JP2004136625A - Antistatic sheet, and adhesive tape - Google Patents

Antistatic sheet, and adhesive tape Download PDF

Info

Publication number
JP2004136625A
JP2004136625A JP2002305822A JP2002305822A JP2004136625A JP 2004136625 A JP2004136625 A JP 2004136625A JP 2002305822 A JP2002305822 A JP 2002305822A JP 2002305822 A JP2002305822 A JP 2002305822A JP 2004136625 A JP2004136625 A JP 2004136625A
Authority
JP
Japan
Prior art keywords
dielectric constant
tape
antistatic
sensitive adhesive
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002305822A
Other languages
Japanese (ja)
Other versions
JP4093355B2 (en
Inventor
Minoru Ezoe
江副 實
Atsushi Tani
厚 谷
Ichiro Nakano
中野 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002305822A priority Critical patent/JP4093355B2/en
Publication of JP2004136625A publication Critical patent/JP2004136625A/en
Application granted granted Critical
Publication of JP4093355B2 publication Critical patent/JP4093355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheet which is effective for a static electricity prevention, and an adhesive tape, especially, to provide a tape or the like of which the adaptability is extremely high for a chip carrier tape or the like frequently used for the transport of an electronic part or the packaging on a printed circuit board. <P>SOLUTION: A structure of which the dielectric constant is lowest from among three layer structures having different dielectric constants is made the center. Also, a structure having a second smallest dielectric constant is preferably made a base material. In addition, more preferably, an antistatic agent or an electronically conductive polymeric material is applied on the interface between the structure of the smallest dielectric constant and the structure of the second smallest dielectric constant, and the structure of the highest dielectric constant preferably increases the dielectric constant by kneading in the antistatic agent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、両表面に帯電した正負電荷を除去する帯電防止用シート及び粘着テープに関する。
【0002】
【従来の技術】
現在、電子部品の輸送やプリント基板への実装に際しては、個々の部品を所定のシートで包装した状態や粘着テープへ貼り付けた状態によって移送することが多々行われている。具体的には、小型の電子部品用の搬送体としてテープ状支持体の上に接着剤層を設けたキャリアテープが提案されている(例えば特許文献1参照)。こうした部品を開梱しようとしたり、あるいは粘着テープから部品を取り外そうとすると、シートやテープ(以下「テープ等」という。)の表面に静電気が発生することがあり、この静電気によって部品自体が損傷することがあることが知られている。特に、近年非常に精密化されてきた電子部品では、微量の静電気の発生によっても無視できない影響を受けることがある。
【0003】
従って、このとき使用するテープ等は、帯電防止処理をしたものやテープ等の素材自体が帯電を防止できるものであることが必要となる。
【0004】
一般的に、こうしたテープ等は、2層構造のテープ等がほとんどであり、表面への帯電防止剤付与、練り込みが主である。また、基材の上に、帯電防止層、粘着剤層を順に設けることを特徴とし、テープ等の表面での静電気の発生および帯電の防止を図ろうとするテープの提案もある(例えば特許文献2等)。
【0005】
【特許文献1】
特開昭60−105260号公報
【特許文献2】
特開2002−69395号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来、帯電防止機構は十分に解明されておらず、試行錯誤で帯電防止されているのが現状である。従って、テープ等の用途が異なった場合や基材や粘着剤が特定された場合にあっては、十分な帯電防止ができない或いはその確認ができない状態でテープ等を使用することがあり、実装での静電気による問題の発生が生じるおそれがあった。
【0007】
また、帯電防止の効果の確認等においても、これまでは、テープ等の表面における特性、例えば表面抵抗率、帯電電位、電位減衰、その均一性などについてのみ電気的特性として検討されてきた。従って、構造物の組成が変わった場合やその配列を変えた場合など表面上の変化が見られないが、実際に使用した場合に静電気の発生量が大幅に異なるおそれがあった。
【0008】
本発明の目的は、上記問題点を解決し、帯電防止に効果的なテープ等を提供することにある。特に、電子部品の輸送やプリント基板への実装に際して多く用いられるチップキャリアテープ等に対して非常に実用性の高いテープ等となる。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、以下に示す帯電防止用テープ等により上記目的を達成できることを見出し、本発明を完成するに到った。
【0010】
具体的には、誘電率の異なる3層構造物からなる帯電防止用テープ等であって、各層の内で誘電率が最も小さい構造物を中央とすることを特徴とする。こうした構造を有するテープ等により、各構造物界面での内部電荷の形成が可能となり、テープ等の表面での帯電防止を好適に行うことができることとなる。
【0011】
また、上記帯電防止用テープ等であって、2番目に小さい誘電率の構造物を基材としたことを特徴とする。こうした構造を有するテープ等により、実際に電子部品等の被粘着物が接触するテープ等の面での電荷の発生を大幅に低減し、テープ等の表面からの部品等への帯電を好適に防止することができることとなる。
【0012】
また、上記帯電防止用テープ等であって、誘電率が最も小さい構造物と2番目に小さい構造物との界面に帯電防止剤を施すことを特徴とする。こうした構造を有するテープ等により、各構造物界面での内部電荷の形成を可能としつつ、発生する電荷量を低減することで、テープ等の表面での帯電防止をさらに好適に行うことができる。
【0013】
このとき、帯電防止剤に代え、電子電導性高分子材料を施すことによっても同様の効果をえることができる。電子電導性高分子材料に代えることによって、さらに湿度の変化に対しても表面抵抗が変わらないといった効果が期待できる。
【0014】
また、上記帯電防止用テープ等であって、誘電率の2番目に小さい構造物表面に帯電防止剤を施したことを特徴とする。予め帯電防止剤を施した構造物をテープ等に使用することにより、3層構造を形成するに際して工程上円滑に処理することができ、上記の好適な条件を満たすテープ等を容易に製造することができる。
【0015】
また、上記帯電防止用テープ等にあっては、誘電率の最も大きい構造物が帯電防止剤を練り込んで誘電率を上げることが好ましい。基本となる基材や粘着剤の組成を変えずに最適な誘電率を調整することができることから、帯電防止以外の機能を損なうことなく、任意の素材を用いたテープ等を供給することができる。
