JP2004141724A - Solid-liquid separator and washing method therefor - Google Patents

Solid-liquid separator and washing method therefor Download PDF

Info

Publication number
JP2004141724A
JP2004141724A JP2002307217A JP2002307217A JP2004141724A JP 2004141724 A JP2004141724 A JP 2004141724A JP 2002307217 A JP2002307217 A JP 2002307217A JP 2002307217 A JP2002307217 A JP 2002307217A JP 2004141724 A JP2004141724 A JP 2004141724A
Authority
JP
Japan
Prior art keywords
raw water
water
solid
membrane
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002307217A
Other languages
Japanese (ja)
Other versions
JP3984145B2 (en
Inventor
Masaaki Yoshino
吉野 正章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2002307217A priority Critical patent/JP3984145B2/en
Publication of JP2004141724A publication Critical patent/JP2004141724A/en
Application granted granted Critical
Publication of JP3984145B2 publication Critical patent/JP3984145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-liquid separator which reduces incidental equipment to the utmost and can effectively perform membrane washing without lowering filtering treatment capacity, and a washing method therefor. <P>SOLUTION: A predetermined height difference is provided between a filter tank 13 housing a membrane unit 12, the raw water storage tank 14 provided in the front stage of the filter tank 13 and the filtered water storage tank 15 provided in the rear stage of the filter tank 13 while the raw water inflow part of the filter tank 13 and the bottom part of the raw water storage tank 14 are connected by a raw water inflow pipe 16 equipped with a raw water inflow valve 16a, and the filtered water outflow part of the filter tank 13 and the backwashing water storage part 15a of the filtered water storage tank 15 are connected by a filtered water outflow pipe 17. A sludge discharge pipe 18 equipped with a sludge discharge valve 18a is provided to the bottom part of the filter tank 13 and an air pipe 19 is provided above the filter tank 13. Further, the raw water inflow part of the filter tank 13 has a raw water guide part for guiding raw water to the whole of the membrane unit. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固液分離装置及びその洗浄方法に関し、詳しくは、平膜型、中空糸型、スパイラル型、その他の膜モジュールを、原水が供給される濾過槽内に浸漬させた状態で固液分離を行う固液分離装置に関するとともに、この固液分離装置における膜モジュールの洗浄方法に関する。
【0002】
【従来の技術】
近年、合流改善技術が注目を集めている。特に東京湾のオイルボール問題等、雨天時越流水の水質改善が急務となっており、将来的には、雨天時越流水のBOD及びSSの除去が必要になっている。一方、下水の高度処理化に伴い、処理方式によってはMLSSを高める必要があり、下水処理場の最終沈殿池での固液分離能力の低下による二次処理水の水質悪化が懸念されている。このような状況のもと、固液分離処理に固液分離膜を利用するシステムが注目されている。
【0003】
固液分離膜を利用する場合、その洗浄、再生をいかに効率よく行うかという点が、分離膜利用システムを構築する上での重要な課題となる。特に、処理原水の汚濁が激しい場合等には、固液分離膜が目詰まりし易くなり、維持管理の面からも上記課題が一層顕著になる。
【0004】
固液分離膜の洗浄、再生方式として、従来から、分離膜の吸引側から水や空気を逆流させたり、エアースクラビングによって物理的に膜洗浄を行う等の方式が広く行われている。さらに、分離膜の膜面(濾過面)に向けて洗浄水を噴出させることによって固液分離膜を洗浄、再生させることも提案されている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2000−62833号公報(第2−3頁、第1−3図)
【0006】
【発明が解決しようとする課題】
しかし、従来の洗浄、再生方式は、ポンプやブロワー、専用配管等を必要としており、付帯設備が過大になり易く、システムの簡略化、効率化という点で改良の余地があった。また、濾過処理水の一部を洗浄用に使用するため、水回収率が低下することにもなる。
【0007】
そこで本発明は、付帯設備を極力抑え、かつ、濾過処理能力を落とすことなく効果的な膜洗浄を行うことが可能な固液分離装置及びその洗浄方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の固液分離装置は、基本構成として、固液分離を行う膜ユニットを浸漬した濾過槽と、該濾過槽内に原水を流入させる原水流入部と、該濾過槽内から汚泥を排出する汚泥排出部と、前記膜ユニットを透過した濾過水を流出させる濾過水流出部とを備えた固液分離装置において、前記膜ユニットは、膜面を鉛直方向にして配列した複数の膜モジュールを有し、前記原水流入部は、前記膜ユニットの全体に原水をガイドする原水ガイド部を有していることを特徴とし、特に、前記複数の膜モジュールにおける膜面同士の間隔が1〜15mmの範囲に設定されていることを特徴としている。
【0009】
この基本構成の固液分離装置に対する本発明の洗浄方法は、前記原水流入部から濾過槽への原水の流入を停止した後、濾過槽内の汚泥を濾過槽内の水と共に前記汚泥排出部から排出し、前記膜ユニットを水面上に露出させた状態で、前記原水流入部から前記原水ガイドを介して原水を流入させ、前記膜モジュールの表面を洗浄することを特徴としている。
【0010】
また、本発明の固液分離装置は、前記基本構成に加えて、前記濾過槽の前段の前記膜ユニットより上方位置に原水を貯留する原水貯留槽を設置するとともに、濾過槽の前記原水流入部と前記原水貯留槽とを原水流入弁を備えた原水流入管で接続したことを特徴としている。また、前記原水貯留槽の前段に沈殿槽を設置することもできる。
