JP2004135854A - 反射型光電脈波検出装置および反射型オキシメータ - Google Patents

反射型光電脈波検出装置および反射型オキシメータ Download PDF

Info

Publication number
JP2004135854A
JP2004135854A JP2002302954A JP2002302954A JP2004135854A JP 2004135854 A JP2004135854 A JP 2004135854A JP 2002302954 A JP2002302954 A JP 2002302954A JP 2002302954 A JP2002302954 A JP 2002302954A JP 2004135854 A JP2004135854 A JP 2004135854A
Authority
JP
Japan
Prior art keywords
wavelength
light
emitting element
reflected light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302954A
Other languages
English (en)
Inventor
Akio Yamanishi
山西 昭夫
Tomohiro Nunome
布目 知弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Colin Co Ltd
Original Assignee
Nippon Colin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Colin Co Ltd filed Critical Nippon Colin Co Ltd
Priority to JP2002302954A priority Critical patent/JP2004135854A/ja
Publication of JP2004135854A publication Critical patent/JP2004135854A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【目的】光電脈波或いは酸素飽和度の測定に際して高い精度が得られる反射型光電脈波検出装置或いは反射型オキシメータを提供する
【解決手段】ゲイン決定手段62により、脈波の周波数成分の周波数帯から外れた周波数の第1波長λR の反射光信号IR (t) とノイズ検出波長λG の反射光信号IG (t) との間および第2波長λIRの反射光信号IIR(t) とノイズ検出波長λG の反射光信号IG (t) との間の相互の信号強度変化が同じとなるように第1ゲインQR および第2ゲインQIRがそれぞれ決定されると、ノイズ除去手段64によりそれらのゲインQR およびQIRに基づいて、光電脈波検出プローブ16と生体12との相対的変位に起因するノイズが受光素子20により検出された第1波長λR の反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) から除去されることから、酸素飽和度決定手段66により決定される生体12の表面14下の血液酸素飽和度Sの精度が高められる。
【選択図】            図6