【0016】
【発明の実施の形態】
以下、本発明に係る帯電防止用テープ等の実施形態について説明する。
【0017】
本発明者らは研究の結果、強固に貼り合わされた3層構造物内部の各界面には、テープ等に(帯電)電圧がかかった際に、誘導などにより電荷が形成されるという現象を見出し、また、帯電防止の効果の確認等において、空間電荷分布測定により、帯電時におけるテープ等の内部電荷が帯電防止機構に大きく影響していることを見出した。こうした研究結果を基に、更に検討を加えて完成した本発明の内容は、実施の態様として、帯電防止に効果的な内部電荷を中央部構造物(第2層構造物)の両端界面(第1層構造物と第2層構造物との界面(以下「第1界面」という。)、第2層構造物と第3層構造物との界面(以下「第2界面」という。))にそれぞれ形成することができるテープ等を提供することにある。また、当核内部電荷形成シートを帯電防止用として用いることにより、各構造物界面に内部電荷を形成して表面の帯電防止が好適に行える帯電防止方法を提供することにある。
【0018】
本発明の帯電防止用テープ等は3層構造物を有し、(帯電)電圧がかかった際に、各層の構造物の誘電率(ε)の差により、表面に帯電した同極性の電荷が各界面に形成するものである。上記において、例えば第1層構造物表面に負電荷が蓄積すると第1界面には負の誘導電荷が形成し、第3層構造物表面に正電荷が蓄積すると第2界面に正の誘導電荷が形成されるものが好ましい。また、これら構造物の誘電率の大きさが、第3層構造物の誘電率(ε )>第1層構造物の誘 電率(ε )>第2層構造物(中央部構造物)の誘電率(ε )であることが好ましい。
【0019】
つまり、誘電率の異なる3層構造物からなる帯電防止用テープ等であって、各層の内で誘電率が最も小さい構造物を中央とすることで、実施例の結果が示すように、両端表面に正負の電荷が帯電した場合に、中央部構造物(第2層構造物)両端に誘導電荷が発生する。これにより、1つの外層で発生した静電気を内部の構造物間の誘導電荷に変えて、表面電荷の存在を大きく低減することができる。具体的には、第1層構造物を基材とし第2、第3構造物を高分子シートとする帯電防止シートとしては、例えば、PET(ポリエチレンテレフタレート)やPP(ポリプロピレン)やPI(ポリイミド)を基材とし、PE(ポリエチレン)やEVA(エチレンビニルアセテート)やカーボン入り樹脂をシート材として用い、第2層構造物をPEやフッ素系樹脂(cf.PVdF)とするものが挙げられる。また、第1層構造物を基材とし第2、第3構造物を粘着剤とする粘着テープとしては、例えば、PETやPPを基材とし、PIB(ポリイソブチレン系粘着剤)やPAB(アクリル系粘着剤)やカーボン入り粘着剤を粘着剤として用い、第2層構造物をそれら素材の中で最も誘電率の低いPIBや天然ゴム系粘着剤とするものが挙げられる。なお、素材の形状や誘電率については、実施例や比較例に記載されたものが一般的であるが、本発明はこれに限定されるものでないことは言うまでもない。
【0020】
また、上記帯電防止用テープ等であって、誘電率が最も小さい構造物を中央とし、2番目に小さい誘電率の構造物を基材とすることで、好ましいテープ等の構成である、第3層構造物の誘電率(ε )>第1層構造物の誘電率(ε )>第2層構造物(中央部構造物)の誘電率(ε )を確保することができる。つまり、上記のような構造物の配置をすることで、一般に基材(第1層構造物)の表面で発生する負の電荷に相当する量の負の電荷を第1界面に形成せしめ、第2界面に正の電荷を形成することで、第3層構造物の空気面での表面電荷の発生を有効に低減することができる。上記の具体的例では、第1構造物(基材)として、PEやフッ素系樹脂よりも誘電率が高くEVAやカーボン入りPEよりも誘電率が低いPETやPPを基材としたシートが挙げられる。また、第1構造物(基材)として、PIBや天然ゴム系粘着剤よりも誘電率が高くPABやカーボン入り粘着剤よりも誘電率が低いPETやPPを基材とした粘着テープが挙げられる。
【0021】
さらに、上記帯電防止用テープ等であって、誘電率が最も小さい構造物と2番目に小さい構造物との界面(つまり、第1界面)に帯電防止剤を施すことが好ましい。こうした構造により、第1界面および第2界面での内部電荷の形成を可能としつつ、第1界面で形成する負(または正)の電荷量を低減することで、第2界面で形成する正(または負)の電荷を低減することができる。その結果、テープ等の表面での帯電防止をさらに好適に行うことができる。ここでいう帯電防止剤とは、例えば、導電性ポリマーや海面活性剤をいい、具体的には静電防止性コーティング剤” ボンディップ” (アルテック社製)や可溶性ポリアニリン”アニリード”(日東電工社製)を挙げることができる。
【0022】
このとき、イオン電導性帯電防止剤に代え、電子電導性高分子材料を施すことによっても同様の効果をえることができる。電子電導性高分子材料を第1界面に施すことによって、上記のような内部電荷の形成が可能となるとともに、湿度変化に対しても表面抵抗は変わらないといった効果が期待できる。ここでいう電子電導性高分子材料とは、具体的にはポリアニリンやポリピロールのような導電性高分子と金属粒子やカーボンを練り込んだ高分子材料を挙げることができる。
【0023】
また、上記帯電防止用テープ等であって、誘電率の2番目に小さい構造物表面に帯電防止剤を施すことが好ましい。例えば、3層構造物からなる帯電防止用テープ等において第1界面に帯電防止剤を施す場合、(1)第1層構造物を準備し、その表面に帯電防止剤を施す(2)第1層構造物と第2層構造物を重ね合わせながら、その中間に帯電防止剤を流し込む(3)第2層構造物の第1界面側の面に帯電防止剤を施し、その後第1層構造物と重ねる、のいずれかの工程を採用することが一般的であるが、予め帯電防止剤を施した構造物をテープ等に使用することにより、上記工程を円滑に処理するとともに、上記の好適な条件を満たすテープ等を容易に製造することができる。特に単に塗布するだけでなく、一定の深さを有する表層部に帯電防止処理を施すことが必要な場合には特に有効な手段となる。
【0024】
また、上記帯電防止用テープ等にあっては、誘電率の最も大きい構造物が帯電防止剤を練り込んで誘電率を上げることが好ましい。例えば、実施例に示すように、EVAに帯電防止剤を練り込んだ高分子シートが挙げられる。基となる高分子や粘着剤の組成を変えずに最適な誘電率を調整することができ、基となる高分子や粘着剤の特性を活かしつつ有効に静電気の影響を低減することができる。
【0025】
なお、上記帯電防止用テープ等であっては、各構造物における空間電荷分布測定によって、帯電防止の効果の確認することが可能である。本発明者は、空間電荷分布測定により、帯電時におけるテープ等の内部電荷が帯電防止機構に大きく影響していることを見出すとともに、上記のような、最適の3層構造物からなる帯電防止用テープ等を発明した。従って、逆に、空間電荷分布測定を利用すると、各種構造を有するテープ等が帯電防止効果を有するかどうかに対して明確な判断ができることを意味する。つまり、上記測定法によって、帯電防止効果の差異を的確に把握し、最適構造を有するか否か、或いは製品レベルのばらつきや不良品の発生を確実に抑えることができる。
【0026】
なお、上記の説明は、主として粘着面表面から発生する負の静電気を中心に述べるが、むろん、正の静電気の発生の場合にも同様の効果がえられることはいうまでもない。
【0027】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例について説明する。
【0028】
表1に示すような構造物を有する14種類の試料について、下記の測定方法に基づいて測定を行った。なお、これら各実施例は、本発明を制限するものではない。
【0029】
【表1】

Figure 2004136625
【0030】
<測定方法>
帯電防止機能を以下の2つの方法にて測定する。
【0031】
(1)電荷放射装置(Milty社製:” ZEROSTAT3” )にて、試料の一方の面に電荷を放電させ、1分後、空間電荷分布測定装置(ファイブラボ社製:” PEANUTS” ,PEA−101−BM)によって試料内部の残留電荷密度の観察を行う。結果は実施例等に示すように、テープ等の断面距離を横軸にとり、電荷密度を縦軸として表す。
【0032】
(2)試料の両面間に直流電圧を印加し、1分後、上記測定装置によって試料内部の残留電荷密度の観察を行った。結果は実施例等に示すように、テープ等の断面距離を横軸、電荷密度を縦軸として、電圧印加(10kV/mm)中の空間電荷分布を斜線なしのグラフ、電圧印加停止後1分経過後の残留電荷分布を斜線付のグラフで表す。
【0033】
(3)一部の試料について、表面電荷の減衰時間の測定を行った。試料表面の帯電電圧をモニターしつつ、電圧印加直後からその帯電電圧が10%まで減衰する時間を測定値とした。
【0034】
<試験条件A>
PETフィルム(例えば、東レ社製ルミラーS10、38μm厚、ε =2.7)を基材とし、粘着剤Aとしてポリイソブチレン系粘着剤(PIB:50μm厚、ε =1.9)、粘着剤Bとしてアクリル系粘着剤(PAB:50μm厚、ε =4.2)を使用し、組み合わせをいろいろ換えて粘着剤2層構造の粘着テープを作製した。