【0011】
濾過槽の前段に、このような原水貯留槽を設置した場合は、前記原水貯留槽の水位を検出し、検出した水位があらかじめ設定した洗浄水位に達したときに、前記基本構成の洗浄操作と同じ洗浄操作を行うようにすることにより、膜ユニットの目詰まり状態に応じて洗浄操作を効果的に行うことができる。
【0012】
さらに、本発明の固液分離装置は、前記基本構成に加えて、前記濾過槽の後段に、前記膜ユニットより上方位置に、濾過水を貯留する濾過水貯留槽を設置し、該濾過水貯留槽内に貯留した濾過水を前記濾過水流出部から膜ユニットに向けて逆流可能に形成したことを特徴としている。このとき、濾過槽前段の前記原水貯留槽と濾過槽後段の前記濾過水貯留槽とを同時に設置する場合は、該濾過水貯留槽を前記原水貯留槽より下方位置に配置する。
【0013】
濾過槽の後段に、このような濾過水貯留槽を設置した場合は、前記原水流入部から濾過槽への原水の流入を停止した後、濾過槽内の汚泥を濾過槽内の水と共に前記汚泥排出部から排出するとともに、前記濾過水貯留槽内に貯留した濾過水を前記濾過水流出部から膜ユニットに逆流させることにより、膜ユニットの逆洗を無動力で行うことができる。
【0014】
【発明の実施の形態】
図1は本発明の固液分離装置を活性汚泥法による水処理設備に適用した一形態例を示す系統図である。固液分離装置11は、膜ユニット12を収納した濾過槽13と、この濾過槽13の前段に設けられた原水貯留槽14と、濾過槽13の後段に設けられた濾過水貯留槽15とを備えており、濾過槽13の原水流入部と原水貯留槽14の底部とは、原水流入弁16aを備えた原水流入管16で接続され、濾過槽13の濾過水流出部と濾過水貯留槽15の逆洗水貯留部15aとは、サイホン機能を有する濾過水流出管17で接続されている。さらに、濾過槽13の底部には、濾過槽13内から汚泥を排出するための汚泥排出部として排泥弁18aを備えた排泥管18が設けられ、濾過槽13の上方には空気管19が設けられている。
【0015】
前記濾過槽13内の膜ユニット12、原水貯留槽14及び濾過水貯留槽15の高低差は、膜ユニット12における圧力損失に応じて設定されており、濾過処理中における原水貯留槽14内の水位及び空気管19内の水位は、膜ユニット12で濾過処理を行うための水頭差が得られる位置となる。
【0016】
また、固液分離装置11の前段には、散気装置21を有する曝気槽22と、内筒23を有する沈殿槽24とが設けられており、原水流入経路25から曝気槽22内に流入した原水を曝気処理した後、ポンプ26によって沈殿槽24に送り、この沈殿槽24で比較的沈降性のよい固形物をあらかじめ沈殿分離するようにしている。この沈殿槽24で沈殿分離した固形物(汚泥)は、ポンプ27等を介して曝気槽22に返送し、微生物の量を維持するようにしている。
【0017】
図2の側面図に示すように、前記膜ユニット12は、膜面(濾過面)31を鉛直方向にして各膜面同士が互いに平行になるように配列した複数の平膜型の膜モジュール32により形成されている。この膜モジュール32には、分離除去対象の大きさに応じた目幅を有するものを選定すればよく、型式としても、平膜型、中空糸型、スパイラル型、その他の膜モジュールを適宜選択することが可能であるが、洗浄性や強度を考慮すると平膜型が最適である。また、各膜モジュール32の上部には、濾過水流出部に接続する分岐管33がそれぞれ設けられており、主管34を介して前記濾過水流出管17に接続している。
【0018】
隣接する各膜モジュール32における膜面同士の間隔tは、原水の状態や洗浄頻度に応じて任意に設定できるが、1〜15mm、好ましくは1〜8mmの範囲で一定間隔とすることが望ましい。膜面同士の間隔を1mm未満にすると、洗浄操作によって膜面から剥離した固形物が膜面間に詰まって洗浄操作や濾過操作に支障を来すおそれがある。一方、間隔を広くしても洗浄操作や濾過操作に影響はないが、単位体積当たりの濾過面積が小さくなり、濾過槽13の大型化を招くことになる。
【0019】
具体的には、洗浄頻度が1回/日で、原水中のSSが100mg/L程度の場合は、間隔tを1mm程度にすることが可能であり、原水中のSSが500mg/L程度の場合は、間隔tを6mm程度にすることが好ましい。なお、膜面同士の間隔は、膜モジュール32の状態に応じて任意に設定でき、間隔が不均一であってもよいが、間隔を一定にすることにより、全体として均一な濾過作用を期待できるとともに、均一な洗浄効果を期待することができる。
【0020】
そして、膜ユニット12の上部には、膜モジュール32の表面を原水によって洗浄するための膜面洗浄手段として、膜ユニット12の全体に原水をガイドし、原水を各膜モジュール32の表面に満遍なく流下させるため、図3乃至図10に示すような原水ガイド部が設けられている。この原水ガイド部の構造は、濾過槽13の大きさや流入原水量等の条件に応じて様々な形態を採用することが可能である。図3乃至図10は、この原水ガイド部の各種形態例を示す概略図である。
【0021】
まず、図3に示す原水ガイド部の第1形態例は、膜ユニット12の上方に多孔板あるいは多数のスリットを設けた原水分散板51を設けたものであって、原水流入部(原水流入管16)から濾過槽13内に流入する原水を、この原水分散板51の通孔又はスリット52を通して膜ユニット12の全体にガイドし、各膜モジュール32の表面を原水が流下するようにしている。図4に示す第2形態例では、原水ガイド部として膜ユニット12の上方にシャワーノズル53を設けることにより、原水流入管16から濾過槽13内に流入する原水を膜ユニット12の全体に散布するようにしている。なお、シャワーノズル53は、膜ユニット12の大きさに応じて複数個を設けることができる。
【0022】
図5及び図6に示す第3形態例では、原水流入管16を複数の分岐管54に分岐させるとともに、各分岐管54の先に原水の流入方向をガイドするためのガイド板55を設け、このガイド板55によって濾過槽13内に流入する原水を膜ユニット12の全体にガイドするようにしている。
【0023】
図7及び図8に示す第4形態例では、原水流入管16の先端に複数の散布管56を分岐接続し、各ノズル管56に設けた多数の散布孔57から濾過槽13内に流入する原水を膜ユニット12の全体にガイドするようにしている。図9及び図10に示す第5形態例では、前記第4形態例における散布管56に代えて樋58を複数設置し、各樋58の側壁に設けた多数の溢流ノッチ59から濾過槽13内に流入する原水を膜ユニット12の全体にガイドするようにしている。
【0024】
このような各種の原水ガイド部を設けることにより、膜ユニット12の全体に原水をガイドすることができ、膜洗浄時に、各膜モジュール32の表面を原水によって洗浄することが可能となる。なお、これらの原水ガイド部は、複数の手段を適当に組み合わせることも可能であり、また、原水中のSS濃度や流入量に応じて最適な原水ガイド部を選択することができる。さらに、膜面同士の間隔tが十分に狭く、膜ユニット12の上部が、前記図3に示した原水分散板51等と同様の原水ガイド部としての機能を期待できる場合は、膜ユニット12の上部に原水を送り込むだけで、原水を各膜モジュール32の表面に満遍なく流下させることができる。
【0025】
前記沈殿槽24で沈殿分離処理を行ったオーバーフロー水(固液分離装置11における原水)の濾過処理は、以下の手順で行われる。まず、濾過工程では、排泥弁18aが閉、原水流入弁16aが開となっており、沈殿槽24から経路41を通って原水貯留槽14に一時貯留された原水が、原水流入管16を通って濾過槽13内に流入し、膜ユニット12によって濾過処理(固液分離)される。
【0026】
膜ユニット12によって濾過処理された濾過水は、濾過水流出管17を通って濾過水貯留槽15に流入し、必要に応じて経路42から滅菌剤、例えば次亜塩素酸ナトリウム溶液やオゾン水等が添加された後、経路43を通って河川等に放流される。なお、滅菌剤は、想像線で示すように、濾過水流出管17に接続する経路44から添加するように形成することもできる。
【0027】
膜ユニット12において、濾過工程初期には、図11に示すように、細孔36より大きな固形物37が捕捉され、小さな固形物38は濾過水39と共に細孔36を通過してしまうが、濾過処理の進行に伴い、図12に示すように、細孔36に捕捉された固形物37により、小さな固形物38も捕捉されて水中から除去される状態となる。
【0028】