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子および受光素子が一面に配置されたプローブの変位に起因するノイズの影響を除去することができる反射型光電脈波検出装置および反射型オキシメータに関するものである。
【0002】
【従来の技術】
生体の表面にヘモグロビンにより吸収されるように波長帯内から設定された第1波長の照射光を生体の表面に照射する光電脈波検出用発光素子と、その光電脈波検出用発光素子から局部照射したときにその生体を通して得られる第1波長の透過光を検出する受光素子を備えた光電脈波検出プローブを備え、その受光素子により検出されたその透過光の強度変化に対応する光電脈波信号を出力する透過型光電脈波検出装置が知られている。或いはその応用として、生体の表面にヘモグロビンにより吸収されるように波長帯内から設定された第1波長および第2波長の照射光を生体の表面に照射する第1発光素子および第2発光素子と、その第1発光素子および第2発光素子から局部照射したときにその生体を通して得られる第1波長および第2波長の透過光をそれぞれ検出する受光素子を備えた光電脈波検出プローブを備え、その受光素子により検出されたその第1波長および第2波長の透過光信号の周期的変化に基づいてその生体の表面下の血液の酸素飽和度を測定する透過型オキシメータが知られている。たとえば、特許文献1および特許文献2に記載されたものがそれである。
【0003】
【特許文献1】特開平6−174号公報
【特許文献2】特開平6−22943号公報
【0004】
ところで、上記のような透過型光電脈波検出装置或いは透過型オキシメータは、生体の部位のうち、光透過可能な部位たとえば指先や耳たぶなどの測定部位に光電脈波検出プローブを装着することが制限されることから、特に手術室内における光電脈波検出或いは酸素飽和度測定に関して使用できない場合があるので、生体の皮膚のいずれに場所においてもプローブを装着できる反射型光電脈波検出装置或いは反射型オキシメータが望まれていた。
【0005】
【発明が解決しようとする課題】
これに対し、所定間隔離隔した発光素子および受光素子を一方向に向かう状態で備えた光電脈波検出プローブを皮膚面に貼り付けてその皮膚下から反射される散乱光を受光する形式の反射型の光電脈波検出装置或いはオキシメータが考えられている。しかしながら、このような反射型の光電脈波検出装置或いはオキシメータによれば、体動に起因して光電脈波検出プローブと生体との間の相対的な動き(変位)や血液容積変化による反射光量の変化が発生するので、心拍に同期した血液容積の脈動に対応する光電脈波にその体動に対応するノイズが含まれることになるとともに、その光電脈波に基づいて酸素飽和度を測定する場合の測定精度が十分に得られなかった。
【0006】
本発明は以上の事情を背景として為されたものであって、その目的とするところは、光電脈波或いは酸素飽和度の測定に際して高い精度が得られる反射型光電脈波検出装置或いは反射型オキシメータを提供することにある。
【0007】
本発明者は、上記の事情を背景として種々検討を重ねた結果、光電脈波の検出に用いる光の波長は、表面よりも深く浸透させてヘモグロビンを含む血管(血液)の容積変化を検知するために赤色乃至赤外光が用いられるが、それよりも短い波長たとえば緑色光や青色光を用いると、散乱が大きいためにその反射光は比較的浅い部位からのものが支配的となって血管容積の脈動の変化を受け難いことから、この短い波長の反射光の変化がプローブと生体との相対位置変化に対応するので、その短い波長の反射光の変化を用いて、上記赤色乃至赤外光の反射光による光電脈波への影響を除去し得ることを見いだした。本発明は、かかる知見に基づいてなされたものである。
【0008】
【課題を解決するための第1の手段】
すなわち、前記目的を達成するための本第1発明の要旨とするところは、生体の表面にヘモグロビンにより吸収されるように波長帯内から設定された第1波長の照射光を生体の表面に照射する光電脈波検出用発光素子と、その光電脈波検出用発光素子から局部照射したときにその表面内から得られる第1波長の反射光を検出する受光素子を備えた光電脈波検出プローブを備え、その受光素子により検出されたその反射光の強度変化に対応する光電脈波信号を出力する反射型光電脈波検出装置であって、(a) 光電脈波検出プローブに設けられ、前記照射光の波長よりも短いノイズ検出波長の照射光を前記生体の表面に照射するノイズ検出用発光素子と、(b) 前記受光素子により検出された第1波長の反射光信号およびノイズ検出波長の反射光信号から、脈拍に同期して周期的に変動する脈波の周波数成分の周波数帯から外れた周波数の信号をそれぞれ分離する信号分離手段と、(c) その信号分離手段により分離された前記第1波長の反射光信号およびノイズ検出波長の反射光信号の相互の信号強度変化が同じとなるように、いずれか一方のゲインを決定するゲイン決定手段と、(d) そのゲイン決定手段により決定されたゲインに基づいて、前記光電脈波検出プローブと前記生体との相対的変位に起因するノイズを前記受光素子により検出された第1波長の反射光信号から除去するノイズ除去手段とを、含むことにある。
【0009】
【第1発明の効果】
このようにすれば、ゲイン決定手段により、信号分離手段により分離された脈波の周波数成分の周波数帯から外れた周波数の前記第1波長の反射光信号と前記ノイズ検出波長の反射光信号との相互の信号強度変化が同じとなるようにいずれか一方のゲインが決定されると、ノイズ除去手段により、そのいずれか一方のゲインに基づいて、前記光電脈波検出プローブと前記生体との相対的変位に起因するノイズが前記受光素子により検出された第1波長の反射光信号から除去されることから、その第1波長の反射光信号はノイズのない光電脈波信号を表すものとなるので、高い精度の光電脈波を出力する反射型光電脈波検出装置を提供することができる。
【0010】
【第1発明の他の態様】
ここで、好適には、前記ノイズ検出用発光素子は、600nm以下の波長、たとえば500nm乃至600nmの範囲内の波長、さらに好適には550nm付近のノイズ検出波長の照射光を前記生体の表面に照射するものである。このようにすれば、ノイズ検出用発光素子から放射されるノイズ検出波長の光は、600nm以下の波長、好適には500nm乃至600nmの範囲内に設定された波長であって、第1波長よりも十分に短く散乱を受けやすいものであることから生体の皮膚の比較的浅い部分からの反射光が主体となることから、ヘモグロビンに吸収されやすい性質があるにも拘わらず表皮下の細動脈の容積の脈動の影響が少ないので、生体と光電脈波検出プローブとの間の相対変位を反映して変化させられるので、その相対変位に起因するノイズが第1波長の反射光信号から好適に除去される。
【0011】
また、好適には、前記光電脈波検出プローブは、前記生体の表面に接触される接触面に、前記受光素子、光電脈波検出用発光素子、およびノイズ検出用発光素子が配置された本体を備え、その光電脈波検出用発光素子およびノイズ検出用発光素子は、前記受光素子に対して予め設定された一定の距離だけ離隔した位置に互いに隣接して配置されたものである。このようにすれば、第1発光素子およびノイズ検出用発光素子は受光素子から同等の距離に配置されることから、その第1発光素子から放射されて受光素子に検知される第1波長の光に含まれるノイズ(変動)と、ノイズ検出用発光素子から放射されて受光素子に検知されるノイズ検出波長の光に含まれるノイズ(変動)とは同様の相対変位に基づくものとなるので、脈波の周波数成分の周波数帯から外れた周波数成分の第1波長の反射光信号とノイズ検出波長の反射光信号との間の強度が同様となるように決定されたゲインに基づいて、受光素子により検出された第1波長の反射光信号からノイズが好適に除去される。
【0012】
【課題を解決するための第2の手段】