【0035】
(1)実施例1
粘着テープの構造として、基材(PET:ε =2.7)/粘着剤A(PIB:ε =1.9)/粘着剤B(PAB:ε =4.2)からなる試料を作製した。粘着剤面に電荷を放電させた後の粘着テープ内部の残留電荷密度(C/m )を観察した結果を図1に示す。
【0036】
(2)実施例2
実施例1と同一条件の試料について、直流電圧を印加した後の内部空間電荷分布および残留電荷密度(C/m )を観察した結果を図2に示す。
【0037】
(3)比較例1
粘着テープの構造として、基材(PET:ε =2.7)/粘着剤B(PAB:ε =4.2)/粘着剤A(PIB:ε =1.9)とした場合の、電荷放射後の残留電荷密度分布を図3に示す。
【0038】
(4)比較例2
比較例1と同一条件の試料について、直流電圧を印加後の内部空間電荷分布および残留電荷密度分布を図4に示す。
【0039】
(5)結果について
上記の結果から判るように、明らかに誘電率の小さいイソブチレン系粘着剤を中央部に配置した方が残留電荷密度は小さい。この場合、残留電荷が中央部両端に集中する傾向にあり、表面電荷を打ち消す効果を持つものと考えることができる。また、実施例1および2における減衰時間は、10数秒から数10秒程度が観測されている。
【0040】
<試験条件B>
更なる帯電防止効果を上げるため、PET/粘着剤界面に電子性電導材料である導電性高分子ポリアニリンの薄膜(0.1μm厚)をPET表面に塗布し、粘着剤を2層塗工した。さらに、比較例として、同じ粘着剤を2層構造に塗布した場合(1層構造粘着剤となる)どうなるかを同様に観察した。
【0041】
(1)実施例3
粘着テープの構造として、基材(PET)/ポリアニリン/粘着剤A(PIB)/粘着剤B(PAB)からなる試料を作製した。粘着剤面に電荷を放電させた後の粘着テープ内部の残留電荷密度分布(C/m )を図5に示す。
【0042】
(2)実施例4
実施例3と同一条件の試料について、直流電圧を印加した後の内部空間電荷分布および残留電荷密度分布(C/m )を図6に示す。
【0043】
(3)比較例3
粘着テープの構造として、基材(PET)/ポリアニリン/粘着剤B(PAB)/粘着剤A(PIB)からなる試料を作製した。粘着剤面に電荷を放電させた後の粘着テープ内部の残留電荷密度分布(C/m )を図7に示す。
【0044】
(4)比較例4
比較例3と同一条件の試料について、直流電圧を印加した後の内部空間電荷分布および残留電荷密度分布(C/m )を図8に示す。
【0045】
(5)比較例5
粘着テープの構造として、基材(PET)/粘着剤A(PIB)/粘着剤A(PIB)からなる試料を作製した。粘着剤面に電荷を放電させた後の粘着テープ内部の残留電荷密度分布(C/m )を図9に示す。
【0046】
(6)比較例6
粘着テープの構造として、基材(PET)/粘着剤B(PAB)/粘着剤B(PAB)からなる試料を作製した。粘着剤面に電荷を放電させた後の粘着テープ内部の残留電荷密度分布(C/m )を図10に示す。
【0047】
(7)結果について
実験条件Aと同様に、誘電率の小さいイソブチレン系粘着剤を中央部に配置した方が残留電荷密度は小さく、残留電荷が中央部両端に集中する傾向も見られ、表面電荷を打ち消す効果を持つものと考えることができる。
【0048】
また、同じ誘電率を有する構造物を重ねた比較例5および6については、その界面では電荷の蓄積は観察されなかった。つまり、同じ誘電率を有する構造物を重ねた場合には、実質的に2層構造といえることが確認された。ただ、アクリル系の粘着剤が2層となる場合、基材のPET両端に大きな残留電荷が見られた。なお、実施例3における減衰時間は、数秒程度であることが観測されている。
【0049】
<試験条件C>
一般的な粘着テープであるダンプロンテープ(日東電工製:包装用粘着テープ)について試験した。テープの構造は、基材としてPP(ポリプロピレン:60μm厚、ε=3.1)/粘着剤(PAB:30μm厚、ε=4.2)である。
【0050】
(1)比較例7
上記試料について、直流電圧を印加した後の内部空間電荷分布および残留電荷密度分布(C/m )を図11に示す。
【0051】
(2)結果について
試料の内部において、基材/粘着剤界面に大きな残留電荷(印加時とほぼ同じ位)が生成し、これによる両表面には誘導電荷が生じて、これが帯電現象として生じている。
【0052】
<試験条件D>
次に、帯電防止用シートにおける実施例を示す。
【0053】
(1)比較例8
帯電防止用シートの構造として、基材(PET:ε =2.7)/シートA(PE:13μm厚、ε =1.73)/シートB(EVA:15μm厚、ε =2.5)とした場合の、電圧印加中の空間電荷分布および1分経過後の残留電荷分布を図12に示す。
【0054】
(2)実施例5
比較例8の帯電防止用シートの構造に加え、EVAシートの中に帯電防止剤を練り込むことにより第三構造物の誘電率を大きくし(ε =3.8)、シート Bとした場合の、電圧印加中の空間電荷分布および1分経過後の残留電荷分布を図13に示す。
【0055】
(3)実施例6
実施例5の帯電防止用シートに、更にPETフィルム表面に帯電防止剤(例えば、アルテック社製静電防止性コーティング剤” ボンディップ” )を塗布し、その上にPEシート、EVAシートを重ねた3層構造物にした場合の、電圧印加中の空間電荷分布および1分経過後の残留電荷分布を図14に示す。
【0056】
(4)減衰時間について
比較例8、実施例5および6における減衰時間を、以下の表2に示す。
【0057】
【表2】
Figure 2004136625
【0058】
(5)結果について
表2の結果が示すように、比較例8では、PEとEVAの誘電率は近似した値であり、PE層に正の残留電荷が多く残留している。この残留電荷のためシートの両表面には誘導電荷を生じるとともに、表面での電荷減衰時間は非常に長くなり、測定不能であった。
【0059】
一方、実施例5については、残留電荷はPE両端に分かれるようになり、シートの表面での電荷減衰時間は12秒、15秒とかなり早くなった。また、実施例6については、残留電荷分布は、PET/PEシート界面、PE/EVAシート界面に集まり、表面には誘導電荷があまり形成しない形となっている。シートの両表面の電荷減衰時間は、0.88秒、0.94秒と非常に早くなった。
【0060】
【発明の効果】
以上のように、本発明の帯電防止用テープ等においては、誘電率の異なる3層構造物内で誘電率が最も小さい構造物を中央とすることにより、各構造物界面での内部電荷の形成が可能となり、テープ等の表面での帯電防止を好適に行うことができる。
【0061】
また、2番目に小さい誘電率の構造物を基材とすることにより、実際に電子部品等の被粘着物が接触するテープ等の面での電荷の発生を大幅に低減することができる。
【0062】
さらに、誘電率が最も小さい構造物と2番目に小さい構造物との界面に帯電防止剤を施すことにより、発生する電荷量を低減し、テープ等の表面での帯電防止をさらに好適に行うことができる。このとき、帯電防止剤に代え、電子電導性高分子材料を施すことによって、さらに表面抵抗が湿度の影響を受けないといった付加的効果が期待できる。
【0063】
また、誘電率の2番目に小さい構造物表面に予め帯電防止剤を施した場合には、工程上円滑に処理することができ、好適なテープ等を容易に製造することができる。
【0064】
また、誘電率の最も大きい構造物を、帯電防止剤を練り込んで誘電率を上げると、基本となる基材や粘着剤の機能を損なうことなく、帯電防止効果を得ることができる。
【0065】
なお、帯電防止の効果の確認を各構造物における空間電荷分布測定によって行うと、各層の組成や構造による帯電防止効果の差異を的確に把握することができ、製品レベルのばらつきや不良品の発生を確実に抑えることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における内部残留電荷分布を示す説明図
【図2】本発明の第2の実施例における内部残留電荷分布を示す説明図
【図3】比較例1における内部残留電荷分布を示す説明図
【図4】比較例2における内部残留電荷分布を示す説明図
【図5】本発明の第3の実施例における内部残留電荷分布を示す説明図
【図6】本発明の第4の実施例における内部残留電荷分布を示す説明図
【図7】比較例3における内部残留電荷分布を示す説明図
【図8】比較例4における内部残留電荷分布を示す説明図
【図9】比較例5における内部残留電荷分布を示す説明図
【図10】比較例6における内部残留電荷分布を示す説明図
【図11】比較例7における内部残留電荷分布を示す説明図
【図12】比較例8における内部残留電荷分布を示す説明図
【図13】本発明の第5の実施例における内部残留電荷分布を示す説明図
【図14】本発明の第6の実施例における内部残留電荷分布を示す説明図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antistatic sheet and an adhesive tape for removing positive and negative charges charged on both surfaces.
[0002]
[Prior art]
