JP2004134366A - Rechargeable lithium-ion battery - Google Patents

Rechargeable lithium-ion battery Download PDF

Info

Publication number
JP2004134366A
JP2004134366A JP2003189387A JP2003189387A JP2004134366A JP 2004134366 A JP2004134366 A JP 2004134366A JP 2003189387 A JP2003189387 A JP 2003189387A JP 2003189387 A JP2003189387 A JP 2003189387A JP 2004134366 A JP2004134366 A JP 2004134366A
Authority
JP
Japan
Prior art keywords
lithium
battery
carbonate
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003189387A
Other languages
Japanese (ja)
Inventor
Toshikazu Maejima
前島 敏和
Yuichi Takatsuka
高塚 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003189387A priority Critical patent/JP2004134366A/en
Publication of JP2004134366A publication Critical patent/JP2004134366A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rechargeable lithium-ion battery which has efficient charging and discharging properties at low temperatures. <P>SOLUTION: A cathode which uses amorphous carbon as a cathode active material, and an anode which uses lithium manganate as an anode active material are steeped in a non-aqueous electrolyte to fabricate the rechargeable lithium-ion battery. For the non-aqueous electrolyte, 1 mol/liter of lithium phosphate hexafluoride is dissolved into a mixed solvent wherein ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) are mixed at a prescribed volume ratio. The mixed solvent satisfies y=z, 20<x<30, and x≤2y/3+10, where mixing ratios of EC, DMC, and DEC to the non-aqueous electrolyte are x, y, and z vol.% respectively. Due to this composition, the ion solubility of the non-aqueous electrolyte is increased, and the viscosity is reduced even at low temperatures. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン二次電池に係り、特に、リチウムイオンの吸蔵、放出が可能な炭素材料を負極活物質とした負極と、リチウム含有酸化物を正極活物質とした正極とを非水電解液に浸潤させたリチウムイオン二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は、リチウムイオンの吸蔵、放出が可能な炭素材料を用いて負極材層が形成されており、リチウムを用いて負極材層を形成したリチウム二次電池に比べてデンドライトの析出が抑制され電池の内部短絡が防止されるため、安全性が高められるという利点を有している。この種の電池として、非水溶媒にリチウム塩を溶解した非水電解液をセパレータに含浸させ電解質層として用いたものがある。非水溶媒として、充放電効率、耐酸性に優れた環状炭酸エステルの一種である炭酸エチレン(EC)、炭酸プロピレン(PC)等が注目されている。また、溶質のリチウム塩にはLiClO、LiBF、LiPF、LiSOCF等が用いられている。
【0003】
炭酸エチレンは高誘電率でイオン溶解度も大きいため、非水溶媒に炭酸エチレンを用いることで非水電解液のイオン導電率を高めることができる。ところが、炭酸エチレンの融点が36.4°Cであることから、常温では固体であるため、低温乃至常温では非水溶媒として使用することができず、また、液体の状態でも粘性を有するため、非水溶媒に使用するには支障を生ずる。このため、一般に、非水溶媒に炭酸エチレンを用いるときは、炭酸ジメチル(DMC)、炭酸ジエチル(DEC)、炭酸メチルエチル(MEC)等の低粘性、低融点の鎖状炭酸エステルと混合した混合溶媒とされる。このような混合溶媒は、リチウムイオン二次電池の使用温度範囲(例えば、−20°C〜60°C)において、粘性や融点に支障のない液体として使用することができる。混合溶媒を用いるリチウムイオン二次電池では、例えば、混合溶媒の組成を定めることで、低温下での電池容量を高める技術が開示されている(特許文献1参照)。また、混合溶媒に炭素数の多いアルキルエステル(一般式RCOOR’で表され、Rは炭素数3以上のアルキル基、R’は炭素数1又は2のアルキル基)を更に混合することで、イオン導電率及び充放電効率を高める技術も提案されている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平5−283104号公報
【特許文献2】
特開平5−182689号公報
【0005】
【発明が解決しようとする課題】
しかしながら、これまでに提案されてきた混合溶媒の組成では、電池容量という観点では上述したように−20°Cでも使用可能であるが、出力という観点では、−20°Cでの出力が常温での出力の半分以下となるため、高出力が要求され高率充放電が繰り返される自動車用途への適用は難しい、という問題がある。更に、自動車用途では、−20°C以下の温度(例えば、−30°C)でも使用される。
【0006】
本発明は上記事案に鑑み、低温下での高率充放電特性に優れたリチウムイオン二次電池を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は、リチウムイオンの吸蔵、放出が可能な炭素材料を負極活物質とした負極と、リチウム含有酸化物を正極活物質とした正極とを非水電解液に浸潤させたリチウムイオン二次電池において、前記非水電解液は、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルを含む混合物であり、前記炭酸エチレン、炭酸ジメチル及び炭酸ジエチルの前記非水電解液に対する混合割合をそれぞれx、y、z体積%としたときに、前記炭酸エチレン、炭酸ジメチル及び炭酸ジエチルが、y=z、20<x<30、かつ、x≦2y/3+10の範囲で混合されていることを特徴とする。
【0008】
本発明では、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルの非水電解液に対する混合割合をそれぞれx、y、z体積%としたときに、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルを、y=z、20<x<30、かつ、x≦2y/3+10の範囲で混合することで、高誘電率の炭酸エチレンにより非水電解液のイオン溶解度が増加するため、イオン導電率が確保され、低粘性の炭酸ジメチル及び炭酸ジエチルにより非水電解液の粘性が低減するため、イオンの移動度が確保されると共に、低融点の炭酸ジエチルにより低温下でも非水電解液が液体状態に維持されるので、低温下でも高率充放電特性に優れたリチウムイオン二次電池を実現することができる。