また、前記目的を達成するための第2発明の要旨とするところは、生体の表面にヘモグロビンにより吸収されるように波長帯内から設定された第1波長および第2波長の照射光を生体の表面に照射する第1発光素子および第2発光素子と、その第1発光素子および第2発光素子から局部照射したときにその表面内から得られる第1波長および第2波長の反射光をそれぞれ検出する受光素子を備えた光電脈波検出プローブを備え、その受光素子により検出されたその第1波長および第2波長の反射光信号の周期的変化に基づいてその生体の表面下の血液の酸素飽和度を測定する反射型オキシメータであって、(a) 前記照射光の波長よりも短いノイズ検出波長の照射光を前記生体の表面に照射するノイズ検出用発光素子と、(b) 前記受光素子により検出された第1波長および第2波長の反射光信号およびノイズ検出波長の反射光信号から、脈拍に同期して周期的に変動する脈波の周波数成分の周波数帯から外れた周波数の信号をそれぞれ分離する信号分離手段と、(c) その信号分離手段により分離された前記第1波長の反射光信号およびノイズ検出波長の反射光信号の相互の信号強度が同じとなるようにそれらのいずれか一方の第1ゲインを決定するとともに、その信号分離手段により分離された前記第2波長の反射光信号およびノイズ検出波長の反射光信号の相互の信号強度が同じとなるようにそれらのいずれか一方の第2ゲインを決定するゲイン決定手段と、(d) そのゲイン決定手段により決定された第1ゲインおよび第2ゲインに基づいて、前記光電脈波検出プローブと前記生体との相対的変位に起因するノイズを前記受光素子により検出された第1波長の反射光信号および第2波長の反射光信号からそれぞれ除去するノイズ除去手段と、(e) そのノイズ除去手段によりノイズが除去された第1波長および第2波長の反射光信号の周期的変化に基づいてその生体の表面下の血液の酸素飽和度を決定する酸素飽和度決定手段とを、含むことにある。
【0013】
【第2発明の効果】
このようにすれば、ゲイン決定手段により、信号分離手段により分離された脈波の周波数成分の周波数帯から外れた周波数の前記第1波長の反射光信号と前記ノイズ検出波長の反射光信号との間および前記第2波長の反射光信号と前記ノイズ検出波長の反射光信号との間の相互の信号強度変化が同じとなるようにいずれか一方のゲインがそれぞれ決定されると、ノイズ除去手段によりそれらのゲインに基づいて、前記光電脈波検出プローブと前記生体との相対的変位に起因するノイズが前記受光素子により検出された第1波長の反射光信号および第2波長の反射光信号から除去されることから、その第1波長の反射光信号および第2波長の反射光信号はノイズのない光電脈波信号を表すものとなるので、それら第1波長の反射光信号および第2波長の反射光信号の周期的変化に基づいて酸素飽和度決定手段により決定される生体の表面下の血液酸素飽和度の精度が高められる。
【0014】
【第2発明の他の態様】
ここで、好適には、前記第1発光素子から放射される第1波長の光は、酸化ヘモグロビンおよび還元ヘモグロビンに対して相互に異なる吸光係数を有し、前記第2発光素子から放射される第2波長の光は、酸化ヘモグロビンおよび還元ヘモグロビンに対して略同じ吸光係数を有し、前記ノイズ検出用発光素子から放射されるノイズ検出波長の光は、600nm以下の波長を有するものである。このようにすれば、ノイズ検出用発光素子から放射される光は、600nmよりも短波長側の波長、好適には500nm乃至600nmの範囲内に設定された波長であって、第1波長および第2波長よりも十分に短く散乱を受けやすいものであることから生体の皮膚の比較的浅い部分からの反射光が主体となることから、ヘモグロビンに吸収されやすい性質があるにも拘わらず表皮下の細動脈の容積の脈動の影響が少ないので、生体と光電脈波検出プローブとの間の相対変位を反映して変化させられるので、その相対変位に起因するノイズが好適に除去される。
【0015】
また、好適には、前記光電脈波検出プローブは、前記生体の表面に接触される接触面に、前記受光素子、第1発光素子、第2発光素子、およびノイズ検出用発光素子が配置された本体を備え、それら第1発光素子、第2発光素子およびノイズ検出用発光素子は、その受光素子に対して予め設定された一定の距離だけ離隔した位置に互いに隣接して配置され、且つそのノイズ検出用発光素子がその第1発光素子と第2発光素子との間に配置されたものである。このようにすれば、第1発光素子、第2発光素子、およびノイズ検出用発光素子は受光素子から同等の距離に配置されることから、それら第1発光素子および第2発光素子から放射されて受光素子に検知される第1波長の光および第2波長の光に含まれるノイズ(変動)と、ノイズ検出用発光素子から放射されて受光素子に検知されるノイズ検出波長の光のノイズ(変動)とは同様の相対変位に基づくものとなるので、脈波の周波数成分の周波数帯から外れた周波数成分の第1波長の反射光信号とノイズ検出波長の反射光信号との間および第2波長の反射光信号とノイズ検出波長の反射光信号との間の強度が同様となるように決定されたゲインに基づいて、受光素子により検出された第1波長の反射光信号および第2波長の反射光信号からノイズが好適に除去される。
【0016】
【発明の好適な実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0017】
図1は、本発明の一実施例である反射型オキシメータ10の電気的構成を説明する図である。この反射型オキシメータ10は、反射型光電脈波検出装置としても機能するものである。図1において、生体12の表面(表皮)14に両面接着テープ、バンド、クリップなどにより装着される光電脈波検出プローブ16は、その生体12の表面14に接触或いは密着させられる接触面18と、受光素子20、第1発光素子22、第2発光素子24、およびノイズ検出用発光素子26とがその接触面18に配置された本体28を備えている。図2に示すように、それら第1発光素子22、第2発光素子24およびノイズ検出用発光素子26は、受光素子20に対して予め設定された一定の距離だけ離隔した位置においてその受光素子20を中心とする周方向に互いに隣接して配置され、且つそのノイズ検出用発光素子26が第1発光素子22と第2発光素子24との間に配置されている。
【0018】
上記第1発光素子22、第2発光素子24およびノイズ検出用発光素子26はたとえば発光ダイオー(LED)から構成され、その第1発光素子22からはたとえば660nm程度の第1波長λR の赤色光が出力され、第2発光素子24からはたとえば890nm程度の第2波長λIRの赤外光が出力され、ノイズ検出用発光素子26から上記第1波長λR および第2波長λIRよりも短い波長たとえば550nm程度のノイズ検出波長λG の緑色光を出力するものである。図3のヘモグロビンにおける吸光度(吸収度)特性に示すように、上記第1波長λR および第2波長λIRは血液に吸収され難いすなわち血液中透過率の高い波長帯内にあって、第1波長λR は酸化ヘモグロビンおよび還元ヘモグロビンに対して異なる吸収係数を有し、第2波長λIRは酸化ヘモグロビンおよび還元ヘモグロビンに対して略同じ吸収係数を有している。また、上記ノイズ検出波長λG は、上記第1波長λR および第2波長λIRよりも十分に短く且つヘモグロビンに吸収され易い波長帯内にあって、酸化ヘモグロビンおよび還元ヘモグロビンに対して略同じ吸収係数を有している。
【0019】