濾過工程開始時には、膜ユニット12における圧力損失が小さいため、原水貯留槽14内の水位は、図1に示すように低位置となっているが、濾過工程の進行に伴って膜面31に固形物が堆積し、次第に圧力損失が増加してくる。このようにして膜ユニット12の圧力損失が増大すると、その増大分に応じて原水貯留槽14内等の水位が上昇する。
【0029】
そして、図13に示すように、原水貯留槽14内の水位があらかじめ設定した洗浄開始水位に上昇したときに、濾過工程を中断して膜ユニット12の洗浄操作の最初の工程である排水工程を開始する。排水工程では、まず、原水流入弁16aを閉じて原水貯留槽14から濾過槽13への原水の流入を停止した後、排泥弁18aを開いて濾過槽13の底部に沈殿している汚泥を水と共に排泥管18から排出する。このとき、空気管19から濾過槽13内に空気が流入することにより、汚泥の排出を円滑に行えるとともに、膜面に沿って流下する水の流速を高めて固形物の剥離効果を持たせることができる。この排水工程で濾過槽13から排出された汚泥は、沈殿槽24から抜き取られた汚泥と共に最初沈殿池等に返送され、あるいは、余剰汚泥として処理される。また、濾過槽13内の水を排出して膜ユニット12を空気中に露出させることにより、膜面に堆積した固形物の層(汚泥層)が剥離しやすい状態となる。
【0030】
さらに、濾過槽13内の水位が低下すると、図14に示すように、膜ユニット12と濾過水貯留槽15との高低差で生じる水頭差によって前記逆洗水貯留部15a内の濾過水が濾過水流出管17を逆流し、図15に示すように、膜ユニット12の細孔36から濾過水39が噴出して逆洗工程が行われ、膜面に堆積した固形物37,38を膜面から剥離して浮き上がらせた状態とする。なお、ここまでの工程中も、沈殿槽24での沈殿分離処理は継続されており、オーバーフロー水は、経路41を通って原水貯留槽14に流入している。
【0031】
最後に、図16に示すように、原水流入弁16aを開いて原水貯留槽14から濾過槽13への原水の流入を再開し、膜ユニット12の洗浄工程を行う。原水流入管16から濾過槽13内に流入する原水は、前述のような原水ガイド部から各膜モジュール32の膜面31に向けてガイドされる状態となり、膜面に堆積している固形物を原水の流れで剥離して洗い流す状態となる。洗い流された固形物は、洗浄後の水と共に排泥管18から排出される。この洗浄工程は、原水貯留槽14内の原水がなくなるまで、あるいは、あらかじめ設定した低水位になるまで行われる。洗浄工程終了後、排泥弁18aを閉じることによって前記濾過工程の状態となり、濾過槽13内に原水が充満して原水貯留槽14内の水位が濾過水位になると、原水の濾過処理が行われる。なお、前記逆洗工程と洗浄工程とを同時に行うことも可能であり、洗浄工程中に排泥弁18aを閉じるようにしてもよい。
【0032】
また、原水の水質性状によっては、膜面に微生物が繁殖して細孔36を閉塞させることがあるが、このような場合には、前記逆洗工程において、経路42、44から逆洗水となる濾過水に次亜塩素酸ナトリウム溶液やオゾン水等の薬液(滅菌剤)を添加することにより、微生物を死滅させて除去することができ、微生物による膜ユニット12の閉塞を抑制することができる。
【0033】
さらに、原水の水質性状によっては、前記排水工程及び洗浄工程における水流の作用で膜ユニット12の洗浄操作を十分に行うことが可能となるので、前記逆洗工程を省略することも可能である。この場合、逆洗水貯留部15aは不要であり、濾過水貯留槽15を膜ユニット12より下方に位置させることができる。
【0034】
このような濾過工程、排水工程、逆洗工程、洗浄工程を連続的に繰り返し、濾過処理(固液分離処理)を行う原水で膜ユニット12の膜面を洗浄するように形成したことにより、濾過水の一部を洗浄水として使用するときに比べて水回収率を向上させることができる。さらに、エアースクラビングを行う場合に比べて膜面同士の間隔を狭く設定することにより、単位体積当たりの膜面積を大きくして濾過槽13の小型化を図れる。
【0035】
加えて、膜ユニット12、原水貯留槽14及び濾過水貯留槽15の設置高さを、水頭差によって原水の濾過工程が行えるように設定することにより、濾過用ポンプを省略できるとともに、同じく水頭差によって濾過水による逆洗工程を行えるように設定することにより、逆洗ポンプも省略することができる。また、原水貯留槽14の水位を検出して膜ユニット12の目詰まり状態を判定することにより、簡単な水位計等を用いて自動運転が可能となり、圧力計等の複雑な機器を設ける必要が無くなる。さらに、ポンプやブロワー等の機器が不要となり、原水流入弁16aと排泥弁18aとを開閉するだけであるから、装置構成を極めて簡略化することができる。
【0036】
そして、図1に示したように、固液分離装置11の前段に沈殿槽24を設置し、この沈殿槽24で沈降性の高い固形物をあらかじめ除去することにより、膜ユニット12にかかる負荷を軽減することができ、膜洗浄サイクルを延ばすことができる。また、沈殿槽24による沈降分離処理と、膜ユニット12による膜濾過処理とを組み合わせることにより、雨天時の越流水対策、下水の高度処理対策にも適応の可能性を広げることができ、汎用的な固液分離システムの構築が期待できる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、膜ユニットの洗浄を原水の散布によって行うので、水回収率を向上させることができる。また、膜面同士の間隔を狭くできるので、濾過処理能力を向上させることができ、装置の小型化を図れる。さらに、濾過層の前後に原水貯留槽と濾過水貯留槽とを所定の高さで設置することにより、弁の開閉だけで自動的に洗浄操作を行うことができる。加えて、前段に沈殿槽を設置することにより、膜ユニットの負荷を軽減でき、効果的な固液分離処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の固液分離装置を活性汚泥法による水処理設備に適用した一形態例を示す系統図である。
【図2】膜ユニットにおける膜モジュール及び原水ガイド部の配置状態を示す側面図である。
【図3】原水ガイド部の第1形態例を示す概略断面図である。
【図4】原水ガイド部の第2形態例を示す概略断面図である。
【図5】原水ガイド部の第3形態例を示す概略断面図である。
【図6】同じく概略平面図である。
【図7】原水ガイド部の第4形態例を示す概略断面図である。
【図8】同じく概略平面図である。
【図9】原水ガイド部の第5形態例を示す概略断面図である。
【図10】同じく概略平面図である。
【図11】濾過工程初期における固形物の分離状態を示す説明図である。
【図12】濾過工程進行時における固形物の分離状態を示す説明図である。
【図13】濾過工程終了時の状態を示す説明図である。
【図14】排水工程時の状態を示す説明図である。
【図15】逆洗工程時の状態を示す説明図である。
【図16】洗浄工程時の状態を示す説明図である。
【符号の説明】
11…固液分離装置、12…膜ユニット、13…濾過槽、14…原水貯留槽、15…濾過水貯留槽、16…原水流入管、16a…原水流入弁、17…濾過水流出管、18…排泥管、18a…排泥弁、19…空気管、21…散気装置、22…曝気槽、23…内筒、24…沈殿槽、25…原水流入経路、26…ポンプ、31…膜面、32…膜モジュール、33…分岐管、34…主管、51…原水分散板、52…通孔又はスリット、53…シャワーノズル、54…分岐管、55…ガイド板、56…散布管、57…散布孔、58…樋、59…溢流ノッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-liquid separator and a cleaning method thereof, and more specifically, a solid-liquid type in a state where a flat membrane type, a hollow fiber type, a spiral type, and other membrane modules are immersed in a filtration tank to which raw water is supplied. The present invention relates to a solid-liquid separator that performs separation, and also relates to a method for cleaning a membrane module in the solid-liquid separator.