At present, when electronic components are transported or mounted on a printed circuit board, individual components are often transported in a state of being wrapped in a predetermined sheet or a state of being attached to an adhesive tape. Specifically, a carrier tape in which an adhesive layer is provided on a tape-like support as a carrier for small electronic components has been proposed (see, for example, Patent Document 1). If you try to unpack these components or remove them from the adhesive tape, static electricity may be generated on the surface of the sheet or tape (hereinafter referred to as "tape, etc."), and the static electricity may cause the components themselves. It is known that it can be damaged. In particular, electronic components that have been extremely refined in recent years may be affected by a small amount of static electricity, which cannot be ignored.
[0003]
Therefore, the tape or the like used at this time must have been subjected to an antistatic treatment or a material such as a tape itself that can prevent the electrification.
[0004]
Generally, most of such tapes and the like are tapes having a two-layer structure, and mainly apply and knead an antistatic agent to the surface. There is also a proposal of a tape characterized by sequentially providing an antistatic layer and a pressure-sensitive adhesive layer on a base material, and trying to prevent generation of static electricity and electrification on the surface of the tape (for example, Patent Document 2). etc).
[0005]
[Patent Document 1]
JP-A-60-105260 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-69395
[Problems to be solved by the invention]
However, heretofore, the antistatic mechanism has not been sufficiently elucidated, and at present the antistatic mechanism is trial and error prevented. Therefore, when the application of the tape or the like is different or when the base material or the adhesive is specified, the tape or the like may be used in a state where sufficient antistatic cannot be performed or its confirmation cannot be performed. There is a possibility that a problem may occur due to the static electricity.
[0007]
In the confirmation of antistatic effects, etc., only electrical properties such as surface resistivity, charging potential, potential decay, and uniformity thereof on the surface of a tape have been examined. Therefore, there is no change on the surface such as when the composition of the structure is changed or when the arrangement is changed, but there is a possibility that the amount of generated static electricity may be significantly different when actually used.
[0008]
An object of the present invention is to solve the above-mentioned problems and to provide a tape or the like which is effective in preventing static electricity. In particular, it is a highly practical tape or the like for a chip carrier tape or the like that is frequently used in transporting electronic components or mounting on a printed circuit board.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by the following antistatic tape and the like, and have completed the present invention.
[0010]
Specifically, an antistatic tape or the like having a three-layer structure having different dielectric constants is characterized in that the structure having the lowest dielectric constant in each layer is located at the center. With a tape or the like having such a structure, it is possible to form an internal charge at the interface of each structure, and it is possible to suitably prevent the surface of the tape or the like from being charged.
[0011]
Further, the antistatic tape or the like is characterized in that a structure having the second lowest dielectric constant is used as a base material. By using a tape having such a structure, the generation of electric charges on the surface of the tape or the like to which an object to be adhered such as an electronic component actually contacts is greatly reduced, and the charging of the component or the like from the surface of the tape or the like is appropriately prevented. Can be done.