上記受光素子20には、生体12の表皮下から表面14側へ向かって乱反射された反射光が検出されるようになっている。すなわち、受光素子20には、上記第1発光素子22、第2発光素子24およびノイズ検出用発光素子26から順次放射された第1波長λR の赤色光、第2波長λIRの赤外光、ノイズ検出波長λG の緑色光が表皮内で散乱を受けて表皮の外側へ向かって戻された反射光が検知され、その受光信号が電子制御装置30へI/V(電流/電圧)変換器32を介して供給される。この電子制御装置30は、CPU34、ROM36、RAM38、入出力インタフェース40、A/D変換器42、表示インタフェース44を備えた所謂マイクロコンピュータであって、CPU34は、RAM38の記憶機能を利用しつつ予めROM36に記憶されたプログラムに従って、LED駆動回路46を制御することにより第1発光素子22、第2発光素子24およびノイズ検出用発光素子26を一定の周期で順次択一的に駆動するとともに、受光素子20からの入力信号を処理し、その入力信号から連続的な光電脈波波形である第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) 、ノイズ検出波長λG の反射光強度IG (t) をそれぞれ独立に分離した後、それらに基づいてプローブ16の生体12に対する相対位置変化に起因するノイズが除去されるように第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) を補正し、補正後の第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) に基づいて酸素飽和度Sを算出し、表示出力装置48に表示させる。図4には、心拍すなわち血液(血管)容積に同期して周期的に変化する上記光電脈波波形である第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) の波形が例示されている。
【0020】
図5は、上記第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) 、およびノイズ検出波長λG の反射光強度IG (t) を説明している。図5に示すように、生体12の皮膚は、骨や筋肉などが、血管床などの称されるように血管の密度が高い細動脈層52と、皮下脂肪、末梢血管、皮膚表面などから成ることにより血管が占める割合が大幅に小さな表層54とにより覆われることによって構成されていると考えることができる。プローブ16の第1発光素子22、第2発光素子24およびノイズ検出用発光素子26からの第1波長λR の赤色光、第2波長λIRの赤外光、およびノイズ検出波長λG の緑色光が上記生体12の表面14に投射されたときにプローブ16の受光素子20に受光される第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) 、およびノイズ検出波長λG の反射光強度IG (t) は、以下の式(1) 、(2) 、(3) で表されるものとなる。図に示すように、上記第1波長λR の反射光強度IR (t) 、第2波長λIRの反射光強度IIR(t) は波長が比較的長くて透過率が高く且つヘモグロビンに対する吸光係数が低いことから、細動脈層52において散乱されて反射された割合の高い光であり、上記ノイズ検出波長λG の反射光強度IG (t) は波長が比較的短くて透過率が低い且つヘモグロビンに対する吸光係数が高いことから、表層54において散乱されて反射された割合の高い光である。
【0021】
R (t) =IOR・e −Ar(Dao+Da(t))・e −Br(Dbo+Db(t))   ・・(1)
IR(t) =IOIR ・e −Air(Dao+Da(t)) ・e −Bir(Dbo+Db(t)) ・・(2)
G (t) =IOG・e −Ag(Dao+Da(t))・e −Bg(Dbo+Db(t))*W  ・・(3)
【0022】
上式において、Dao/2は表層54の基本厚み、Dbo/2は細動脈層52の基本厚み、Da (t) /2はプローブ16と生体12との相対変位による表層54の厚み変化、Db (t) /2はプローブ16と生体12との相対変位による細動脈層52の厚み変化、Ar 、Air、Ag は表層54における第1波長λR 、第2波長λIR、ノイズ検出波長λG の吸光係数、Br 、Bir、Bg は細動脈層52すなわち主として動脈血における第1波長λR 、第2波長λIR、ノイズ検出波長λG の吸光係数、Wはノイズ検出波長λG の動脈血到達減衰係数である。
【0023】
図6は、上記電子制御装置30の制御機能の要部すなわちプローブ16の生体12に対する相対変位に起因するノイズの影響を除去した光電脈波検出或いは酸素飽和度測定機能を説明する機能ブロック線図である。図6において、信号分離手段60は、受光素子20により検出された第1波長λR の反射光信号IR (t) 、第2波長λIRの反射光信号IIR(t) およびノイズ検出波長λG の反射光信号IG (t) から、脈拍に同期して周期的に変動する脈波を構成する周波数成分の周波数帯たとえば0.5乃至10Hzの周波数帯から外れた周波数の信号を、たとえば0.5乃至10Hzの周波数帯の周波数成分を除去するためのデジタルフィルタ処理を用いて分離する。このようにして分離された周波数成分から成る第1波長λR の反射光信号IR (t) 、第2波長λIRの反射光信号IIR(t) とノイズ検出波長λG の反射光信号IG (t) とにおいては、脈波を構成する周波数成分すなわち心拍に同期した変動成分が除去された結果、プローブ16の生体12に対する相対変位に起因するノイズが専ら含まれるようになる。
【0024】
ゲイン決定手段62は、上記信号分離手段60により分離された後の第1波長λR の反射光信号IR (t) の変化とノイズ検出波長λG の反射光信号IG (t) の変化との間の相互の信号強度変化(信号パワーの変化:単位ワット)が同じとなるように、それらのいずれか一方たとえば反射光信号IR (t) の第1ゲインQR を決定する。すなわち、Ag ・Da (t) =QR ・Ar ・Da (t) が成立するように第1ゲインQR を決定する。具体的には、所定区間たとえば脈拍周期の十数倍の予め設定された区間内における反射光信号IR (t) およびIG (t) の移動平均値をIRav (t) およびIGav (t) とすると、正規化のための振幅比で脈波の周波数成分除去後において、式(4) が成立するように、第1ゲインQR が決定される。式(4) において、IR (t) およびIRav (t) は第1波長λR の反射光信号IR (t) の振幅(AC成分)および移動平均値(DC成分)、IG (t) およびIGav (t) はノイズ検出波長λG の反射光信号IG (t) の振幅(AC成分)および移動平均値(DC成分)である。
【0025】
R =[IR (t)/IRav (t)]/[ IG (t)/IGav (t)] ・・(4)
【0026】
以下、式(4) の根拠を説明する。上記第1波長λR およびノイズ検出波長λG の反射光においてその大きさを示す正規化された振幅すなわち振幅比(AC成分/DC成分)対数値は式(4−1) および(4−2) で示される。そして、それらの振幅比の一方たとえば第1波長λR にかけるゲインをQR とすると、信号分離手段60により分離された後の第1波長λR の反射光信号IR (t) の変化とノイズ検出波長λG の反射光信号IG (t) の変化との間の相互の信号強度変化(信号パワーの変化:単位ワット)が同じとなるように、すなわち式(4−3) が成立するようにQR が求められる。式(4−3) では、ノイズ検出波長λG の動脈血到達減衰係数Wは極めて小さく、Br ≫Bg ・Wであるという条件下で成立させられる。したがって、ゲインQR の算出式(4−4) が求められる。この算出式(4−4) は、第1波長λR の反射光信号IR (t) とノイズ検出波長λG の反射光信号IG (t) との強度( 振幅) 比を示している。実際の信号の強度(振幅)は正規化する必要があるので、上記式(4) が求められる。
【0027】
log[IR (t)/IRav (t)]=−[Ar a (t) +Br b (t) ]・・・(4−1)
log[IG (t)/IGav (t)]=−[Ag a (t) +Bg b (t) ・W]・・・(4−2)
R log [IR (t)/IRav (t) ]−log[IG (t)/IGav (t)]
=−[QR r +Ag ]Da (t) −[Br +Bg ・W]Db (t)
≒−[QR r +Ag ]Da (t) =0          ・・・(4−3)
R =Ag a (t) /Ar a (t)             ・・・(4−4)
【0028】
また、ゲイン決定手段62は、上記信号分離手段60により分離された第2波長λIRの反射光信号IIR(t) とノイズ検出波長λG の反射光信号IG (t) との間の相互の信号強度変化(信号パワーの変化:単位ワット)が同じとなるように、それらのいずれか一方たとえば反射光信号IIR(t) に付す第2ゲインQIRを決定する。すなわち、Ag ・Da (t) =QIR・AIR・Da (t) が成立するように第2ゲインQIRを決定する。具体的には、所定区間たとえば脈拍周期の十数倍の予め設定された区間内における反射光信号IIR(t) およびIG (t) の移動平均値をIIRav(t) およびIGav (t) とすると、脈波の周波数成分除去後において、式(5) が成立するように、第2ゲインQIRが決定される。式(5) は、上記式(4) と同様にして求められる。式(5) において、IIR(t) およびIIRav (t)は第2波長λIRの反射光信号IIR(t) の振幅(AC成分)および移動平均値(DC成分)、IG (t) およびIGav (t) はノイズ検出波長λG の反射光信号IG (t) の振幅(AC成分)および移動平均値(DC成分)である。
【0029】
IR=[IIR(t)/IIRav (t)]/[IG (t)/IGav (t) ] ・・(5)
【0030】
ノイズ除去手段64は、上記ゲイン決定手段62により決定された第1ゲインQR および第2ゲインQIRに基づいて、前記光電脈波検出プローブ16と生体12との相対的変位に起因するノイズを、受光素子20により検出された第1波長λR の反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) からそれぞれ除去する。すなわち、式(6) からその左辺に示す補正後の第1波長λR の反射光信号IR (t) が求められ、式(7) からその左辺に示す補正後の第2波長λIRの反射光信号IIR(t) が求められることにより、光電脈波検出プローブ16の生体12に対する相対変位に起因するノイズが除去される。
【0031】
log(IR (t)/IRav (t) )=log(IR (t)/IRav (t) )−log(IG (t)/IGav (t) )/ QR ・・・(6)
log(IIR(t)/IIRav(t) )=log(IIR(t)/IIRav(t) )−log(IG (t)/IGav (t) )/ QIR・・・(7)
【0032】
酸素飽和度決定手段66は、ノイズ除去手段64によりノイズが除去された第1波長λR の反射光信号IR (t) の振幅比(すなわち直流成分に対する交流成分比IR (t)/IRav (t) )、および第2波長λIRの反射光信号IIR(t) の振幅比(IIR(t)/IIRav(t) )に基づいてその生体の表面下の血液の酸素飽和度Sを決定する。たとえば図7に示す予め記憶された関係から、上記第1波長λR の振幅比(IR (t)/IRav (t) )と第2波長λIRの振幅比(IIR(t)/IIRav(t) )との比に基づいて、酸素飽和度Sを決定(算出)する。
【0033】
表示手段68は、上記酸素飽和度決定手段66によって算出された生体の酸素飽和度Sを画像表示器或いは記録紙上に表示するとともに、上記ノイズ除去手段64によりノイズが除去された第1波長λR の反射光信号IR (t) の振幅比(すなわち直流成分に対する交流成分比IR (t)/IRav (t) )、および第2波長λIRの反射光信号IIR(t) の振幅比(IIR(t)/IIRav(t) )を、必要に応じて表示させる。
【0034】
図8は、電子制御装置30の制御機能の要部すなわちプローブ16の生体12に対する相対変位に起因するノイズの影響を除去した光電脈波検出或いは酸素飽和度測定作動を説明するフローチャートである。
【0035】
図8において、ステップ(以下、ステップを省略する)S1では、受光素子20によって検知された受光信号すなわち第1波長λR の反射光信号IR (t) 、第2波長λIRの反射光信号IIR(t) 、ノイズ検出波長λG の反射光信号IG (t) が所定のサンプリング周期で逐次読み込まれる。次いで、S2では、その受光素子20によって検知された時分割パルス状の反射光信号IR (t) 、IIR(t) 、IG (t) が、曲線補完処理などによって連続波形に合成される。次いで、前記信号分離手段60に対応するS3では、受光素子20により検出された第1波長λR の反射光信号IR (t) 、第2波長λIRの反射光信号IIR(t) およびノイズ検出波長λG の反射光信号IG (t) から、脈拍に同期して周期的に変動する脈波を構成する周波数成分の周波数帯たとえば0.5乃至10Hzの周波数帯から外れた周波数の信号が、たとえば0.5乃至10Hzの周波数帯の周波数成分を除去するためのデジタルフィルタ処理を用いて分離され、プローブ16の生体12に対する相対変位に起因するノイズが専ら含まれる反射光信号IR (t) 、IIR(t) 、IG (t) が抽出される。
【0036】
次いで、前記ゲイン決定手段62に対応するS4では、上記S3により分離された第1波長λR 反射光信号IR (t) の変化とノイズ検出波長λG の反射光信号IG (t) の変化との間の相互の信号強度変化(信号パワーの変化:単位ワット)が同じとなるように、それらのいずれか一方たとえば反射光信号IR (t) の第1ゲインQR が決定される。たとえば所定区間たとえば脈拍周期の十数倍の予め設定された区間内における反射光信号IR (t) およびIG (t) の移動平均値をIRav (t) およびIGav (t) とすると、脈波の周波数成分除去後において、式(4) から、検出された各波長の反射光の各AC成分とDC成分との比に基づいて第1ゲインQR が決定される。また、上記S3により分離された第2波長λIRの反射光信号IIR(t) とノイズ検出波長λG の反射光信号IG (t) との間の相互の信号強度変化(信号パワーの変化:単位ワット)が同じとなるように、それらのいずれか一方たとえば反射光信号IIR(t) に付す第2ゲインQIRが決定される。たとえば所定区間たとえば脈拍周期の十数倍の予め設定された区間内における反射光信号IIR(t) およびIG (t) の移動平均値をIIRav(t) およびIGav (t) とすると、脈波の周波数成分除去後において、式(5) から、検出された各波長の反射光の各AC成分とDC成分との比に基づいて、第2ゲインQIRが決定される。
【0037】
前記ノイズ除去手段64に対応するS5では、上記S4により決定された第1ゲインQR および第2ゲインQIRに基づいて、前記光電脈波検出プローブ16と生体12との相対的変位に起因するノイズが、受光素子20により検出された第1波長λR 反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) からそれぞれ除去される。すなわち、式(6) からその左辺に示す補正後の第1波長λR の反射光信号IR (t) が求められ、式(7) からその左辺に示す補正後の第2波長λIRの反射光信号IIR(t) が求められることにより、光電脈波検出プローブ16の生体12に対する相対変位に起因するノイズが除去される。
【0038】
次いで、前記酸素飽和度決定手段66に対応するS6では、上記S5においてノイズが除去された第1波長λR の反射光信号IR (t) の振幅比(すなわち直流成分に対する交流成分比IR (t)/IRav (t) )、および第2波長λIRの反射光信号IIR(t) の振幅比(IIR(t)/IIRav(t) )に基づいてその生体の表面下の血液の酸素飽和度Sが決定される。たとえば図7に示す予め記憶された関係から、上記第1波長λR の振幅比(IR (t)/IRav (t) )と第2波長λIRの振幅比(IIR(t)/IIRav(t) )との比に基づいて、酸素飽和度Sが決定(算出)される。そして、前記表示手段68に対応するS7では、上記S6によって算出された生体の酸素飽和度Sが画像表示器或いは記録紙上に表示されるとともに、上記ノイズ除去手段64によりノイズが除去された第1波長λR の反射光信号IR (t) の振幅比(すなわち直流成分に対する交流成分比IR (t)/IRav (t) )、および第2波長λIRの反射光信号IIR(t) の振幅比(IIR(t)/IIRav(t) )が、必要に応じて表示される。
【0039】
上述のように、本実施例の反射型オキシメータ10によれば、ゲイン決定手段62(S4)により、信号分離手段60(S3)により分離された脈波の周波数成分の周波数帯から外れた周波数の第1波長λR の反射光信号IR (t) とノイズ検出波長λG の反射光信号IG (t) との間および第2波長λIRの反射光信号IIR(t) とノイズ検出波長λG の反射光信号IG (t) との間の相互の信号強度変化が同じとなるように第1ゲインQR および第2のゲインQIRがそれぞれ決定されると、ノイズ除去手段64(S5)によりそれらのゲインQR およびQIRに基づいて、光電脈波検出プローブ16と生体12との相対的変位に起因するノイズが受光素子20により検出された第1波長λR の反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) から除去されることから、その第1波長λR の反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) はノイズのない光電脈波信号を表すものとなるので、それら第1波長λR の反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) の周期的変化に基づいて酸素飽和度決定手段66(S6)により決定される生体12の表面14下の血液酸素飽和度Sの精度が高められる。
【0040】
また、本実施例によれば、第1発光素子22から放射される第1波長λR の光は、酸化ヘモグロビンおよび還元ヘモグロビンに対して異なる吸光係数を有し、第2発光素子24から放射される第2波長λIRの光は、酸化ヘモグロビンおよび還元ヘモグロビンに対して略同じ吸光係数を有する一方で、ノイズ検出用発光素子26から放射されるノイズ検出波長λG の光は、600nm以下の波長、好適には500nm乃至600nmの範囲内に設定された波長であって、第1波長λR および第2波長λIRよりも十分に短く散乱を受けやすく生体の皮膚の比較的浅い部分からの反射光が主体となることから、ヘモグロビンに吸収されやすい性質があるにも拘わらず表皮下の細動脈の容積の脈動の影響が少ないので、生体12と光電脈波検出プローブ16との間の相対変位を反映して変化させられるので、その相対変位に起因するノイズが好適に除去される。
【0041】
また、本実施例によれば、光電脈波検出プローブ16は、生体12の表面14に接触される接触面18に、受光素子20、第1発光素子22、第2発光素子24、およびノイズ検出用発光素子26が配置された本体28を備え、それら第1発光素子22、第2発光素子24およびノイズ検出用発光素子26は、その受光素子20に対して予め設定された一定の距離だけ離隔した位置に互いに隣接して配置され、且つそのノイズ検出用発光素子26が第1発光素子22と第2発光素子24との間に配置されたものであることから、第1発光素子22、第2発光素子24、およびノイズ検出用発光素子26は受光素子20から同等の距離に配置され、それら第1発光素子22および第2発光素子24から放射されて受光素子20に検知される第1波長λR の光および第2波長λIRの光に含まれるノイズ(変動)と、ノイズ検出用発光素子26から放射されて受光素子20に検知されるノイズ検出波長λG の光のノイズ(変動)とは同様の相対変位に基づくものとなるので、脈波の周波数成分の周波数帯から外れた周波数成分の第1波長λR の反射光信号IR (t) とノイズ検出波長λG の反射光信号IG (t) との間および第2波長λIRの反射光信号IIR(t) とノイズ検出波長λG の反射光信号IG (t) との間の強度が同様となるように決定されたゲインに基づいて、受光素子20により検出された第1波長λR の反射光信号IR (t) および第2波長λIRの反射光信号IIR(t) からノイズが好適に除去される。
【0042】
また、本実施例によれば、ゲイン決定手段62(S4)により、信号分離手段60(S3)により分離された脈波の周波数成分の周波数帯から外れた周波数の第1波長λR の反射光信号IR (t) とノイズ検出波長λG の反射光信号IG (t) との相互の信号強度変化が同じとなるように第1ゲインQR が決定されると、ノイズ除去手段64(S5)により、その第1ゲインQR に基づいて、光電脈波検出プローブ16と生体12との相対的変位に起因するノイズが受光素子20により検出された第1波長λR の反射光信号IR (t) から除去されることから、その第1波長λR の反射光信号IR (t) はノイズのない光電脈波信号を表すものとなるので、高い精度の光電脈波を出力する反射型光電脈波検出装置を提供することができる。
【0043】
以上、本発明の実施形態を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0044】
たとえば、前述の第1発光素子22、第2発光素子24およびノイズ検出用発光素子26は、たとえば発光ダイオー(LED)から構成されていたが、光源の他に、その光源の発光波長から所望の出力波長を得るための波長変換素子やフィルタなどを備えたものであってもよい。
【0045】
また、前述のノイズ検出用発光素子26から上記第1波長λR および第2波長λIRよりも短い波長はたとえば550nm程度のノイズ検出波長λG の緑色光を出力するものであったが、そのノイズ検出波長λG は、600nm以下、好適には500乃至600nmの範囲内の波長が望ましい。
【0046】
また、前述の第1ゲインQR および第2ゲインQIRは、その逆数であってもよい。このような場合には、たとえば式(4) および式(5) の右辺に掛けられる。
【0047】
なお、本発明はその主旨を逸脱しない範囲において、その他種々の変更が加えられ得るものである。
【図面の簡単な説明】
【図1】本発明の一実施例の酸素飽和度測定装置の回路構成を説明するブロック図である。
【図2】図1の酸素飽和度測定装置において用いられる光電脈波検出プローブを示す正面図である。
【図3】図1の酸素飽和度測定装置の光電脈波検出プローブに備えられた3種類の発光素子の発光波長を説明する図であって、ヘモグロビンの吸光度を示す図である。
【図4】図1の酸素飽和度測定装置の光電脈波検出プローブに備えられた受光素子により検出される第1波長および第2波長の反射光信号を例示する図である。
【図5】生体の皮膚組織内において、表面から照射されてその表面外へ反射される反射光の経路を波長毎に説明する図である。
【図6】図1の電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図7】図6の酸素飽和度決定手段において用いられる予め記憶された関係を示す図である。
【図8】図1の電子制御装置の制御作動の要部を説明するフローチャートである。
【符号の説明】
10:反射型オキシメータ(反射型光電脈波検出装置)
12:生体
14:表面
16:光電脈波検出プローブ
20:受光素子
22:第1発光素子
24:第2発光素子
26:ノイズ検出用発光素子
60:信号分離手段
62:ゲイン決定手段
64:ノイズ除去手段
66:酸素飽和度決定手段