[0002]
[Prior art]
In recent years, confluence improvement technology has attracted attention. In particular, there is an urgent need to improve water quality during rainy weather, such as the oil ball problem in Tokyo Bay. In the future, it will be necessary to remove BOD and SS during rainy weather. On the other hand, with the advanced treatment of sewage, it is necessary to increase MLSS depending on the treatment method, and there is a concern that the quality of secondary treated water may deteriorate due to a decrease in solid-liquid separation ability in the final sedimentation basin of the sewage treatment plant. Under such circumstances, a system that uses a solid-liquid separation membrane for solid-liquid separation processing has attracted attention.
[0003]
When using a solid-liquid separation membrane, how to efficiently perform washing and regeneration is an important issue in constructing a separation membrane utilization system. In particular, when the raw water for treatment is severely contaminated, the solid-liquid separation membrane is likely to be clogged, and the above problem becomes more conspicuous from the viewpoint of maintenance.
[0004]
Conventionally, as a method for cleaning and regenerating a solid-liquid separation membrane, methods such as reverse flow of water or air from the suction side of the separation membrane or physical membrane cleaning by air scrubbing are widely used. Furthermore, it has also been proposed to wash and regenerate the solid-liquid separation membrane by ejecting washing water toward the membrane surface (filtration surface) of the separation membrane (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP 2000-62833 A (page 2-3, Fig. 1-3)
[0006]
[Problems to be solved by the invention]
However, the conventional cleaning and regeneration methods require pumps, blowers, dedicated piping, etc., and incidental facilities tend to be excessive, and there is room for improvement in terms of simplification and efficiency of the system. Moreover, since a part of filtration process water is used for washing | cleaning, a water recovery rate will also fall.
[0007]
Therefore, an object of the present invention is to provide a solid-liquid separation apparatus and a cleaning method thereof capable of performing effective membrane cleaning while suppressing incidental facilities as much as possible and without reducing the filtration processing capacity.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the solid-liquid separation device of the present invention includes, as a basic configuration, a filtration tank in which a membrane unit for performing solid-liquid separation is immersed, a raw water inflow portion for allowing raw water to flow into the filtration tank, and the filtration In a solid-liquid separation apparatus comprising a sludge discharge part for discharging sludge from the tank and a filtrate water outflow part for discharging filtrate water that has permeated through the membrane unit, the membrane unit is arranged with the membrane surface in a vertical direction. A plurality of membrane modules, wherein the raw water inflow portion has a raw water guide portion for guiding raw water to the whole membrane unit, and in particular, between the membrane surfaces of the plurality of membrane modules The interval is set in a range of 1 to 15 mm.
[0009]
In the cleaning method of the present invention for the solid-liquid separation device of this basic configuration, after stopping the inflow of the raw water from the raw water inflow part to the filtration tank, the sludge in the filtration tank together with the water in the filtration tank from the sludge discharge part In a state where the membrane unit is discharged and exposed on the water surface, raw water is introduced from the raw water inflow portion via the raw water guide to clean the surface of the membrane module.
[0010]
In addition to the basic configuration, the solid-liquid separation device of the present invention is provided with a raw water storage tank that stores raw water at a position above the membrane unit in the previous stage of the filtration tank, and the raw water inflow portion of the filtration tank And the raw water storage tank are connected by a raw water inflow pipe having a raw water inflow valve. Moreover, a settling tank can also be installed in the front | former stage of the said raw | natural water storage tank.
[0011]
When such a raw water storage tank is installed in the front stage of the filtration tank, the water level of the raw water storage tank is detected, and when the detected water level reaches a preset cleaning water level, By performing the same cleaning operation, the cleaning operation can be effectively performed according to the clogged state of the membrane unit.
[0012]
Furthermore, in addition to the basic configuration, the solid-liquid separation device of the present invention is provided with a filtrate storage tank for storing filtrate at a position higher than the membrane unit at the rear stage of the filtration tank. The filtered water stored in the tank is formed so as to be able to flow backward from the filtered water outflow portion toward the membrane unit. At this time, when the raw water storage tank at the front stage of the filtration tank and the filtered water storage tank at the rear stage of the filtration tank are installed at the same time, the filtered water storage tank is disposed at a position below the raw water storage tank.