[0012]
Further, the antistatic tape or the like is characterized in that an antistatic agent is applied to an interface between the structure having the smallest dielectric constant and the structure having the second smallest dielectric constant. By using a tape or the like having such a structure, it is possible to form an internal charge at the interface of each structure, and by reducing the amount of generated charge, it is possible to more suitably prevent the surface of the tape or the like from being charged.
[0013]
At this time, the same effect can be obtained by applying an electron conductive polymer material instead of the antistatic agent. By substituting the electron conductive polymer material, an effect that the surface resistance does not change even when the humidity changes can be expected.
[0014]
Further, the antistatic tape or the like is characterized in that an antistatic agent is applied to the surface of the structure having the second lowest dielectric constant. By using a structure to which an antistatic agent has been applied in advance for a tape or the like, a three-layer structure can be smoothly processed in the process when forming the three-layer structure, and a tape or the like satisfying the above preferable conditions can be easily manufactured. Can be.
[0015]
In the antistatic tape and the like, it is preferable that the structure having the largest dielectric constant is mixed with an antistatic agent to increase the dielectric constant. Since the optimum dielectric constant can be adjusted without changing the composition of the base material and the adhesive, it is possible to supply a tape or the like using any material without impairing functions other than antistatic. .
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the antistatic tape and the like according to the present invention will be described.
[0017]
As a result of the research, the present inventors have found that a charge is formed at each interface inside a strongly bonded three-layer structure due to induction or the like when a (charging) voltage is applied to a tape or the like. Further, in confirming the antistatic effect and the like, it was found from the measurement of the space charge distribution that the internal charge of the tape or the like during the charging greatly affected the antistatic mechanism. Based on these research results, the content of the present invention, which was completed by further study, is described as an embodiment in which an internal charge effective for antistatic is applied to both ends of the central structure (second layer structure). At the interface between the one-layer structure and the second-layer structure (hereinafter, referred to as “first interface”) and at the interface between the second-layer structure and the third-layer structure (hereinafter, “second interface”). An object of the present invention is to provide a tape or the like that can be formed respectively. Another object of the present invention is to provide an antistatic method in which the internal charge forming sheet is used as an antistatic material to form an internal electric charge at the interface of each structure, thereby suitably preventing the surface from being charged.
[0018]
The antistatic tape and the like of the present invention have a three-layer structure, and when a (charge) voltage is applied, the charge of the same polarity charged on the surface due to the difference in the dielectric constant (ε) of the structure of each layer. It is formed at each interface. In the above, for example, when a negative charge is accumulated on the surface of the first layer structure, a negative induced charge is formed on the first interface, and when a positive charge is accumulated on the surface of the third layer structure, a positive induced charge is formed on the second interface. What is formed is preferred. In addition, the magnitude of the dielectric constant of these structures is determined by the following formula: dielectric constant of the third layer structure (ε 3 )> electrical permittivity of the first layer structure (ε 1 )> second layer structure (central part structure) it is preferred) is the permittivity of (epsilon 2).
[0019]
In other words, an antistatic tape or the like made of a three-layer structure having different dielectric constants, with the structure having the smallest dielectric constant in each layer at the center, as shown in the results of the examples, When the positive and negative charges are charged, induced charges are generated at both ends of the central structure (second layer structure). As a result, static electricity generated in one outer layer can be converted into induced charges between internal structures, and the presence of surface charges can be greatly reduced. Specifically, examples of the antistatic sheet having the first layer structure as a base material and the second and third structures as a polymer sheet include, for example, PET (polyethylene terephthalate), PP (polypropylene), and PI (polyimide). Is used as a base material, PE (polyethylene), EVA (ethylene vinyl acetate), or a resin containing carbon is used as a sheet material, and the second layer structure is made of PE or a fluororesin (cf. PVdF). Examples of the adhesive tape using the first layer structure as a base material and the second and third structures as an adhesive include, for example, PET and PP as base materials, PIB (polyisobutylene-based adhesive) and PAB (acrylic). And a carbon-containing pressure-sensitive adhesive, and the second layer structure is made of PIB or a natural rubber-based pressure-sensitive adhesive having the lowest dielectric constant among these materials. The shape and dielectric constant of the material are generally described in Examples and Comparative Examples, but it goes without saying that the present invention is not limited to these.
[0020]
Further, the above-described antistatic tape or the like is preferable in that the structure having the smallest dielectric constant is located at the center and the structure having the second smallest dielectric constant is used as the base material. The dielectric constant of the layer structure (ε 3 )> the dielectric constant of the first layer structure (ε 1 )> the dielectric constant (ε 2 ) of the second layer structure (central structure) can be secured. That is, by arranging the structures as described above, an amount of negative charges generally corresponding to the negative charges generated on the surface of the base material (the first layer structure) is formed on the first interface. By forming a positive charge at the two interfaces, generation of surface charges on the air surface of the third layer structure can be effectively reduced. In the above specific example, as the first structure (substrate), a sheet using PET or PP as a base material having a higher dielectric constant than PE or a fluorine-based resin and a lower dielectric constant than EVA or carbon-containing PE is exemplified. Can be Further, as the first structure (substrate), an adhesive tape based on PET or PP having a higher dielectric constant than PIB or a natural rubber-based adhesive and having a lower dielectric constant than PAB or a carbon-containing adhesive is used. .
[0021]
Further, it is preferable to apply an antistatic agent to the interface between the structure having the smallest dielectric constant and the structure having the second smallest dielectric constant (that is, the first interface). With such a structure, the amount of negative (or positive) charge formed at the first interface is reduced while enabling the formation of internal charges at the first interface and the second interface, so that the positive ( Or negative) charge can be reduced. As a result, it is possible to more suitably prevent the surface of the tape or the like from being charged. The term "antistatic agent" as used herein means, for example, a conductive polymer or a surfactant, and specifically, an antistatic coating agent "Bondip" (manufactured by Altec) or a soluble polyaniline "anilide" (Nitto Denko Corporation) Manufactured).
[0022]
At this time, the same effect can be obtained by applying an electron conductive polymer material instead of the ion conductive antistatic agent. By applying the electron conductive polymer material to the first interface, it is possible to form the internal charge as described above, and it is expected that the surface resistance does not change even when the humidity changes. Specifically, the electron conductive polymer material mentioned here includes a polymer material in which a conductive polymer such as polyaniline or polypyrrole is mixed with metal particles or carbon.
[0023]
In addition, it is preferable to apply an antistatic agent to the surface of the structure having the second lowest dielectric constant in the antistatic tape or the like. For example, when an antistatic agent is applied to the first interface in an antistatic tape or the like having a three-layer structure, (1) the first layer structure is prepared and the antistatic agent is applied to the surface thereof. While the layer structure and the second layer structure are overlapped, an antistatic agent is poured into the middle of the layer structure. (3) The antistatic agent is applied to the first interface side of the second layer structure, and then the first layer structure It is common to employ any one of the steps described above, but by using a structure or the like to which an antistatic agent has been previously applied to a tape or the like, the above steps can be smoothly processed, and the above-described suitable A tape or the like satisfying the conditions can be easily manufactured. This is particularly effective when it is necessary to perform an antistatic treatment on a surface layer having a certain depth in addition to simply applying the coating.
[0024]
In the antistatic tape and the like, it is preferable that the structure having the largest dielectric constant is mixed with an antistatic agent to increase the dielectric constant. For example, as shown in Examples, a polymer sheet in which an antistatic agent is kneaded into EVA can be used. The optimum dielectric constant can be adjusted without changing the composition of the base polymer and the pressure-sensitive adhesive, and the effect of static electricity can be effectively reduced while utilizing the characteristics of the base polymer and the pressure-sensitive adhesive.
[0025]
In the case of the antistatic tape and the like, it is possible to confirm the antistatic effect by measuring the space charge distribution in each structure. The present inventor has found that the internal charge of the tape or the like at the time of charging has a great influence on the antistatic mechanism by measuring the space charge distribution. Invented tape and the like. Therefore, conversely, using the space charge distribution measurement means that a clear judgment can be made as to whether a tape or the like having various structures has an antistatic effect. In other words, the difference in the antistatic effect can be accurately grasped by the above-mentioned measuring method, and it can be surely suppressed whether or not it has the optimum structure, or the variation in the product level and the occurrence of defective products.
[0026]
In the above description, mainly the negative static electricity generated from the surface of the adhesive surface will be mainly described, but it goes without saying that the same effect can be obtained in the case of the generation of positive static electricity.
[0027]
【Example】
Hereinafter, examples that specifically show the configuration and effects of the present invention will be described.
[0028]
Measurement was performed on 14 types of samples having the structures shown in Table 1 based on the following measurement method. Note that these embodiments do not limit the present invention.
[0029]
[Table 1]
Figure 2004136625
[0030]
<Measurement method>
The antistatic function is measured by the following two methods.
[0031]
(1) Discharge electric charge on one surface of the sample with a charge emitting device (“ZEROSTAT3” manufactured by Milty), and after one minute, a space charge distribution measuring device (“PEANUTS”, PEA- 101-BM) to observe the residual charge density inside the sample. As shown in Examples and the like, the results are plotted with the horizontal axis representing the cross-sectional distance of the tape or the like and the vertical axis representing the charge density.
[0032]
(2) A DC voltage was applied between both surfaces of the sample, and after one minute, the residual charge density inside the sample was observed by the above-described measuring device. As shown in the examples, the results are shown in a graph without a hatched line, and the space charge distribution during voltage application (10 kV / mm) is plotted without oblique lines, with the horizontal axis representing the cross-sectional distance of the tape or the like and the vertical axis representing the charge density. The distribution of residual charge after the passage is shown by a shaded graph.
[0033]
(3) For some of the samples, the decay time of the surface charge was measured. While monitoring the charging voltage on the surface of the sample, the time taken for the charging voltage to attenuate to 10% immediately after the application of the voltage was measured.
[0034]
<Test condition A>
A PET film (for example, Lumirror S10 manufactured by Toray Industries, thickness 38 μm, ε 2 = 2.7) as a base material, and a polyisobutylene-based adhesive (PIB: 50 μm thickness, ε 1 = 1.9) as an adhesive A, an adhesive An acrylic adhesive (PAB: 50 μm thick, ε 3 = 4.2) was used as the agent B, and the combination was changed in various ways to produce an adhesive tape having an adhesive two-layer structure.
[0035]
(1) Example 1
As a structure of the pressure-sensitive adhesive tape, a sample composed of a base material (PET: ε 2 = 2.7) / pressure-sensitive adhesive A (PIB: ε 1 = 1.9) / pressure-sensitive adhesive B (PAB: ε 3 = 4.2) was used. Produced. FIG. 1 shows the result of observing the residual charge density (C / m 3 ) inside the pressure-sensitive adhesive tape after discharging the charge on the pressure-sensitive adhesive surface.
[0036]
(2) Example 2
FIG. 2 shows the results of observing the internal space charge distribution and the residual charge density (C / m 3 ) of the sample under the same conditions as in Example 1 after applying a DC voltage.
[0037]
(3) Comparative example 1
As a structure of the pressure-sensitive adhesive tape, a base material (PET: ε 2 = 2.7) / pressure-sensitive adhesive B (PAB: ε 3 = 4.2) / pressure-sensitive adhesive A (PIB: ε 1 = 1.9) FIG. 3 shows the residual charge density distribution after charge emission.
[0038]
(4) Comparative example 2
FIG. 4 shows the internal space charge distribution and the residual charge density distribution of the sample under the same conditions as in Comparative Example 1 after the application of the DC voltage.
[0039]
(5) Results As can be seen from the above results, the residual charge density is smaller when the isobutylene-based pressure-sensitive adhesive having a clearly low dielectric constant is arranged at the center. In this case, the residual charges tend to be concentrated at both ends of the central portion, which can be considered to have an effect of canceling the surface charges. In addition, the decay time in Examples 1 and 2 was observed to be about ten seconds to several tens seconds.
[0040]
<Test condition B>
In order to further enhance the antistatic effect, a thin film (0.1 μm thick) of a conductive polymer polyaniline as an electronic conductive material was applied to the PET / adhesive interface, and two layers of the adhesive were applied. Furthermore, as a comparative example, what happens when the same pressure-sensitive adhesive is applied in a two-layer structure (to be a single-layer pressure-sensitive adhesive) was similarly observed.
[0041]
(1) Example 3
As the structure of the pressure-sensitive adhesive tape, a sample composed of a substrate (PET) / polyaniline / pressure-sensitive adhesive A (PIB) / pressure-sensitive adhesive B (PAB) was prepared. FIG. 5 shows the residual charge density distribution (C / m 3 ) inside the pressure-sensitive adhesive tape after discharging the charge on the pressure-sensitive adhesive surface.
[0042]
(2) Example 4
FIG. 6 shows the internal space charge distribution and the residual charge density distribution (C / m 3 ) of the sample under the same conditions as in Example 3 after the application of the DC voltage.
[0043]
(3) Comparative example 3
As the structure of the pressure-sensitive adhesive tape, a sample including a substrate (PET) / polyaniline / pressure-sensitive adhesive B (PAB) / pressure-sensitive adhesive A (PIB) was prepared. FIG. 7 shows the residual charge density distribution (C / m 3 ) inside the pressure-sensitive adhesive tape after discharging the charge on the pressure-sensitive adhesive surface.
[0044]
(4) Comparative example 4
FIG. 8 shows the internal space charge distribution and residual charge density distribution (C / m 3 ) of the sample under the same conditions as in Comparative Example 3 after the application of the DC voltage.
[0045]
(5) Comparative example 5
As the structure of the pressure-sensitive adhesive tape, a sample including a substrate (PET) / pressure-sensitive adhesive A (PIB) / pressure-sensitive adhesive A (PIB) was prepared. FIG. 9 shows the residual charge density distribution (C / m 3 ) inside the pressure-sensitive adhesive tape after discharging the charge on the pressure-sensitive adhesive surface.
[0046]
(6) Comparative example 6
As the structure of the pressure-sensitive adhesive tape, a sample including a substrate (PET) / pressure-sensitive adhesive B (PAB) / pressure-sensitive adhesive B (PAB) was prepared. FIG. 10 shows the residual charge density distribution (C / m 3 ) inside the pressure-sensitive adhesive tape after discharging the charge on the pressure-sensitive adhesive surface.
[0047]
(7) Results Similar to the experimental condition A, when the isobutylene-based pressure-sensitive adhesive having a small dielectric constant is disposed at the center, the residual charge density is lower, and the residual charge tends to be concentrated at both ends of the center. Can be considered as having the effect of canceling out.
[0048]
In Comparative Examples 5 and 6, in which structures having the same dielectric constant were stacked, no charge accumulation was observed at the interface. That is, it was confirmed that when structures having the same dielectric constant were overlapped, the structure could be said to be substantially a two-layer structure. However, when the acrylic pressure-sensitive adhesive had two layers, large residual charges were observed at both ends of the PET of the base material. It has been observed that the decay time in Example 3 is about several seconds.
[0049]
<Test condition C>
A test was conducted on a general adhesive tape, Damplon tape (manufactured by Nitto Denko: adhesive tape for packaging). The structure of the tape is PP (polypropylene: 60 μm thick, ε = 3.1) / adhesive (PAB: 30 μm thick, ε = 4.2) as a base material.
[0050]
(1) Comparative example 7
FIG. 11 shows the internal space charge distribution and the residual charge density distribution (C / m 3 ) of the sample after applying a DC voltage.
[0051]
(2) Results Regarding the inside of the sample, a large residual charge (approximately the same as that at the time of application) is generated at the interface between the base material and the pressure-sensitive adhesive. I have.
[0052]
<Test condition D>
Next, examples of the antistatic sheet will be described.
[0053]
(1) Comparative Example 8
The structure of the antistatic sheet is as follows: substrate (PET: ε 2 = 2.7) / sheet A (PE: 13 μm thick, ε 1 = 1.73) / sheet B (EVA: 15 μm thick, ε 3 = 2. FIG. 12 shows the space charge distribution during voltage application and the residual charge distribution after a lapse of one minute in the case of 5).
[0054]
(2) Embodiment 5
In the case where the dielectric constant of the third structure is increased (ε 3 = 3.8) by kneading the antistatic agent into the EVA sheet in addition to the structure of the antistatic sheet of Comparative Example 8, and the sheet B is obtained. FIG. 13 shows the space charge distribution during voltage application and the residual charge distribution after 1 minute.
[0055]
(3) Example 6
The antistatic sheet of Example 5 was further coated with an antistatic agent (for example, "Bondip", an antistatic coating agent manufactured by Altec Co.) on the surface of the PET film, and a PE sheet and an EVA sheet were stacked thereon. FIG. 14 shows a space charge distribution during voltage application and a residual charge distribution after one minute in the case of a three-layer structure.
[0056]
(4) Decay time Table 2 below shows the decay time in Comparative Example 8, Examples 5 and 6.
[0057]
[Table 2]
Figure 2004136625
[0058]
(5) As shown in the results of Table 2, in Comparative Example 8, the dielectric constants of PE and EVA are approximate values, and a large amount of positive residual charge remains in the PE layer. Due to this residual charge, an induced charge was generated on both surfaces of the sheet, and the charge decay time on the surface became very long, so that measurement was impossible.
[0059]
On the other hand, in Example 5, the residual charge was separated at both ends of the PE, and the charge decay time on the sheet surface was considerably shortened to 12 seconds and 15 seconds. Further, in Example 6, the residual charge distribution is collected at the PET / PE sheet interface and the PE / EVA sheet interface, so that little induced charge is formed on the surface. The charge decay time of both surfaces of the sheet was very fast, 0.88 seconds and 0.94 seconds.
[0060]
【The invention's effect】
As described above, in the antistatic tape and the like of the present invention, by forming the structure having the smallest dielectric constant in the three-layer structure having different dielectric constants at the center, the formation of internal charges at the interface between the structures is achieved. This makes it possible to suitably prevent the surface of the tape or the like from being charged.
[0061]
In addition, by using a structure having the second lowest dielectric constant as a base material, the generation of electric charges on a surface of a tape or the like that actually comes into contact with an adherend such as an electronic component can be significantly reduced.
[0062]
Furthermore, by applying an antistatic agent to the interface between the structure having the smallest permittivity and the structure having the second smallest permittivity, the amount of generated charges is reduced, and the antistatic on the surface of a tape or the like is more suitably performed. Can be. At this time, an additional effect such that the surface resistance is not affected by humidity can be expected by applying an electron conductive polymer material instead of the antistatic agent.
[0063]
Further, when an antistatic agent is previously applied to the surface of the structure having the second lowest dielectric constant, it can be processed smoothly in the process, and a suitable tape or the like can be easily manufactured.
[0064]
In addition, when the structure having the largest dielectric constant is kneaded with an antistatic agent to increase the dielectric constant, an antistatic effect can be obtained without impairing the functions of the base material and the pressure-sensitive adhesive.
[0065]
If the antistatic effect is checked by measuring the space charge distribution in each structure, the difference in the antistatic effect due to the composition and structure of each layer can be accurately grasped, and variations in the product level and the occurrence of defective products Can be reliably suppressed.
[Brief description of the drawings]
1 is an explanatory diagram showing an internal residual charge distribution in a first embodiment of the present invention; FIG. 2 is an explanatory diagram showing an internal residual charge distribution in a second embodiment of the present invention; FIG. FIG. 4 is an explanatory diagram showing an internal residual charge distribution. FIG. 4 is an explanatory diagram showing an internal residual charge distribution in Comparative Example 2. FIG. 5 is an explanatory diagram showing an internal residual charge distribution in a third embodiment of the present invention. FIG. 7 is an explanatory diagram showing an internal residual charge distribution in a fourth embodiment of the invention. FIG. 7 is an explanatory diagram showing an internal residual charge distribution in Comparative Example 3. FIG. 8 is an explanatory diagram showing an internal residual charge distribution in Comparative Example 4. 9 is an explanatory diagram showing an internal residual charge distribution in Comparative Example 5. FIG. 10 is an explanatory diagram showing an internal residual charge distribution in Comparative Example 6. FIG. 11 is an explanatory diagram showing an internal residual charge distribution in Comparative Example 7. FIG. Internal residual charge distribution in Comparative Example 8 Explanatory view showing an internal residual charge distribution in the sixth embodiment of the explanatory view showing the internal residual charge distribution [14] The present invention in a fifth embodiment of the illustration 13 present invention shown

Claims (6)

誘電率の異なる3層構造物からなる帯電防止用シート及び粘着テープであって、各層の内で誘電率が最も小さい構造物を中央とすることを特徴とする帯電防止用シート及び粘着テープ。An antistatic sheet and an adhesive tape comprising a three-layer structure having different dielectric constants, wherein the structure having the lowest dielectric constant in each layer is located at the center. 上記帯電防止用シート及び粘着テープであって、2番目に小さい誘電率の構造物を基材としたことを特徴とする請求項1記載の帯電防止用シート及び粘着テープ。2. The antistatic sheet and the pressure-sensitive adhesive tape according to claim 1, wherein the antistatic sheet and the pressure-sensitive adhesive tape are made of a structure having the second lowest dielectric constant. 上記帯電防止用シート及び粘着テープであって、誘電率が最も小さい構造物と2番目に小さい構造物との界面に帯電防止剤を施すことを特徴とする請求項1または2記載の帯電防止用シート及び粘着テープ。The antistatic sheet or pressure-sensitive adhesive tape according to claim 1, wherein an antistatic agent is applied to an interface between the structure having the smallest dielectric constant and the structure having the second smallest dielectric constant. Sheets and adhesive tapes. 上記帯電防止用シート及び粘着テープであって、誘電率が最も小さい構造物と2番目に小さい構造物との界面に電子電導性高分子材料を施すことを特徴とする請求項1または2記載の帯電防止用シート及び粘着テープ。3. The antistatic sheet and the pressure-sensitive adhesive tape according to claim 1, wherein an electronic conductive polymer material is applied to an interface between the structure having the smallest dielectric constant and the structure having the second smallest dielectric constant. Antistatic sheet and adhesive tape. 上記帯電防止用シート及び粘着テープであって、誘電率の2番目に小さい構造物表面に帯電防止剤を施したことを特徴とする帯電防止用シート及び粘着テープ。The antistatic sheet and the pressure-sensitive adhesive tape, wherein the surface of the structure having the second lowest dielectric constant is provided with an antistatic agent. 上記帯電防止用シート及び粘着テープであって、誘電率の最も大きい構造物が帯電防止剤を練り込んで誘電率を上げたことを特徴とする請求項1〜5いずれか記載の帯電防止用シート及び粘着テープ。The antistatic sheet according to any one of claims 1 to 5, wherein the antistatic sheet and the adhesive tape, wherein the structure having the largest dielectric constant has a dielectric constant increased by kneading an antistatic agent. And adhesive tape.
JP2002305822A 2002-10-21 2002-10-21 Antistatic sheet and adhesive tape Expired - Fee Related JP4093355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305822A JP4093355B2 (en) 2002-10-21 2002-10-21 Antistatic sheet and adhesive tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305822A JP4093355B2 (en) 2002-10-21 2002-10-21 Antistatic sheet and adhesive tape

Publications (2)

Publication Number Publication Date
JP2004136625A true JP2004136625A (en) 2004-05-13
JP4093355B2 JP4093355B2 (en) 2008-06-04

Family

ID=32452819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305822A Expired - Fee Related JP4093355B2 (en) 2002-10-21 2002-10-21 Antistatic sheet and adhesive tape

Country Status (1)

Country Link
JP (1) JP4093355B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143308A1 (en) * 2007-05-18 2008-11-27 Toyota Jidosha Kabushiki Kaisha Blot preventing cover for coater
JP2013104028A (en) * 2011-11-15 2013-05-30 Oji Holdings Corp Double-sided adhesive sheet for optical member, and laminate
JP2014218624A (en) * 2013-05-10 2014-11-20 王子ホールディングス株式会社 Dielectric constant adjustment method and lamination adhesive sheet
WO2018164207A1 (en) 2017-03-10 2018-09-13 株式会社ユポ・コーポレーション Electret-treated sheet and filter
TWI645009B (en) * 2013-05-10 2018-12-21 王子控股股份有限公司 Laminated adhesive sheet and laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110027270B (en) * 2019-05-30 2020-09-25 上海海事大学 High-dielectric flexible composite film with sandwich structure and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143308A1 (en) * 2007-05-18 2008-11-27 Toyota Jidosha Kabushiki Kaisha Blot preventing cover for coater
JP2008284475A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Stainproof cover for coater
US8261689B2 (en) 2007-05-18 2012-09-11 Toyota Jidosha Kabushiki Kaisha Stain preventing cover for coating machine
JP2013104028A (en) * 2011-11-15 2013-05-30 Oji Holdings Corp Double-sided adhesive sheet for optical member, and laminate
JP2014218624A (en) * 2013-05-10 2014-11-20 王子ホールディングス株式会社 Dielectric constant adjustment method and lamination adhesive sheet
TWI645009B (en) * 2013-05-10 2018-12-21 王子控股股份有限公司 Laminated adhesive sheet and laminate
WO2018164207A1 (en) 2017-03-10 2018-09-13 株式会社ユポ・コーポレーション Electret-treated sheet and filter

Also Published As

Publication number Publication date
JP4093355B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
KR102093769B1 (en) Release film for green sheet production
US8828535B2 (en) Cover tape
TWI276671B (en) Adhesive sheet and adhered article
EP2628690B1 (en) Cover film
KR101139545B1 (en) Cover tape for packaging electronic part and electronic part package
EP1301288B1 (en) Cleaning sheet, conveying member using the same, and substrate processing equipment cleaning method using them
CN1318849A (en) High-frequency current inhibiting body of magnetic loss material
KR20160052643A (en) Cover film and electronic component package
JP4093355B2 (en) Antistatic sheet and adhesive tape
JPWO2012173119A1 (en) Cover tape
CN112713240B (en) Preparation method of antisymmetric magnetoresistance device based on two-dimensional material
EP1328018A1 (en) Cover tape for packaging electronic elements
JP4376345B2 (en) Cover tape for carrier tape and tape carrier
TWI805842B (en) Covering tape for packing elecronic component and package
JP2012030897A (en) Cover tape for packaging electronic component
JP3857254B2 (en) Holding and conveying jig
JPH07303595A (en) Electrically conductive dust removing sheet laminate body
JP4657138B2 (en) Conductive material for packaging electronic parts and packaging container for electronic parts
WO2023190247A1 (en) Workpiece attraction device
JP2003266354A (en) Vacuum chuck
JP4425661B2 (en) Cover tape
JP2006008152A (en) Cover tape
JP2006321560A (en) Spacer tape for transferring electronic component and electronic component tray
JP5166386B2 (en) Conductive material for packaging electronic parts
JP3813214B2 (en) Bottom material for transporting electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees