability. The present invention relates to a biaxially oriented polypropylene film for thermal transfer recording which is optimal as a material and a receiving sheet using the same.
[0002]
[Prior art]
As one of recording methods in the hard copy technology, a thermal transfer recording method, which has features such as non-impact, easy operation and maintenance, low cost, and downsizing, has been attracting attention. This thermal transfer recording system is a method in which a transfer sheet (ink ribbon) having an ink layer, which is a color material-containing layer, and a receiving sheet are superimposed, and are transferred by melting or sublimation according to the heating of the thermal head from the ink ribbon side. In this method, the color material-containing component or the color material to be transferred is transferred to the receiving sheet in the form of fine halftone dots (dots) and printed. Conventionally, as a receiving sheet substrate used in such a thermal transfer recording system, a white film in which inorganic fine particles and a polyester-based resin incompatible resin are contained in polypropylene has been applied.
[0003]
As the conventional white film technique, 65 to 93% by weight of a crystalline polypropylene, 5 to 20% by weight of a thermoplastic resin incompatible with the crystalline polypropylene and having a heat deformation temperature of 120 ° C. or more, There is a white biaxially stretched polyolefin film comprising 2 to 15% by weight of a resin having a melting temperature of 140 ° C. or less and having an optical density of 0.35 or more at a film thickness of 30 μm (for example, Patent Document 1). Further, there is a film having a skin layer containing no air bubbles on the surface of a core material layer having a layered pore layer inside (for example, see Patent Document 2). There is a film having a skin layer containing air bubbles with a core incompatible with a matrix material on the surface of a core material layer in which a layered air bubble layer is present (for example, see Patent Document 3). Further, for the purpose of improving the fold resistance of information recording paper, there is one in which the bubble shape of a polypropylene-based void-containing film which is biaxially stretched by mixing polypropylene with an incompatible resin is specified (for example, see Patent Reference 4). Furthermore, a thermoplastic resin, poly-4-methylpentene-1 and polybutylene terephthalate, which are incompatible with crystalline polypropylene containing a β crystal nucleating agent and have a melt crystallization temperature of 140 ° C. or higher, is added to form a biaxial mixture. There is a stretched white opaque polyolefin film (for example, see Patent Document 5).
[0004]
The above-described bubble-containing white film, a receiving element used for thermal die transfer including a substrate having a dye image receiving layer thereon, wherein the substrate includes a composite material film laminated on a support, An image receiving layer on the composite film side of the substrate, wherein the composite film comprises a microvoided thermoplastic core layer and at least one substantially void-free thermoplastic surface layer; There is a receiving element used for thermal die transfer characterized by being manufactured by co-extrusion of a layer and a surface layer, followed by biaxial stretching (for example, see Patent Document 6).
[0005]
[Patent Document 1] Japanese Patent No. 2800926
[0006]
[Patent Document 2] Japanese Patent Publication No. 3-24334
[0007]
[Patent Document 3] Japanese Patent No. 3108473
[0008]
[Patent Document 4] JP-A-11-343357
[0009]
[Patent Document 5] Japanese Patent No. 2917331
[0010]
[Patent Document 6] Japanese Patent No. 2735989
[0011]
[Problems to be solved by the invention]
In recent years, the thermal load at the time of printing and processing has increased, and the environment in which the printing base material is used has become more severe, as processing conditions have become more severe with the miniaturization of equipment and higher processing speeds. It is getting. Against the background of these changes in the environment in which the printing substrate is used, the white film applied to the substrate has excellent processing suitability and printing characteristics exemplified by mechanical strength and folding wrinkle resistance while satisfying sensitivity and gloss. Is strongly required. However, in the films of Patent Literatures 1 to 6, it was difficult to achieve the opposite properties of sensitivity, gloss, mechanical strength, and fold resistance. For example, Patent Documents 1 and 4 are inferior in the uniformity of bubbles in the thickness direction of the film, causing unevenness in sensitivity, and it is difficult to obtain recording paper for heat-sensitive transfer with high sensitivity. Patent Documents 2 and 3 disclose uniformity of bubbles in the film. In addition, in Patent Document 3, the inner layer and the skin layer have air bubbles, but the uniformity of the air bubbles is poor, and the sensitivity varies greatly as a receiving sheet for thermal transfer recording. In addition, since the skin layer has air bubbles having nuclei of incompatible resin, the air bubbles nuclei are dropped off in the film forming process and the thermal transfer recording paper manufacturing process, and the process is contaminated. In Patent Literature 5, polypropylene to which a β crystal nucleating agent is added is used. However, since Tg of the incompatible resin is as low as 100 ° C. or less, bubbles disappear in the biaxial stretching step, and the uniformity of bubbles is reduced. There was a problem that the sensitivity was insufficient due to the poor cushion ratio. In addition, since there is no air bubble in the surface layer other than Patent Literature 3, there is a problem that the heat insulating property of heat from the thermal head is inferior, and it is difficult to obtain a recording sheet for heat-sensitive transfer with high sensitivity.
[0012]
[Means for Solving the Problems]
The present invention mainly has the following configuration in order to solve the above problems. That is, the biaxially oriented polypropylene for thermal transfer recording of the present invention is a laminated film having a specific gravity of 0.5 to 0.85, an optical density OD of 0.4 or more, and a cushion ratio of 10% or more, And a bubble-containing polypropylene film layer (A) containing an amorphous resin having a glass transition point (Tg) of 100 ° C. or more and having a β crystal ratio of 20% or more, and a layer (B) containing nucleus-free bubbles. A biaxially stretched polypropylene film for thermal transfer recording, and a receiving sheet for thermal transfer recording using the same.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The biaxially stretched polypropylene film for thermal transfer recording of the present invention is basically composed mainly of crystalline polypropylene.
[0014]
The intrinsic viscosity [η] of the polypropylene (hereinafter sometimes abbreviated as PP) used for the layer (A) in the present invention is 1.2 to 3.5 dl / g, preferably 1.5 to 2.5 dl / g. This is preferable because the biaxial stretchability becomes good. Further, the isotactic index (II) is preferably at least 90%, more preferably at least 95%, since the mechanical strength and the fold resistance are good. The melt flow rate (MFR) is preferably in the range of 1.0 to 20 g / 10 min (230 ° C., 2.16 kg) from the viewpoint of extrudability and void formation.
[0015]
A small amount of a second component other than polypropylene, for example, ethylene, butene, hexene, etc., may be randomly or block-copolymerized. In particular, copolymerization of ethylene is preferable because the uniformity of voids in the film is improved.
[0016]
Further, known additives such as an antioxidant, a heat stabilizer, an antistatic agent, a slipping agent, an antiblocking agent, a filler and a whitening agent may be contained.
[0017]
The β crystal ratio of the layer (A) of the laminated film of the present invention needs to be 20% or more, preferably 30% or more, more preferably 40% or more. When the β crystal ratio is less than 20%, the formation of bubbles in the layer (A) is insufficient, and it is difficult to obtain uniform bubbles in the thickness direction of the film. The upper limit of the β crystal ratio is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 95% or less in order to achieve both sensitivity due to improved bubble formation and anti-folding.
[0018]
Here, the β crystal ratio in the layer (A) of the present invention means that the biaxially stretched polypropylene film constituting the layer (A) is compliant with JIS K-7122 using a scanning differential calorimeter (DSC). In a nitrogen atmosphere, 5 mg of the sample was heated to 250 ° C. at a rate of 20 ° C./min, then kept for 5 minutes, cooled to 20 ° C. at a cooling rate of 20 ° C./min, and then again cooled to 20 ° C./min. When the temperature was raised at a rate of 1 minute, the heat of fusion (ΔHu-1) of the endothermic peak accompanying the melting of the β-crystal derived from polypropylene having a peak between 145 ° C. and 157 ° C., and the peak at 160 ° C. or higher It is determined from the heat of fusion (ΔHu-2) of the endothermic peak accompanying the melting of the polypropylene-derived crystal other than the β crystal using the following equation.
[0019]
β crystal ratio (%) = {ΔHu-1 / (ΔHu-1 + ΔHu-2)} × 100
In order to make the β crystal ratio of the layer (A) 20% or more, it is preferable to add a β crystal nucleating agent to the polypropylene used for the layer (A), and the amount of addition depends on the effect of the β crystal nucleating agent. The range is preferably from 001% to 0.5% by weight. When the amount is less than 0.001% by weight, it is difficult to make the β crystal ratio 20% or more, and when the amount is 0.5% by weight or more, the effects are balanced.
[0020]
Examples of the β crystal nucleating agent include quinacridone-based, dibasic acid-based aliphatic, oxides of alkaline earth metals of Group 2 of the periodic table, aniline-based derivatives, amide-based compounds, and the like. A mixture of more than one species. As a β-crystal nucleating agent-added PP, there is “Bepol” manufactured by SUNOCO.
[0021]
The amorphous resin having a glass transition point (Tg) of 100 ° C. or higher contained in the layer (A) of the present invention is a cell forming material of the layer (A) and serves as a cell nucleus. The glass transition point (Tg) of the amorphous resin needs to be 100 ° C. or higher, preferably 120 ° C. or higher. The film of the present invention is particularly used for thermal transfer recording, and in order to obtain high sensitivity, a film having a low specific gravity, a high optical density OD, a surface smoothness, and a high glossiness is required. Although it is necessary to make a film, the longitudinal stretching conditions in the biaxial stretching step are performed at least three times at 120 ° C., and the transverse stretching conditions are at least six times at 150 ° C. or more. It is important that the thermal deformation of the nucleus of the bubble is small and the generated bubble does not collapse. When the glass transition point (Tg) of the amorphous resin is lower than 100 ° C., the amorphous resin is deformed in the biaxial stretching step in the same manner as the matrix PP, and the interfacial separation with the PP is not sufficiently performed, and the air bubbles are generated. The production is insufficient, and it is difficult to obtain required specific gravity, optical density and cushion rate. The upper limit of the glass transition point (Tg) is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 200 ° C. or lower from the viewpoint of melt extrudability and ease of sheeting.
[0022]
In addition, since the bubble-forming material is an amorphous resin, it is finely dispersed in PP and easily exfoliated at the interface with highly crystalline PP in an extruding to biaxial stretching process, thereby generating fine and uniform bubbles. It is necessary because the effect is high.
[0023]
In the present invention, in order to form bubbles in the layer (A), it is essential that the layer (A) contains an amorphous resin having a glass transition point (Tg) of 100 ° C. or more and the β crystal ratio of the layer (A) is 20% or more. Yes, only by adding an amorphous resin having a glass transition point (Tg) of 100 ° C. or more, or only by having a β crystal ratio of the layer (A) of 20% or more, it is difficult to obtain fine and uniform bubbles. By satisfying the conditions at the same time, the dispersion diameter is reduced, and the bubbles generated by stretching can be made finer. As a result, the optical density and the cushion rate of the film can be improved, and the film forming property can be further improved.
[0024]
There is no particular limitation as long as it is an amorphous resin having a glass transition point (Tg) of 100 ° C. or higher, and examples thereof include cyclic polyolefin, polycarbonate, polystyrene, and liquid crystal resin (LCP). Among them, polycarbonate (hereinafter may be abbreviated as PC) is preferable from the viewpoints of handleability, production cost (raw material price), dispersibility in PP, and the like. The weight average molecular weight (Mw) of the PC is 30,000 or less, preferably 20,000 or less, and the MFR is 10 or more (300 ° C., 1.2 kg), preferably 20 or more, so that the dispersibility in PP is good. And the bubbles are also uniform, which is preferable. As the PC, aromatic, aliphatic, or linear PCs can be used, or a resin obtained by copolymerizing another resin such as polyethylene terephthalate, polybutylene terephthalate, or polystyrene can be used.
[0025]
The content of the amorphous resin having a glass transition point (Tg) of 100 ° C. or higher in the layer (A) of the present invention is preferably 5 to 30% by weight. When the content is 5% by weight or more, the formation of bubbles is sufficient, the specific gravity and the cushion rate are in appropriate ranges, and the optical density is also high. When the content is 30% by weight or less, the extrudability is stable, and it is preferable that excessive voids are not generated in the film and the stability of the film-forming property is deteriorated.
[0026]
Next, the laminated film of the present invention needs to be composed of the layer (A) and the layer (B) containing nucleus-free bubbles. The single layer of the layer (A) in which the layer B is not laminated is not preferable because the surface unevenness is large, the adhesion to the thermal head is reduced, and the sensitivity as a receiving sheet substrate for thermal transfer recording is reduced. Further, the layer (B) contains nonnucleated air bubbles, which improves the sensitivity of the recording paper for thermal transfer, which is an object of the present invention, so that the layer (B) has good adhesion to a thermal head and suppresses heat dissipation. It is necessary to improve the transferability (sensitivity) from the transfer sheet. It is not preferable that the air bubbles in the layer (B) are mainly air bubbles containing nuclei, because the adhesion to the thermal head is poor, and the heat is dissipated to lower the transferability (sensitivity) from the transfer sheet.
[0027]
Here, the non-nucleated bubble refers to a bubble having no nucleus in the bubble. Specifically, the cross section (thickness direction) of the film is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). When observed by the method, no particles or incompatible resin for forming bubbles are observed inside the boundary line that forms the cross section of the bubble portion.
[0028]
Further, the proportion of the bubble area of the nonnucleated bubbles in the layer (B) is preferably 50% or more, more preferably 60% or more, of the entire bubble area of the layer (B). The upper limit of the ratio of the bubble area of the seedless bubbles is not particularly limited as long as the effects of the present invention are exerted, but such as an anchor coat layer or a coat of a receptor layer when preparing a thermal transfer recording receiving sheet. In the step, it is preferable to set the ratio to 90% or less in order to prevent the collapse of bubbles due to heat or pressure.
In order to form non-nucleated bubbles in the layer (B), it is preferable that the β crystal ratio contains 20% or more, preferably 30% or more, more preferably 50% or more of PP. If the β crystal ratio of the contained PP is less than 20%, the generation rate of nucleus-free bubbles is low, and the bubbles may disappear in the biaxial stretching step. The content of PP having a β crystal ratio of 20% or more is 70% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more. If the PP content is less than 70% by weight, the rate of generation of non-nucleated bubbles will be low, which is not preferable.