[0013]
When such a filtrate storage tank is installed in the subsequent stage of the filtration tank, after stopping the inflow of the raw water from the raw water inflow portion to the filtration tank, the sludge in the filtration tank is combined with the water in the filtration tank. The drainage of the membrane unit can be performed without power by discharging the filtrated water from the discharger and backflowing the filtrated water stored in the filtrated water storage tank from the filtrated water outlet to the membrane unit.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing an embodiment in which the solid-liquid separation device of the present invention is applied to water treatment equipment using an activated sludge method. The solid-liquid separator 11 includes a filtration tank 13 in which the membrane unit 12 is housed, a raw water storage tank 14 provided in the front stage of the filtration tank 13, and a filtered water storage tank 15 provided in the subsequent stage of the filtration tank 13. The raw water inflow part of the filtration tank 13 and the bottom of the raw water storage tank 14 are connected by a raw water inflow pipe 16 provided with a raw water inflow valve 16a, and the filtered water outflow part of the filtration tank 13 and the filtered water storage tank 15 are connected. The backwash water reservoir 15a is connected by a filtered water outflow pipe 17 having a siphon function. Further, at the bottom of the filtration tank 13, a sludge pipe 18 having a sludge valve 18 a as a sludge discharge part for discharging sludge from the filter tank 13 is provided. Is provided.
[0015]
The height difference between the membrane unit 12, the raw water storage tank 14 and the filtered water storage tank 15 in the filtration tank 13 is set according to the pressure loss in the membrane unit 12, and the water level in the raw water storage tank 14 during the filtration process. And the water level in the air pipe 19 is a position where a water head difference for performing the filtration process in the membrane unit 12 is obtained.
[0016]
In addition, an aeration tank 22 having an aeration device 21 and a settling tank 24 having an inner cylinder 23 are provided in the previous stage of the solid-liquid separation device 11, and flowed into the aeration tank 22 from the raw water inflow path 25. After the raw water is aerated, it is sent to a sedimentation tank 24 by a pump 26, and solids having a relatively good sedimentation property are precipitated and separated in this sedimentation tank 24 in advance. The solid matter (sludge) precipitated and separated in the settling tank 24 is returned to the aeration tank 22 via a pump 27 or the like so as to maintain the amount of microorganisms.
[0017]
As shown in the side view of FIG. 2, the membrane unit 12 has a plurality of flat membrane type membrane modules 32 arranged so that the membrane surfaces (filtration surfaces) 31 are in the vertical direction and the membrane surfaces are parallel to each other. It is formed by. What is necessary is just to select what has the mesh width according to the magnitude | size of the separation / removal object for this membrane module 32, and also selects a flat membrane type, a hollow fiber type, a spiral type, and other membrane modules suitably as a model. However, the flat membrane type is optimal in consideration of cleaning properties and strength. In addition, a branch pipe 33 connected to the filtered water outflow portion is provided above each membrane module 32, and is connected to the filtered water outflow pipe 17 through a main pipe 34.
[0018]
Although the space | interval t between the membrane surfaces in each adjacent membrane module 32 can be arbitrarily set according to the state of raw | natural water and the washing | cleaning frequency, it is desirable to set it as a fixed space | interval in the range of 1-15 mm, Preferably it is 1-8 mm. If the distance between the membrane surfaces is less than 1 mm, the solid material peeled off from the membrane surface by the cleaning operation may be clogged between the membrane surfaces and hinder the cleaning operation or filtration operation. On the other hand, even if the interval is widened, there is no effect on the washing operation and the filtration operation, but the filtration area per unit volume is reduced, and the size of the filtration tank 13 is increased.
[0019]
Specifically, when the cleaning frequency is once / day and the SS in the raw water is about 100 mg / L, the interval t can be set to about 1 mm, and the SS in the raw water is about 500 mg / L. In this case, it is preferable to set the interval t to about 6 mm. In addition, although the space | interval of membrane surfaces can be arbitrarily set according to the state of the membrane module 32, a space | interval may be non-uniform | heterogenous, but a uniform filtration effect | action can be anticipated as a whole by making a space | interval constant. At the same time, a uniform cleaning effect can be expected.
[0020]
The upper part of the membrane unit 12 is used as a membrane surface cleaning means for cleaning the surface of the membrane module 32 with raw water. The raw water is guided to the whole membrane unit 12 and flows down evenly onto the surface of each membrane module 32. Therefore, a raw water guide portion as shown in FIGS. 3 to 10 is provided. The structure of this raw water guide part can adopt various forms according to conditions such as the size of the filtration tank 13 and the amount of incoming raw water. 3 to 10 are schematic views showing various forms of the raw water guide section.
[0021]
First, the first embodiment of the raw water guide portion shown in FIG. 3 is provided with a raw water dispersion plate 51 provided with a porous plate or a large number of slits above the membrane unit 12, and includes a raw water inflow portion (raw water inflow pipe). 16), the raw water flowing into the filtration tank 13 is guided to the whole membrane unit 12 through the through holes or slits 52 of the raw water dispersion plate 51 so that the raw water flows down the surface of each membrane module 32. In the second embodiment shown in FIG. 4, by providing a shower nozzle 53 above the membrane unit 12 as a raw water guide portion, the raw water flowing into the filtration tank 13 from the raw water inflow pipe 16 is dispersed throughout the membrane unit 12. I am doing so. A plurality of shower nozzles 53 can be provided according to the size of the membrane unit 12.
[0022]
In the third embodiment shown in FIGS. 5 and 6, the raw water inflow pipe 16 is branched into a plurality of branch pipes 54, and a guide plate 55 is provided at the end of each branch pipe 54 to guide the inflow direction of the raw water. The guide plate 55 guides the raw water flowing into the filtration tank 13 to the entire membrane unit 12.
[0023]
In the fourth embodiment shown in FIGS. 7 and 8, a plurality of spray pipes 56 are branched and connected to the tip of the raw water inflow pipe 16, and flow into the filtration tank 13 from a large number of spray holes 57 provided in each nozzle pipe 56. The raw water is guided to the whole membrane unit 12. In the fifth embodiment shown in FIGS. 9 and 10, a plurality of tubs 58 are installed in place of the spray pipe 56 in the fourth embodiment, and the filtration tank 13 is formed from a large number of overflow notches 59 provided on the side walls of each tub 58. The raw water flowing in is guided to the whole membrane unit 12.
[0024]
By providing such various raw water guide portions, raw water can be guided to the entire membrane unit 12, and the surface of each membrane module 32 can be cleaned with raw water during membrane cleaning. In addition, these raw | natural water guide parts can also combine several means suitably, and can select the optimal raw | natural water guide part according to SS density | concentration and inflow amount in raw | natural water. Furthermore, when the space | interval t between membrane surfaces is narrow enough and the upper part of the membrane unit 12 can anticipate the function as a raw | natural water guide part similar to the raw | natural water dispersion | distribution plate 51 etc. which were shown in the said FIG. The raw water can be made to flow uniformly over the surface of each membrane module 32 simply by feeding the raw water into the upper part.