【0009】
この場合において、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルを、85≦x+y+z≦100の関係を満たすようにすれば、炭酸エチレン、炭酸ジメチル及び炭酸ジエチル以外に混合される溶媒の影響を低減することができる。また、リチウム含有酸化物に、スピネル結晶構造を有するリチウム遷移金属複酸化物を用いるようにすれば、スピネル結晶構造が安定な結晶構造であることから、リチウム遷移金属複酸化物が化合物としても安定であるため、低温下でも高容量、高出力を確保することができる。又は、リチウム含有酸化物に、層状結晶構造を有するリチウム遷移金属複酸化物を用いるようにすれば、層状結晶が二次元的なリチウムイオンの拡散経路を有することから、リチウムイオンの拡散性に優れるため、常温下で高出力を確保することができると共に、低温下で層状結晶構造が収縮しても非水電解液によりリチウムイオンの伝導性が確保されるので、高容量、高出力を得ることができる。
【0010】
【発明の実施の形態】
以下、図面を参照して、本発明が適用可能な円筒型リチウムイオン二次電池の実施の形態について説明する。
【0011】
(正極)
図1に示すように、正極活物質のマンガン酸リチウム(Li/Mn比=0.55)100重量部に、導電剤として10重量部の鱗片状黒鉛と結着剤(バインダ)として10重量部のポリフッ化ビニリデン(以下、PVDFという。)とを添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという。)を添加、混練して正極合剤(スラリ)を作製した。作製したスラリを厚さ20μmのアルミニウム箔(正極集電体)の両面に塗布した。このとき、正極長寸方向の一方の側縁に幅30mmの未塗布部を残した。
【0012】
その後乾燥、プレス、裁断して、幅82mm、所定長さ、正極合剤塗布部(アルミニウム箔を含まない)厚さ90μmの正極を得た。側縁に残した未塗布部に切り欠きを入れ、切り欠き残部を正極リード片2とした。隣り合う正極リード片2を50mm間隔とし、正極リード片2の幅を5mmとした。
【0013】
(負極)
負極活物質の非晶質炭素粉末100重量部に、結着剤として10重量部のPVDFを添加し、これに分散溶媒としてNMPを添加、混練した負極合剤(スラリ)を作製した。作製したスラリを厚さ10μmの圧延銅箔(負極集電体)の両面に塗布した。このとき、負極長寸方向の一方の側縁に幅30mmの未塗布部を残した。
【0014】
その後乾燥、プレス、裁断して、幅86mm、所定長さ、負極合剤塗布部(圧延銅箔を含まない)厚さ70μmの負極を得た。側縁に残した未塗布部に正極と同様に切り欠きを入れ、切り欠き残部を負極リード片3とした。隣り合う負極リード片3を50mm間隔とし、負極リード片3の幅を5mmとした。
【0015】
(電池の作製)
作製した正極と負極とを、これら両極が直接接触しないように幅90mm、厚さ40μmのポリエチレン製セパレータと共に捲回した。捲回の中心には、ポリプロピレン製の中空円筒状の軸芯1を用いた。このとき、正極リード片2と負極リード片3とが、それぞれ捲回群(電極群)6の互いに反対側の両端面に位置するようにした。また、正極、負極、セパレータの長さを調整し、捲回群6の直径を38±0.1mmとした。
【0016】
正極リード片2を変形させ、その全てを、捲回群6の軸芯1のほぼ延長線上にある正極集電リング4の周囲から一体に張り出している鍔部周辺付近に集合、接触させた後、正極リード片2と鍔部周辺とを超音波溶接して正極リード片2を鍔部周面に接続した。一方、負極集電リング5と負極リード片3との接続操作も、正極集電リング4と正極リード片2との接続操作と同様に実施した。
【0017】
その後、正極集電リング4の鍔部周面全周に絶縁被覆を施した。この絶縁被覆には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを鍔部周面から捲回群6外周面に亘って一重以上巻いて絶縁被覆とし、捲回群6を電池容器7内に挿入した。電池容器7には、外形40mm、内径39mmでニッケルメッキが施されたスチール製の容器を用いた。
【0018】
負極集電リング5には予め電気的導通のための負極リード板8が溶接されており、電池容器7に捲回群6を挿入後、電池容器7の底部と負極リード板8とを溶接した。一方、正極集電リング4には、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リード9を溶接しておき、正極リード9の他端を、電池容器7を封口するための電池蓋の下面に溶接した。電池蓋には、円筒型リチウムイオン二次電池20の内圧上昇に応じて開裂する内圧開放機構として開裂弁11が設けられている。開裂弁11の開裂圧は、約9×10Paに設定した。
【0019】
非水電解液を所定量電池容器7内に注入し、その後、正極リード9を折りたたむようにして電池蓋で電池容器7に蓋をし、EPDM樹脂製ガスケット10を介してカシメによって密封することにより円筒型リチウムイオン二次電池20を完成させた。なお、リチウムイオン二次電池20の設計容量は4.0Ahである。
【0020】
非水電解液には、炭酸エチレン(以下、ECという。)、炭酸ジメチル(以下、DMCという。)及び炭酸ジエチル(以下、DECという。)を所定の体積比で混合した混合溶媒中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。混合溶媒は、EC、DMC、DECの非水電解液に対する混合割合をそれぞれx、y、z体積%としたときに、y=z、20<x<30、かつ、x≦2y/3+10の範囲とし、更に85≦x+y+z≦100の範囲とした。
【0021】
図2に示すように、混合溶媒は、ECの混合割合xが20〜30体積%の範囲であり、DMCの混合割合y及びDECの混合割合zが、x=2y/3+10の関係を示す直線(1)より上方の範囲である。従って、EC、DMC、DECをx=20、x=30及び直線(1)の3直線を境界とする斜線部の範囲で混合した。また、y=zのときにx+y+z=100の関係を示す直線(2)と、x+y+z=85の関係を示す直線(3)とに挟まれた範囲とした。
【0022】
【実施例】
次に、本実施形態に従って作製した円筒型リチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。
【0023】
(実施例1)
下表1に示すように、実施例1では、混合溶媒のEC、DMC、DECの組成を体積比で28:36:36とした。なお、表1において、PCは炭酸プロピレンを、VCは炭酸ビニレンを示す。
【0024】
【表1】

Figure 2004134366
【0025】
(実施例2〜3)
表1に示すように、実施例2及び実施例3では、混合溶媒のEC、DMC、DECの組成を変える以外は実施例1と同様にした。実施例2では、体積比25:37.5:37.5とし、実施例3では、体積比21:39.5:39.5とした。
【0026】
(実施例4〜5)
表1に示すように、実施例4及び実施例5では、混合溶媒のEC、DMC、DECを体積比25:37.5:37.5で混合し、更に、PC又はVCを溶媒全体の15体積%となるように混合する以外は実施例1と同様にした。実施例4では、PCを混合し、実施例5では、VCを混合した。
【0027】
(比較例1〜2)
表1に示すように、比較例1及び比較例2では、混合溶媒のEC、DMC、DECの組成を変える以外は実施例1と同様にした。比較例1では、体積比40:30:30とし、比較例2では、体積比15:42.5:42.5とした。
【0028】
(比較例3〜4)
表1に示すように、比較例3及び比較例4では、混合溶媒のEC、DMC、DECを体積比25:37.5:37.5で混合し、更に、PC又はVCを溶媒全体の20体積%となるように混合する以外は実施例1と同様にした。比較例3では、PCを混合し、比較例4では、VCを混合した。
【0029】
次に、以上のように作製した実施例及び比較例の各電池について、以下の一連の試験を実施した。なお、本実施例において、電池電圧2.7Vのときを充電状態(SOC)0%の放電状態、4.2VのときをSOC100%の満充電状態とした。
【0030】
容量の測定では、満充電状態の電池を電流値2Aにて終止電圧2.7Vまで放電し、電流値(2A)と放電時間との積をその電池の容量とした。