Claims (6)

  1. 生体の表面にヘモグロビンにより吸収されるように波長帯内から設定された第1波長の照射光を生体の表面に照射する光電脈波検出用発光素子と、該光電脈波検出用発光素子から局部照射したときに該表面内から得られる第1波長の反射光を検出する受光素子を備えた光電脈波検出プローブを備え、該受光素子により検出された該反射光の強度変化に対応する光電脈波信号を出力する反射型光電脈波検出装置であって、
    光電脈波検出プローブに設けられ、前記照射光の波長よりも短いノイズ検出波長の照射光を前記生体の表面に照射するノイズ検出用発光素子と、
    前記受光素子により検出された第1波長の反射光信号およびノイズ検出波長の反射光信号から、脈拍に同期して周期的に変動する脈波の周波数成分の周波数帯から外れた周波数の信号をそれぞれ分離する信号分離手段と、
    該信号分離手段により分離された前記第1波長の反射光信号およびノイズ検出波長の反射光信号の相互の信号強度変化が同じとなるように、いずれか一方のゲインを決定するゲイン決定手段と、
    該ゲイン決定手段により決定されたゲインに基づいて、前記光電脈波検出プローブと前記生体との相対的変位に起因するノイズを前記受光素子により検出された第1波長の反射光信号から除去するノイズ除去手段と
    を、含むことを特徴とする反射型光電脈波検出装置。
  2. 前記ノイズ検出用発光素子は、600nm以下のノイズ検出波長の照射光を前記生体の表面に照射するものである請求項1の反射型光電脈波検出装置。
  3. 前記光電脈波検出プローブは、前記生体の表面に接触される接触面に、前記受光素子、光電脈波検出用発光素子、およびノイズ検出用発光素子が配置された本体を備え、
    該光電脈波検出用発光素子およびノイズ検出用発光素子は、前記受光素子に対して予め設定された一定の距離だけ離隔した位置に互いに隣接して配置されたものである請求項1または2の反射型光電脈波検出装置。
  4. 生体の表面にヘモグロビンにより吸収されるように波長帯内から設定された第1波長および第2波長の照射光を生体の表面に照射する第1発光素子および第2発光素子と、該第1発光素子および第2発光素子から局部照射したときに該表面内から得られる第1波長および第2波長の反射光をそれぞれ検出する受光素子を備えた光電脈波検出プローブを備え、該受光素子により検出された該第1波長および第2波長の反射光信号の周期的変化に基づいて該生体の表面下の血液の酸素飽和度を測定する反射型オキシメータであって、
    光電脈波検出プローブに設けられ、前記照射光の波長よりも短いノイズ検出波長の照射光を前記生体の表面に照射するノイズ検出用発光素子と、
    前記受光素子により検出された第1波長および第2波長の反射光信号およびノイズ検出波長の反射光信号から、脈拍に同期して周期的に変動する脈波の周波数成分の周波数帯から外れた周波数の信号をそれぞれ分離する信号分離手段と、
    該信号分離手段により分離された前記第1波長の反射光信号およびノイズ検出波長の反射光信号の相互の信号強度変化が同じとなるようにそれらのいずれか一方の第1ゲインを決定するとともに、該信号分離手段により分離された前記第2波長の反射光信号およびノイズ検出波長の反射光信号の相互の信号強度が同じとなるようにそれらのいずれか一方の第2ゲインを決定するゲイン決定手段と、
    該ゲイン決定手段により決定された第1ゲインおよび第2ゲインに基づいて、前記光電脈波検出プローブと前記生体との相対的変位に起因するノイズを前記受光素子により検出された第1波長の反射光信号および第2波長の反射光信号からそれぞれ除去するノイズ除去手段と
    該ノイズ除去手段によりノイズが除去された第1波長および第2波長の反射光信号の周期的変化に基づいて該生体の表面下の血液の酸素飽和度を決定する酸素飽和度決定手段と
    を、含むことを特徴とする反射型オキシメータ。
  5. 前記第1発光素子から放射される第1波長の光は、酸化ヘモグロビンおよび還元ヘモグロビンに対して異なる吸光係数を有し、前記第2発光素子から放射される第2波長の光は、酸化ヘモグロビンおよび還元ヘモグロビンに対して略同じ吸光係数を有し、前記ノイズ検出用発光素子から放射される光は、600nm以下のノイズ検出波長を有するものである請求項4の反射型オキシメータ。
  6. 前記光電脈波検出プローブは、前記生体の表面に接触される接触面に、前記受光素子、第1発光素子、第2発光素子、およびノイズ検出用発光素子が配置された本体を備え、
    該第1発光素子、第2発光素子およびノイズ検出用発光素子は、該受光素子に対して予め設定された一定の距離だけ離隔した位置に互いに隣接して配置され、且つ該ノイズ検出用発光素子が該第1発光素子と第2発光素子との間に配置されたものである請求項4または5の反射型オキシメータ。
JP2002302954A 2002-10-17 2002-10-17 反射型光電脈波検出装置および反射型オキシメータ Pending JP2004135854A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302954A JP2004135854A (ja) 2002-10-17 2002-10-17 反射型光電脈波検出装置および反射型オキシメータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302954A JP2004135854A (ja) 2002-10-17 2002-10-17 反射型光電脈波検出装置および反射型オキシメータ