[0025]
Filtration processing of overflow water (raw water in the solid-liquid separation device 11) subjected to precipitation separation processing in the precipitation tank 24 is performed according to the following procedure. First, in the filtration process, the mud valve 18a is closed and the raw water inflow valve 16a is open, and the raw water temporarily stored in the raw water storage tank 14 through the path 41 from the settling tank 24 passes through the raw water inflow pipe 16. Then, it flows into the filtration tank 13 and is filtered (solid-liquid separation) by the membrane unit 12.
[0026]
The filtered water filtered by the membrane unit 12 flows into the filtered water storage tank 15 through the filtered water outflow pipe 17, and is sterilized, for example, sodium hypochlorite solution or ozone water from the path 42 as necessary. Is added to the river or the like through the path 43. The sterilizing agent can also be formed so as to be added from the path 44 connected to the filtered water outflow pipe 17 as indicated by an imaginary line.
[0027]
In the membrane unit 12, in the initial stage of the filtration process, as shown in FIG. 11, the solid matter 37 larger than the pores 36 is captured, and the small solid matter 38 passes through the pores 36 together with the filtered water 39. As the process proceeds, as shown in FIG. 12, the solid matter 37 captured by the pores 36 captures the small solid matter 38 and removes it from the water.
[0028]
At the start of the filtration process, the pressure loss in the membrane unit 12 is small, so the water level in the raw water storage tank 14 is low as shown in FIG. As the material accumulates, the pressure loss gradually increases. When the pressure loss of the membrane unit 12 increases in this way, the water level in the raw water storage tank 14 rises according to the increase.
[0029]
And as shown in FIG. 13, when the water level in the raw | natural water storage tank 14 rose to the preset washing start water level, a filtration process is interrupted and the drainage process which is the first process of the washing | cleaning operation of the membrane unit 12 is carried out. Start. In the draining process, first, the raw water inflow valve 16a is closed to stop the inflow of raw water from the raw water storage tank 14 into the filtration tank 13, and then the sludge that has settled at the bottom of the filtration tank 13 is opened by opening the drainage valve 18a. It discharges from the mud pipe 18 together with water. At this time, when air flows into the filtration tank 13 from the air pipe 19, the sludge can be discharged smoothly, and the flow rate of the water flowing down along the membrane surface is increased so as to have a solid peeling effect. Can do. The sludge discharged from the filtration tank 13 in this drainage process is returned to the first settling basin together with the sludge extracted from the settling tank 24, or treated as excess sludge. Further, by discharging the water in the filtration tank 13 and exposing the membrane unit 12 to the air, the solid matter layer (sludge layer) deposited on the membrane surface is easily peeled off.
[0030]
Furthermore, if the water level in the filtration tank 13 falls, as shown in FIG. 14, the filtered water in the said backwash water storage part 15a will be filtered by the water head difference which arises by the height difference of the membrane unit 12 and the filtrate water storage tank 15. As shown in FIG. As shown in FIG. 15, the filtered water 39 is ejected from the pores 36 of the membrane unit 12 to perform a back washing process, and the solids 37 and 38 deposited on the membrane surface are removed. It will be in the state where it peeled off and floated. In addition, the precipitation separation process in the settling tank 24 is continued during the steps so far, and the overflow water flows into the raw water storage tank 14 through the path 41.
[0031]
Finally, as shown in FIG. 16, the raw water inflow valve 16a is opened to resume the flow of raw water from the raw water storage tank 14 to the filtration tank 13, and the membrane unit 12 is cleaned. The raw water flowing into the filtration tank 13 from the raw water inflow pipe 16 is guided from the raw water guide portion to the membrane surface 31 of each membrane module 32 as described above, and the solid matter deposited on the membrane surface is removed. It will be separated and washed away with the flow of raw water. The washed solid matter is discharged from the mud pipe 18 together with the washed water. This washing process is performed until the raw water in the raw water storage tank 14 runs out or until a preset low water level is reached. After completion of the cleaning process, the drainage valve 18a is closed to enter the state of the filtration process. When the raw water is filled in the filtration tank 13 and the water level in the raw water storage tank 14 becomes the filtered water level, the raw water is filtered. . In addition, it is also possible to perform the said backwashing process and a washing | cleaning process simultaneously, and you may make it close the waste mud valve 18a during a washing | cleaning process.
[0032]
Further, depending on the quality of the raw water, microorganisms may propagate on the membrane surface and block the pores 36. In such a case, in the backwashing step, the backwashing water and By adding a chemical solution (sterilizing agent) such as sodium hypochlorite solution or ozone water to the filtered water, the microorganisms can be killed and removed, and the clogging of the membrane unit 12 by the microorganisms can be suppressed. .
[0033]
Furthermore, depending on the quality of the raw water, the membrane unit 12 can be sufficiently washed by the action of the water flow in the draining step and the washing step, so the back washing step can be omitted. In this case, the backwash water storage unit 15 a is not necessary, and the filtrate storage tank 15 can be positioned below the membrane unit 12.
[0034]
Such filtration process, draining process, back washing process, and washing process are continuously repeated, and the membrane surface of the membrane unit 12 is washed with raw water that performs filtration treatment (solid-liquid separation treatment). The water recovery rate can be improved compared to when a part of water is used as washing water. Furthermore, the membrane area per unit volume can be increased to reduce the size of the filtration tank 13 by setting the distance between the membrane surfaces narrower than when air scrubbing is performed.
[0035]
In addition, by setting the installation height of the membrane unit 12, the raw water storage tank 14 and the filtrate water storage tank 15 so that the raw water filtration process can be performed by the water head difference, the filtration pump can be omitted, and also the water head difference By setting so that the backwashing process with filtered water can be performed, the backwash pump can also be omitted. Further, by detecting the level of the raw water storage tank 14 and determining the clogged state of the membrane unit 12, automatic operation is possible using a simple water level meter or the like, and it is necessary to provide complicated equipment such as a pressure gauge. Disappear. Furthermore, equipment such as a pump and a blower is not required and only the raw water inflow valve 16a and the mud discharge valve 18a are opened and closed, so that the device configuration can be greatly simplified.
[0036]
And as shown in FIG. 1, the precipitation tank 24 is installed in the front | former stage of the solid-liquid-separation apparatus 11, and the load concerning the membrane unit 12 is removed by removing the solid substance with high sedimentation in this precipitation tank 24 beforehand. Can be reduced and the membrane cleaning cycle can be extended. Moreover, by combining the sedimentation separation process by the sedimentation tank 24 and the membrane filtration process by the membrane unit 12, it is possible to expand the possibility of adaptation to measures against overflowing water in the rain and advanced treatment measures for sewage. A solid-liquid separation system can be expected.