【0031】
出力の測定では、満充電状態の電池を、10A、30A、90Aの電流値で各10秒間連続放電し、横軸電流値に対して、各5秒目の電池電圧を縦軸にプロットし、3点を直線近似した直線が、終止電圧である2.7Vと交差する点の電流値を読み取り、この電流値と2.7Vとの積をその電池の出力とした。
【0032】
サイクル試験では、25±2°C(常温)及び−30±2°C(低温)のそれぞれの雰囲気温度にて、1時間率(1C)、上限電圧4.2Vで定電流定電圧充電した後、1時間率(1C)で終止電圧2.7Vまで放電するサイクルを200回繰り返した。サイクル試験後の容量及び出力を同様にして測定した。容量及び出力の試験結果を下表2に示す。
【0033】
【表2】
Figure 2004134366
【0034】
表2に示すように、実施例1〜3の電池では、25°C(常温)における容量、出力は、初期及び200サイクル後共に高い結果を示しており、−30°Cの低温においても、常温とほぼ同等の性能を示した。これに対して比較例1の電池では、常温での容量、出力は実施例1〜3の電池と同等の性能を示しているが、低温では、容量、出力共に半減している。一般的にECとDMCとを非水電解液の溶媒に用いるときは混合比が1:1付近において最も低温特性が向上する組成となることから、ECとDMCとの体積比を40:30とした比較例1の電池でも十分な性能の期待できる範囲であるが、電池系では充放電中にエステル交換反応が生じECとDMCとの組成比が変化したため、上述の結果となったと考えられる。また、DMCとDECとの体積比を同じ(y=z)とした場合、エステル交換反応後のDMCの量は、これまでの実験結果により2y/3となることが確認されているため、実施例1の電池の溶媒組成より、溶媒にEC、DMC及びDECの混合物を用いたときに、x≦2y/3+10を満たす範囲で混合することで、低温時の容量、出力が向上することが判った。
【0035】
また、比較例2の電池では、初期における容量、出力は実施例1の電池と差が生じていないが、常温及び低温下共に200サイクル後の容量、出力が大きく低下している。比較例2の電池の溶媒組成では、初期の容量、出力から判断した場合、確かに低温特性が向上しているが、200サイクル後の容量、出力のデータから明らかなように、電池の寿命特性が低下したことが判った。
【0036】
更に、EC、DMC、DEC以外にPC又はVCを15体積%添加した実施例4〜5の電池では、PC又はVCを20体積%添加した比較例3〜4の電池と比較して、低温特性が優れていることが判った。これはEC、DMC、DECの混合溶媒により低温特性を向上させることができるが、これら以外の溶媒の混合割合が15%を超えるとその溶媒の特徴が大きく現れることを意味している。従って、EC、DMC、DECの作用を十分に発揮させ、電池の低温特性を向上させるためには、EC、DMC、DECを、85≦x+y+z≦100の範囲で混合することが望ましいことが判った。
【0037】
本実施形態のリチウムイオン二次電池20では、非水電解液に、常温で固体のECと低融点のDMC及びDECとを混合使用することで、低温下でも非水電解液が凝固することなく液体状態を維持することができる。また、高誘電率でイオン溶解度の大きなECが、ECの混合割合xとしたときに20<x<30の範囲で混合されているため、非水電解液のイオン導電率を十分に確保することができる。また、ECのみでは液体状態で粘性が高いため、イオンの移動度が阻害されるのに対し、低粘性のDMC及びDECが、それぞれの混合割合y、zとしたときに、y=z、x≦2y/3+10(x≦2z/3+10)の範囲で混合されているため、非水電解液の粘性が低下するので、十分なイオンの移動度を確保することができる。従って、低温下でも高率充放電特性に優れ、充放電サイクルが繰り返されても容量、出力特性に優れた円筒型リチウムイオン二次電池20を実現することができる。
【0038】
また、本実施形態のリチウムイオン二次電池20では、EC、DMC、DEC以外の溶媒等を更に添加混合することで、充放電特性をより高めることができる。このとき添加混合する、EC、DMC、DEC以外の溶媒等の混合割合が15%を超えると、EC、DMC、DEC以外の溶媒等の影響が電池特性に現れるため、15%以下とすることが好ましい。すなわち、EC、DMC、DECの混合割合の合計を、85≦x+y+z≦100の範囲とすることが好ましい。
【0039】
なお、本実施形態では、非水電解液の電解質(溶質)としてLiPFを用いた例を示したが、本発明はこれに限定されるものではなく、例えば、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLiやこれらの混合物を用いることができることはいうまでもない。また、EC、DMC、DEC以外に添加混合することが可能な溶媒としては、一般的にリチウムイオン二次電池や非水電解液二次電池で用いられる溶媒を1種又は2種以上用いてもよい。
【0040】
また、本実施形態では、設計容量4.0Ahの円筒型リチウムイオン二次電池20について例示したが、本発明は、電池の用途、電池の大きさ、電池容量には限定されるものではない。また、本実施形態では、正負極を捲回して用いた円筒型の電池について例示したが、本発明は電池の形状についても限定されるものではなく、角形、その他の多角形の電池や、正負極を積層した積層タイプの電池にも適用可能である。更に、本発明の適用可能な形状としては、上述した有底筒状容器(缶)に電池上蓋がカシメによって封口されている構造の電池以外であっても構わない。このような構造の一例として、正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して正負極外部端子が押し合っている状態の電池を挙げることができる。また、本実施形態では、正負極を捲回した捲回群を非水電解液に浸潤させた例を示したが、本発明はこれに限定されるものではなく、非水電解液をセパレータに含浸させ電解質層とした電池に適用することも可能である。
【0041】
更に、本実施形態では、正極活物質としてマンガン酸リチウムを用いた例を示したが、本発明はこれに限定されるものではなく、コバルト酸リチウム、ニッケル酸リチウム等のリチウム含有酸化物であればよい。また、その結晶構造においても特に制限されるものではなく、例えば、スピネル結晶構造や層状結晶構造を有するリチウム遷移金属複酸化物を用いてもよい。このとき、遷移金属としては、例えば、マンガン、コバルト、ニッケル、鉄等の1種以上であればよい。更に、その粒子形状においても鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
【0042】
また更に、本実施形態では、負極活物質として、晶質の炭素材料に比べ非晶質であることから負極集電体への密着性に優れる非晶質炭素を用いた例を示したが、本発明はこれに限定されるものではない。本発明で使用可能な負極活物質としては、リチウムイオンを吸蔵、放出可能な炭素材料であればよく、例えば、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素材料等が挙げられ、その粒子形状においても、特に制限されるものではない。このような炭素材を負極活物質に用いることで、断面渦巻き状に捲回して電極群を形成するときの可撓性に優れるので、負極からの負極活物質層の剥離離脱を防止することができる。
【0043】
【発明の効果】
以上説明したように、本発明によれば、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルの非水電解液に対する混合割合をそれぞれx、y、z体積%としたときに、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルを、y=z、20<x<30、かつ、x≦2y/3+10の範囲で混合することで、高誘電率の炭酸エチレンにより非水電解液のイオン溶解度が増加するため、イオン導電率が確保され、低粘性の炭酸ジメチル及び炭酸ジエチルにより非水電解液の粘性が低減するため、イオンの移動度が確保されると共に、低融点の炭酸ジエチルにより低温下でも非水電解液が液体状態に維持されるので、低温下でも高率充放電特性に優れたリチウムイオン二次電池を実現することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の円筒型リチウムイオン電池の断面図である。
【図2】実施形態の円筒型リチウムイオン二次電池に注液した非水電解液の炭酸エチレン、炭酸ジメチル、炭酸ジエチルの混合割合の関係を示すグラフである。
【符号の説明】
6 捲回群
20 円筒型リチウムイオン二次電池[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium ion secondary battery, and in particular, a non-aqueous electrolyte comprising a negative electrode using a carbon material capable of inserting and extracting lithium ions as a negative electrode active material and a positive electrode using a lithium-containing oxide as a positive electrode active material. The present invention relates to a lithium ion secondary battery infiltrated into a battery.
[0002]
[Prior art]
A lithium ion secondary battery has a negative electrode material layer formed using a carbon material capable of inserting and extracting lithium ions, and the deposition of dendrites is smaller than that of a lithium secondary battery having a negative electrode material layer formed using lithium. Is suppressed, and an internal short circuit of the battery is prevented, so that there is an advantage that safety is enhanced. As this type of battery, there is a battery in which a separator is impregnated with a non-aqueous electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent and used as an electrolyte layer. As non-aqueous solvents, ethylene carbonate (EC), propylene carbonate (PC) and the like, which are a kind of cyclic carbonate having excellent charge / discharge efficiency and acid resistance, have been attracting attention. LiClO 4 , LiBF 4 , LiPF 6 , LiSO 3 CF 3 and the like are used as the lithium salt of the solute.
[0003]
Since ethylene carbonate has a high dielectric constant and a high ionic solubility, the ionic conductivity of the non-aqueous electrolyte can be increased by using ethylene carbonate as the non-aqueous solvent. However, since ethylene carbonate has a melting point of 36.4 ° C., it is a solid at normal temperature, cannot be used as a non-aqueous solvent at low to normal temperature, and has a viscosity even in a liquid state. There is a problem in using it for non-aqueous solvents. Therefore, in general, when ethylene carbonate is used as the non-aqueous solvent, it is mixed with a low-viscosity, low-melting chain carbonate such as dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (MEC). Solvent. Such a mixed solvent can be used as a liquid that does not hinder the viscosity or the melting point in a use temperature range (for example, −20 ° C. to 60 ° C.) of the lithium ion secondary battery. In a lithium ion secondary battery using a mixed solvent, for example, a technique for increasing the battery capacity at a low temperature by determining the composition of the mixed solvent is disclosed (see Patent Document 1). Further, by further mixing an alkyl ester having a large number of carbon atoms (represented by the general formula RCOOR ', R is an alkyl group having 3 or more carbon atoms, and R' is an alkyl group having 1 or 2 carbon atoms) in the mixed solvent, A technique for increasing conductivity and charge / discharge efficiency has also been proposed (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-5-283104 [Patent Document 2]
JP-A-5-182689
[Problems to be solved by the invention]
However, the composition of the mixed solvent proposed so far can be used at −20 ° C. as described above from the viewpoint of battery capacity, but the output at −20 ° C. at room temperature can be used from the viewpoint of output. However, there is a problem that it is difficult to apply the present invention to an automotive application where high output is required and high-rate charging and discharging are repeated. Furthermore, in automotive applications, it is used at temperatures below -20 ° C (eg, -30 ° C).
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a lithium ion secondary battery having excellent high-rate charge / discharge characteristics at low temperatures.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a negative electrode using a carbon material capable of inserting and extracting lithium ions as a negative electrode active material and a positive electrode using a lithium-containing oxide as a positive electrode active material in a nonaqueous electrolyte. In the infiltrated lithium ion secondary battery, the non-aqueous electrolyte is a mixture containing ethylene carbonate, dimethyl carbonate and diethyl carbonate, and the mixing ratio of the ethylene carbonate, dimethyl carbonate and diethyl carbonate to the non-aqueous electrolyte is Assuming that x, y, and z are volume%, respectively, the ethylene carbonate, dimethyl carbonate, and diethyl carbonate are mixed in the range of y = z, 20 <x <30, and x ≦ 2y / 3 + 10. Features.
[0008]
In the present invention, when the mixing ratio of ethylene carbonate, dimethyl carbonate and diethyl carbonate to the non-aqueous electrolyte is x, y and z volume%, respectively, ethylene carbonate, dimethyl carbonate and diethyl carbonate are converted to y = z, 20 < By mixing in the range of x <30 and x ≦ 2y / 3 + 10, the ionic solubility of the non-aqueous electrolyte is increased by ethylene carbonate having a high dielectric constant. And diethyl carbonate reduces the viscosity of the non-aqueous electrolyte, thereby ensuring ion mobility, and the low-melting diethyl carbonate keeps the non-aqueous electrolyte in a liquid state even at low temperatures, so even at low temperatures A lithium ion secondary battery having excellent high rate charge / discharge characteristics can be realized.
[0009]
In this case, if ethylene carbonate, dimethyl carbonate and diethyl carbonate satisfy the relationship of 85 ≦ x + y + z ≦ 100, the influence of a solvent mixed other than ethylene carbonate, dimethyl carbonate and diethyl carbonate can be reduced. . If a lithium transition metal complex oxide having a spinel crystal structure is used as the lithium-containing oxide, the spinel crystal structure is a stable crystal structure, so that the lithium transition metal complex oxide is stable even as a compound. Therefore, high capacity and high output can be ensured even at a low temperature. Alternatively, if a lithium transition metal complex oxide having a layered crystal structure is used for the lithium-containing oxide, since the layered crystal has a two-dimensional lithium ion diffusion path, the lithium ion diffusibility is excellent. Therefore, high output can be ensured at room temperature, and even if the layered crystal structure shrinks at low temperature, the conductivity of lithium ions is ensured by the nonaqueous electrolyte, so that high capacity and high output can be obtained. Can be.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a cylindrical lithium ion secondary battery to which the present invention can be applied will be described with reference to the drawings.
[0011]
(Positive electrode)
As shown in FIG. 1, 10 parts by weight of flake graphite as a conductive agent and 10 parts by weight of a binder (binder) were added to 100 parts by weight of lithium manganate (Li / Mn ratio = 0.55) as a positive electrode active material. Was added, and N-methylpyrrolidone (hereinafter, referred to as NMP) as a dispersing solvent was added thereto, followed by kneading to prepare a positive electrode mixture (slurry). The prepared slurry was applied to both sides of a 20 μm-thick aluminum foil (positive electrode current collector). At this time, an uncoated portion having a width of 30 mm was left on one side edge of the positive electrode in the longitudinal direction.
[0012]
Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode having a width of 82 mm, a predetermined length, and a thickness of 90 μm, where the positive electrode mixture was applied (not including the aluminum foil). A notch was made in the uncoated portion left on the side edge, and the remaining notch was used as a positive electrode lead piece 2. Adjacent positive electrode lead pieces 2 were set at intervals of 50 mm, and the width of the positive electrode lead pieces 2 was set at 5 mm.
[0013]
(Negative electrode)
A negative electrode mixture (slurry) was prepared by adding 10 parts by weight of PVDF as a binder to 100 parts by weight of the amorphous carbon powder of the negative electrode active material, adding NMP as a dispersion solvent thereto, and kneading the mixture. The prepared slurry was applied to both sides of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. At this time, an uncoated portion having a width of 30 mm was left on one side edge in the negative electrode long dimension direction.
[0014]
Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode having a width of 86 mm, a predetermined length, and a thickness of 70 μm (not including a rolled copper foil) applied to the negative electrode mixture mixture. A notch was made in the uncoated portion left on the side edge in the same manner as the positive electrode, and the remaining notch was used as a negative electrode lead piece 3. Adjacent negative electrode lead pieces 3 were set at intervals of 50 mm, and the width of the negative electrode lead pieces 3 was set at 5 mm.
[0015]
(Production of battery)
The prepared positive electrode and negative electrode were wound together with a polyethylene separator having a width of 90 mm and a thickness of 40 μm so that these two electrodes did not directly contact each other. At the center of the winding, a hollow cylindrical shaft core 1 made of polypropylene was used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were located on both end faces on the opposite side of the wound group (electrode group) 6, respectively. The length of the positive electrode, the negative electrode, and the separator was adjusted, and the diameter of the winding group 6 was set to 38 ± 0.1 mm.
[0016]
After the positive electrode lead pieces 2 are deformed, and all of them are gathered and brought into contact with the vicinity of a flange portion integrally extending from the circumference of the positive electrode current collecting ring 4 which is substantially on the extension of the shaft core 1 of the winding group 6, Then, the positive electrode lead 2 and the periphery of the flange were ultrasonically welded to connect the positive electrode lead 2 to the peripheral surface of the flange. On the other hand, the connection operation between the negative electrode current collector ring 5 and the negative electrode lead piece 3 was also performed in the same manner as the connection operation between the positive electrode current collector ring 4 and the positive electrode lead piece 2.
[0017]
Thereafter, an insulating coating was applied to the entire periphery of the flange peripheral surface of the positive electrode current collecting ring 4. For this insulating coating, a pressure-sensitive adhesive tape was used in which the base material was polyimide and one side thereof was coated with a pressure-sensitive adhesive composed of hexamethacrylate. This adhesive tape was wound one or more times from the peripheral surface of the flange portion to the outer peripheral surface of the winding group 6 to form an insulating coating, and the winding group 6 was inserted into the battery container 7. As the battery case 7, a nickel-plated steel case having an outer diameter of 40 mm and an inner diameter of 39 mm was used.
[0018]
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance. After the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate 8 are welded. . On the other hand, a positive electrode lead 9 formed by laminating a plurality of aluminum ribbons in advance is welded to the positive electrode current collecting ring 4, and the other end of the positive electrode lead 9 is sealed with a battery for closing the battery container 7. Welded to the underside of the lid. The battery lid is provided with a cleavage valve 11 as an internal pressure release mechanism that is opened in accordance with an increase in the internal pressure of the cylindrical lithium ion secondary battery 20. The cleavage pressure of the cleavage valve 11 was set to about 9 × 10 5 Pa.
[0019]
A predetermined amount of non-aqueous electrolyte is injected into the battery container 7, and then the positive electrode lead 9 is folded so as to cover the battery container 7 with a battery cover, and sealed by caulking via an EPDM resin gasket 10. The cylindrical lithium ion secondary battery 20 was completed. The design capacity of the lithium ion secondary battery 20 is 4.0 Ah.
[0020]
The non-aqueous electrolyte solution contains 6 fluorocarbons into a mixed solvent obtained by mixing ethylene carbonate (hereinafter, referred to as EC), dimethyl carbonate (hereinafter, referred to as DMC), and diethyl carbonate (hereinafter, referred to as DEC) at a predetermined volume ratio. Lithium phosphate (LiPF 6 ) dissolved at 1 mol / liter was used. The mixed solvent is in the range of y = z, 20 <x <30, and x ≦ 2y / 3 + 10 when the mixing ratio of EC, DMC, and DEC to the nonaqueous electrolyte is x, y, and z volume%, respectively. And 85 ≦ x + y + z ≦ 100.
[0021]
As shown in FIG. 2, in the mixed solvent, the mixing ratio x of EC is in the range of 20 to 30% by volume, and the mixing ratio y of DMC and the mixing ratio z of DEC are straight lines indicating a relationship of x = 2y / 3 + 10. (1) It is a range above. Therefore, EC, DMC, and DEC were mixed in the range of the hatched portion bordered by x = 20, x = 30, and the straight line (1). Further, the range was defined between a straight line (2) indicating a relationship of x + y + z = 100 when y = z and a straight line (3) indicating a relationship of x + y + z = 85.
[0022]
【Example】
Next, an example of the cylindrical lithium ion secondary battery 20 manufactured according to the present embodiment will be described. Note that a battery of a comparative example manufactured for comparison is also described.
[0023]
(Example 1)
As shown in Table 1 below, in Example 1, the composition of EC, DMC, and DEC of the mixed solvent was 28:36:36 by volume. In Table 1, PC indicates propylene carbonate, and VC indicates vinylene carbonate.
[0024]
[Table 1]
Figure 2004134366
[0025]
(Examples 2-3)
As shown in Table 1, Example 2 and Example 3 were the same as Example 1 except that the composition of EC, DMC, and DEC of the mixed solvent was changed. In Example 2, the volume ratio was 25: 37.5: 37.5, and in Example 3, the volume ratio was 21: 39.5: 39.5.
[0026]
(Examples 4 and 5)
As shown in Table 1, in Example 4 and Example 5, EC, DMC, and DEC of the mixed solvent were mixed at a volume ratio of 25: 37.5: 37.5, and PC or VC was mixed with 15% of the total solvent. The same procedure as in Example 1 was carried out except that the mixture was adjusted to be volume%. In Example 4, PC was mixed, and in Example 5, VC was mixed.
[0027]
(Comparative Examples 1-2)
As shown in Table 1, Comparative Example 1 and Comparative Example 2 were the same as Example 1 except that the composition of EC, DMC, and DEC of the mixed solvent was changed. In Comparative Example 1, the volume ratio was 40:30:30, and in Comparative Example 2, the volume ratio was 15: 42.5: 42.5.
[0028]
(Comparative Examples 3 and 4)
As shown in Table 1, in Comparative Example 3 and Comparative Example 4, EC, DMC, and DEC as mixed solvents were mixed at a volume ratio of 25: 37.5: 37.5, and PC or VC was added to 20% of the total solvent. The same procedure as in Example 1 was carried out except that the mixture was adjusted to be volume%. In Comparative Example 3, PC was mixed, and in Comparative Example 4, VC was mixed.
[0029]
Next, the following series of tests were performed on the batteries of the examples and the comparative examples manufactured as described above. In this example, the state of charge (SOC) was 0% when the battery voltage was 2.7V, and the state of full charge was SOC 100% when the battery voltage was 4.2V.
[0030]
In the measurement of the capacity, the fully charged battery was discharged at a current value of 2 A to a final voltage of 2.7 V, and the product of the current value (2 A) and the discharge time was defined as the capacity of the battery.
[0031]
In the output measurement, the fully charged battery was continuously discharged at a current value of 10 A, 30 A, and 90 A for 10 seconds each, and the battery voltage at each 5 seconds was plotted on the vertical axis against the horizontal axis current value. The current value at a point where a straight line obtained by linearly approximating the three points intersects 2.7 V which is the final voltage was read, and the product of this current value and 2.7 V was used as the output of the battery.
[0032]
In the cycle test, the battery was charged at a constant current and a constant voltage at an upper limit voltage of 4.2 V at an hourly rate (1 C) at an ambient temperature of 25 ± 2 ° C. (normal temperature) and -30 ± 2 ° C. (low temperature). The cycle of discharging to a final voltage of 2.7 V at an hourly rate (1 C) was repeated 200 times. The capacity and output after the cycle test were measured in the same manner. Table 2 below shows the test results of the capacity and the output.
[0033]
[Table 2]
Figure 2004134366
[0034]
As shown in Table 2, in the batteries of Examples 1 to 3, the capacity and output at 25 ° C. (normal temperature) showed high results both at the initial stage and after 200 cycles, and even at a low temperature of −30 ° C. The performance was almost the same as at room temperature. On the other hand, the capacity and output at room temperature of the battery of Comparative Example 1 are equivalent to those of the batteries of Examples 1 to 3, but at low temperatures, both the capacity and output are reduced by half. In general, when EC and DMC are used as the solvent of the non-aqueous electrolyte, the composition at which the low-temperature characteristics are most improved when the mixing ratio is around 1: 1, the volume ratio of EC and DMC is 40:30. Although the performance of the battery of Comparative Example 1 can be expected to be sufficient, it is considered that the above result was obtained because the transesterification reaction occurred during charging and discharging in the battery system and the composition ratio between EC and DMC changed. When the volume ratio between DMC and DEC was the same (y = z), the amount of DMC after transesterification was confirmed to be 2y / 3 by the experimental results so far. From the solvent composition of the battery of Example 1, it was found that when a mixture of EC, DMC and DEC was used as the solvent, by mixing in a range satisfying x ≦ 2y / 3 + 10, the capacity and output at low temperatures were improved. Was.
[0035]
Further, in the battery of Comparative Example 2, the capacity and output in the initial stage did not differ from the battery of Example 1, but the capacity and output after 200 cycles both at room temperature and at low temperature were greatly reduced. In the solvent composition of the battery of Comparative Example 2, when judged from the initial capacity and output, the low-temperature characteristics are certainly improved, but as is clear from the capacity and output data after 200 cycles, the battery life characteristics Was found to have decreased.
[0036]
Furthermore, the batteries of Examples 4 to 5 in which PC or VC was added at 15% by volume in addition to EC, DMC, and DEC had lower-temperature characteristics than the batteries of Comparative Examples 3 and 4 in which PC or VC was added at 20% by volume. Turned out to be excellent. This means that low-temperature characteristics can be improved by a mixed solvent of EC, DMC, and DEC, but if the mixing ratio of the other solvent exceeds 15%, the characteristics of the solvent will be greatly exhibited. Therefore, it was found that it is desirable to mix EC, DMC, and DEC in the range of 85 ≦ x + y + z ≦ 100 in order to sufficiently exert the effects of EC, DMC, and DEC and improve the low-temperature characteristics of the battery. .
[0037]
In the lithium-ion secondary battery 20 of the present embodiment, the non-aqueous electrolyte is mixed with solid EC at room temperature and low-melting DMC and DEC so that the non-aqueous electrolyte does not coagulate even at a low temperature. The liquid state can be maintained. In addition, since EC having a high dielectric constant and a high ion solubility is mixed in the range of 20 <x <30 when the mixing ratio of EC is x, it is necessary to sufficiently secure the ionic conductivity of the nonaqueous electrolyte. Can be. In addition, since EC alone has a high viscosity in a liquid state, the mobility of ions is hindered. On the other hand, when the low-viscosity DMC and DEC have mixing ratios y and z, respectively, y = z, x Since it is mixed in the range of ≦ 2y / 3 + 10 (x ≦ 2z / 3 + 10), the viscosity of the non-aqueous electrolyte decreases, so that sufficient ion mobility can be secured. Therefore, it is possible to realize the cylindrical lithium ion secondary battery 20 having excellent high-rate charge / discharge characteristics even at a low temperature and excellent capacity and output characteristics even when charge / discharge cycles are repeated.
[0038]
Further, in the lithium ion secondary battery 20 of the present embodiment, the charge and discharge characteristics can be further improved by further adding and mixing a solvent other than EC, DMC, and DEC. At this time, if the mixing ratio of a solvent other than EC, DMC, and DEC exceeds 15%, the influence of a solvent other than EC, DMC, and DEC appears on the battery characteristics. preferable. That is, the total of the mixing ratios of EC, DMC, and DEC is preferably in the range of 85 ≦ x + y + z ≦ 100.
[0039]
In the present embodiment, an example in which LiPF 6 is used as the electrolyte (solute) of the non-aqueous electrolyte is described. However, the present invention is not limited to this. For example, LiClO 4 , LiAsF 6 , and LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li and mixtures thereof can be used. In addition, as a solvent that can be added and mixed besides EC, DMC, and DEC, one or more solvents generally used in a lithium ion secondary battery or a nonaqueous electrolyte secondary battery may be used. Good.
[0040]
Further, in the present embodiment, the cylindrical lithium ion secondary battery 20 having the design capacity of 4.0 Ah has been exemplified, but the present invention is not limited to the use of the battery, the size of the battery, and the battery capacity. Further, in the present embodiment, the cylindrical battery using the positive and negative electrodes wound is exemplified, but the present invention is not limited to the shape of the battery, and may be a square or other polygonal battery, or a positive or negative battery. The present invention is also applicable to a stack type battery in which a negative electrode is stacked. Further, as a shape to which the present invention can be applied, a battery other than a battery having a structure in which the battery upper lid is sealed by caulking in the above-described bottomed cylindrical container (can) may be used. As an example of such a structure, there can be mentioned a battery in a state where the positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed together via the shaft core in the battery container. Further, in the present embodiment, an example in which the wound group in which the positive and negative electrodes are wound is infiltrated with the non-aqueous electrolyte is shown, but the present invention is not limited to this, and the non-aqueous electrolyte is used as a separator. It is also possible to apply the present invention to a battery in which the electrolyte layer is impregnated.
[0041]
Furthermore, in the present embodiment, an example in which lithium manganate is used as the positive electrode active material has been described, but the present invention is not limited to this, and any lithium-containing oxide such as lithium cobaltate and lithium nickelate may be used. Just fine. The crystal structure is not particularly limited, and for example, a lithium transition metal double oxide having a spinel crystal structure or a layered crystal structure may be used. At this time, the transition metal may be, for example, at least one of manganese, cobalt, nickel, iron and the like. Further, the shape of the particles is not particularly limited, such as flakes, spheres, fibers, and lumps.
[0042]
Furthermore, in the present embodiment, an example is shown in which amorphous carbon having excellent adhesion to the negative electrode current collector is used as the negative electrode active material because it is amorphous compared to a crystalline carbon material. The present invention is not limited to this. The negative electrode active material that can be used in the present invention may be any carbon material that can occlude and release lithium ions, such as natural graphite, various artificial graphite materials, and carbon materials such as coke. There is no particular limitation on the particle shape. By using such a carbon material for the negative electrode active material, since the flexibility when forming an electrode group by winding in a spiral shape in cross section is excellent, the separation and detachment of the negative electrode active material layer from the negative electrode can be prevented. it can.
[0043]
【The invention's effect】
As described above, according to the present invention, when the mixing ratios of ethylene carbonate, dimethyl carbonate, and diethyl carbonate to the nonaqueous electrolyte are x, y, and z volume%, respectively, ethylene carbonate, dimethyl carbonate, and diethyl carbonate Is mixed in the range of y = z, 20 <x <30, and x ≦ 2y / 3 + 10, so that the ionic solubility of the non-aqueous electrolyte is increased by ethylene carbonate having a high dielectric constant. As the viscosity of the non-aqueous electrolyte is reduced by low viscosity dimethyl carbonate and diethyl carbonate, the mobility of ions is ensured, and the low melting point diethyl carbonate makes the non-aqueous electrolyte liquid even at low temperatures. Since it is maintained, it is possible to obtain an effect that a lithium ion secondary battery having excellent high-rate charge / discharge characteristics can be realized even at a low temperature.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention can be applied.
FIG. 2 is a graph showing the relationship between the mixing ratio of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a non-aqueous electrolyte injected into the cylindrical lithium ion secondary battery of the embodiment.
[Explanation of symbols]
6 Winding group 20 Cylindrical lithium ion secondary battery

Claims (4)

リチウムイオンの吸蔵、放出が可能な炭素材料を負極活物質とした負極と、リチウム含有酸化物を正極活物質とした正極とを非水電解液に浸潤させたリチウムイオン二次電池において、前記非水電解液は、炭酸エチレン、炭酸ジメチル及び炭酸ジエチルを含む混合物であり、前記炭酸エチレン、炭酸ジメチル及び炭酸ジエチルの前記非水電解液に対する混合割合をそれぞれx、y、z体積%としたときに、前記炭酸エチレン、炭酸ジメチル及び炭酸ジエチルが、y=z、20<x<30、かつ、x≦2y/3+10の範囲で混合されていることを特徴とするリチウムイオン二次電池。In a lithium ion secondary battery in which a negative electrode using a carbon material capable of occluding and releasing lithium ions as a negative electrode active material and a positive electrode using a lithium-containing oxide as a positive electrode active material are impregnated in a nonaqueous electrolyte solution, The aqueous electrolyte is a mixture containing ethylene carbonate, dimethyl carbonate, and diethyl carbonate. When the mixing ratio of the ethylene carbonate, dimethyl carbonate, and diethyl carbonate to the nonaqueous electrolyte is x, y, and z volume%, respectively. A lithium ion secondary battery wherein the ethylene carbonate, dimethyl carbonate and diethyl carbonate are mixed in a range of y = z, 20 <x <30, and x ≦ 2y / 3 + 10. 前記非水電解液は、85≦x+y+z≦100の関係を満たすことを特徴とする請求項1に記載のリチウムイオン二次電池。2. The lithium ion secondary battery according to claim 1, wherein the nonaqueous electrolyte satisfies a relationship of 85 ≦ x + y + z ≦ 100. 3. 前記リチウム含有酸化物が、スピネル結晶構造を有するリチウム遷移金属複酸化物であることを特徴とする請求項1又は請求項2に記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, wherein the lithium-containing oxide is a lithium transition metal double oxide having a spinel crystal structure. 前記リチウム含有酸化物が、層状結晶構造を有するリチウム遷移金属複酸化物であることを特徴とする請求項1又は請求項2に記載のリチウムイオン二次電池。3. The lithium ion secondary battery according to claim 1, wherein the lithium-containing oxide is a lithium transition metal double oxide having a layered crystal structure.
JP2003189387A 2002-08-13 2003-07-01 Rechargeable lithium-ion battery Abandoned JP2004134366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189387A JP2004134366A (en) 2002-08-13 2003-07-01 Rechargeable lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002235449 2002-08-13
JP2003189387A JP2004134366A (en) 2002-08-13 2003-07-01 Rechargeable lithium-ion battery

Publications (1)

Publication Number Publication Date
JP2004134366A true JP2004134366A (en) 2004-04-30

Family

ID=32301025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189387A Abandoned JP2004134366A (en) 2002-08-13 2003-07-01 Rechargeable lithium-ion battery

Country Status (1)

Country Link
JP (1) JP2004134366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438991B2 (en) 2004-11-30 2008-10-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell and method for charging same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438991B2 (en) 2004-11-30 2008-10-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell and method for charging same

Similar Documents

Publication Publication Date Title
KR100802851B1 (en) Non-aqueous electrolyte secondary battery
KR20040018154A (en) Nonaqueous electrolyte secondary battery
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
KR101289974B1 (en) Non-aqueous liquid electrolyte secondary cell
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
JP3436600B2 (en) Rechargeable battery
JP3229757B2 (en) Lithium secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH0992329A (en) Nonaqueous electrolyte secondary battery
JP2000040526A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP3979044B2 (en) Lithium secondary battery
JP2009081067A (en) Non-aqueous secondary battery
JP2002075460A (en) Lithium secondary cell
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP3432922B2 (en) Solid electrolyte secondary battery
JP3624793B2 (en) Lithium ion battery
JP2010176973A (en) Nonaqueous electrolyte secondary battery
JP2001015168A (en) Lithium secondary battery
CN113423665A (en) Negative electrode active material based on lithium iron hydroxysulfide
JP2005071712A (en) Manufacturing method of positive electrode
JP2001291519A (en) Nonaqueous second battery
JP2004134366A (en) Rechargeable lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080225