[0029]
Here, the β crystal ratio means that PP is heated to 250 ° C. at a rate of 20 ° C./min in a nitrogen atmosphere according to JIS K-7122 using a scanning differential calorimeter (DSC). After maintaining the temperature for 5 minutes, the temperature was cooled to 20 ° C. at a cooling rate of 20 ° C./min. Then, when the temperature was raised again at a rate of 20 ° C./min, the peak was reached between 145 ° C. and 157 ° C. Heat of fusion (ΔHu-1) at the endothermic peak associated with the melting of β-crystals derived from polypropylene having, and the heat of fusion (ΔHu-) at the endothermic peak associated with the melting of polypropylene-derived crystals other than β-crystals having a peak at 160 ° C. or higher. From 2), it is obtained using the following equation.
[0030]
β crystal ratio (%) = {ΔHu-1 / (ΔHu-1 + ΔHu-2)} × 100
In order to make the β crystal ratio of the contained PP 20%, it is preferable to add a β crystal nucleating agent, and the amount of addition depends on the effect of the β crystal nucleating agent, but is 0.001% by weight to 0.5% by weight. % Is preferred. If the addition amount is less than 0.001% by weight, it is difficult to make the β crystal ratio 20% or more, and if it is 0.5% by weight or more, the effects are balanced.
[0031]
Examples of the β crystal nucleating agent include quinacridone, dibasic acid aliphatic, oxides of alkaline earth metals belonging to Group 2 of the periodic table, aniline derivatives, amide compounds, and the like. It is a mixture of the above.
[0032]
Furthermore, in order to enhance the effect of the β crystal nucleating agent and to increase the β crystal ratio of the layer (B), after extruding at a melt extrusion temperature of 240 ° C. to 300 ° C. to form a sheet, and before preheating in longitudinal stretching, the temperature is 110 ° C. It is preferable to keep the temperature at 140 ° C. for 1 second or more.
[0033]
If the ratio of the cell area of the non-nucleated cells in the layer (B) is within such a preferable range, and the number of particles for forming the cells and a cell-forming material such as an incompatible resin as a nucleus is small, the layer will (B) It is preferable because the unevenness on the surface is reduced, the adhesion between the laminated film of the present invention and the thermal head is improved, and the sensitivity is improved as a receiving sheet substrate for thermal transfer recording. Further, it is preferable because the nucleus of bubbles does not fall off in the film forming step and the manufacturing step of the recording paper for thermal transfer, thereby preventing the process from being stained.
[0034]
Here, the bubble area refers to a boundary line that forms a cross section of a bubble portion when a cross section (thickness direction) of the film in a certain range is observed by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The sum of the enclosed areas. However, when there is a nucleus (particles for forming bubbles or an incompatible resin) inside the boundary line, it means a value obtained by subtracting the total area of the portion.
[0035]
The cell area of the layer (B) is preferably less than 1/10 of the cell area of the layer (A). It is preferable that the bubble area of the layer (B) be within such a preferable range, since the abrasion resistance of the laminated film becomes good and there is no fear of cleavage. .
[0036]
The layer (B) of the present invention preferably contains PP as a main component, and has an intrinsic viscosity [η] of 1.2 to 3.5 dl / g, preferably 1.5 to 2.5 dl / g. Is preferable since the bubble formation is good. Further, the isotactic index (II) is preferably at least 90%, more preferably at least 95%, since the surface gloss becomes high. The melt flow rate (MFR) is preferably in the range of 1.0 to 20 g / 10 minutes (230 ° C., 2.16 kg) from the viewpoint of coextrusion moldability with the layer (A) and void formation.
[0037]
A small amount of a second component other than PP, for example, ethylene, butene, hexene, or the like may be copolymerized in a random or block manner. In particular, copolymerization of ethylene is preferable because the uniformity of voids in the film is improved.
[0038]
Further, known additives such as an antioxidant, a heat stabilizer, an antistatic agent, a slipping agent, an antiblocking agent, a filler and a whitening agent may be contained.
[0039]
In the layer (B), at least one of an amorphous resin, an inorganic particle, and an organic particle having a Tg of 100 ° C. or higher, similar to the layer (A), can be used as a lubricant. However, the amount added at this time is preferably 5% by weight or less. If the added amount exceeds 5% by weight, the lubricant may become nuclei of the bubbles, and the resin and particles may fall off during the film forming step, the thermal transfer recording paper manufacturing step, etc., and the process may be contaminated. .
[0040]
Examples of the inorganic particles include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide (zinc white), antimony oxide, and oxide. Cerium, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, zinc carbonate, basic lead carbonate (lead white), barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, mica, titanium mica, talc, clay, Kaolin, lithium fluoride, calcium fluoride, or the like can be used.
[0041]
Organic particles are particles obtained by crosslinking a polymer compound using a crosslinking agent. For example, crosslinked particles of a polymethoxysilane compound, crosslinked particles of a polystyrene compound, crosslinked particles of an acrylic compound, crosslinked particles of a polyurethane compound, crosslinked particles of a polyester compound, crosslinked particles of a fluorine compound, or a mixture thereof Can be mentioned.
[0042]
The average particle diameter of the inorganic particles and the crosslinked organic particles is preferably in the range of 0.5 to 6 μm. When the average particle size is less than 1 μm, the lubricating effect is low, and when the average particle size exceeds 6 μm, the film surface is apt to be scratched when the particles fall off or the films are rubbed, which is not preferable.
[0043]
Further, the layer thickness of the layer (B) on one side of the film of the present invention is 2 μm or more, and the layer is laminated on both sides of the layer (A) in the film forming step and the thermal transfer recording paper manufacturing step. This is preferable because it has good properties and can prevent the bubble forming material from falling off from the layer (A) to prevent process contamination. The thickness difference between the layer (A) and the layer (B) (layer (A): layer (B)) is preferably in the range of 2: 1 to 50: 1, so that both sensitivity, glossiness, and folding wrinkle resistance can be satisfied. It is possible and preferable.
[0044]
In the present invention, the specific gravity of the laminated film needs to be in the range of 0.5 to 0.85, and preferably in the range of 0.6 to 0.8. When the specific gravity is smaller than 0.5, the workability may be reduced and the fold resistance may be deteriorated. On the other hand, when the specific gravity exceeds 0.85, the heat insulating property is lowered and the sensitivity is lowered, which is not preferable.
[0045]
In the present invention, the optical density OD of the laminated film needs to be 0.4 or more, preferably 0.45 or more. When the optical density OD is less than 0.4, the printed image has a dark impression, which is not preferable. The upper limit of the optical density OD is not particularly limited as long as the effects of the present invention are exerted, but varies depending on the film thickness, and is preferably about 1.0 in the structure of the present invention.
[0046]
Furthermore, the laminated film of the present invention needs to have a cushion rate of 10% or more, and more preferably 12% or more. If the cushion ratio is less than 10%, the adhesion to the thermal head is reduced, heat is radiated, and the transferability from the transfer sheet is reduced (sensitivity is lowered), which is not preferable. The upper limit of the cushion rate is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 30% or less in the configuration of the present invention from the relationship with the fold resistance.
[0047]
The β crystal ratio of the laminated film of the present invention is 10% or more, preferably 20% or more. If the β crystal ratio of the film is less than 10%, the bubble shape inside the film becomes non-uniform, and the sensitivity varies, which is not preferable. The upper limit of the β crystal ratio of the laminated film is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 90% or less from the viewpoint of surface smoothness and glossiness.
[0048]
Here, the β crystal ratio of the laminated film of the present invention means that the biaxially stretched polypropylene film constituting the laminated film is measured under a nitrogen atmosphere using a scanning differential calorimeter (DSC) in accordance with JIS K-7122. 5 mg of the sample was heated to 250 ° C. at a rate of 20 ° C./min., Then kept for 5 minutes, cooled to 20 ° C. at a cooling rate of 20 ° C./min, and then again heated at a rate of 20 ° C./min. Upon heating, the heat of fusion (ΔHu-1) of the endothermic peak accompanying the melting of the polypropylene-derived β crystal having a peak between 145 ° C. and 157 ° C., and those other than the β crystal having a peak at 160 ° C. or more It is determined from the heat of fusion (ΔHu-2) of the endothermic peak accompanying the melting of the polypropylene-derived crystal using the following equation.
[0049]
β crystal ratio (%) = {ΔHu-1 / (ΔHu-1 + ΔHu-2)} × 100
Further, it is preferable that the surface glossiness of the layer (B) is 50% or more, since the transferred print or image becomes clear, and more preferably 70% or more. If the surface gloss is less than 50%, the transferred print or image is inferior in sharpness, which is not preferable.
[0050]
In the present invention, it is preferable to adopt a laminated structure of two or more layers having a layer (B) containing non-nucleated bubbles on at least one surface of the bubble-containing polypropylene film layer (A). The bubbles in the layer (A) are preferably fine bubbles. By containing fine bubbles inside, a heat insulating effect against the heating of the thermal head at the time of thermal transfer recording can be obtained, and heat can be efficiently transmitted to the printed portion. Further, the layer (B) contains bubbles, and the adhesion between the thermal head and the printing surface is enhanced by the improvement of the cushioning property, so that the heat transfer to the printing portion is more uniform, more efficient, and more sensitive. . The cross-sectional area of each bubble in the present invention is 1 to 25 μm 2 Is more preferable, and more preferably 1.5 to 20 μm 2 , And 2 to 15 µm 2 It is preferable that
[0051]
When the laminated film of the present invention is used as a receiving sheet substrate for thermal transfer recording, it may be used alone or may be used by laminating it with another material. Examples of the material include plain paper, high quality paper, medium quality paper, coated paper, art paper, cast coated paper, resin impregnated paper, emulsion impregnated paper, latex impregnated paper, synthetic resin internal paper, glassine paper, laminated paper, etc. Paper, synthetic paper, non-woven fabric, other types of film, etc. can be used. However, when the film of the present invention is bonded to another material, it is preferable to bond the film on the surface opposite to the surface on which the receiving layer is provided.
[0052]
The laminated film of the present invention is laminated with the above other material so that the layer (B) of the laminated film becomes the receiving layer coated surface, and the surface gloss after the receiving layer is coated on the layer (B) is 60% or more. The transferred print or image becomes clear and is preferable, and 80% or more is more preferable.
[0053]
The thickness of the laminated film of the present invention is preferably from 10 to 100 μm, more preferably from 20 to 80 μm, from the viewpoint of achieving both sensitivity and wrinkle resistance. When the laminated film of the present invention is laminated with another material, the upper limit of the thickness is preferably 80 μm or less, more preferably 50 μm or less, from the viewpoint of handleability.
[0054]
Next, an example of a method for producing the biaxially oriented polypropylene film for thermal transfer recording of the present invention will be described, but the present invention is not limited to only such an example.
[0055]
In a composite film forming apparatus having an extruder (a) and an extruder (b), a β-crystal nucleating agent or a β-crystal ratio of 80% or more is added to crystalline polypropylene to form a bubble-containing layer (A). Polypropylene and an amorphous resin having a glass transition point (Tg) of 100 ° C. or more are added and mixed, and the mixture is supplied to an extruder (a) heated to 260 to 300 ° C., melted, and melted in a T-die composite die. To be introduced. The addition of the amorphous resin may be performed using a master chip in advance. On the other hand, for laminating the non-nucleated bubble containing layer (B), 70% by weight or more, preferably 95% by weight or more of crystalline polypropylene having a β crystal ratio of 20% or more is supplied. If necessary, at least one kind of an amorphous resin, an inorganic particle, and an organic particle having a Tg of 100 ° C. or more as in the layer (A) is added to the raw material to 5% by weight or less as a lubricant. Is also good. Next, the raw material is supplied to an extruder (b) heated to 260 to 300 ° C., similarly melted and introduced into a T-die composite die, and the polymer of the extruder (b) is converted to the extruder (a). Lamination is performed so as to be on the polymer surface layer (one surface) or both surface layers (both surfaces), and is co-extruded into a sheet to obtain a molten laminated sheet.
[0056]
This molten laminated sheet is closely cooled and solidified on a drum cooled to a surface temperature of 30 to 90 ° C. to produce an unstretched laminated film. The unstretched laminated film is guided to a group of rolls or an oven heated to 120 to 180 ° C., the film temperature is set to 120 ° C. to 160 ° C., and the film is stretched 3 to 7 times in the longitudinal direction (longitudinal direction, that is, the direction in which the film advances). And 30 ° C to 100 ° C.
[0057]
Subsequently, the film stretched in the longitudinal direction is guided to a tenter while gripping both ends of the film with a clip, and in an atmosphere heated to 150 to 190 ° C (film temperature: 150 ° C to 165 ° C), a direction perpendicular to the longitudinal direction (horizontal direction). ) Is stretched 5 to 12 times. The area ratio (longitudinal stretching ratio × lateral stretching ratio) is preferably 15 to 84 times, and 30 to 50 times from the viewpoint of film formation stability. When the area magnification is less than 15 times, the formation of bubbles in the obtained film becomes insufficient, and when the area magnification exceeds 84 times, the film tends to be easily broken during stretching.
[0058]
In order to complete the crystal orientation of the biaxially stretched polypropylene film thus obtained and to impart flatness and dimensional stability, heat treatment is subsequently performed in a tenter at 150 to 170 ° C. for 1 to 30 seconds, After uniform cooling, the white laminated polyester film of the present invention can be obtained by cooling to room temperature and winding. During the heat treatment step, a 3 to 12% relaxation treatment may be performed in the horizontal or vertical direction as necessary. The biaxial stretching may be either sequential stretching or simultaneous biaxial stretching, and may be re-stretched in either the longitudinal or transverse direction after the biaxial stretching. On the surface of the biaxially stretched polypropylene film of the present invention thus obtained, in order to apply a receiving layer or adhere to another substrate, in air or in an atmosphere of one or more of nitrogen gas and carbon dioxide gas. A corona discharge treatment is performed, and the film is wound up with a surface wetting tension of 35 mN / m or more.
[0059]
[Method of measuring and evaluating characteristics]
The characteristic values of the present invention are determined by the following evaluation methods and evaluation criteria.
[0060]
(1) Intrinsic viscosity [η]
0.1 g of a sample is completely dissolved in 100 ml of tetralin at 135 ° C., and this solution is measured with a viscometer in a thermostat at 135 ° C., and the intrinsic viscosity is determined from the specific viscosity S according to the following equation. The unit is dl / g.
[Η] = S / 0.1 × (1 + 0.22 × S)
(2) Isotactic index (II) Boiling n-heptane extraction residue
The isotactic index (II) is determined from the boiling n-heptane extraction residue. The sample is extracted with boiling n-heptane for a certain period of time, and the isotactic index is calculated by obtaining the weight (%) of the unextracted portion.
[0061]
Specifically, the cylindrical filter paper is dried at 110 ± 5 ° C. for 2 hours, and left in a constant temperature and humidity room for 2 hours or more. Weigh precisely using tweezers.
[0062]
This is set on the top of the extractor containing about 80 cc of heptane, and the extractor and the cooler are assembled. This is heated in an oil bath or an electric heater and extracted for 12 hours. Heating is adjusted so that the number of drops from the cooler is at least 130 drops per minute. The cylindrical filter paper containing the extraction residue is taken out, placed in a vacuum dryer, and dried at 80 ° C. and a vacuum of 100 mmHg or less for 5 hours. After drying, the sample is allowed to stand in a constant temperature and constant humidity for 2 hours, weighed accurately, and calculated by the following equation.
[0063]
Isotactic index (II) (%) = (P / Po) × 100
Here, Po is the sample weight (g) before extraction, and P is the sample weight (g) after extraction.
[0064]
(3) MFR (melt flow rate)
As a measure of the flow characteristics of the crystalline polypropylene, it is measured according to JIS K 7210, condition 14, (230 ° C., 2.16 kg). In addition, as a measure of the flow characteristics of the ethylene-based resin, it is measured in accordance with JIS K 7210 condition 4 (190 ° C., 2.16 kg). The polycarbonate is measured according to JIS K 7210 condition 99 (300 ° C., 1.2 kg).
[0065]
(4) β crystal ratio
Using a scanning differential calorimeter (DSC), raise the temperature of a 5 mg sample of a polypropylene film to 250 ° C. at a rate of 20 ° C./min in a nitrogen atmosphere according to JIS K-7122, and then hold for 5 minutes Then, it is cooled to 20 ° C. at a cooling rate of 20 ° C./min. Then, when the temperature was raised again at a rate of 20 ° C./min, the heat of fusion (ΔHu-1) of the endothermic peak accompanying the melting of the β-crystal derived from polypropylene having a peak between 145 ° C. and 157 ° C. It is determined by the following equation from the heat of fusion (ΔHu-2) of the endothermic peak accompanying the melting of polypropylene-derived crystals other than β-crystal having a peak at 160 ° C. or higher. In order to distinguish the β crystal ratio between the layer (A) and the layer (B), the cross section is observed by SEM, and after confirming the thickness configuration, the layer (B) is peeled off and the melting peak is measured for each layer. I do.
[0066]
β crystal ratio (%) = {ΔHu-1 / (ΔHu-1 + ΔHu-2)} × 100
(5) Glass transition point Tg
When a 5 mg sample was heated at a rate of 20 ° C./min in a nitrogen atmosphere according to JIS K-7122 using a scanning differential calorimeter (DSC), it was accompanied by a secondary transition. The change in specific heat was determined as a glass transition temperature (Tg). Further, since the Tg of the amorphous resin in the film is Tg of PP of the main raw material of 0 ° C. or less, the change in specific heat due to the second order transition exceeding 0 ° C. was taken as the Tg of the amorphous resin. .
[0067]
(6) Film thickness
The thickness was measured using a dial gauge thickness gauge (JIS B-7509, measuring element 5 mmφ flat type).
[0068]
(7) The presence or absence of air bubbles inside the film, and the presence or absence of nuclei in the air bubbles
The presence or absence of air bubbles was examined using a cross-sectional photograph taken by observing the cross section of the film at a magnification of 500 to 10,000 times using a scanning electron microscope Model S-2100A (manufactured by Hitachi, Ltd.). In addition, in the cross-sectional photograph, the presence or absence of nuclei in the bubbles was examined by marking the boundary line that forms the cross section of the bubble and observing the presence or absence of particles and incompatible resin for bubble formation inside the bubble. .
[0069]
(8) Thickness of each layer constituting the film
The length of each layer in the thickness direction is obtained by using a cross-sectional photograph obtained by observing a cross section of the film at a magnification of 500 to 10,000 times using a scanning electron microscope S-2100A type (manufactured by Hitachi, Ltd.). Was measured, and the thickness of each layer was determined by back calculation from the magnification. In determining the thickness of each layer, a total of five cross-sectional photographs, which were arbitrarily selected from different measurement visual fields, were used, and the average value was calculated.
[0070]
(9) Bubble area
Using a cross-sectional photograph obtained by observing a cross section of the film at a magnification of 500 to 10,000 times using a scanning electron microscope S-2100A type (manufactured by Hitachi, Ltd.), a boundary for forming a cross section of bubbles is used. When all the lines are marked, and when the bubble has a nucleus inside the bubble, all the boundary lines of the nucleus cross section are also marked, and the marked portion is marked using a Hi-Vision image analyzer PIAS-IV (manufactured by Pierce Co., Ltd.). It was calculated by performing image processing. In obtaining the bubble area, a total of five cross-sectional photograph meters 5 arbitrarily selected from different measurement visual fields were used, and the average value was calculated.
[0071]
(10) Specific gravity
A sample sample obtained by cutting the film into a size of 50 mm × 60 mm was subjected to a method A (underwater replacement method) of JIS K-7112 using a high-precision electronic hydrometer SD-120L (manufactured by Mirage Trading Co., Ltd.). It measured according to. The measurement was performed under the conditions of a temperature of 23 ° C. and a relative humidity of 65%.
[0072]
(11) Optical density OD
The measurement was performed using a Macbeth densitometer TD-504.
[0073]
(12) Cushion rate
A standard gauge head (No. 900030) is attached to a dial gauge (manufactured by Mitoyo Seisakusho), and is set on a dial gauge stand (No. 7001DGS-M). The respective film thicknesses when a load of 50 g and 500 g are applied to the dial gauge pressing portion are defined as d50 and d500, respectively, and are determined by the following equations.
[0074]
Cushion rate (%) = {(d50−d500) / d50} × 100
(13) Glossiness
The gloss of the film surface was measured based on JIS Z8741 using a digital variable angle gloss meter UGV-5D manufactured by Suga Test Instruments Co., Ltd. The gloss was determined at an entrance angle of 45 °. The gloss of the receiving sheet coated with the receiving layer by laminating paper and a film was measured by measuring the gloss of the surface coated with the receiving layer.
[0075]
(14) Average particle size
The measurement was carried out using a centrifugal sedimentation type particle size distribution analyzer CAPA-700 manufactured by Horiba, Ltd.
[0076]
(15) Wetting tension
It is measured based on a measurement method prescribed in JIS K 6768 using a mixed solution of formamide and ethylene glycol monoethyl ether.
[0077]
(16) Folding resistance
For uniform evaluation of the surface of the white film (opposite to the surface on which the receptor layer is formed), adhesively bonded to a high-quality paper with adhesive of 65 μm thickness (label sheet for KOKUYO Co., Ltd. word processor, Thailand-2110-W) Was prepared. The sheet is cut out to a length of 200 mm and a width of 15 mm, one end is fixed, and a 200 g weight is connected to both sides by wires. One end was pulled at 200 mm / sec, and the occurrence of wrinkles on the film surface was observed with a stereoscopic microscope, and judged as follows.
[0078]
Class A: 0 to 2 wrinkles / cm
Class B: 3-5 wrinkles / cm
Class C: 6-8 wrinkles / cm
Class D: 9 or more wrinkles / cm
And Class A and Class B are for practical use.
[0079]
(17) Sensitivity
After laminating the white film of the present invention on paper having a thickness of 150 μm, the following coating liquid for forming a receiving layer is applied to the film surface with a microgravure coater so that the coating amount is 3 g / m2 when dried, A receiving sheet for thermal transfer recording was obtained.
[Receptive layer forming coating liquid]
20 parts of polyester resin (Toyobo Co., Ltd., Byron 200)
Silicone oil (Shin-Etsu Chemical Co., Ltd., X-22-3000T) 2 parts
Toluene 39 parts
Methyl ethyl ketone 39 parts
Next, test printing was performed on the receiving layer forming surface of the receiving sheet using a special ink ribbon by using “Professional Color Point 1835” (manufactured by Seiko Instruments Inc.) as a color printer. Next, the printed test pattern was executed 10 times, and the judgment was made as follows, and the image reproducibility was evaluated.
[0080]
Class A: All are high in density, clean and extremely good.
[0081]
Grade B: 1 to 2 times, the density is slightly low, or there is a case where a slight "chip" is observed, but otherwise the density is high, clean and good.
[0082]
Class C: 3-5 times the density is low, or there is a case where "chip" or "crush" is observed.
[0083]
Class D: There are cases where the density is low six times or more, or "chip" or "crush" is observed.
[0084]
【Example】
The present invention will be described with reference to the following examples, but the present invention is not limited to these examples.
Example 1
First, as the resin composition of the bubble-containing polypropylene film layer (A), crystalline PP (intrinsic viscosity [η]: 2.25 dl / g, MFR: 3 g / 10 min, II: 96%, hereinafter abbreviated as PP) 99 0.95 wt%, azelaic acid of a dibasic acid aliphatic type as a β crystal nucleating agent, and magnesium oxide as an oxide of an alkaline earth metal belonging to Group 2 of the periodic table in a mixing ratio of 0.5: 1. % By weight, supplied to a twin-screw extruder, extruded in a gut shape at 260 ° C., cooled through a water bath at 20 ° C., cut into 3 mm lengths with a tip cutter, and dried at 100 ° C. for 2 hours. . . Next, 65% by weight of the PP, 20% by weight of the PP with the β crystal nucleating agent, and an amorphous resin polycarbonate having a glass transition point (Tg) of 150 ° C. or higher (molecular weight: 15000, MI: 65 g / min, hereinafter abbreviated as PC) Then, the mixture was supplied to an extruder (A) heated to 280 ° C., melted, and introduced into a T-die composite die. On the other hand, as the resin composition of the bubble-containing layer (B), 98.95% by weight of PP (intrinsic viscosity [η]: 2.2 dl / g, MFR: 4 g / 10 minutes, II: 96%) was the same as the above. 0.05% by weight of a β crystal nucleating agent is added and mixed, and 1% by weight of crosslinked silicon particles having an average particle size of 2 μm is added and mixed, and the mixture is supplied to a twin-screw extruder and extruded at 260 ° C. in a gut shape, After cooling through a water bath at 20 ° C. and cutting into a length of 3 mm with a chip cutter, it was dried at 100 ° C. for 2 hours. The β crystal ratio of the dried PP chip was 80%. Next, the chips are supplied to an extruder (B) heated to 260 ° C., similarly melted and introduced into a T-die composite die, and the polymer of the extruder (B) is changed to the polymer of the extruder (A). , And co-extruded into a sheet shape, and tightly cooled and solidified on a drum cooled to a surface temperature of 40 ° C. to produce an unstretched laminated film. The unstretched laminated film is guided to an oven heated and held at 150 ° C., preheated, and then stretched 5 times in the longitudinal direction (longitudinal direction, ie, the direction in which the film advances, hereinafter abbreviated as MD), and cooled at 30 ° C. Cool with. Subsequently, the film stretched in the MD direction is guided to a tenter while holding both ends of the film with clips, and stretched 9 times in a direction perpendicular to the MD direction (transverse direction, hereinafter abbreviated as TD direction) in an atmosphere heated to 165 ° C. Thereafter (area magnification: longitudinal stretching magnification × horizontal stretching magnification = 45 times), subsequently, at 160 ° C. in a tenter in order to complete the crystal orientation of the biaxially stretched polypropylene film and to impart flatness and dimensional stability. A relaxation heat treatment of 8% in the direction was performed, and after uniform slow cooling, it was cooled to room temperature. Further, in order to apply the image receiving layer or to adhere to another substrate on the surface of the white laminated film of the present invention, one surface is subjected to corona discharge treatment in air to adjust the surface wet tension to 37 mN / m, and the other surface is treated. Was subjected to corona discharge treatment in an atmosphere of a mixed gas of 85% nitrogen gas and 15% carbon dioxide gas, and was wound up with a surface wet tension of 42 mN / m or more.
[0085]
The cross section of the laminated film obtained as described above was observed under magnification by SEM, and it was confirmed that the layer (A) and the layer (B) contained fine air bubbles. The fine bubbles in the layer (A) were formed around the PC dispersed in the matrix PP as a nucleus, and the major axis was elongated in the stretching direction and the minor axis was elongated in the film thickness direction. In addition, it was confirmed that the proportion of bubbles without nuclei in the layer (B) was 50% or more. Next, after adhering the white film of the present invention to a paper having a thickness of 150 μm, the above coating liquid for forming a receiving layer is coated on the film surface with a microgravure coater so that the coating amount is 3 g / m 2 when dried. After coating, a receiving sheet for thermal transfer recording was obtained. Table 1 shows the resin composition of the biaxially oriented polypropylene film and the thermal transfer recording sheet thus obtained, and Table 2 shows the properties. It can be seen that the film of the present invention is excellent as a receiving sheet substrate for thermal transfer recording.
Example 2
84.98% by weight of PP (intrinsic viscosity [η]: 2.0 l / g, MFR: 2 g / 10 minutes, II: 95%) as a resin composition of the bubble-containing polypropylene film layer (A); 0.2% by weight of N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide was added and mixed, supplied to a twin-screw extruder, extruded at 260 ° C. into a gut shape, and cooled through a 20 ° C. water bath. After cutting to a length of 3 mm with a chip cutter, the resultant was dried at 100 ° C. for 2 hours. . Next, a biaxially stretched polypropylene film and a biaxially-stretched polypropylene film were prepared in the same manner as in Example 1 except that 80% by weight of the above PP, 5% by weight of the β-crystal nucleating agent-added PP, and 15% by weight of a PC having a Tg of 150 ° C. were used. A thermal transfer recording sheet was obtained. Table 1 shows the resin composition and Table 2 shows the properties. It can be seen that the film of the present invention is excellent as a receiving sheet substrate for thermal transfer recording.
Example 3
Example 1 Example 1 was the same as Example 1 except that the composition was 55% by weight of PP, 20% by weight of "BEPOL" type BI-4020-SP manufactured by SUNOCO, and 25% by weight of PC. In the same manner as in Example 1, a biaxially stretched polypropylene film and a heat-sensitive transfer recording sheet were obtained. Table 1 shows the resin composition and Table 2 shows the properties. It can be seen that the film of the present invention is excellent as a receiving sheet substrate for thermal transfer recording.
Examples 4 and 5
In Example 4, as the resin composition of (B), the PP alone with the β-crystal nucleating agent of Example 1 was used. In Example 5, 98% by weight of the PP with the β-crystal nucleating agent of Example 1 was added to the polymethylpentene resin ( Biaxially stretched polypropylene film and thermal transfer in the same manner as in Example 1 except that “TPX” MX002 manufactured by Mitsui Chemicals, Inc., MI = 22 (260 ° C., 5 kg, hereinafter abbreviated as PMP) was set to 2% by weight. A recording sheet was obtained. Table 1 shows the resin composition and Table 2 shows the properties. It was confirmed that the film of the present invention contained in the layer (B) at least 50% of bubbles without nuclei. It turns out that it is excellent as a receiving sheet base material for thermal transfer recording.
Example 6
Example 1 was the same as Example 1 except that in place of PC, "Apel" APL6015 (manufactured by Mitsui Chemicals, Inc., hereinafter abbreviated as CPO), a cyclic polyolefin of an amorphous resin having a Tg of 140 ° C., was used in place of PC. Similarly, a biaxially oriented polypropylene film and a thermal transfer recording sheet were obtained. Table 1 shows the resin composition and Table 2 shows the properties. It can be seen that the film of the present invention is excellent as a receiving sheet substrate for thermal transfer recording.
Example 7
Example 1 was repeated except that the composition of the layer (A) was 93% by weight of PP with β-crystal nucleating agent and 7% by weight of PC, and the thicknesses of the layers (A) and (B) were 2/31/2 μm. In the same manner as in Example 1, a biaxially stretched polypropylene film and a thermal transfer recording sheet were obtained. Table 1 shows the resin composition and Table 2 shows the properties. It can be seen that the film of the present invention is excellent as a receiving sheet substrate for thermal transfer recording.
Comparative Example 1
A biaxially stretched polypropylene film and a thermal transfer recording sheet were obtained in the same manner as in Example 1, except that the composition of the layer (A) was changed to 85% by weight of PP containing no β crystal nucleating agent and 15% by weight of PC. . Table 1 shows the resin composition and Table 2 shows the properties. In the film of the present invention, since there is no β crystal in the layer (A), bubbles in the layer (A) have large unevenness, and the specific gravity is high, and the optical density OD and the cushion ratio are low. It can be seen that the sensitivity is poor as a receiving sheet substrate for recording.
Comparative Example 2
In Example 1, a biaxially-stretched polypropylene film and a non-crystalline resin having a Tg of 80 ° C. (hereinafter abbreviated as PS) were used in place of PC of the layer (A) in the same manner as in Example 1. A thermal transfer recording sheet was obtained. Table 1 shows the resin composition and Table 2 shows the properties. The properties of this film are as shown in Table 2, and it can be seen that the sensitivity is inferior as a receiving sheet substrate for thermal transfer recording because of its high specific gravity, low optical density OD and low cushion rate.
Comparative Example 3
0.0099% by weight of PP of Example 1 and 0.001% by weight of γ-quinacridone as a β crystal nucleating agent were added and mixed, and the mixture was supplied to a twin-screw extruder and extruded at 260 ° C. into a gut shape. After cooling through a water bath and cutting with a chip cutter to a length of 3 mm, it was dried at 100 ° C. for 2 hours. . Next, the biaxially oriented polypropylene was prepared in the same manner as in Example 1 except that 65% by weight of PP, 20% by weight of the β-crystal nucleating agent-added PP, and 15% by weight of PMP of Example 5 were used as the layer (A) resin composition. A film and a thermal transfer recording sheet were obtained. Table 1 shows the resin composition and Table 2 shows the properties. The properties of this film are as shown in Table 1. The β-crystal ratio of the layer (A) is as low as less than 20%, the specific gravity is high, and the optical density OD and the cushion ratio are low. It can be seen that the sensitivity as a substrate is poor.
Comparative Example 4
A biaxially stretched polypropylene film and a heat-sensitive transfer recording sheet were obtained in the same manner as in Example 1 except that PP was 15% by weight, PP with a β crystal nucleating agent added was 50% by weight, and PC was 35% by weight. Table 1 shows the resin composition and Table 2 shows the properties. The properties of this film are as shown in Table 1. The specific gravity is too low, the film is creased, and it is inferior as a receiving sheet substrate for thermal transfer recording. It was inferior in sex.
Comparative Examples 5 and 6
In Comparative Example 5, PP alone was laminated on the layer (B) in Example 1, and in Comparative Example 6, 90% by weight of PP and calcium carbonate (CaCO 3) were used as the resin composition of the layer (B). 3 A biaxially stretched polypropylene film and a heat-sensitive transfer recording sheet were obtained in the same manner as in Example 1, except that the average particle size was 2 μm) and 10% by weight. Table 1 shows the resin composition and Table 2 shows the properties. The properties of this film are as shown in Table 1. In Comparative Example 5, the sensitivity was inferior as a receiving sheet substrate for thermal transfer recording because no air bubble was present in the layer (B). In Comparative Example 6, since the air bubbles in the layer (B) are air bubbles having the air bubble forming material as a nucleus, the surface unevenness is large, the adhesion to the thermal head is deteriorated, and the receiving sheet substrate for thermal transfer recording is formed. However, the sensitivity was not inferior, and the bubble-forming material fell off during the film-forming process and during the production of the thermal transfer recording receiving sheet, resulting in poor productivity.
Comparative Example 7
A biaxially stretched polypropylene film and a heat-sensitive transfer recording sheet were obtained in the same manner as in Example 1 except that the thickness of the layer (A) in Example 1 was 35 μm. Table 1 shows the resin composition and Table 2 shows the properties. The properties of this film are as shown in Table 1. Since there is no lamination of the layer (B), the surface has large irregularities, the adhesion to the thermal head is deteriorated, and the sensitivity as a receiving sheet substrate for thermal transfer recording is increased. It was not inferior burr but inferior in fold wrinkle resistance, and the bubble forming material fell off during the film forming step and the production of the heat-sensitive transfer recording receiving sheet, resulting in poor productivity.
[0086]
[Table 1]
Figure 2004142321
[0087]
[Table 2]
Figure 2004142321
[0088]
【The invention's effect】
The biaxially oriented polypropylene film for thermal transfer recording of the present invention is a laminated film having a specific gravity of 0.5 to 0.85, an optical density OD of 0.4 or more, and a cushion ratio of 10% or more, and has a glass transition point ( Tg) A foam-containing polypropylene film layer (A) containing an amorphous resin of 100 ° C. or more and having a β crystal ratio of 20% or more, and a layer (B) containing nucleus-free bubbles. Therefore, it can be used very suitably as a receiving sheet for thermal transfer recording which has high sensitivity and excellent fold resistance.

Claims (8)

比重が0.5〜0.85、光学濃度ODが0.4以上、クッション率が10%以上の積層フィルムであって、ガラス転移点(Tg)100℃以上の非晶性樹脂を含有しβ晶比率が20%以上である気泡含有ポリプロピレンフィルム層(A)と、無核の気泡を含有する層(B)からなることを特徴とする感熱転写記録用二軸延伸ポリプロピレンフィルム。A laminated film having a specific gravity of 0.5 to 0.85, an optical density OD of 0.4 or more, and a cushion ratio of 10% or more, containing an amorphous resin having a glass transition point (Tg) of 100 ° C. or more, and β A biaxially stretched polypropylene film for thermal transfer recording, comprising: a bubble-containing polypropylene film layer (A) having a crystal ratio of 20% or more; and a layer (B) containing nucleus-free bubbles. 積層フィルムのβ晶比率が10%以上である請求項1に記載の感熱転写記録用二軸延伸ポリプロピレンフィルム。The biaxially oriented polypropylene film for thermal transfer recording according to claim 1, wherein the β crystal ratio of the laminated film is 10% or more. 層(B)の表面光沢度が50%以上である請求項1または2に記載の感熱転写記録用二軸延伸ポリプロピレンフィルム。The biaxially oriented polypropylene film for thermal transfer recording according to claim 1 or 2, wherein the layer (B) has a surface glossiness of 50% or more. 層(B)にβ晶比率が20%以上の結晶性ポリプロピレンを含有してなる請求項1〜3のいずれかに記載の感熱転写記録用二軸延伸ポリプロピレンフィルム。The biaxially oriented polypropylene film for thermal transfer recording according to any one of claims 1 to 3, wherein the layer (B) contains a crystalline polypropylene having a β crystal ratio of 20% or more. 層(B)の気泡面積が、層(A)の気泡面積の1/10未満である請求項1〜4のいずれかに記載の感熱転写記録用二軸延伸ポリプロピレンフィルム。The biaxially oriented polypropylene film for thermal transfer recording according to any one of claims 1 to 4, wherein the cell area of the layer (B) is less than 1/10 of the cell area of the layer (A). 層(B)において、無核の気泡の気泡面積の割合が、層(B)の気泡全体の気泡面積の5割以上である請求項1〜5のいずれかに記載の感熱転写記録用二軸延伸ポリプロピレンフィルム。The biaxial for thermal transfer recording according to any one of claims 1 to 5, wherein in the layer (B), the ratio of the bubble area of the nucleus-free bubbles is 50% or more of the total bubble area of the bubbles of the layer (B). Stretched polypropylene film. 層(B)の積層厚みが2μm以上であり、層(A)と層(B)の厚み構成比が、2:1〜50:1である請求項1〜6のいずれかに記載の感熱転写記録用二軸延伸ポリプロピレンフィルム。The thermal transfer according to any one of claims 1 to 6, wherein the thickness of the layer (B) is 2 µm or more, and the thickness ratio of the layer (A) to the layer (B) is 2: 1 to 50: 1. Biaxially oriented polypropylene film for recording. 請求項1〜7のいずれかに記載の感熱転写記録用二軸延伸ポリプロピレンフィルムを用いてなる感熱転写記録用受容シート。A receiving sheet for thermal transfer recording, comprising the biaxially oriented polypropylene film for thermal transfer recording according to claim 1.
JP2002311179A 2002-10-25 2002-10-25 Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same Pending JP2004142321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311179A JP2004142321A (en) 2002-10-25 2002-10-25 Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311179A JP2004142321A (en) 2002-10-25 2002-10-25 Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same

Publications (1)

Publication Number Publication Date
JP2004142321A true JP2004142321A (en) 2004-05-20

Family

ID=32456484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311179A Pending JP2004142321A (en) 2002-10-25 2002-10-25 Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same

Country Status (1)

Country Link
JP (1) JP2004142321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103127A1 (en) 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
JP2006192889A (en) * 2004-12-14 2006-07-27 Toray Ind Inc Biaxially stretched white polypropylene film and acceptance sheet for heat-sensitive transfer record using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103127A1 (en) 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
EP2270081A1 (en) 2004-04-22 2011-01-05 Toray Industries, Inc. Microporous polypropylene film
US8491991B2 (en) 2004-04-22 2013-07-23 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
JP2006192889A (en) * 2004-12-14 2006-07-27 Toray Ind Inc Biaxially stretched white polypropylene film and acceptance sheet for heat-sensitive transfer record using it

Similar Documents

Publication Publication Date Title
TWI421166B (en) Biaxial alignment white polypropylene film, reflector and receiving sheet for thermal transfer recording
JP4876387B2 (en) Biaxially oriented microporous film and method for producing the same
JP5194358B2 (en) Biaxially oriented white polypropylene film and receiving sheet for thermal transfer recording using the same
CA2551526C (en) Biaxially oriented white polypropylene film for thermal transfer recording and receiving sheet for thermal transfer recording therefrom
JP2004160689A (en) White biaxially oriented polypropylene film, package, display, and receiving sheet for thermal transfer recording made of the film
JP2004142321A (en) Biaxially oriented polypropylene film for thermal transfer recording and accepting sheet for thermal transfer recording made of the same
JP4380531B2 (en) Biaxially oriented white film for thermal transfer recording and receiving sheet for thermal transfer recording comprising the same
JP2002052674A (en) Fine cell-containing laminated polyester film
JPH0696281B2 (en) Printing base for composite film and printer
JP2005059245A (en) Biaxially oriented white film for thermal transfer recording and receiving sheet for thermal transfer recording comprising the same
JP2005059244A (en) Biaxially oriented white film
JP4061444B2 (en) Laminated polyester film containing fine bubbles and image receiving paper for video printers
JP4359243B2 (en) Thermal transfer image receiving sheet
JP2008265267A (en) Polypropylene film for thermal stencil printing, and thermal stencil printing base sheet consisting of the same
JP2008302605A (en) Polypropylene film for heat-sensitive stencil and heat-sensitive stencil made of this p0lypropyrene film
JP4001307B2 (en) Laminated polyester film containing fine bubbles and image receiving paper for video printers
JP2002060531A (en) Microvoid containing monolayer polyester film
JP2004292800A (en) White polypropylene film
JP4446671B2 (en) Electrophotographic label
JP2020044750A (en) Polyester film for receiving paper
WO2004061528A1 (en) Electrophotographic film and recorded item therefrom
JP4255298B2 (en) Thermal transfer film
JP2002105232A (en) White polyester film
JP2020045439A (en) Polyester film for receiving paper
JP3411724B2 (en) Laminated film for thermal recording receiver