[0037]
【The invention's effect】
As described above, according to the present invention, since the membrane unit is washed by spraying raw water, the water recovery rate can be improved. Moreover, since the space | interval of membrane surfaces can be narrowed, the filtration processing capability can be improved and size reduction of an apparatus can be achieved. Further, by installing the raw water storage tank and the filtered water storage tank at a predetermined height before and after the filtration layer, the washing operation can be automatically performed only by opening and closing the valve. In addition, by installing a precipitation tank in the previous stage, the load on the membrane unit can be reduced, and an effective solid-liquid separation process can be performed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment in which a solid-liquid separator according to the present invention is applied to a water treatment facility using an activated sludge method.
FIG. 2 is a side view showing an arrangement state of the membrane module and the raw water guide portion in the membrane unit.
FIG. 3 is a schematic cross-sectional view showing a first embodiment of a raw water guide part.
FIG. 4 is a schematic sectional view showing a second embodiment of the raw water guide part.
FIG. 5 is a schematic sectional view showing a third embodiment of the raw water guide part.
FIG. 6 is a schematic plan view of the same.
FIG. 7 is a schematic sectional view showing a fourth embodiment of the raw water guide part.
FIG. 8 is a schematic plan view of the same.
FIG. 9 is a schematic sectional view showing a fifth embodiment of the raw water guide part.
FIG. 10 is a schematic plan view of the same.
FIG. 11 is an explanatory view showing a solid separation state in the initial stage of the filtration step.
FIG. 12 is an explanatory diagram showing a solid separation state when the filtration process proceeds.
FIG. 13 is an explanatory diagram showing a state at the end of the filtration step.
FIG. 14 is an explanatory view showing a state during a drainage process.
FIG. 15 is an explanatory view showing a state during a backwashing step.
FIG. 16 is an explanatory diagram showing a state during a cleaning process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Solid-liquid separator, 12 ... Membrane unit, 13 ... Filtration tank, 14 ... Raw water storage tank, 15 ... Filtrated water storage tank, 16 ... Raw water inflow pipe, 16a ... Raw water inflow valve, 17 ... Filtrated water outflow pipe, 18 DESCRIPTION OF SYMBOLS ... Mud pipe, 18a ... Mud valve, 19 ... Air pipe, 21 ... Air diffuser, 22 ... Aeration tank, 23 ... Inner cylinder, 24 ... Settling tank, 25 ... Raw water inflow path, 26 ... Pump, 31 ... Membrane 32, membrane module, 33 ... branch pipe, 34 ... main pipe, 51 ... raw water dispersion plate, 52 ... through hole or slit, 53 ... shower nozzle, 54 ... branch pipe, 55 ... guide plate, 56 ... sprinkling pipe, 57 … Spray hole, 58… 樋, 59… overflow notch

Claims (8)

固液分離を行う膜ユニットを浸漬した濾過槽と、該濾過槽内に原水を流入させる原水流入部と、該濾過槽内から汚泥を排出する汚泥排出部と、前記膜ユニットを透過した濾過水を流出させる濾過水流出部とを備えた固液分離装置において、前記膜ユニットは、膜面を鉛直方向にして配列した複数の膜モジュールを有し、前記原水流入部は、前記膜ユニットの全体に原水をガイドする原水ガイド部を有していることを特徴とする固液分離装置。A filtration tank in which a membrane unit for performing solid-liquid separation is immersed, a raw water inflow part for allowing raw water to flow into the filtration tank, a sludge discharge part for discharging sludge from the filtration tank, and filtered water that has permeated through the membrane unit. In the solid-liquid separator including the filtered water outflow part, the membrane unit has a plurality of membrane modules arranged with the membrane surface in the vertical direction, and the raw water inflow part is the whole of the membrane unit. A solid-liquid separation device having a raw water guide portion for guiding the raw water. 前記複数の膜モジュールにおける膜面同士の間隔が1〜15mmの範囲に設定されていることを特徴とする請求項1記載の固液分離装置。The solid-liquid separator according to claim 1, wherein an interval between the membrane surfaces of the plurality of membrane modules is set in a range of 1 to 15 mm. 前記濾過槽の前段の前記膜ユニットより上方位置に原水を貯留する原水貯留槽を設置するとともに、濾過槽の前記原水流入部と前記原水貯留槽とを原水流入弁を備えた原水流入管で接続したことを特徴とする請求項1記載の固液分離装置。A raw water storage tank for storing raw water is installed at a position above the membrane unit in the previous stage of the filtration tank, and the raw water inflow portion of the filtration tank and the raw water storage tank are connected by a raw water inflow pipe having a raw water inflow valve. The solid-liquid separator according to claim 1, wherein 前記原水貯留槽の前段に沈殿槽を設置したことを特徴とする請求項1記載の固液分離装置。The solid-liquid separator according to claim 1, wherein a precipitation tank is installed in front of the raw water storage tank. 前記濾過槽の後段に、前記膜ユニットより上方位置に、濾過水を貯留する濾過水貯留槽を設置し、該濾過水貯留槽内に貯留した濾過水を前記濾過水流出部から膜ユニットに向けて逆流可能に形成したことを特徴とする請求項1記載の固液分離装置。A filtered water storage tank for storing filtered water is installed at a position above the membrane unit at the rear stage of the filtration tank, and the filtered water stored in the filtered water storage tank is directed from the filtered water outflow portion to the membrane unit. The solid-liquid separation device according to claim 1, wherein the solid-liquid separation device is configured to be capable of backflow. 請求項1記載の固液分離装置の洗浄方法であって、前記原水流入部から濾過槽への原水の流入を停止した後、濾過槽内の汚泥を濾過槽内の水と共に前記汚泥排出部から排出し、前記膜ユニットを水面上に露出させた状態で、前記原水流入部から前記原水ガイドを介して原水を流入させ、前記膜モジュールの表面を洗浄することを特徴とする固液分離装置の洗浄方法。It is the washing | cleaning method of the solid-liquid separator of Claim 1, Comprising: After stopping the inflow of the raw water from the said raw | natural water inflow part to a filtration tank, the sludge in a filtration tank is sent from the said sludge discharge part with the water in a filtration tank. The solid-liquid separator is characterized by discharging raw water from the raw water inflow portion through the raw water guide and cleaning the surface of the membrane module in a state where the membrane unit is exposed on the water surface. Cleaning method. 請求項3記載の固液分離装置の洗浄方法であって、前記原水貯留槽の水位を検出し、検出した水位があらかじめ設定した洗浄水位に達したときに、前記原水流入管の原水流入弁を閉じて前記原水流入部から濾過槽への原水の流入を停止した後、濾過槽内の汚泥を濾過槽内の水と共に前記汚泥排出部から排出し、前記膜ユニットを水面上に露出させた状態で、前記原水流入部から前記原水ガイドを介して原水を流入させ、前記膜モジュールの表面を洗浄することを特徴とする固液分離装置の洗浄方法。The solid-liquid separation apparatus cleaning method according to claim 3, wherein when the water level of the raw water storage tank is detected and the detected water level reaches a preset cleaning water level, the raw water inlet valve of the raw water inlet pipe is set. After closing and stopping the flow of raw water from the raw water inflow part to the filtration tank, the sludge in the filtration tank is discharged from the sludge discharge part together with the water in the filtration tank, and the membrane unit is exposed on the water surface Then, the raw water is introduced from the raw water inflow section through the raw water guide, and the surface of the membrane module is washed. 請求項5記載の固液分離装置の洗浄方法であって、前記原水流入部から濾過槽への原水の流入を停止した後、濾過槽内の汚泥を濾過槽内の水と共に前記汚泥排出部から排出するとともに、前記濾過水貯留槽内に貯留した濾過水を前記濾過水流出部から膜ユニットに逆流させて膜ユニットの逆洗を行った後、前記膜ユニットを水面上に露出させた状態で、前記原水流入部から前記原水ガイドを介して原水を流入させ、前記膜モジュールの表面を洗浄することを特徴とする固液分離装置の洗浄方法。6. The solid-liquid separator cleaning method according to claim 5, wherein after the inflow of the raw water from the raw water inflow portion to the filtration tank is stopped, the sludge in the filtration tank is removed from the sludge discharge section together with the water in the filtration tank. In the state where the membrane unit is exposed on the water surface after draining and backwashing the membrane unit by flowing the filtrate stored in the filtrate storage tank back to the membrane unit from the filtrate outlet portion. A cleaning method for a solid-liquid separator, wherein raw water is introduced from the raw water inflow portion through the raw water guide to clean the surface of the membrane module.