Publications (1)

Publication Number Publication Date
JP2004135854A true JP2004135854A (ja) 2004-05-13

Family

ID=32450876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302954A Pending JP2004135854A (ja) 2002-10-17 2002-10-17 反射型光電脈波検出装置および反射型オキシメータ

Country Status (1)

Country Link
JP (1) JP2004135854A (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532682A (ja) * 2005-03-14 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 身体の部位における血液の灌流を決定するための方法及び装置
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
JP2011153964A (ja) * 2010-01-28 2011-08-11 Sony Corp 濃度測定装置
JP2011217822A (ja) * 2010-04-06 2011-11-04 Seiko Epson Corp 脈波測定装置および脈波の測定方法
US8077297B2 (en) 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8295567B2 (en) 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8827917B2 (en) 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
JP2015528728A (ja) * 2012-07-30 2015-10-01 コーニンクレッカ フィリップス エヌ ヴェ 生理学的情報を抽出するためのデバイス及び方法
WO2017165084A1 (en) * 2016-03-24 2017-09-28 Qualcomm Incorporated Tracking contact quality to vital signs measurement sensors
JP2017176266A (ja) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 生体情報測定装置
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
JP2019000723A (ja) * 2018-10-11 2019-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報取得装置及び腕時計端末
JP2019122447A (ja) * 2018-01-12 2019-07-25 セイコーエプソン株式会社 脈波解析装置、光学装置および脈波解析方法
JP2020018430A (ja) * 2018-07-31 2020-02-06 セイコーエプソン株式会社 生体情報測定装置
JP2021180876A (ja) * 2015-06-26 2021-11-25 アールディーエス エスエーエス 非侵襲的酸素飽和度測定方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8560036B2 (en) 2004-03-08 2013-10-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8818475B2 (en) 2005-03-03 2014-08-26 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US9351674B2 (en) 2005-03-03 2016-05-31 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
JP2008532682A (ja) * 2005-03-14 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 身体の部位における血液の灌流を決定するための方法及び装置
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8744543B2 (en) 2005-09-29 2014-06-03 Covidien Lp System and method for removing artifacts from waveforms
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US11298076B2 (en) 2008-02-19 2022-04-12 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8295567B2 (en) 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8483459B2 (en) 2008-06-30 2013-07-09 Nèllcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8289501B2 (en) 2008-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8077297B2 (en) 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8827917B2 (en) 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US9113815B2 (en) 2008-06-30 2015-08-25 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
JP2011153964A (ja) * 2010-01-28 2011-08-11 Sony Corp 濃度測定装置
JP2011217822A (ja) * 2010-04-06 2011-11-04 Seiko Epson Corp 脈波測定装置および脈波の測定方法
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
JP2015528728A (ja) * 2012-07-30 2015-10-01 コーニンクレッカ フィリップス エヌ ヴェ 生理学的情報を抽出するためのデバイス及び方法
JP2021180876A (ja) * 2015-06-26 2021-11-25 アールディーエス エスエーエス 非侵襲的酸素飽和度測定方法
US10085639B2 (en) 2016-03-24 2018-10-02 Qualcomm Incorporated Tracking contact quality to vital signs measurement sensors
CN108882860A (zh) * 2016-03-24 2018-11-23 高通股份有限公司 追踪到生命体征测量传感器的接触质量
WO2017165084A1 (en) * 2016-03-24 2017-09-28 Qualcomm Incorporated Tracking contact quality to vital signs measurement sensors
JP2017176266A (ja) * 2016-03-28 2017-10-05 富士ゼロックス株式会社 生体情報測定装置
JP2019122447A (ja) * 2018-01-12 2019-07-25 セイコーエプソン株式会社 脈波解析装置、光学装置および脈波解析方法
JP2020018430A (ja) * 2018-07-31 2020-02-06 セイコーエプソン株式会社 生体情報測定装置
JP2019000723A (ja) * 2018-10-11 2019-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報取得装置及び腕時計端末

Similar Documents

Publication Publication Date Title
JP2004135854A (ja) 反射型光電脈波検出装置および反射型オキシメータ
JP4284674B2 (ja) 血中吸光物質濃度測定装置
JP6525890B2 (ja) 対象者のバイタルサイン情報を決定するためのシステム及び方法
CA2558643C (en) Pulse oximetry motion artifact rejection using near infrared absorption by water
US6709402B2 (en) Apparatus and method for monitoring respiration with a pulse oximeter
AU2009298937B2 (en) System and method for photon density wave pulse oximetry and pulse hemometry
US8123695B2 (en) Method and apparatus for detection of venous pulsation
US9560995B2 (en) Methods and systems for determining a probe-off condition in a medical device
US9380969B2 (en) Systems and methods for varying a sampling rate of a signal
US8126525B2 (en) Probe and a method for use with a probe
US20040260186A1 (en) Monitoring physiological parameters based on variations in a photoplethysmographic signal
US20130131475A1 (en) Photoplethysmography device and method
JP2000515972A (ja) 検体を傷つけずに、血液が供給されている組織の酸素飽和量を測定する方法
JP2004202190A (ja) 生体情報測定装置
US8433382B2 (en) Transmission mode photon density wave system and method
JPH10216115A (ja) 反射型酸素飽和度測定装置
JP4385677B2 (ja) 生体情報計測装置
JPH10337282A (ja) 反射型酸素飽和度測定装置
JP7304899B2 (ja) 対象の少なくとも1つのバイタルサインを決定するシステム及び方法
WO2016178986A1 (en) System and method for spo2 determination using reflective ppg
JPH10216114A (ja) 酸素飽和度測定装置
WO2024085042A1 (ja) 酸素飽和度測定装置、酸素飽和度測定方法及び酸素飽和度測定プログラム
JP7399112B2 (ja) 対象の少なくとも1つのバイタルサインを決定するシステム及び方法
CN117918836A (zh) 一种无创光电反射式生理参数测量的传感器及可穿戴装置
JP2002051996A (ja) 脈拍計

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816