JP2002307217A 2002-10-22 2002-10-22 Cleaning method for solid-liquid separator Expired - Fee Related JP3984145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307217A JP3984145B2 (en) 2002-10-22 2002-10-22 Cleaning method for solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307217A JP3984145B2 (en) 2002-10-22 2002-10-22 Cleaning method for solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2004141724A true JP2004141724A (en) 2004-05-20
JP3984145B2 JP3984145B2 (en) 2007-10-03

Family

ID=32453746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307217A Expired - Fee Related JP3984145B2 (en) 2002-10-22 2002-10-22 Cleaning method for solid-liquid separator

Country Status (1)

Country Link
JP (1) JP3984145B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
KR100572982B1 (en) * 2004-06-07 2006-04-24 주식회사 하나포스텍 Water Treating System Equipped with Drying Device and Incinerating Device
JP2006167550A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP2008126164A (en) * 2006-11-22 2008-06-05 Daicen Membrane Systems Ltd Treatment method of oil-containing wastewater
JP2009226314A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method of manufacturing reclaimed water
JP2013202525A (en) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd Wastewater treatment system and wastewater treatment method
WO2014069300A1 (en) * 2012-10-31 2014-05-08 東レ株式会社 Operating method for clarifying membrane module
JP2015199056A (en) * 2014-03-31 2015-11-12 国立大学法人 筑波大学 Suspension water treatment device and cleaning, classification and treatment system
JP2018130682A (en) * 2017-02-16 2018-08-23 株式会社清水合金製作所 Portable water treatment apparatus and operation method thereof
JP2019084505A (en) * 2017-11-08 2019-06-06 オルガノ株式会社 Water treatment apparatus and water treatment method
US10576427B2 (en) 2014-08-29 2020-03-03 Mitsubishi Electric Corporation Method and apparatus for cleaning filter membrane, and water treatment system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572982B1 (en) * 2004-06-07 2006-04-24 주식회사 하나포스텍 Water Treating System Equipped with Drying Device and Incinerating Device
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP2006167550A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP4529670B2 (en) * 2004-12-14 2010-08-25 栗田工業株式会社 Biological treatment equipment
JP2008126164A (en) * 2006-11-22 2008-06-05 Daicen Membrane Systems Ltd Treatment method of oil-containing wastewater
JP2009226314A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method of manufacturing reclaimed water
JP2013202525A (en) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd Wastewater treatment system and wastewater treatment method
WO2014069300A1 (en) * 2012-10-31 2014-05-08 東レ株式会社 Operating method for clarifying membrane module
CN104755156A (en) * 2012-10-31 2015-07-01 东丽株式会社 Operating method for clarifying membrane module
JPWO2014069300A1 (en) * 2012-10-31 2016-09-08 東レ株式会社 Operation method of turbidity removal membrane module
JP2015199056A (en) * 2014-03-31 2015-11-12 国立大学法人 筑波大学 Suspension water treatment device and cleaning, classification and treatment system
US10576427B2 (en) 2014-08-29 2020-03-03 Mitsubishi Electric Corporation Method and apparatus for cleaning filter membrane, and water treatment system
JP2018130682A (en) * 2017-02-16 2018-08-23 株式会社清水合金製作所 Portable water treatment apparatus and operation method thereof
JP2019084505A (en) * 2017-11-08 2019-06-06 オルガノ株式会社 Water treatment apparatus and water treatment method
JP7089859B2 (en) 2017-11-08 2022-06-23 オルガノ株式会社 Water treatment equipment and water treatment method

Also Published As

Publication number Publication date
JP3984145B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4920990B2 (en) Separation membrane cleaning method
JP3984145B2 (en) Cleaning method for solid-liquid separator
JPH06170364A (en) Filter device using permeation membrane
JPH0857465A (en) Backwashing of water treatment apparatus using floating filter material
WO2003033103A1 (en) Dynamic filter module
KR101466765B1 (en) Apparatus and method for discharging backwashing water of filter basin
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
JP3281161B2 (en) Water purification equipment
JP3284903B2 (en) Biological treatment method
JP4046445B2 (en) Wastewater treatment method
JP2690852B2 (en) How to operate the natural filtration device
JPH08238041A (en) Filtration apparatus
CN112573623A (en) Continuous dynamic membrane system operation device and working method thereof
JP3235740B2 (en) Solid-liquid separation device
JP3473132B2 (en) Upflow filtration method
JPH08257312A (en) Filter equipment
JP2002239308A (en) Filter apparatus using floating filter medium and water treatment method
JPH11347377A (en) Solid-liquid separation apparatus and washing method thereof
JP2000062833A (en) Solid and liquid separating device
JP4124957B2 (en) Filter body washing method and apparatus
KR100718791B1 (en) Water filter apparatus of submerged type
JP4023959B2 (en) High-concentration wastewater treatment method
JPH11244844A (en) Laver waste water cleaning device
JPH0985269A (en) Sewage treatment apparatus
JP3797572B2 (en) Cleaning wastewater treatment method in water purification facilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees